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Abstract

The following aims to be a pragmatic introduction to hardware-friendly learning of
implicit models, which encompass a broad class of models from feedforward nets
to physical systems, taking static data as inputs. Starting from first principles, we
present a minimal hierarchy of independent concepts to circumvent some problems
inherent to the hardware implementation of standard differentiation. This way,
we avoid entangling essential ingredients with arbitrary design choices by naively
listing existing algorithms and instead propose the draft of a “cookbook” to help
the exploration of many possible combinations of these independent mechanisms.

1 Problem statement

Learning at equilibrium. Given an input x, we want to find a set of model parameters θ which
minimizes a given objective O defined over the model (hidden and output) variables s(x, θ), such
that the model variables abides by some constraint C. Namely:

P1 : minθ J(x, θ) := O(s(x, θ), θ) s.t. C(x, s(x, θ), θ) = 0. (1)

Note that s may implicitly contain several layers, e.g. s = (s1
⊤
, s2

⊤
, · · · , sN⊤

)⊤. Classically, O
is some cost function ℓ measuring the discrepancy between the model prediction and some ground-
truth data and C the “physical laws” that governs the substrate sustaining the model prediction at
equilibrium – note that this implicit formalism encompasses both feedforward models (65), deep
equilibrium models (4), as well as resistive networks governed by Kirchoff’s laws (42; 96; 85).
The problem defined in Eq. (1) is traditionally solved via first-order optimization by estimating the
gradient over a minibatch B (106): g(θ) := Ex∼D[dθJ(x, θ)]. Therefore, solving P1 boils down to
how to compute these gradients. We herein call a “circuit” the abstract physical system that may
realize a given equilibrium condition.

The Lagrangian method. One way to solve P1 is by writing the associated Lagrangian functional
L1(s, λ, θ) := O(s, θ) + λ⊤ · C(s, θ) and solving for the Karush-Kuhn-Tucker (KKT) conditions
(89; 13). Loosely speaking, the primal feasibility condition ∂λL1 = 0 and dual feasibility condition
∂sL1 = 0 generalize the notions of “forward pass” and “backward pass” respectively, and can be
viewed as two circuits determining s and λ whose equilibrium satisfy:{

C(s, θ) = 0,
∂sC(s, θ)⊤ · λ+∇sO(s, θ) = 0,

(2)

with the resulting gradient estimate reading as g(θ) = ∇θO(s, θ) + ∂θC(s, θ)⊤ · λ. We briefly
mention that this can also be derived using the Implicit Function Theorem (IFT) (106). Here as well,
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note that feedforward nets trained by backprop are a special case of Eq. (2). Yet, it appears from
Eq. (2) that naively solving for s and λ comes with some challenges from the (high-level) hardware
viewpoint: i) the transport problem: s and θ need to be transported from the inference circuit to
the error circuit; ii) the memory problem: s needs to be stored; iii) analytical derivatives: ∂sC
potentially contains analytical derivatives which may have to be computed with high precision; iv)
forward locking: in a hierarchical model, the circuit computing sk becomes idle when computing
sk+1 (Eq. (3)); v) backward locking: symmetrically, λk cannot be solved before λk+1 (Eq. (6)); vi)
forward–backward synchrony: λ is computed after s.

2 Algorithm design & general methods

2.1 Crafting the constraints

Hierarchical constraints. As the variable s may subsume a hierarchy of layers, one may want to
split the original optimization problem into a hierarchy of K problems, given s := (s1

⊤
, · · · , sK⊤

)⊤

(16; 51; 31; 105; 75):

P2 : minθ J(x, θ) := O(s, θ) s.t. C1(s1, s0 := x, θ1) = 0, · · · , CK(sK , sK−1, θK) = 0 (3)

Here, the model is split into a hierarchy of K subcircuits (or “blocks”) with parameters θk, state sk,
which may comprise one or multiple layers (K ≤ L), subject to the influence of the previous circuit
through sk−1. Note that for a given set of constraints, P1 is generally not equivalent to P2 – see § 3.6
for an example. In this case, solving for the KKT conditions of P2 yields:

Ck(sk, sk−1, θk) = 0 (4)

∂sKCK(sK , sK−1, θK)⊤ · λK +∇sKO(s, θ) = 0 (5)

∂skCk(sk, sk−1, θk)⊤ · λk +∇skO(s, θ) + ∂ks Ck+1(s
k+1, sk, θk+1)⊤ · λk+1 = 0. (6)

Note that O(s, θ) = ℓ(sK , y) corresponds to the classical “end-to-end” supervised learning setting in
which case the second term of Eq. (6) vanishes except for the last block sK .

Relaxed constraints. When C = ∇sK (see Section 3), P1 can be relaxed through an optimal value
reformulation with a fixed Lagrangian multiplier β−1 as (79; 105; 37):

P3 : min
θ,s

O(s, θ) s.t. K(s, θ) ≤ min
s′

K(s′, θ), L3(s, θ, β) := O(s, θ)+
1

β

(
K(s, θ)−min

s′
K(s′, θ)

)
(7)

The resulting Lagrangian L3, sometimes called “surrogate”, is intimately tied to energy-based learning
(88) (Section 3) and is especially convenient to express quantities as finite differences in β which
would otherwise appear as exact derivatives in β starting from P1 (which amounts to send β → 0).
Importantly, this relaxation could also well be applied at each level of the hierarchy of P2 (37).

2.2 Picking an algorithm to estimate λ’s: standard approaches

Implicit differentiation. In spite of the aforementioned problems inherent to Eq. (2), one may
still directly solve for λ in combination with other tricks (see section 2.3). For feedforward models,
∂sC⊤ may be explicitly inverted with λ = −∂sC−⊤ · O reducing to backprop. In other cases, λ
may be computed by implicit differentiation (44; 10; 30), which comes in many different flavors
depending on the constraints at hand (14). Note that these techniques can be slightly adjusted to
accommodate some constraints. For instance, to avoid weight transport between the inference and
error circuits, we can equip the error circuit with its own “feedback” parameters ω such that the error
signal satisfies: ∂sC(s, ω)⊤ · λ +∇sO(s, ω) = 0 (52; 76; 1; 48). While randomly sampled ω are
sufficient for shallow architectures and simple tasks, some extra alignment mechanisms are needed to
have ω roughly approximate θ without explicitly transporting it (71; 6; 102; 1; 47).

Another factorization of the gradient. Note that g(θ) could also well be factorized as g(θ) =
∇θO(s, θ) + dθs

⊤ · ∇sO(s, θ), where dθs satisfies the equilibrium condition:

∂sC(s, θ) · dθs+ ∂θC(s, θ) = 0. (8)
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In this case, the error signal is carried forward through ∂sC(s, θ), however its memory usage scales
cubically with the number of neurons. While low-rank approximations of Eq. (8) have been proposed
in the context of RNNs to mitigate its memory cost (101; 98; 11), an extreme way to trade memory
for time complexity would be by perturbing every single weight by a small amount ϵ and measure the
resulting loss change, yielding:

C(x, s±ϵ,ei , θ ± ϵei) = 0, dθO(s, θ) ≈
d∑
i=1

1

2ϵ

(
O(sϵ,ei , θ + ϵei)−O(s−ϵ,ei , θ − ϵei)

)
ei, (9)

where {ei}i=1···n denote the canonical basis in the weight space. However, Eq. (9) is still highly
inefficient as it takes 2d forward passes per iteration to compute a single gradient.

Forward-only learning with zeroth order optimization. One sweet spot between Eq. (8) and
Eq. (9), which has recently regained some popularity, is zeroth order optimization (ZO) (53). ZO
techniques estimate a projection of the gradient g(θ) along some direction u in the weight space by
performing multiple forward passes:

u⊤ · g(θ) = dϵ (J(θ + ϵu)) |ϵ=0 ≈ 1

2ϵ
(O(s(θ + ϵu), θ + ϵu)−O(s(θ − ϵu), θ − ϵu)) , (10)

An unbiased estimate of the gradient can be obtained by averaging multiple such derivatives: g(θ) =
Eu∼N (0,σ2) [dϵ (J(θ + ϵu)) |ϵ=0 · u] (94; 7). However, the variance of this gradient estimate scales
cubically with the number of model parameters (80), thereby restricting the applicability of ZO to the
realm of models which are small enough (93; 35; 7; 26) or behaving as such, i.e. pre-trained models
(56). One way to mitigate this problem is to perturb neurons instead of synapses (25; 66; 15; 43),
namely computing projections of the error signal as: v⊤ · λ = dϵO(sϵ, θ)|ϵ=0 with sϵ implicitly
determined through C(sϵ, θ) + ϵv = 0. Similarly, an unbiased gradient estimate is obtained as
g(θ) = ∇θO + ∂θC(s, θ)⊤ · Ev∼N (0,σ2) [dϵO(sϵ, θ)|ϵ=0 · v]. Going beyond, one can teach small
auxiliary networks synthetizing such directions to output “good” weight directions u instead of
randomly sampling them (26), reducing the variance of the gradient estimate at the cost of increasing
the bias (81; 93).

2.3 Other tricks which independently apply

Greedy learning & loss design. It appears from Eq. (6) that in general, an error signal λk+1 must
be passed backwards to “unlock” the computation of λk. In order to parallelize learning across blocks
entirely, a heuristic consists in shutting off the top-down error signal (λk+1 = 0) and recreate an error
signal through a locally-defined (supervised (8; 77; 9; 99; 29) or self-supervised (55; 103; 33; 92))
loss, which amounts to choosing O = O1(s

1, θ1) + · · ·+OK(sK , θK). In this case, the resulting
block satisfies the exact same adjoint equation as that of the original learning problem (Eq. (2)) so
that all gradient computation techniques herein presented may also apply block-wise. Alternatively,
another solution to backward locking is to estimate λk+1 with auxiliary modules (41).

Checkpointing & reversible models. One way to mitigate the memory problem mentioned above
(at the expense of compute) is to simultaneously compute s and λ, which can be viewed as activation
checkpointing (18). In models with an explicit layer hierarchy (P2), another special instantiation
of activation checkpointing is possibly when using reversible models (21; 28; 17; 57): a given
constraint Ck+1(s

k+1, sk) = 0 can be explicitely inverted as C−1
k+1(s

k, sk+1) = 0 such that sk can be
recomputed backward from layer sk+1 instead of being stored, or recomputed forward from s0 = x.
This can be achieved for instance by splitting each block state sk into two, sk = (sk

⊤

a , sk
⊤

b )⊤, and
defining Ck+1 = (Cak+1, Cbk+1), with dedicated transformations fa, fb, as (28):

Cak+1(s
k+1, sk) = sk+1

a − ska − fa(s
k
b , θ

k
a), Ck+1

b (sk+1, sk) = sk+1
b − skb − fb(s

k
a, θ

k
b ) (11)

Pipelining. When dealing with a hierarchical model (P2), the block Ck may become idle or
“forward-locked” after passing sk to Ck+1 until next input comes in. A solution to this is to push
multiple inputs in sequence through the blocks, allowing them to process different inputs in parallel,
e.g. Ck processes input xp+1 while Ck+1 processes input xp, the same strategy applying backwards
for the computation of the λk’s for different inputs (40). As naive pipelining may still maintain
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idleness “bubbles”, more elaborate schemes have been proposed (24), for instance by allowing each
block to alternate between forward pass and backward passes for different inputs (73), yet at the cost
of gradient staleness – λ is computed with a different θ that the one used to compute s. This problem
can be mitigated for instances by by maintaining different weight versions at each circuit (74).

3 Forward-only learning beyond zeroth order

3.1 Energy-based (EB) models & Energy-based Learning (EBL)

When the constraint of the optimization problem Eq. (1) derives from an energy function K, energy-
based learning (EBL) refers to a family of gradient computation algorithms which implicitly estimate
s and λ using a single circuit (39; 34; 72; 5; 96; 86; 88). Namely, if there exists some scalar function
K such that C := ∇sK, defining F := K + βO where β ≥ 0 is some scalar value, then one can
estimate g(θ) by having the same circuit relax twice to equilibrium with two different values of β
and subsequent “nudged states” s±β(86; 46):

s±β : ∇sF(±β, s±β , θ) = 0, g(θ) =
1

2β
(∇θF(β, sβ , θ)−∇θF(−β, s−β , θ)) +O(β2) (12)

Eq. (12) is in stark contrast with Eq. (2), though being mathematically equivalent through λ =
dβsβ |β=0 (86; 75): instead of estimating s and λ on two circuits, sβ and s−β are estimated on
a single circuit through “energy minimization”, which is why C is said to be energy based (EB).
The core intuition behind the magic of EB learning is that while error signals are usually carried
“backward” through ∂sC⊤ (Eq. (2)), since we have ∂sC⊤ = ∇2

sK = ∂sC, error signals can in
this case be equivalently carried “forward” through ∂sC through a small perturbation of s along
∇sO of sufficiently small β. Finally note that Eq. (12) is only one many variants (88) to estimate
dβ(∇θF)|β=0 (86), where there is trade-off between the number of sβ being evaluated and the
resulting bias (107; 45).

3.2 The importance of nudging

The weak & strong nudging limits. The most current EBL setting is when C describes the implicit
model itself and O the cost function: (C,O) = (F = ∇sE, ℓ) where we have denoted K = E. In
this case, the condition on the nudged state reads (86):

∇sE(sβ , θ) + β∇sℓ(sβ , θ) = 0 (13)

We call the nudging factor the scalar controlling the strength of the cost function ℓ in the definition of
sβ . For this choice of (C,O), β is the nudging factor and since theoretical guarantees of Eq. (12) hold
for β → 0, it corresponds to small ∇sℓ perturbations, which is therefore called the weak nudging
limit. Conversely, when swapping the objective and the constraint (64; 65), i.e. (C,O) = (∇sℓ, E),
which amounts to swap E and ℓ inside Eq. (13), one can see that β−1 now gates the error signal
∇sℓ. Therefore in this situation, β → 0 corresponds to large ∇sℓ perturbations, which is therefore
called the strong nudging limit. While it seems counter-intuitive that strong nudging solutions are
relevant – the main goal of of Eq. (1) should be to minimize the loss subject to constraints on the
network energy and not the other way around – they are global minimizers of θ → ℓ(θ, s(θ)) for
certain choices of E (65). Strong nudging can enable learning in situations where the physical system
at use is noisy by improving the signal to noise ratio for the teaching signal (64; 45).

Nudging through adiabatic oscillations. EBL classically operates in the weak nudging regime
and estimates the error signal λ = dβsβ |β=0 through a discrete, two-steps finite difference procedure,
as highlighted in Eq. (12). Another way to view the error signal is as the contour integration in the
complex plane λ = 1

T |β|
∫ T
0
ei2πt/T sβ(t) with β(t) := |β|ei2π/T . Then, provided T is sufficiently

large compared to the characteristic time constant which governs the relaxation of C to equilibrium,
the error signal can be computed through slow adiabatic oscillations of the system (5; 45; 3).

Nudging heuristics. The error signal β∇sℓ may be transmitted instantaneously to the rest of the
network, or with a delay. Denoting h(θ, s) the model logits, some output controller dynamics u may
integrate the error signal inside the output layer as τuu̇+ u = −β∇oℓ(h(s, θ)) and feed it back to
the rest of the circuit (65). There also exists other types of nudging among the broader family of
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Contrastive Learning (CL) algorithms. Denoting y some label, the “nudged” hidden state hy can be
defined by hard-clamping y to the output units, ∇sE(hy, o = y, θ) = 0, while prescribing a weight
update of the same contrastive form as Eq. 12 (72). An hybrid between weak nudging and target
clamping consists of clamping the output to a weakly nudged target, resulting in a nudged hidden
state hβ defined as: ∇sE(hβ , o = (1 − β)o⋆ + βy) = 0 where o⋆ corresponds to the free state
(β = 0) of the output (96).

Nudging synapses. One may wonder whether neurons and parameters could play a symmetrical
role, by having them both evolve throughout the gradient computation phase or satisfy an equilibrium
condition. One common post hoc solution is to play on characteristic time constants by having
parameters slowly integrate the instantaneous contrastive updates prescribed by Eq. (12) (22; 97; 45;
20), which however requires the detailed knowledge of the energy function at use. Another solution
circumventing this constraint is to let both s and θ equilibrate in the same energy landscape, with
control variables u acting upon θ with strength α (87). When computing s−β (for instance), u is
adjusted to keep θ at its current value θt such that ut = θt+α∇sF(−β, s−β , θt). Therefore, keeping
ut constant when computing sβ , θ equilibrates at: θt+1 = ut − α∇sF(β, sβ , θt+1) ≈ θt − αβg(θ).

3.3 Two phases or twice as many neurons?

Lagrangian reparametrization. One may usually regard the contrastive update Eq. (12) as a
procedure performed on the same physical system whose state is measured at two different times with
two different nudging values (e.g. −β, β), or a continuum of such. Yet, another view of Eq. (12) is to
assume that the two nudged states are computed simultaneoulsy by two different circuits sharing the
same parameters. An advantage of this implementation, which has been experimentally demonstrated
with transistor-based synapses (20), is that it requires a single phase only instead of two, yet at the
expense of area and complex engineering to enable parameter sharing. A different way to approach
the same question is through the concept of dyadic neurons (36; 37): two variables s+ and s− are
such that their (convex) sum encodes the model prediction and their difference the error signal if they
are critical points of the following reparametrized Lagrangian (37):

L̃1(s+, s−, θ) := L1 (αs+ + (1− α)s−, (s+ − s−)/β) , (14)

where L defined inside Eq. (2) and α ∈ [0, 1]. While the resulting gradient computation algorithm
is generally a reparametrization of implicit differentiation by construction, when the constraint at
use inside Eq. (1) is energy based and β is sufficiently small, s± can be simply construed as s±β
of Eq. (12). This can be shown by performing this reparametrization on the relaxed Lagrangian L3

(Eq. (7)) with fixed β (37), or equivalently approximated from Eq. (14) in the limit β → 0.

3.4 Applying EBL to implicit models

Weak nudging. One of the ways to cast an implicit model F , which does not explicitly derive from
an energy function, into an EB model is simply to employ the energy function K = E = 1

2∥F∥
2 (65).

An important case, as one means to train feedforward nets by EP, is when F (s, θ) = s − f (θ, s)
where θ is typically lower block diagonal (27; 100; 67; 69). Eq. (12) for some β, in the weak nudging
regime ((O,K) = (ℓ, E)), yields in this case:{

sβ = f(sβ , θ) + ∂sf(sβ , θ)
⊤ · (sβ − f(sβ , θ))− β∇sℓ(sβ , θ),

g(θ) = 1
β∂θf(sβ , θ)

⊤ · (sβ − f(sβ , θ)) +O(β)
(15)

A nice feature of Eq. (15) is that by construction, sβ = f(sβ , θ) when β = 0 such that the gradient
can be estimated up to O(β) with a single nudged state. However, the presence of ∂sf(sβ , θ)⊤
signals the potential use analytical derivatives. To obviate this, one may instead estimate the
required derivatives through finite differences of feedback operators (50; 82; 62; 63; 23; 61) as:
sβ ≈ f(sβ , θ) + g(sβ , ω)− g(f(sβ), ω))− β∇sℓ(sβ , θ) where the feedback parameters may have
to be learned so that ∂sg ≈ ∂sf

⊤ (23). However a problem remaining is that both sβ and their
“feedforward” prediction f(sβ) need to be simultaneously maintained to implement Eq. (15). A
solution is to use auxiliary variables ψ which track the feedforward activity such that ψβ ≈ fψ(sβ , θ)
and sβ ≈ f(sβ , θ) + g(sβ , ω)− g(ψβ , ω)− β∇sℓ(sβ , θ) (82).
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Recovering a least control problem in the strong nudging regime. When in the strong nudging
regime, the optimization problem Eq. (1) using E = 1

2∥F∥
2 = O along with ℓ = K acquires a

very intriguing meaning, though the loss is not picked as the objective. Defining ψβ := −F (sβ , θ),
the learning problem amounts to find the set of parameters which minimizes the amount of control
O = 1

2∥ψβ∥
2 such that the controlled equilibrium ψβ + F (sβ , θ) = 0 minimizes the loss ℓ, which

works in practice on feedforward and implicit models more broadly (65). However, this interpretation
is tied to the choice E = 1

2∥F∥
2 and further investigation is needed to extend the applicability of

strong nudging and its connection to control theory beyond this choice of energy function.

3.5 Handling nonlinearity inside EB models

When not handled cautiously, the application of Eq. 12 to implicit models yields activation derivatives
(Eq. (15)). While neuroscientists, seeking for biologically plausible learning theories, gave birth
to the aforementioned approximations of Eq. (15) and many others, these remain impractical for
hardware-friendly learning. One ad hoc solution used in practice, when the inverse of the activation
function is continuously invertible, is to separate the linear and nonlinear contribution inside the
energy function as E = G + U where G is defined such that ∇sG = σ−1 (39; 105; 36; 88). A
more principled solution to handle σ is to instead treat it as a constraint Cσ on the set of feasible
configurations over which energy minimization is performed, which descent steps are hard projected
onto(85). A “relaxed” version of this approach, somewhat bridging with the former solution, is
through the lens of mirror descent using the Bregman divergence associated with G (2): st+1 =
argmin{s⊤ · ∇sE(s) + 1

η∆G(s, st)} with ∆G(x, y) := G(x)−G(y) +∇G(y)⊤ · (x− y). Note
that many other fixed point algorithms could be use for the same purpose (14).

3.6 Casting feedforward nets into hierarchical energy-based models

An important example. Another way to cast feedforward nets training by EBL algorithms is to
break them into multiple, hierarchical energy-based constraints based on Eq. (3) (105). The following
example, which shows how to do so, is also a good illustration of why the problems P1 (Eq. (1))
and P2 (Eq. (3)) are generally not equivalent. Taking E :=

∑K
k=1Ek with Ek(sk, sk−1, θk) :=

G(sk)− sk
⊤ · θk · sk−1, we consider P1 with C = ∇sE and P2 with Ck = ∇skE

k. In this case, sk
is a single layer and not a block of several layers. Setting the constraint to zero in these two cases
yields:

P1 : sk = σ
(
θk · sk−1 + θk+1⊤ · sk+1

)
, P2 : sk = σ

(
θk · sk−1

)
(16)

In one case, the model retained at inference time is a Hopfield model and in the other one a feedforward
model. This difference is instrumental to understand why works revolving around “contrastive
learning” may actually apply to feedforward models through the P2 problem formulation (36).
Likewise, the nudged state defined by Eq. (12) reads for any layer until penultimate the same as
Eq. (16) for problem P1 and as follows for P2, taking β sufficiently small (105; 75):

P2 : sk±β = σ
(
θk · sk−1 ± βθk+1⊤ · dβsk+1

β |β=0

)
≈ σ

(
θk · sk−1 ± θk+1⊤ ·

(
sk+1
β − sk+1

−β

)
/2
)
,

(17)
Note that many other choices of energy functions are possible in order to learn feedforward nets as a
hierarchical energy-based model (16; 51; 31; 105)

Breaking the forward–backward synchrony. As seen from Eq. (17), computing sk±β still requires
the storage of sk−1. A trick is to notice that for sufficiently small β, sk ≈ (skβ + sk−β)/2 := s̄β such

that skβ ≈ σ
(
θk · s̄β ± θk+1⊤ ·∆sk+1

β

)
with ∆sk+1

β := sk+1
β − sk+1

−β . Implemented this way, the

gradient corresponding to problem P2 with the above choice of energy function can be computed by
simultaneously solving for skβ’s and sk−β’s (36). This implementation can also be derived by picking
hierarchical constraints (Eq. (3)), relaxing these (Eq. (7)) and reparametrizing them (Eq. (14)) (37).

4 Looking ahead & take-aways

Going out of equilibrium? One of the ways to leverage equilibrium techniques towards learning
from sequences is to treat the neuron velocity ṡ as a variable of its own inside the energy function

6



(32; 90), or to put it differently to pick the Lagrangian of the physical system as an energy function
such that the resulting equilibrium is an actual trajectory (84). Another exciting route beyond
equilibrium models is to consider system which have physical access to their adjoint trajectory
through time-reversible, Hamiltonian-based dynamics (54). This requirement can be regarded as
the condition to be self-adjoint in the situation where the constraint C at use is a trajectory rather
than an equilibrium state. In such a case, the associated algorithmic baseline is no longer implicit
differentiation but the continuous adjoint state method (83).

Forward-only learning beyond first order. One may wonder if (and how) second-order opti-
mization could be emulated using a single circuit. A second-order update generally prescribes
∆θ2nd ∝ Ex∼D[C(x, θ)]

−1 · Ex∼D[g(x, θ)] where C is a curvature matrix, i.e. the loss Hessian
or p.s.d. approximations thereof (58). As such, computing θ2nd generally subsumes (Hessian-free
approaches being a notable exception (60)): i) computing g, ii) computing C, iii) inverting C, iv)
computing ∆θ2nd . However, an interesting insight arises when |D| = 1 (unit batch size), picking
the Fisher information curvature matrix C = (∂θs

⊤ · ∂θs) (59) and assuming O does not explicitly
depend on θ for simplicity. Then, denoting A† the Moore-Penrose pseudo-inverse of a matrix A:

∆θ2nd ∝
(
∂θs

⊤ · ∂θs
)−1 · ∂θs⊤ · ∇sO = ∂θs

† · ∇sO. (18)

Therefore, moving to second order optimization here amounts to route the error signal ∇sO backward
through the system’s inverse rather than its adjoint. While this viewpoint has motivated several
implementations of self-invertible (rather than self-adjoint, or equivalently energy-based) circuits (50;
62; 12; 63), it may not straightforwardly generalize to the mini-batch regime (|D| > 1).

Finding energy functions that map to physical systems. Given a system described by the implicit
mapping C = 0, one can always pick E = 1/2 × ∥C∥2 (65), or even other variants picking other
distances beyond the Euclidean metric, as a valid energy function. Also, the hierarchical energy-
based setting depicted above offers even more flexibility to cast many feedforward architectures
into an energy-based model. Beyond these tricks, other important computational primitives such as
batch normalization or attention can also be construed as energy-based operations (38), yet to be
investigated in the context of forward-only energy-based learning. So at first glance, “everything”
seems to be energy-based and therefore trainable by the aforementioned forward-only techniques.
However, all energy functions may not necessarily map to a physical system, namely a lot of these
energy functions may not be physical. For instance, the fact that layered resistive networks can
compute MLP operations at equilibrium and are governed by the minimization of an energy function
that is itself the pseudo-power of these circuits (42; 85) is truly remarkable. Therefore, finding an
energy function which realizes some core computational primitive while being physically feasible is
difficult.

Analog-digital codesign. While fully analog learning experimental proof-of-concepts have been
realized on small systems (20; 104), bringing analog systems at chip scale inherently requires digital
circuitry for registers, tile-to-tile routing, analog non idealities mitigation (ADCs & DACs), and more
fundamentally for the implementation of analytical and possibly non-weight stationnary operations
(95; 49; 104). Beyond this practical aspect, one may wonder if we even should map all operations
into analog. For instance, attention operations are known to be memory-bounded both at inference
and training time when using large context windows rather than bottlenecked by the digital compute
itself (91; 19). So it is unclear whether or not analog computing may necessarily bring an advantage
for this particular example. Overall this observation calls for digital-analog codesign, and to a further
extent for the design of new theoretical building blocks that would account for both digital and analog
parts of a circuit with associated learning algorithms (75).

Conclusion. This “cookbook” is an attempt to complement recent algorithm unification papers
(105; 106; 68; 78; 70) using pragmatic, ingredient-based logics. For instance, “Predictive coding”
(100) amounts to apply Eq. (12) with a specific choice of energy function (3.4) and nudging scheme
(3.2). Likewise, the “Forward-forward” algorithm (33) is a greedy learning strategy, with each block
comprising a single layer, using local self-supervised loss (2.3). Conversely, one may want to split
an architecture into blocks (Eq. (3)), apply standard implicit differentiation in some (2.2, §1), ZO
in others (2.2, §1), along with a pipelining mechanism (2.3) depending on the constraints at hand,
which does not correspond to any known algorithm in the literature.
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