
A cookbook for hardware-friendly
implicit learning on static data

Anonymous Author(s)
Affiliation
Address
email

Abstract

The following aims to be a pragmatic introduction to hardware-friendly learning of1

implicit models, which encompass a broad class of models from feedforward nets2

to physical systems, taking static data as inputs. Starting from first principles, we3

present a minimal hierarchy of independent concepts to circumvent some problems4

inherent to the hardware implementation of standard differentiation. This way,5

we avoid entangling essential ingredients with arbitrary design choices by naively6

listing existing algorithms and instead propose the draft of a “cookbook” to help7

the exploration of many possible combinations of these independent mechanisms.8

1 Problem statement9

Learning at equilibrium. Given an input x, we want to find a set of model parameters θ which10

minimizes a given objective O defined over the model (hidden and output) variables s(x, θ), such11

that the model variables abides by some constraint C. Namely:12

P1 : minθ J(x, θ) := O(s(x, θ), θ) s.t. C(x, s(x, θ), θ) = 0. (1)

Note that s may implicitly contain several layers, e.g. s = (s1
⊤
, s2

⊤
, · · · , sN⊤

)⊤. Classically, O13

is some cost function ℓ measuring the discrepancy between the model prediction and some ground-14

truth data and C the “physical laws” that governs the substrate sustaining the model prediction at15

equilibrium – note that this implicit formalism encompasses both feedforward models (60), deep16

equilibrium models (4), as well as resistive networks governed by Kirchoff’s laws (39; 86; 77).17

The problem defined in Eq. (1) is traditionally solved via first-order optimization by estimating the18

gradient over a minibatch B (93): g(θ) := Ex∼D[dθJ(x, θ)]. Therefore, solving P1 boils down to19

how to compute these gradients. We herein call a “circuit” the abstract physical system that may20

realize a given equilibrium condition.21

The Lagrangian method. One way to solve P1 is by writing the associated Lagrangian functional22

L1(s, λ, θ) := O(s, θ) + λ⊤ · C(s, θ) and solving for the Karush-Kuhn-Tucker (KKT) conditions23

(81; 12). Loosely speaking, the primal feasibility condition ∂λL1 = 0 and dual feasibility condition24

∂sL1 = 0 generalize the notions of “forward pass” and “backward pass” respectively, and can be25

viewed as two circuits determining s and λ whose equilibrium satisfy:26 {
C(s, θ) = 0
∂sC(s, θ)⊤ · λ+∇sO(s, θ) = 0

(2)

with the resulting gradient estimate reading as g(θ) = ∇θO(s, θ) + ∂θC(s, θ)⊤ · λ. We briefly27

mention that this can also be derived using the Implicit Function Theorem (IFT) (93). Here as well,28

Submitted to the Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS (MLNCP
2024). Do not distribute.

note that feedforward nets trained by backprop are a special case of Eq. (2). Yet, it appears from29

Eq. (2) that naively solving for s and λ comes with some challenges from the (high-level) hardware30

viewpoint: i) the transport problem: s and θ need to be transported from the inference circuit to31

the error circuit; ii) the memory problem: s needs to be stored; iii) analytical derivatives: ∂sC32

potentially contains analytical derivatives which may have to be computed with high precision; iv)33

forward locking: in a hierarchical model, the circuit computing sk becomes idle when computing34

sk+1 (Eq. (3)); v) backward locking: symmetrically, λk cannot be solved before λk+1 (Eq. (4)); vi)35

forward–backward synchrony: λ is computed after s.36

2 Algorithm design & general methods37

2.1 Crafting the constraints38

Hierarchical constraints. As the variable s may subsume a hierarchy of layers, one may want to39

split the original optimization problem into a hierarchy of K problems, given s := (s1
⊤
, · · · , sK⊤

)⊤40

(15; 47; 29; 92; 69):41

P2 : minθ J(x, θ) := O(s, θ) s.t. C1(s1, s0 := x, θ1) = 0, · · · , CK(sK , sK−1, θK) = 0 (3)

Here, the model is split into a hierarchy of K subcircuits (or “blocks”) with parameters θk, state sk,42

which may comprise one or multiple layers (K ≤ L), subject to the influence of the previous circuit43

through sk−1. Note that for a given set of constraints, P1 is generally not equivalent to P2 – see § 3.644

for an example. In this case, solving for the KKT conditions of P2 yields:45

∂skCk(sk, sk−1, θk)⊤ · λk +∇skO(s, θ) + ∂ks Ck+1(s
k+1, sk, θk+1)⊤ · λk+1 = 0. (4)

Note that O(s, θ) = ℓ(sK , y) corresponds to the classical “end-to-end” supervised learning setting in46

which case the second term of Eq. (4) vanishes except for the last block sK .47

Relaxed constraints. When C = ∇sK (see Section 3), P1 can be relaxed through an optimal value48

reformulation with a fixed Lagrangian multiplier β−1 as (73; 92; 35):49

P3 : min
θ,s

O(s, θ) s.t. K(s, θ) ≤ min
s′

K(s′, θ), L3(s, θ, β) := O(s, θ)+
1

β

(
K(s, θ)−min

s′
K(s′, θ)

)
(5)

The resulting Lagrangian L3, sometimes called “surrogate”, is intimately tied to energy-based learning50

(80) (Section 3) and is especially convenient to express quantities as finite differences in β which51

would otherwise appear as exact derivatives in β starting from P1 (which amounts to send β → 0).52

Importantly, this relaxation could also well be applied at each level of the hierarchy of P2 (35).53

2.2 Picking an algorithm to estimate λ’s: standard approaches54

Implicit differentiation. In spite of the aforementioned problems inherent to Eq. (2), one may55

still directly solve for λ in combination with other tricks (see section 2.3). For feedforward models,56

∂sC⊤ may be explicitly inverted with λ = −∂sC−⊤ · O reducing to backprop. In other cases, λ57

may be computed by implicit differentiation (41; 10; 28), which comes in many different flavors58

depending on the constraints at hand (13). Note that these techniques can be slightly adjusted to59

accommodate some constraints. For instance, to avoid weight transport between the inference and60

error circuits, we can equip the error circuit with its own “feedback” parameters ω such that the error61

signal satisfies: ∂sC(s, ω)⊤ · λ +∇sO(s, ω) = 0 (48; 70; 1; 45). While randomly sampled ω are62

sufficient for shallow architectures and simple tasks, some extra alignment mechanisms are needed to63

have ω roughly approximate θ without explicitly transporting it (65; 6; 90; 1; 44).64

Forward-only learning with zeroth order optimization. One technique to solve the memory and65

transport problems, which has recently regained some popularity, is zeroth order optimization (ZO)66

(49). ZO techniques estimate a projection of the gradient g(θ) along some direction u in the weight67

space by performing multiple forward passes:68

u⊤ · g(θ) = dϵ (J(θ + ϵu)) |ϵ=0 ≈ 1

2ϵ
(O(s(θ + ϵu), θ + ϵu)−O(s(θ − ϵu), θ − ϵu)) , (6)

2

An unbiased estimate of the gradient can be obtained by averaging multiple such derivatives: g(θ) =69

Eu∼N (0,σ2) [dϵ (J(θ + ϵu)) |ϵ=0 · u] (85; 7). However, the variance of this gradient estimate scales70

cubically with the number of model parameters (74), thereby restricting the applicability of ZO to the71

realm of models which are small enough (84; 33; 7; 24) or behaving as such, i.e. pre-trained models72

(51). One way to mitigate this problem is to perturb neurons instead of synapses (23; 61; 14; 40),73

namely computing projections of the error signal as: v⊤ · λ = dϵO(sϵ, θ)|ϵ=0 with sϵ implicitly74

determined through C(sϵ, θ) + ϵv = 0. Similarly, an unbiased gradient estimate is obtained as75

g(θ) = ∇θO + ∂θC(s, θ)⊤ · Ev∼N (0,σ2) [dϵO(sϵ, θ)|ϵ=0 · v]. Going beyond, one can teach small76

auxiliary networks synthetizing such directions to output “good” weight directions u instead of77

randomly sampling them (24), reducing the variance of the gradient estimate at the cost of increasing78

the bias (75; 84).79

2.3 Other tricks which independently apply80

Greedy learning & loss design. It appears from Eq. (4) that in general, an error signal λk+1 must81

be passed backwards to “unlock” the computation of λk. In order to parallelize learning across blocks82

entirely, a heuristic consists in shutting off the top-down error signal (λk+1 = 0) and recreate an error83

signal through a locally-defined (supervised (8; 71; 9; 88; 27) or self-supervised (50; 91; 31; 83))84

loss, which amounts to choosing O = O1(s
1, θ1) + · · ·+OK(sK , θK). In this case, the resulting85

block satisfies the exact same adjoint equation as that of the original learning problem (Eq. (2)) so86

that all gradient computation techniques herein presented may also apply block-wise. Alternatively,87

another solution to backward locking is to estimate λk+1 with auxiliary modules (38).88

Checkpointing & reversible models. One way to mitigate the memory problem mentioned above89

(at the expense of compute) is to simultaneously compute s and λ, which can be viewed as activation90

checkpointing (17). In models with an explicit layer hierarchy (P2), another special instantiation91

of activation checkpointing is possibly when using reversible models (19; 26; 16; 52): a given92

constraint Ck+1(s
k+1, sk) = 0 can be explicitely inverted as C−1

k+1(s
k, sk+1) = 0 such that sk can be93

recomputed backward from layer sk+1 instead of being stored, or recomputed forward from s0 = x.94

This can be achieved for instance by splitting each block state sk into two, sk = (sk
⊤

a , sk
⊤

b)⊤, and95

defining Ck+1 = (Cak+1, Cbk+1), with dedicated transformations fa, fb, as (26):96

Cak+1(s
k+1, sk) = sk+1

a − ska − fa(s
k
b , θ

k
a), Ck+1

b (sk+1, sk) = sk+1
b − skb − fb(s

k
a, θ

k
b) (7)

Pipelining. When dealing with a hierarchical model (P2), the block Ck may become idle or97

“forward-locked” after passing sk to Ck+1 until next input comes in. A solution to this is to push98

multiple inputs in sequence through the blocks, allowing them to process different inputs in parallel,99

e.g. Ck processes input xp while Ck+1 processes input xp+1, the same strategy applying backwards100

for the computation of the λk’s for different inputs (37). As naive pipelining may still maintain101

idleness “bubbles”, more elaborate schemes have been proposed (22), for instance by allowing each102

block to alternate between forward pass and backward passes for different inputs (67), yet at the cost103

of gradient staleness – λ is computed with a different θ that the one used to compute s. This problem104

can be mitigated for instances by by maintaining different weight versions at each circuit (68).105

3 Forward-only learning beyond zeroth order106

3.1 Energy-based (EB) models & Energy-based Learning (EBL)107

When the constraint of the optimization problem Eq. (1) derives from an energy function K, energy-108

based learning (EBL) refers to a family of gradient computation algorithms which implicitly estimate109

s and λ using a single circuit (36; 32; 66; 5; 86; 78; 80). Namely, if there exists some scalar function110

K such that C := ∇sK, defining F := K + βO where β ≥ 0 is some scalar value, then one can111

estimate g(θ) by having the same circuit relax twice to equilibrium with two different values of β112

and subsequent “nudged states” s±β(78; 43):113

s±β : ∇sF(±β, s±β , θ) = 0, g(θ) =
1

2β
(∇θF(β, sβ , θ)−∇θF(−β, s−β , θ)) +O(β2) (8)

Eq. (8) is in stark contrast with Eq. (2), though being mathematically equivalent through λ =114

dβsβ |β=0 (78; 69): instead of estimating s and λ on two circuits, sβ and s−β are estimated on115

3

a single circuit through “energy minimization”, which is why C is said to be energy based (EB).116

The core intuition behind the magic of EB learning is that while error signals are usually carried117

“backward” through ∂sC⊤ (Eq. (2)), since we have ∂sC⊤ = ∇2
sK = ∂sC, error signals can in this118

case be equivalently carried “forward” through ∂sC through a small perturbation of s along ∇sO of119

sufficiently small β. Finally note that Eq. (8) is only one many variants (80) to estimate dβ(∇θF)|β=0120

(78), where there is trade-off between the number of sβ being evaluated and the resulting bias (94; 42).121

3.2 The importance of nudging122

The weak & strong nudging limits. The most current EBL setting is when C describes the implicit123

model itself and O the cost function: (C,O) = (F = ∇sE, ℓ) where we have denoted K = E. In124

this case, the condition on the nudged state reads (78):125

∇sE(sβ , θ) + β∇sℓ(sβ , θ) = 0 (9)

We call the nudging factor the scalar controlling the strength of the cost function ℓ in the definition of126

sβ . For this choice of (C,O), β is the nudging factor and since theoretical guarantees of Eq. (8) hold127

for β → 0, it corresponds to small ∇sℓ perturbations, which is therefore called the weak nudging128

limit. Conversely, when swapping the objective and the constraint (59; 60), i.e. (C,O) = (∇sℓ, E),129

which amounts to swap E and ℓ inside Eq. (9), one can see that β−1 now gates the error signal ∇sℓ.130

Therefore in this situation, β → 0 corresponds to large ∇sℓ perturbations, which is therefore called131

the strong nudging limit. While it seems counter-intuitive that strong nudging solutions are relevant –132

the main goal of of Eq. (1) should be to minimize the loss subject to constraints on the network energy133

and not the other way around – they are global minimizers of θ → ℓ(θ, s(θ)) for certain choices of E134

(60). Strong nudging can enable learning in situations where the physical system at use is noisy by135

improving the signal to noise ratio for the teaching signal (59; 42).136

Nudging through adiabatic oscillations. EBL classically operates in the weak nudging regime137

and estimates the error signal λ = dβsβ |β=0 through a discrete, two-steps finite difference procedure,138

as highlighted in Eq. (8). Another way to view the error signal is as the contour integration in the139

complex plane λ = 1
T |β|

∫ T
0
ei2πt/T sβ(t) with β(t) := |β|ei2π/T . Then, provided T is sufficiently140

large compared to the characteristic time constant which governs the relaxation of C to equilibrium,141

the error signal can be computed through slow adiabatic oscillations of the system (5; 42; 3).142

Nudging heuristics. The error signal β∇sℓ may be transmitted instantaneously to the rest of the143

network, or with a delay. Denoting h(θ, s) the model logits, some output controller dynamics u may144

integrate the error signal inside the output layer as τuu̇+ u = −β∇oℓ(h(s, θ)) and feed it back to145

the rest of the circuit (60). There also exists other types of nudging among the broader family of146

Contrastive Learning (CL) algorithms. Denoting y some label, the “nudged” hidden state hy can147

be defined by hard-clamping y to the output units, ∇sE(hy, o = y, θ) = 0, while prescribing a148

weight update of the same contrastive form as Eq. 8 (66). An hybrid between weak nudging and149

target clamping consists of clamping the output to a weakly nudged target, resulting in a nudged150

hidden state hβ defined as: ∇sE(hβ , o = (1 − β)o⋆ + βy) = 0 where o⋆ corresponds to the free151

state (β = 0) of the output (86).152

Nudging synapses. One may wonder whether neurons and parameters could play a symmetrical153

role, by having them both evolve throughout the gradient computation phase or satisfy an equilibrium154

condition. One common post hoc solution is to play on characteristic time constants by having155

parameters slowly integrate the instantaneous contrastive updates prescribed by Eq. (8) (20; 87; 42;156

18), which however requires the detailed knowledge of the energy function at use. Another solution157

circumventing this constraint is to let both s and θ equilibrate in the same energy landscape, with158

control variables u acting upon θ with strength α (79). When computing s−β (for instance), u is159

adjusted to keep θ at its current value θt such that ut = θt+α∇sF(−β, s−β , θt). Therefore, keeping160

ut constant when computing sβ , θ equilibrates at: θt+1 = ut − α∇sF(β, sβ , θt+1) ≈ θt − αβg(θ).161

3.3 Two phases or twice as many neurons?162

Lagrangian reparametrization. One may usually regard the contrastive update Eq. (8) as a163

procedure performed on the same physical system whose state is measured at two different times with164

4

two different nudging values (e.g. −β, β), or a continuum of such. Yet, another view of Eq. (8) is to165

assume that the two nudged states are computed simultaneoulsy by two different circuits sharing the166

same parameters. An advantage of this implementation, which has been experimentally demonstrated167

with transistor-based synapses (18), is that it requires a single phase only instead of two, yet at the168

expense of area and complex engineer to enable parameter sharing. A different way to approach the169

same question is through the concept of dyadic neurons (34; 35): two variables s+ and s− are such170

that their (convex) sum encodes the model prediction and their difference the error signal if they are171

critical points of the following reparametrized Lagrangian (35):172

L̃1(s+, s−, θ) := L1 (αs+ + (1− α)s−, (s+ − s−)/β) , (10)
where L defined inside Eq. (2) and α ∈ [0, 1]. While the resulting gradient computation algorithm173

is generally a reparametrization of implicit differentiation by construction, when the constraint at174

use inside Eq. (1) is energy based and β is sufficiently small, s± can be simply construed as s±β175

of Eq. (8). This can be shown by performing this reparametrization on the relaxed Lagrangian L3176

(Eq. (5)) with fixed β (35), or equivalently approximated from Eq. (10) in the limit β → 0.177

3.4 Applying EBL to implicit models178

Weak nudging. One of the ways to cast an implicit model F , which does not explicitly derive from179

an energy function, into an EB model is simply to employ the energy function K = E = 1
2∥F∥

2 (60).180

An important case, as one means to train feedforward nets by EP, is when F (s, θ) = s − f (θ, s)181

where θ is typically lower block diagonal (25; 89; 62; 64). Eq. (8) for some β, in the weak nudging182

regime ((O,K) = (ℓ, E)), yields in this case:183 {
sβ = f(sβ , θ) + ∂sf(sβ , θ)

⊤ · (sβ − f(sβ , θ))− β∇sℓ(sβ , θ),
g(θ) = 1

β∂θf(sβ , θ)
⊤ · (sβ − f(sβ , θ)) +O(β)

(11)

A nice feature of Eq. (11) is that by construction, sβ = f(sβ , θ) when β = 0 such that the gradient184

can be estimated up to O(β) with a single nudged state. However, the presence of ∂sf(sβ , θ)⊤185

signals the potential use analytical derivatives. To obviate this, one may instead estimate the186

required derivatives through finite differences of feedback operators (46; 76; 57; 58; 21; 56) as:187

sβ ≈ f(sβ , θ) + g(sβ , ω)− g(f(sβ), ω))− β∇sℓ(sβ , θ) where the feedback parameters may have188

to be learned so that ∂sg ≈ ∂sf
⊤ (21). However a problem remaining is that both sβ and their189

“feedforward” prediction f(sβ) need to be simultaneously maintained to implement Eq. (11). A190

solution is to use auxiliary variables ψ which track the feedforward activity such that ψβ ≈ fψ(sβ , θ)191

and sβ ≈ f(sβ , θ) + g(sβ , ω)− g(ψβ , ω)− β∇sℓ(sβ , θ) (76).192

Recovering a least control problem in the strong nudging regime. When in the strong nudging193

regime, the optimization problem Eq. (1) using E = 1
2∥F∥

2 = O along with ℓ = K acquires a194

very intriguing meaning, though the loss is not picked as the objective. Defining ψβ := −F (sβ , θ),195

the learning problem amounts to find the set of parameters which minimizes the amount of control196

O = 1
2∥ψβ∥

2 such that the controlled equilibrium ψβ + F (sβ , θ) = 0 minimizes the loss ℓ, which197

works in practice on feedforward and implicit models more broadly (60). However, this interpretation198

is tied to the choice E = 1
2∥F∥

2 and further investigation is needed to extend the applicability of199

strong nudging and its connection to control theory beyond this choice of energy function.200

3.5 Handling nonlinearity inside EB models201

When not handled cautiously, the application of Eq. 8 to implicit models yields activation derivatives202

(Eq. (11)). While neuroscientists, seeking for biologically plausible learning theories, gave birth203

to the aforementioned approximations of Eq. (11) and many others, these remain impractical for204

hardware-friendly learning. One ad hoc solution used in practice, when the inverse of the activation205

function is continuously invertible, is to separate the linear and nonlinear contribution inside the206

energy function as E = G + U where G is defined such that ∇sG = σ−1 (36; 92; 34; 80). A207

more principled solution to handle σ is to instead treat it as a constraint Cσ on the set of feasible208

configurations over which energy minimization is performed, which descent steps are hard projected209

onto(77). A “relaxed” version of this approach, somewhat bridging with the former solution, is210

through the lens of mirror descent using the Bregman divergence associated with G (2): st+1 =211

argmin{s⊤ · ∇sE(s) + 1
η∆G(s, st)} with ∆G(x, y) := G(x)−G(y) +∇G(y)⊤ · (x− y). Note212

that many other fixed point algorithms could be use for the same purpose (13).213

5

3.6 Casting feedforward nets into hierarchical energy-based models214

An important example. Another way to cast feedforward nets training by EBL algorithms is to215

break them into multiple, hierarchical energy-based constraints based on Eq. (3) (92). The following216

example, which shows how to do so, is also a good illustration of why the problems P1 (Eq. (1))217

and P2 (Eq. (3)) are generally not equivalent. Taking E :=
∑K
k=1Ek with Ek(sk, sk−1, θk) :=218

G(sk)− sk
⊤ · θk · sk−1, we consider P1 with C = ∇sE and P2 with Ck = ∇skE

k. In this case, sk219

is a single layer and not a block of several layers. Setting the constraint to zero in these two cases220

yields:221

P1 : sk = σ
(
θk · sk−1 + θk+1⊤ · sk+1

)
, P2 : sk = σ

(
θk · sk−1

)
(12)

In one case, the model retained at inference time is a Hopfield model and in the other one a feedforward222

model. This difference is instrumental to understand why works revolving around “contrastive223

learning” may actually apply to feedforward models through the P2 problem formulation (34).224

Likewise, the nudged state defined by Eq. (8) reads for any layer until penultimate the same as225

Eq. (12) for problem P1 and as follows for P2, taking β sufficiently small (92; 69):226

P2 : sk±β = σ
(
θk · sk−1 ± βθk+1⊤ · dβsk+1

β |β=0

)
≈ σ

(
θk · sk−1 ± θk+1⊤ ·

(
sk+1
β − sk+1

−β

)
/2
)
,

(13)
Note that many other choices of energy functions are possible in order to learn feedforward nets as a227

hierarchical energy-based model (15; 47; 29; 92)228

Breaking the forward–backward synchrony. As seen from Eq. (13), computing sk±β still requires229

the storage of sk−1. A trick is to notice that for sufficiently small β, sk ≈ (skβ + sk−β)/2 := s̄β such230

that skβ ≈ σ
(
θk · s̄β ± θk+1⊤ ·∆sk+1

β

)
with ∆sk+1

β := sk+1
β − sk+1

−β . Implemented this way, the231

gradient corresponding to problem P2 with the above choice of energy function can be computed by232

simultaneously solving for skβ’s and sk−β’s (34). This implementation can also be derived by picking233

hierarchical constraints (Eq. (3)), relaxing these (Eq. (5)) and reparametrizing them (Eq. (10)) (35).234

4 Looking ahead & take-aways235

Forward-only learning beyond first order. One may wonder if (and how) second-order opti-236

mization could be emulated using a single circuit. A second-order update generally prescribes237

∆θ2nd ∝ Ex∼D[C(x, θ)]
−1 · Ex∼D[g(x, θ)] where C is a curvature matrix, i.e. the loss Hessian238

or p.s.d. approximations thereof (53). As such, computing θ2nd generally subsumes (Hessian-free239

approaches being a notable exception (55)): i) computing g, ii) computing C, iii) inverting C, iv)240

computing ∆θ2nd . However, an interesting insight arises when |D| = 1 (unit batch size), picking241

the Fisher information curvature matrix C = (∂θs
⊤ · ∂θs) (54) and assuming O does not explicitly242

depend on θ for simplicity. Then, denoting A† the Moore-Penrose pseudo-inverse of a matrix A:243

∆θ2nd ∝
(
∂θs

⊤ · ∂θs
)−1 · ∂θs⊤ · ∇sO = ∂θs

† · ∇sO. (14)
Therefore, moving to second order optimization here amounts to route the error signal ∇sO backward244

through the system’s inverse rather than its adjoint. While this viewpoint has motivated several245

implementations of self-invertible (rather than self-adjoint, or equivalently energy-based) circuits (46;246

57; 11; 58), it may not straightforwardly generalize to the mini-batch regime (|D| > 1).247

Temporal data? One way to leverage equilibrium techniques towards learning from sequences is248

to treat the neuron velocity ṡ as a variable of its own inside the energy function (30; 82).249

Conclusion. This “cookbook” is an attempt to complement recent algorithm unification papers250

(92; 93; 63; 72) using pragmatic, ingredient-based logics. For instance, “Predictive coding” (89)251

amounts to apply Eq. (8) with a specific choice of energy function (3.4) and nudging scheme (3.2).252

Likewise, the “Forward-forward” algorithm (31) is a greedy learning strategy, with each block253

comprising a single layer, using local self-supervised loss (2.3). Conversely, one may want to split254

an architecture into blocks (Eq. (3)), apply standard implicit differentiation in some (2.2, §1), ZO255

in others (2.2, §1), along with a pipelining mechanism (2.3) depending on the constraints at hand,256

which does not correspond to any known algorithm in the literature.257

6

References258

[1] M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed. Deep learning without259

weight transport. Advances in neural information processing systems, 32, 2019.260

[2] E. Amid, R. Anil, and M. Warmuth. Locoprop: Enhancing backprop via local loss optimization.261

In International Conference on Artificial Intelligence and Statistics, pages 9626–9642. PMLR,262

2022.263

[3] V. R. Anisetti, A. Kandala, B. Scellier, and J. Schwarz. Frequency propagation: Multimechanism264

learning in nonlinear physical networks. Neural Computation, 36(4):596–620, 2024.265

[4] S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in neural information266

processing systems, 32, 2019.267

[5] P. Baldi and F. Pineda. Contrastive learning and neural oscillations. Neural computation, 3(4):268

526–545, 1991.269

[6] S. Bartunov, A. Santoro, B. Richards, L. Marris, G. E. Hinton, and T. Lillicrap. Assessing the270

scalability of biologically-motivated deep learning algorithms and architectures. Advances in271

neural information processing systems, 31, 2018.272

[7] A. G. Baydin, B. A. Pearlmutter, D. Syme, F. Wood, and P. Torr. Gradients without backpropa-273

gation. arXiv preprint arXiv:2202.08587, 2022.274

[8] E. Belilovsky, M. Eickenberg, and E. Oyallon. Greedy layerwise learning can scale to imagenet.275

In International conference on machine learning, pages 583–593. PMLR, 2019.276

[9] E. Belilovsky, L. Leconte, L. Caccia, M. Eickenberg, and E. Oyallon. Decoupled greedy277

learning of cnns for synchronous and asynchronous distributed learning. arXiv preprint278

arXiv:2106.06401, 2021.279

[10] B. M. Bell and J. V. Burke. Algorithmic differentiation of implicit functions and optimal values.280

In Advances in automatic differentiation, pages 67–77. Springer, 2008.281

[11] Y. Bengio. Deriving differential target propagation from iterating approximate inverses. arXiv282

preprint arXiv:2007.15139, 2020.283

[12] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,284

2014.285

[13] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa,286

and J.-P. Vert. Efficient and modular implicit differentiation. Advances in neural information287

processing systems, 35:5230–5242, 2022.288

[14] G. Bouvier, J. Aljadeff, C. Clopath, C. Bimbard, J. Ranft, A. Blot, J.-P. Nadal, N. Brunel,289

V. Hakim, and B. Barbour. Cerebellar learning using perturbations. Elife, 7:e31599, 2018.290

[15] M. Carreira-Perpinan and W. Wang. Distributed optimization of deeply nested systems. In291

Artificial Intelligence and Statistics, pages 10–19. PMLR, 2014.292

[16] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. Reversible architectures293

for arbitrarily deep residual neural networks. In Proceedings of the AAAI conference on artificial294

intelligence, volume 32, 2018.295

[17] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost.296

arXiv preprint arXiv:1604.06174, 2016.297

[18] S. Dillavou, B. D. Beyer, M. Stern, M. Z. Miskin, A. J. Liu, and D. J. Durian. Machine learning298

without a processor: Emergent learning in a nonlinear electronic metamaterial. arXiv preprint299

arXiv:2311.00537, 2023.300

[19] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation.301

arXiv preprint arXiv:1410.8516, 2014.302

7

[20] M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Equilibrium propagation with303

continual weight updates. arXiv preprint arXiv:2005.04168, 2020.304

[21] M. M. Ernoult, F. Normandin, A. Moudgil, S. Spinney, E. Belilovsky, I. Rish, B. Richards,305

and Y. Bengio. Towards scaling difference target propagation by learning backprop targets. In306

International Conference on Machine Learning, pages 5968–5987. PMLR, 2022.307

[22] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long, J. Yang, L. Xia, et al.308

Dapple: A pipelined data parallel approach for training large models. In Proceedings of the309

26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages310

431–445, 2021.311

[23] I. R. Fiete, M. S. Fee, and H. S. Seung. Model of birdsong learning based on gradient estimation312

by dynamic perturbation of neural conductances. Journal of neurophysiology, 98(4):2038–2057,313

2007.314

[24] L. Fournier, S. Rivaud, E. Belilovsky, M. Eickenberg, and E. Oyallon. Can forward gradient315

match backpropagation? In International Conference on Machine Learning, pages 10249–316

10264. PMLR, 2023.317

[25] K. Friston and S. Kiebel. Predictive coding under the free-energy principle. Philosophical318

transactions of the Royal Society B: Biological sciences, 364(1521):1211–1221, 2009.319

[26] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The reversible residual network: Back-320

propagation without storing activations. Advances in neural information processing systems, 30,321

2017.322

[27] A. N. Gomez, O. Key, K. Perlin, S. Gou, N. Frosst, J. Dean, and Y. Gal. Interlocking backprop-323

agation: Improving depthwise model-parallelism. Journal of Machine Learning Research, 23324

(171):1–28, 2022.325

[28] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic326

differentiation. SIAM, 2008.327

[29] F. Gu, A. Askari, and L. El Ghaoui. Fenchel lifted networks: A lagrange relaxation of neural328

network training. In International Conference on Artificial Intelligence and Statistics, pages329

3362–3371. PMLR, 2020.330

[30] P. Haider, B. Ellenberger, L. Kriener, J. Jordan, W. Senn, and M. A. Petrovici. Latent equilibrium:331

A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. Advances332

in neural information processing systems, 34:17839–17851, 2021.333

[31] G. Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint334

arXiv:2212.13345, 2022.335

[32] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley. Boltzmann machines: Constraint satisfaction336

networks that learn. Carnegie-Mellon University, Department of Computer Science Pittsburgh,337

PA, 1984.338

[33] N. Hiratani, Y. Mehta, T. Lillicrap, and P. E. Latham. On the stability and scalability of node339

perturbation learning. Advances in Neural Information Processing Systems, 35:31929–31941,340

2022.341

[34] R. Høier, D. Staudt, and C. Zach. Dual propagation: Accelerating contrastive hebbian learning342

with dyadic neurons. In International Conference on Machine Learning, pages 13141–13156.343

PMLR, 2023.344

[35] R. K. Høier and C. Zach. Two tales of single-phase contrastive hebbian learning. arXiv preprint345

arXiv:2402.08573, 2024.346

[36] J. J. Hopfield. Neurons with graded response have collective computational properties like those347

of two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092,348

1984.349

8

[37] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu,350

et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism. Advances in351

neural information processing systems, 32, 2019.352

[38] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and353

K. Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In International354

conference on machine learning, pages 1627–1635. PMLR, 2017.355

[39] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier. Training end-to-end356

analog neural networks with equilibrium propagation. arXiv preprint arXiv:2006.01981, 2020.357

[40] J. Kornfeld, M. Januszewski, P. Schubert, V. Jain, W. Denk, and M. S. Fee. An anatomical358

substrate of credit assignment in reinforcement learning. BioRxiv, pages 2020–02, 2020.359

[41] S. G. Krantz and H. R. Parks. The implicit function theorem: history, theory, and applications.360

Springer Science & Business Media, 2002.361

[42] A. Laborieux and F. Zenke. Holomorphic equilibrium propagation computes exact gradients362

through finite size oscillations. Advances in neural information processing systems, 35:12950–363

12963, 2022.364

[43] A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and D. Querlioz. Scaling equilib-365

rium propagation to deep convnets by drastically reducing its gradient estimator bias. Frontiers366

in neuroscience, 15:633674, 2021.367

[44] B. J. Lansdell, P. R. Prakash, and K. P. Kording. Learning to solve the credit assignment368

problem. arXiv preprint arXiv:1906.00889, 2019.369

[45] J. Launay, I. Poli, F. Boniface, and F. Krzakala. Direct feedback alignment scales to modern370

deep learning tasks and architectures. Advances in neural information processing systems, 33:371

9346–9360, 2020.372

[46] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio. Difference target propagation. In Machine373

Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015,374

Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pages 498–515. Springer, 2015.375

[47] J. Li, C. Fang, and Z. Lin. Lifted proximal operator machines. In Proceedings of the AAAI376

Conference on Artificial Intelligence, volume 33, pages 4181–4188, 2019.377

[48] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random feedback weights378

support learning in deep neural networks. arXiv preprint arXiv:1411.0247, 2014.379

[49] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K. Varshney. A primer380

on zeroth-order optimization in signal processing and machine learning: Principals, recent381

advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54, 2020.382

[50] S. Löwe, P. O’Connor, and B. Veeling. Putting an end to end-to-end: Gradient-isolated learning383

of representations. Advances in neural information processing systems, 32, 2019.384

[51] S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D. Chen, and S. Arora. Fine-tuning385

language models with just forward passes. Advances in Neural Information Processing Systems,386

36:53038–53075, 2023.387

[52] K. Mangalam, H. Fan, Y. Li, C.-Y. Wu, B. Xiong, C. Feichtenhofer, and J. Malik. Reversible388

vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and389

Pattern Recognition, pages 10830–10840, 2022.390

[53] J. Martens. New insights and perspectives on the natural gradient method. Journal of Machine391

Learning Research, 21(146):1–76, 2020.392

[54] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate393

curvature. In International conference on machine learning, pages 2408–2417. PMLR, 2015.394

9

[55] J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free optimization.395

In Proceedings of the 28th international conference on machine learning (ICML-11), pages396

1033–1040, 2011.397

[56] K. Max, L. Kriener, G. Pineda García, T. Nowotny, I. Jaras, W. Senn, and M. A. Petrovici.398

Learning efficient backprojections across cortical hierarchies in real time. Nature Machine399

Intelligence, pages 1–12, 2024.400

[57] A. Meulemans, F. Carzaniga, J. Suykens, J. Sacramento, and B. F. Grewe. A theoretical401

framework for target propagation. Advances in Neural Information Processing Systems, 33:402

20024–20036, 2020.403

[58] A. Meulemans, M. Tristany Farinha, J. García Ordóñez, P. Vilimelis Aceituno, J. Sacramento,404

and B. F. Grewe. Credit assignment in neural networks through deep feedback control. Advances405

in Neural Information Processing Systems, 34:4674–4687, 2021.406

[59] A. Meulemans, M. T. Farinha, M. R. Cervera, J. Sacramento, and B. F. Grewe. Minimizing407

control for credit assignment with strong feedback. In International Conference on Machine408

Learning, pages 15458–15483. PMLR, 2022.409

[60] A. Meulemans, N. Zucchet, S. Kobayashi, J. Von Oswald, and J. Sacramento. The least-control410

principle for local learning at equilibrium. Advances in Neural Information Processing Systems,411

35:33603–33617, 2022.412

[61] T. Miconi. Biologically plausible learning in recurrent neural networks reproduces neural413

dynamics observed during cognitive tasks. Elife, 6:e20899, 2017.414

[62] B. Millidge, A. Seth, and C. L. Buckley. Predictive coding: a theoretical and experimental415

review. arXiv preprint arXiv:2107.12979, 2021.416

[63] B. Millidge, Y. Song, T. Salvatori, T. Lukasiewicz, and R. Bogacz. Backpropagation at the417

infinitesimal inference limit of energy-based models: Unifying predictive coding, equilibrium418

propagation, and contrastive hebbian learning. arXiv preprint arXiv:2206.02629, 2022.419

[64] B. Millidge, A. Tschantz, and C. L. Buckley. Predictive coding approximates backprop along420

arbitrary computation graphs. Neural Computation, 34(6):1329–1368, 2022.421

[65] T. H. Moskovitz, A. Litwin-Kumar, and L. Abbott. Feedback alignment in deep convolutional422

networks. arXiv preprint arXiv:1812.06488, 2018.423

[66] J. R. Movellan. Contrastive hebbian learning in the continuous hopfield model. In Connectionist424

models, pages 10–17. Elsevier, 1991.425

[67] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger, P. B.426

Gibbons, and M. Zaharia. Pipedream: Generalized pipeline parallelism for dnn training. In427

Proceedings of the 27th ACM symposium on operating systems principles, pages 1–15, 2019.428

[68] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia. Memory-efficient pipeline-429

parallel dnn training. In International Conference on Machine Learning, pages 7937–7947.430

PMLR, 2021.431

[69] T. Nest and M. Ernoult. Towards training digitally-tied analog blocks via hybrid gradient432

computation. arXiv preprint arXiv:2409.03306, 2024.433

[70] A. Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in434

neural information processing systems, 29, 2016.435

[71] A. Nøkland and L. H. Eidnes. Training neural networks with local error signals. In International436

conference on machine learning, pages 4839–4850. PMLR, 2019.437

[72] A. Ororbia, A. Mali, A. Kohan, B. Millidge, and T. Salvatori. A review of neuroscience-inspired438

machine learning. arXiv preprint arXiv:2403.18929, 2024.439

[73] J. V. Outrata. A note on the usage of nondifferentiable exact penalties in some special optimiza-440

tion problems. Kybernetika, 24(4):251–258, 1988.441

10

[74] M. Ren, S. Kornblith, R. Liao, and G. Hinton. Scaling forward gradient with local losses. arXiv442

preprint arXiv:2210.03310, 2022.443

[75] Y. Ruan, Y. Xiong, S. Reddi, S. Kumar, and C.-J. Hsieh. Learning to learn by zeroth-order444

oracle. arXiv preprint arXiv:1910.09464, 2019.445

[76] J. Sacramento, R. Ponte Costa, Y. Bengio, and W. Senn. Dendritic cortical microcircuits446

approximate the backpropagation algorithm. Advances in neural information processing systems,447

31, 2018.448

[77] B. Scellier. A fast algorithm to simulate nonlinear resistive networks. arXiv preprint449

arXiv:2402.11674, 2024.450

[78] B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based451

models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.452

[79] B. Scellier, S. Mishra, Y. Bengio, and Y. Ollivier. Agnostic physics-driven deep learning. arXiv453

preprint arXiv:2205.15021, 2022.454

[80] B. Scellier, M. Ernoult, J. Kendall, and S. Kumar. Energy-based learning algorithms for analog455

computing: a comparative study. Advances in Neural Information Processing Systems, 36,456

2024.457

[81] G. Scheithauer. Jorge nocedal and stephen j. wright: Numerical optimization, springer series in458

operations research, 1999, isbn 0-387-98793-2 in the preface the authors state... our goal in this459

book is to give a compre-hensive description of the most powerful, state-of-the-art, techniques460

for solving continuous optimization problems. by presenting the motivating ideas for each.461

[82] W. Senn, D. Dold, A. F. Kungl, B. Ellenberger, J. Jordan, Y. Bengio, J. Sacramento, and M. A.462

Petrovici. A neuronal least-action principle for real-time learning in cortical circuits. BioRxiv,463

pages 2023–03, 2023.464

[83] S. A. Siddiqui, D. Krueger, Y. LeCun, and S. Deny. Blockwise self-supervised learning at scale.465

arXiv preprint arXiv:2302.01647, 2023.466

[84] D. Silver, A. Goyal, I. Danihelka, M. Hessel, and H. van Hasselt. Learning by directional467

gradient descent. In International Conference on Learning Representations, 2021.468

[85] J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient469

approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.470

[86] M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu. Supervised learning in physical networks:471

From machine learning to learning machines. Physical Review X, 11(2):021045, 2021.472

[87] M. Stern, S. Dillavou, M. Z. Miskin, D. J. Durian, and A. J. Liu. Physical learning beyond the473

quasistatic limit. Physical Review Research, 4(2):L022037, 2022.474

[88] Y. Wang, Z. Ni, S. Song, L. Yang, and G. Huang. Revisiting locally supervised learning: an475

alternative to end-to-end training. arXiv preprint arXiv:2101.10832, 2021.476

[89] J. C. Whittington and R. Bogacz. An approximation of the error backpropagation algorithm in a477

predictive coding network with local hebbian synaptic plasticity. Neural computation, 29(5):478

1229–1262, 2017.479

[90] W. Xiao, H. Chen, Q. Liao, and T. Poggio. Biologically-plausible learning algorithms can scale480

to large datasets. arXiv preprint arXiv:1811.03567, 2018.481

[91] Y. Xiong, M. Ren, and R. Urtasun. Loco: Local contrastive representation learning. Advances482

in neural information processing systems, 33:11142–11153, 2020.483

[92] C. Zach. Bilevel programs meet deep learning: A unifying view on inference learning methods.484

arXiv preprint arXiv:2105.07231, 2021.485

[93] N. Zucchet and J. Sacramento. Beyond backpropagation: bilevel optimization through implicit486

differentiation and equilibrium propagation. Neural Computation, 34(12):2309–2346, 2022.487

[94] N. Zucchet, S. Schug, J. Von Oswald, D. Zhao, and J. Sacramento. A contrastive rule for488

meta-learning. Advances in neural information processing systems, 35:25921–25936, 2022.489

11

	Problem statement
	Algorithm design & general methods
	Crafting the constraints
	Picking an algorithm to estimate 's: standard approaches
	Other tricks which independently apply

	Forward-only learning beyond zeroth order
	Energy-based (EB) models & Energy-based Learning (EBL)
	The importance of nudging
	Two phases or twice as many neurons?
	Applying EBL to implicit models
	Handling nonlinearity inside EB models
	Casting feedforward nets into hierarchical energy-based models

	Looking ahead & take-aways

