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Abstract
Existing symmetry discovery methods predomi-
nantly focus on global transformations across the
entire system or space, but they fail to consider
the symmetries in local neighborhoods. This may
result in the reported symmetry group being a
misrepresentation of the true symmetry. In this
paper, we formalize the notion of local symme-
try as atlas equivariance. Our proposed pipeline,
automatic local symmetry discovery (AtlasD),
recovers the local symmetries of a function by
training local predictor networks and then learn-
ing a Lie group basis to which the predictors are
equivariant. We demonstrate AtlasD is capable
of discovering local symmetry groups with multi-
ple connected components in top-quark tagging
and partial differential equation experiments. The
discovered local symmetry is shown to be a use-
ful inductive bias that improves the performance
of downstream tasks in climate segmentation and
vision tasks. Our code is publicly available at
https://github.com/Rose-STL-Lab/AtlasD.

1. Introduction
Equivariant neural networks (Bronstein et al., 2021), a fam-
ily of models that exploit symmetry as an inductive bias
for neural network architectures, have received increasing
attention in deep learning due to their training efficiency
and improved generalization (Krizhevsky et al., 2017; Wor-
rall & Welling, 2019; Zaheer et al., 2017). The key idea
behind these models is that many real-world situations ex-
hibit inherent symmetries—transformations such as rotation,
translation, and scaling, which leave the essential properties
of a system unchanged. This has enabled a wide range of
applications, leading to empirical success (Winkels & Co-
hen, 2018; Brown & Lunter, 2018; Cohen & Welling, 2016;
Cohen et al., 2018). Despite its achievements, equivariant
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Figure 1. Global vs local transformations. Global transformations
(left) alter the space in a uniform manner, whereas local transfor-
mations (right) only affect a particular neighborhood.

networks require knowledge of the system’s symmetries be-
forehand. To adhere to this successful design principle even
when the symmetry group is unknown a priori, many works
have developed auxiliary neural networks to automatically
identify symmetries (Benton et al., 2020; Zhou et al., 2021;
Dehmamy et al., 2021; Moskalev et al., 2022; Yang et al.,
2023; Gabel et al., 2023).

The aforementioned equivariant models and symmetry dis-
covery pipelines focus on global symmetries, where a trans-
formation applies across the entire space. However, arbi-
trary manifolds generally do not have global symmetries
to begin with (Gerken et al., 2023), preventing the use of
globally equivariant networks. This begs the need to con-
sider local symmetries—transformations on small neigh-
borhoods—which are much more generalized (Figure 1).
Indeed, some recent work considers local symmetry, such
as Cohen et al. (2019), which develops gauge equivariant
CNNs to take advantage of the gauge symmetries of arbi-
trary manifolds. Construction of such networks once again
requires knowledge of the symmetry beforehand. However,
existing discovery methods are of limited help as they ignore
such local symmetries. Hence, the need to develop a local
symmetry discovery pipeline is clear: it would generalize
symmetry discovery to arbitrary manifolds and allow for
downstream use in gauge equivariant networks.

In this work, we define local symmetry around the notion of
an atlas. An atlas is a collection of local regions, or charts,
that cover a manifold. In short, the principle of atlas equiv-
ariance states that when restricting a function to a particular
chart, the localized function must be equivariant. We de-
velop a method based on deep learning that can discover
the atlas equivariances of dataset in the form of a Lie group.
To do so, we first model the task function localized to the
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various charts using neural networks. Then, we create a
Lie group basis and optimize it until the localized networks
are equivariant with respect to the group. After discovery,
we use the resulting symmetry as an inductive bias to cre-
ate equivariant networks. Specifically, we experiment with
top-quark tagging, synthetic partial differential equations,
MNIST classification, and climate segmentation to test the
validity of our discovery method and measure performance
gains in downstream models.

Our contributions can be summarized as follows:

• We formalize the notion of local symmetry through the
definition of atlas equivariance and establish theoreti-
cal connections.

• We develop a pipeline, automatic local symmetry
discovery (AtlasD), to recover local symmetries from
a dataset. AtlasD can learn both continuous and dis-
crete symmetries.

• AtlasD can discover atlas equivariances in cases
where existing methods are not applicable, thereby
proving the need to consider local symmetries.

• We show that incorporating the symmetries discovered
by AtlasD in a gauge equivariant CNN (Cohen et al.,
2019) can lead to better performance and parameter
efficiency.

2. Related Work
Equivariant Neural Networks. Equivariant neural net-
works use known symmetry as an inductive bias when fitting
a model. Group equivariant CNN extends the translational
equivariance of a CNN to rotations and reflection using
group theory (Cohen & Welling, 2016). Other works focus
on designing networks that are equivariant to a wider range
of transformations; particularly, E(2) transformations on
the Euclidean plane (Weiler & Cesa, 2019), rotations on the
sphere (Cohen et al., 2018), Lorentz group transformations
(Gong et al., 2022), and E(n) transformations in higher-
dimensional spaces (Satorras et al., 2021). These works
focus on global transformations and require prior knowl-
edge of the symmetry. In contrast, our pipeline focuses on
discovering local symmetry.

Gauge equivariant neural networks extend the ideas of glob-
ally equivariant neural networks by enforcing local sym-
metries instead of global ones. Gauge equivariance has
been applied in various contexts, including surface meshes
(De Haan et al., 2020), lattice structures (Favoni et al., 2022),
and general manifolds (Cohen et al., 2019). Once again,
these networks require user intervention to determine the
gauge group. On the other hand, we show that our defini-
tion of local symmetry is connected to gauge equivariance

and that using our discovered symmetry in a gauge equiv-
ariant CNN can lead to better performance and parameter
efficiency.

To deal with situations where symmetries are only partially
present in systems, some works introduce the notion of
approximately equivariant neural networks. Implementing
such networks can be done in various manners, including
modification of convolutional layers (Wang et al., 2022;
van der Ouderaa et al., 2022) and addition of non-equivariant
residual terms (Finzi et al., 2021). Other works seek to
match model and data equivariance error more closely by
learning the degree of equivariance from the data (Veefkind
& Cesa, 2024a; Romero & Lohit, 2022a; Veefkind & Cesa,
2024b; van der Ouderaa et al., 2023). Petrache & Trivedi
(2023) gives results about the generalizability of approxi-
mately equivariant networks, whereas Wang et al. (2023)
provides a theoretical understanding of equivariant networks
in systems with varying degrees of symmetry. While approx-
imate equivariance is related to local symmetry in that they
both deal with situations where the global symmetry may
not be fully present, local symmetry is a more generalized
notion as it can be applied to arbitrary manifolds.

Automatic Symmetry Discovery. Many works perform
automatic symmetry discovery to identify the unknown sym-
metry within a dataset. Attempts have been made to dis-
cover general continuous symmetries with Lie theory, such
as LieGG to discover symmetry from the polarization ma-
trix (Moskalev et al., 2022), L-conv (Dehmamy et al., 2021)
to find group equivariant functions, and Forestano et al.
(2023) who discover closed Lie subalgebras from a dataset.
LieGAN (Yang et al., 2023) uses a generator-discriminator
pattern to discover global symmetries in the form of both
continuous Lie groups and discrete subgroups. Gabel et al.
(2023) aim to find the symmetry group as well as quantify
the exact distribution of transformations present in a dataset.

Symmetry discovery works also consider slightly varied
problem settings. Some authors seek to find a subset of
possible symmetries (Benton et al., 2020; Romero & Lohit,
2022b). Others consider the case where the group acts on
the latent space instead of the feature space (Yang et al.,
2024; Gabel et al., 2023; Keurti et al., 2023; Koyama et al.,
2024). Rather than focusing solely on the symmetry group,
van der Ouderaa et al. (2024); Hou et al. (2024) learn the
conserved quantities of systems. Still, these papers mainly
focus on global transformations. More relevant to local sym-
metry discovery is the work by Decelle et al. (2019), which
attempts to see if two datapoints are related by a particular
local transformation. This is distinct from AtlasD, where
we characterize the local symmetry group in an interpretable
manner.

Comparison with State-of-the-Art. LieGAN, LieGG, and
AtlasD are all capable of discovering continuous equiv-
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ariances, but LieGG requires significant memory and Lie-
GAN uses adversarial methods, which can be complex to
train. Moreover, while LieGG cannot discover any discrete
symmetries and LieGAN can only discover those with posi-
tive determinants, AtlasD proves capable of discovering
orientation-reversing discrete symmetries. The largest dif-
ference, however, is the implicit hypothesis space of each
model. LieGG and LieGAN only consider global symme-
tries, but AtlasD can also discover local ones. The hypoth-
esis space is a crucial component of a discovery method as
it determines the set of symmetries that can be recovered.

3. Background
We provide background information on Lie groups, equiv-
ariance, feature fields, and atlases. We assume some knowl-
edge of group theory and otherwise refer readers to Artin
(2011); Weiler et al. (2021) as useful starting points.

Lie Groups. A Lie group is a group that is also a differen-
tiable manifold. Some examples include SO(2), O(3), and
SL(3). The Lie algebra of a Lie group, denoted g, is the
tangent space at the identity element. Being a vector space,
the Lie algebra is often simpler to work with than the group.

For matrix Lie groups, the matrix exponential exp(A) pro-
vides a way to map elements of the Lie algebra to elements
of the group’s identity component G0, i.e. the connected
component containing the identity element. The various
connected components are cosets of G0 and will also be
plainly referred to as cosets in our work. In many cases, we
can factor an arbitrary element of the group as a product,
g = Ci · exp(A), for some coset representative Ci ∈ G
and Lie algebra element A ∈ g. Thus, to understand a Lie
group, it is often enough to enumerate all the cosets in the
component group G/G0, and identify a basis for its Lie
algebra. For further information, see Kirillov (2008).

Equivariance. A function f is said to be G-equivariant for
some group G if the following holds:

(∀g ∈ G) f(g · x) = g · f(x) (1)

Here, g · x and g · f(x) denote (possibly different) group
actions.

Feature Fields. A feature field identifies a feature vector
for each point in a manifold M. Specifically, a feature field
is given as a map F : M → Rd, where d is the dimension
of the feature field.

Charts and Atlases. It is not possible to give a consis-
tent choice of coordinates across manifolds with non-trivial
topology. We define local coordinates in terms of local
charts. A chart is a pair (U,φ) where U is an open subset of
M and φ is a homeomorphism from U to an open subset of
Euclidean space. An atlas is a set of charts that collectively
cover a manifold M.

4. AtlasD: Automatic Local Symmetry
Discovery

Existing discovery methods are fundamentally limited in
that they ignore local symmetries. To address this problem,
we first formulate atlas equivariance as a definition of local
symmetry. Then, we detail our methodology for discovering
local symmetry in the form of a Lie algebra basis and com-
ponent group. Finally, we highlight theoretical connections
to existing work as well as implementation notes.

4.1. Atlas Equivariance

To provide an intuition of local symmetry, we highlight
the heat equation on a torus in Figure 2. Consider the
time-stepping function that evolves the current state of the
system for some fixed time interval. If we focus only on a
neighborhood of the input feature field and its corresponding
neighborhood in the output field, a local rotation in the input
results in an identical local rotation in the output.

To define local symmetry formally, assume we have a func-
tion map Φ that transforms an input feature field Fin : M →
Rdin to an output field Fout : M → Rdout . Then, suppose
A is an atlas on M given by a finite collection of charts
{(Uc, φc)}Nc=1. For any feature field F on M, we can relo-
cate the subset of F contained in the neighborhood Uc to a
flat Euclidean space by pulling back over φ−1

c :

(
(φ−1

c )∗F
)
(x) =

{
F (φ−1

c (x)) if x ∈ φc(Uc)

0 else
(2)

Note that the flattened feature field is trivially extended out-
side φc(Uc). This is necessary for introducing atlas equivari-
ance, where the group action may take a point p ∈ φc(Uc)
outside this original domain. This 0-padding can also be
replaced with another value appropriate to the context.

We define local (atlas) equivariance for functions Φ where
the output signal depends locally on the input signal. We
formalize this as A locality. The intuitive notion of a local
function is that, under an appropriate choice of atlas, we
can fully reconstruct the output field in any individual chart
Uc solely from the input field along the same chart. Thus,
we say Φ is A atlas local if we are able to decompose it
into various Φc, where Φc is a map between the pullback
of the cth chart of the input and output feature fields. We
sometimes refer to {Φc} as the localized functions of Φ.
Formally,
Definition 4.1 (Atlas Locality). Φ is A atlas local if for
each chart c in A and arbitrary F : M → Rdin , there
exists a Φc such that Φc

(
(φ−1

c )∗F
)
= (φ−1

c )∗Φ(F ) when
restricted to φc(Uc).

Here, the restriction of the feature field to the subset φc(Uc)
indicates that we are not particular about the output of Φc
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(a)
(b)

Figure 2. Atlas equivariance explained through the example of the heat equation. (a) highlights how the task function Φ is a function
whose input and output are scalar feature fields on a torus. Φ is then broken up into localized functions, i.e. the Φc. Although we only
highlight three Φc for visual purposes, in reality there is one for each chart. (b) is a commutative diagram that highlights the rotational
equivariance of a localized function and hence the rotational atlas equivariance of Φ.

outside the projected chart. We also note that atlas locality is
related to the idea of sheaf morphisms. In Appendix A, we
show that the former is a weaker condition than the latter.

For these atlas local functions, it is possible to consider the
symmetry transformations that operate within local neigh-
borhoods. We formalize this notion of local symmetry as
follows.

Definition 4.2 (Atlas Equivariance). Φ is A atlas equiv-
ariant to some group G if Φ is A atlas local with local-
ized functions {Φc} and all Φc are globally G equivariant.
Specifically, for the group action (g · E)(p) = E(g−1p)
where E is a feature field on the Euclidean space, we must
have Φc(g·(φ−1∗

c F )) = g·Φc(φ
−1∗
c F )) for arbitrary g ∈ G

and feature fields F : M → Rdin .

A technical note is that the Φc may not be unique in that for
a given chart c, there are many potential localized maps that
satisfy the condition specified in Definition 4.1. Therefore,
Φ is said to be atlas equivariant if, for each chart c, any
potential Φc is G globally equivariant.

4.2. Atlas Equivariance Discovery

In our problem setup, given an unknown task function Φ :
X → Y between feature fields on the same manifold, we
have a dataset {(Xi, Yi)}ni=1 ⊂ X × Y . We assume that
a suitable atlas A for the problem is known. We further
assume that the dataset is large enough such that ground
truth symmetry is represented in any chart (i.e., all members
of any orbit are present). We aim to find the maximal matrix
Lie group to which Φ is A atlas equivariant.

We propose AtlasD, automatic local symmetry discovery,
to tackle the problem. First, we must approximate the indi-

vidual localized functions Φc with neural networks or other
differentiable oracles. The exact method is unique to each
task, but is generally a simple regression problem. Further
details are available in Appendix C. In contrast to global dis-
covery techniques, we emphasize that the individual neural
networks are localized maps rather than functions over the
entire manifold.

Next, we find the symmetry group of the localized func-
tions. Note that there are important differences between our
procedure and global symmetry discovery. In our setting, a
group element must only act on a local chart, rather than the
full space. Likewise, a core tenet of local symmetry is that
we can apply different transformations to different regions
of the feature field. Care must be taken, therefore, that the
actions on different charts are truly independent.

We aim to discover the maximal group of local symmetry.
In practice, these symmetries often involve both discrete
and continuous transformations, which motivates us to use
Lie groups to describe the symmetries of interest. Specif-
ically, we seek to discover both the Lie algebra which
characterizes the continuous transformations, and the cosets
that describe the discrete actions of the target group. Put
together, these allow us to describe a wide variety of Lie
groups. Algorithm 1 outlines our overall procedure, with
the details of the subroutines introduced in the following
subsections. We analyze the time and space complexity of
AtlasD in Appendix E.

4.2.1. DISCOVERING INFINITESIMAL GENERATORS

To discover the Lie algebra, we view it as a vector space and
learn its basis, also known as the infinitesimal generators (of
the group). To enforce the local symmetry condition, we op-

4



AtlasD: Automatic Local Symmetry Discovery

Algorithm 1 Automatic Local Symmetry Discovery

input Atlas A = {(Uc, φc)}Nc=1,
dataset D =

{(
Xi : M → Rdin , Yi : M → Rdout

)}n
i=1

output Lie algebra {Bi}, cosets {Cℓ}
1. Train a predictor network Φc for each chart (Uc, φc)
under loss L

(
Φc((φ

−1
c )∗Xi), (φ

−1
c )∗Yi

)
2. Given the trained predictors {Φc}, discover the Lie
algebra basis {Bi}

Set g = exp(
∑k

i=1 ηiBi) where η ∼ Nk(0, I)
Optimize B under loss
L(g · Φc((φ

−1
c )∗Xi),Φc(g · (φ−1

c )∗Xi))

3. Given {Φc} and {Bi}, find the coset representatives
{Cℓ}

Set g = normalize(Cℓ)
Optimize Cℓ under loss
L(g · Φc((φ

−1
c )∗Xi),Φc(g · (φ−1

c )∗Xi))
Filter duplicate cosets using B

Return {Bi}, {Cℓ}

timize the basis of vectors to minimize the atlas equivariance
error of the map Φ on local charts.

Specifically, we first create a trainable tensor B, consisting
of k randomly initialized matrices of shape m×m where
m = dimM. B represents the Lie algebra basis to be
discovered. Each basis vector is parametrized by a m×m
matrix because, after exponentiation, it linearly transforms
the flattened local neighborhoods of M. In the training
loop, we randomly sample an element x from a dataset
as well as a coefficient vector η ∼ Nk(0, I). Using the
coefficient vector and B, we have a group element: g =

exp(
∑k

i=1 ηiBi). The loss is the sum of L(Φc(g · x), g ·
Φc(x)) over all Φc, which measures the equivariance of
each Φc with respect to the group element g. In this case, L
is an error function appropriate to the context.

One problem with the given loss is that it often results in
duplicate generators. Although cosine similarity is an es-
tablish regularization technique to avoid this issue (Yang
et al., 2023; Forestano et al., 2023), it is sensitive to initial
conditions and fails to produce consistent generators on con-
secutive runs. Therefore, we introduce the standard basis
regularization instead, where one applies element-wise ab-
solute value to each generator before applying the cosine
similarity function. This incentivizes different vectors to
share as little non-zero positions as possible, thereby driving
the basis into standard form. We observe more interpretable
results that are consistent across runs, albeit with a higher
rate of duplicate generators. The standard basis regular-
ization is provided below, where |B| denotes element-wise

absolute value and γ is a positive weighting constant:

Lsbr(B) = γ

k∑
i=1

k∑
j=i+1

vec(|Bi|) · vec(|Bj |)
∥vec(Bi)∥∥vec(Bj)∥

(3)

We prove a result about the global minima of Lsbr under
certain conditions in Appendix A. We also list additional
regularizations and a method for selecting the hyperparame-
ter k in Appendix B.

4.2.2. DISCOVERING DISCRETE SYMMETRIES

Figure 3. Discrete discovery training loop of AtlasD. All K pur-
ple and white squares depict a representative of a discovered coset.
The matrices are optimized so that their normalized forms become
elements of the ground truth cosets.

Many symmetry discovery methods only discover a Lie
algebra basis, limiting the results to connected Lie groups.
In practice, groups such as O(2) and SO(1, 3) have multiple
connected components, which is a natural consequence of
discrete symmetries such as reflections. In this subsection,
we introduce a method for discovering discrete symmetries
by identifying the G0-cosets in the component group G/G0.

The discovery of these cosets faces several challenges. For
one, we cannot parameterize the search space through a Lie
algebra since there is no real-valued matrix that maps to
an orientation reversing matrix via the exponential map. A
discovery method operating on a Lie algebra is unable to
realize both connected components of O(2) since it includes
a reflection. Moreover, even when the search space is set to
GL(n), we observe an abundance of local minima. Unless
the seeded matrix is already close to a coset, it may fail to
converge to anything useful.

To narrow the search space, we first assume the target
group contains a finite number of connected components,
which applies to most finite-dimensional Lie groups of inter-
est. This implies we only need to consider transformations
whose determinant has absolute value 1.

In the discovery process, we create a trainable tensor C that
contains representatives of G0-cosets. C is initially set to
K random matrices in Rm×m, where K is chosen to be sig-
nificantly larger than the expected number of cosets. Each
Cℓ is then independently optimized according to the loss
of L(Φc(normalize(Cℓ) ·x), normalize(Cℓ) ·Φc(x)) across
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all localized functions Φc and all x ∈ X . The normalize
function scales a matrix so that its determinant has absolute
value 1.

After convergence, the top q matrices in C by loss value are
taken to be the representatives of the ground truth cosets. We
avoid duplicate cosets by comparing Ci to Cj and checking
if CiC

−1
j belongs to the identity component, specified by

the already discovered Lie algebra. In particular, we see if
mint∈Rk ∥CiC

−1
j − exp(

∑
tsBs)∥2 < ϵ for a threshold ϵ.

After applying the filtration process, the final list comprises
unique representatives of each coset of the target Lie group.

4.3. Connection to Gauge Equivariant CNN

A related notion of local symmetry is introduced by Cohen
et al. (2019) when defining gauge equivariant CNNs. In
short, gauge equivariance implies that one should be able
to arbitrarily orient the local coordinate systems used to
define input features and compute convolutions. Hence, it is
a property of the deep learning model, rather than the task
function itself. This is a notable difference compared to our
work, where the atlas equivariance group is intrinsic to the
system and can be discovered.

The following theorem provides a concrete connection be-
tween gauge equivariance and atlas equivariance (proof in
Appendix A).

Theorem 4.3. Let M be a gauge equivariant CNN that (a)
has a linear gauge group G, (b) is A atlas local for some
atlas A with trivial charts, and (c) operates on Euclidean
space. Then, M is A atlas equivariant to G.

In practice, a gauge equivariant CNN is neither meant to
operate on Euclidean space nor completely A atlas local.
However, the result is approximately true for an arbitrary
manifold as manifolds are locally flat. This implies that if
a system is atlas equivariant for some group G, it is logical
to set the gauge group of a downstream gauge equivariant
CNN to G. We employ this technique as an application of
our discovered symmetries below.

4.4. Implementation Notes

Due to issues such as discretization, noise, boundary con-
ditions, or limited a priori knowledge of a perfect atlas,
real-world datasets may only be approximately, not exactly,
A atlas local. To mitigate this issue, we sometimes allow
the Φc predictors to look slightly outside of the associated
chart, i.e. the radius of the input chart is higher than the
radius of the output chart for any given Φc. This provides
the localized functions with additional context that may be
missing from the unmodified input. Additionally, to avoid
boundaries and awkward topologies (e.g. poles of a spheri-
cal mesh), we partially deviate from the definition of an atlas
and do not require that the charts fully cover the manifold.

Empirically, if the charts span the majority of M rather than
fully covering M, our method is still able to discover local
symmetries within the given region.

5. Experiments
We experiment on the following tasks to validate our
methodology and implementation: (1) top-quark tagging
task for direct comparison with global symmetry discov-
ery baselines; (2) synthetic partial differential equation to
test our model’s sensitivity to various atlases; (3) projected
MNIST classification and ClimateNet weather segmentation
tasks to highlight our success in the discovery of atlas equiv-
ariances as well as the performance gains when discovered
symmetries are incorporated into downstream models. Ad-
ditional details about each experiment, such as chart sizes
and other hyperparameters, are present in Appendix C. Ad-
ditional experiments and ablations are in Appendix D.

5.1. Global Symmetry Comparison
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Figure 4. AtlasD discovers O+(1, 3) in the top tagging task.
Here, each red and blue heatmap denotes a Lie algebra basis
element. For each generator, the value of its entries are depicted by
the individual colors. When read in row-major order, generators 0,
1, 2 correspond to SO(3) rotation and generators 4, 5, 6 indicate
boosts. The pink and green heatmap in the bottom-right displays
the computed invariant metric.
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Figure 5. AtlasD discovers two cosets in the top tagging exper-
iment: a representative from the identity and parity component.
Each yellow and purple heatmap depicts a coset’s representative in
matrix form, where the colors denote the values of that matrix’s
entries.

To directly compare our method to existing discovery
pipelines that focus on global symmetries, we first attempt
to learn global invariances in the top quark tagging exper-
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Table 1. Downstream test results for top tagging task.

MODEL ACCURACY AUROC

LORENTZNET 0.941 ±0.0010 0.9862 ±0.0004
ATLASGNN 0.939 ±0.0002 0.9852 ±0.0001
LIEGNN 0.938 ±0.0001 0.9849 ±0.0001
LORENTZNET (W/O) 0.935 ±0.001 0.9835 ±0.0003
EGNN 0.925 ±0.0001 0.9799 ±0.0004

iment. Specifically, we compare our results with those of
LieGAN (Yang et al., 2023).

First, we fit a predictor network to the dataset using a 3-layer
MLP. Recall that at this point, we have no information about
symmetries of the system and thus this is a non-equivariant
model. The trained predictor is assumed to be accurate
enough such that its symmetries agree with those of the
dataset. Hence, we now seek to find the symmetries of the
predictor.

The goal is to classify between top quark and lighter quarks
jets present in the Top Quark Tagging Reference Dataset
(Kasieczka et al., 2019). The dataset contains 2M observa-
tions, consisting of four-momentum of up to 200 particle
jets. The classification is invariant to the entire Lorentz
group O(1, 3), which we will try to discover.

We use our infinitesimal generator discovery pipeline to
learn the invariances of the predictor. We seed our basis with
7 generators. In Figure 4, we show that the discovered basis
matches closely with that of SO+(1, 3), the identity compo-
nent of the Lorentz group. Moreover, computing the invari-
ant tensor using the method from Yang et al. (2023), we find
that the invariant tensor has a cosine correlation of 0.9996
with the ground truth Minkowski tensor diag(−1, 1, 1, 1).
This is a strong result that is slightly superior to LieGAN’s
cosine correlation of 0.9975.

We then try to discover the various cosets of the symmetry
group. We seed our discovery process with K = 64 matri-
ces. In the dataset, the time component of all momenta are
positive, and hence it is difficult to find the time-reversal
generator of the Lorentz group. In the last two heatmaps
of Figure 4, we discover a parity transformation, which
means that the entire learned symmetry group is O+(1, 3).
In contrast, LieGAN cannot discover orientation-reversing
transformations and hence only reports the identity compo-
nent SO+(1, 3).

Finally, we use the computed invariant metric tensor as an
inductive bias to construct a well-performing classification
model. Specifically, we create AtlasGNN by modifying
LorentzNet (Gong et al., 2022) to use our discovered metric
instead of the Minkowski tensor. In Table 1, we observe
better accuracy and AUROC than many baselines and nearly
match LorentzNet, which uses ground truth symmetry.

5.2. Partial Differential Equation

t=0 t=0.5

1.5
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0.5

0.0
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1.5

(a) Example input and output field

(b) Charts in each atlas

Figure 6. Illustration of PDE experiment. The top row depicts an
example input and output scalar field for the heat experiment. The
bottom row shows the two atlases used for the experiment. Each
blue or red square represents an individual chart.

Next, we want to see if our method can indeed learn atlas
equivariances and also measure its sensitivity to various
atlas configurations. Specifically, we experiment if our
model can discover the local symmetries of the heat equation
∂u
∂t = α(∂

2u
∂x2 + ∂2u

∂y2 ) in R2 (Figure 6a). The task function
in this case simulates heat flow for 0.5 seconds given an
initial condition. In the simulation, we exclude a certain
rectangular region and treat it as a heat source, thereby
breaking any global symmetry while keeping O(2) local
symmetry sufficiently far from any boundary.

To test the sensitivity of our method to different atlases, we
perform our experiments with one atlas containing 19 charts
and another containing 3 charts (Figure 6b). In either case,
we seed the model with a single infinitesimal generator and
K = 16 cosets and report the unique cosets from the top
q = 8. In Figure 7, we demonstrate that AtlasD is able to
accurately recover the O(2) atlas equivariance group in both
situations. However, the first atlas does slightly outperform
the second.

We also run the global symmetry discovery baseline LieGG
in a similar setup. The full details are deferred to Ap-
pendix D.4. In short, LieGG fails to discover any global
symmetry due to the heat source (Figure 8).
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Figure 7. PDE discovered symmetry. The results for the first and
second atlas are depicted in the top and bottom rows, respectively.
In each case, the leftmost entry is the discovered infinitesimal
generator, and the right two columns are the discovered cosets.

0 1 2 3
i-th singular value

10 6

10 2

102
Polarization spectrum

With Heat Source
Without Heat Source

Figure 8. Singular values of generators discovered by LieGG in
modified PDE experiment. We run twice: once without the rectan-
gular heat source (blue) and once with the heat source (red). The
run without the heat source provides a reference for singular values
in the case that there is global symmetry.

5.3. MNIST on Sphere

To highlight the benefits of using our learned results in down-
stream models, we design a projected MNIST segmentation
task. In this experiment, we project three digits from the
MNIST dataset onto a sphere (Figure 9). Before projection,
each image is randomly rotated up to 60 degrees clockwise
or counterclockwise. The goal of the model is to classify
each pixel as either the background or its numeric value.
Although the rotation of the digits adds a local symmetry,
there is no continuous global symmetry since the position
of each of the three digits is fixed. For this problem, we
construct an atlas by assigning a single chart to the region
of each digit. This is an admittedly idealized setup, but our
main purpose is to demonstrate the full pipeline.

We then train a predictor for each of the three charts using

(a)
(b)

Figure 9. MNIST experiment setup. (a) The input feature fields
(top) are given by three digits rotated and then projected onto the
equator of a sphere. To construct the output feature fields (bottom),
the model must label each pixel as either background or its numeric
value if it is a part of a number. (b) We highlight two of the charts
used in our atlas.

CNNs. In the discovery process, we seed our model with a
single infinitesimal generator. To demonstrate the benefit of
considering local symmetry, we compare our results against
a modified LieGAN that represents global symmetries as
subgroups of SO(3).

Figure 10. Local and global transformations on MNIST. In the
upper row, we highlight an element from the dataset in its projected
form. In the middle row, we apply a local transformation based
upon AtlasD’s discovery. The last row is the result after applying
a global rotation suggested by LieGAN.

After running the discovery process, we find an approximate

SO(2) generator:
[
−0.03 −1.00
1.00 0.02

]
. In Figure 10, we show

that applying a local transformation suggested by AtlasD
leads to a non-trivial change, but one that still preserves the
form of the dataset. On the other hand, the global transfor-
mation sampled from LieGAN’s result clearly modifies the
input out of distribution, suggesting the result is a random
rotation rather than an actual symmetry. This highlights a
case where considering local symmetry is more appropriate
than searching for global symmetry.

In addition, we construct a gauge equivariant CNN using
the discovered SO(2) group and compare it to a regular
CNN. We train each model on a dataset where the digits
are rotated ±60 degrees, and test it on one where digits
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Figure 11. AtlasD discovers GL+(2) in climate experiment.

are rotated ±180 degrees. We observe that the inductive
bias of the gauge equivariant network allows it to generalize
outside of its training set, achieving an accuracy of 0.9381
compared to 0.6975 for a vanilla CNN.

5.4. ClimateNet

For our final experiment, we evaluate our method on a real-
world dataset, ClimateNet, proposed by Prabhat et al. (2021).
Each input in the dataset contains 16 atmospheric variables
across the surface of the Earth, and the output is a human
label to determine whether each pixel is part of the back-
ground, an atmospheric river, or a tropical cyclone. We aim
to discover the atlas equivariance group.

We use an atlas that has 4 charts spread through the surface
of the Earth. When we seeded our model with 1, 2, or 3
infinitesimal generators, we find that the resultant basis is
not similar across consecutive runs. This suggests that the
symmetry group is actually 4-dimensional. To confirm this,
we plot the output of a chart predictor f after applying vari-
ous linear actions in Figure 12. The figure highlights that the
predictor is mildly equivariant to a wide range of actions. In
fact, Figure 11 demonstrates comparable magnitudes of the
4 generators. All of these suggest that the atlas equivariance
group is GL+(2).

We compare using the discovered atlas equivariance group
to the structure group in a downstream gauge equivariant
CNN. Specifically, we use an icoCNN architecture in two
different settings (Diaz-Guerra et al., 2023). For the base-
line, we set the gauge group of the icoCNN to be SO(2) (the
structure group). While it is not easy to construct a gauge
equivariant CNN using steerable kernels (Weiler & Cesa,
2019) for a non-compact group such as GL+(2), the closest
approximation is to have the kernel be spatially uniform.
That is, all values for a given input-output channel pair are
the same for a particular filter. In Table 2, we show that the
“flat” kernel CNN is able to match the baseline performance
despite having 7 times fewer parameters. This highlights
a benefit to using the discovered group as the gauge group
versus choosing the structure group of the manifold.

6. Conclusion
In this paper, we introduce atlas equivariance and propose
automatic local symmetry discovery (AtlasD) as an ar-
chitecture capable of learning local symmetries. Our key

Figure 12. The inputs and outputs of a ClimateNet predictor f after
applying various transformations. The plotted x values are visual-
izations of TMQ. In the outputs, purple indicates the background,
and yellow represents the atmospheric river.

Table 2. ClimateNet dataset accuracy results. We compute the
IoU obtained for the baseline SO(2) gauge group model, our
GL+(2) gauge group model, and between human experts. We
include the last row to demonstrate that the human labelers have a
degree of disagreement, providing context for low IoU scores. See
Appendix C for full results and details.

MODEL PARAM ↓ BG ↑ TC ↑ AR ↑ MEAN ↑
SO(2) 766K 0.911 0.174 0.384 0.490
GL+(2) 111K 0.909 0.172 0.379 0.487

HUMAN - 0.914 0.248 0.347 0.503

finding is that global symmetries are not enough to describe
all useful symmetries of a system. We demonstrate the abil-
ity to discover infinitesimal generators and cosets of the
atlas equivariance group from a dataset. Moreover, the re-
sults prove the atlas equivariance group also serves as an
inductive bias in downstream gauge equivariant networks.

While our method effectively discovers atlas equivariances,
atlas equivariances only describe a subset of all diffeomor-
phisms of a manifold. We set the stage for future work to
explore the discovery of larger groups. In addition, while
AtlasD proved resilient to modifications of the given atlas,
a priori knowledge of a suitable atlas is still important and
may not always be available. An extension to our work can
develop a method that discovers the atlas in tandem to the
atlas equivariance group. Finally, one may consider symme-
tries that act on both the manifold and the features, such as
point symmetries in partial differential equation systems.
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A. Math
A.1. Connection between Sheaf Morphism and Atlas Locality

Sheaves provide a framework for relating local data across overlapping regions and are relevant in the context of local
functions. In particular, we show that being a sheaf morphism is a strictly stronger condtion than being atlas local. We first
summarize the definitions related to sheaves and sheaf morphisms, and refer to Vakil (2022) for a more detailed introduction.

Suppose that X is a topological space. F is said to be a presheaf (of sets) on X if the following conditions are met:

1. For any open set U ⊆ X , we have a set F(U) containing the sections of F over U .

2. If U and V are open sets such that U ⊆ V , we have a restriction function resV,U : F(V ) → F(U).

3. resU,U must be the identity.

4. For any triplet of open sets such that U ⊆ V ⊆ W , we have resW,U = resV,U ◦ resW,V .

Then, any presheaf F is said to be a sheaf (of sets) if the additional two conditions are satisfied:

1. Let I be an indexing set and suppose we have an open cover {Ui}i∈I of U where Ui ⊆ U . For any f1, f2 ∈ F(U), if
resU,Ui

f1 = resU,Ui
f2 for all i ∈ I , we must have f1 = f2

2. For any open cover {Ui}i∈I of U and family of sections {fi ∈ Ui | i ∈ I}, if resUi,Ui∩Uj
fi = resUj ,Ui∩Uj

fj for all
i, j ∈ I , then there must exist f ∈ F(U) so that resU,Ui

f = fi for all i.

Finally, a sheaf morphism between the sheaves F and G is a morphism ϕ : F → G specified by a map ϕU : F(U) →
G(U) for each open set U ⊆ X so that ϕ commutes with restriction, i.e., if V ⊆ U we have resGU,V ϕU (F(U)) =

ϕV (res
F
U,V F(U))

Now, suppose we have a manifold M and an atlas specified by a collection of charts {Uc}nc=1. We may consider M
as a topological space whose subbasis is given by the collection of charts. Note that for any fixed d, the set of feature
fields specified by functions F : M → Rd forms a sheaf. In particular, let ϕ be a sheaf morphism between feature
fields of dimension din to those of dimension dout. Then, for each Uc and arbitrary F : M → Rdin , we have that
resout

M,Uc
ϕM(F ) = ϕUc(res

in
M,Uc

F ) for all Uc. To finally prove Φ = ϕM is atlas local, we can construct each Φc using
ϕUc

. This is because for any chart Uc, the sheaf morphism condition guarantees that the local behavior of ϕM is fully
captured by ϕUc

.

However, unlike sheaf morphisms, atlas locality does not require a localized map on all open subsets, e.g., the intersection
of charts, and is thus a weaker condition.

A.2. Atlas equivariance of gauge equivariant CNN

Theorem 4.3. Let M be a gauge equivariant CNN that (a) has a linear gauge group G, (b) is A atlas local for some atlas
A with trivial charts, and (c) operates on Euclidean space. Then, M is A atlas equivariant to G.

Proof. We first clarify a few definitions. By trivial charts, we mean that φc is the inclusion map. We model a gauge
equivariant CNN as a series of convolutional layers and pointwise nonlinearities (Cohen et al., 2019). To enforce gauge
equivariance, we will require all kernels K : Rd → RCin×Cout in the network to satisfy K(g−1v) = K(v) for g ∈ G.

To show that such a network M is G atlas equivariant, we must prove that there exists G-equivariant localized functions Mc.
Recall that in the definition of A atlas local, Mc has no restriction on its output field outside φc(Uc). Consequently, since all
charts are trivial and M is assumed to be A atlas local to begin with, M itself is suitable for each Mc.

It remains to show that M is G equivariant. Indeed, a G gauge equivariant convolutional layer on Euclidean space as
presented above is equivalent to a G-steerable convolution (Weiler & Cesa, 2019). Moreover, G-steerable convolutions
are globally equivariant. As we assume feature vectors transform trivially in response to a group action, all pointwise
nonlinearities are automatically G equivariant. M , the composition of G equivariant layers, is then G equivariant.

Thus, M is A atlas equivariant with respect to G.

13
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A.3. Argmin of Standard Basis Regularization

Let V be a k-dimensional subspace of Rn. We call a basis {bi}ki=1 of V disjoint if the set of indices of all non-zero elements
of bi and the similar set for bj are disjoint whenever i ̸= j. The following theorem gives a result about the arguments of the
minima of Lsbr.

Theorem A.1. Let V be a k-dimensional subspace of Rn for which there exists a disjoint basis. Then, among all possible
bases {bi}ki=1 of V , Lsbr(b) is minimal if and only if b is disjoint.

Proof. Suppose {bi} is a basis of V . If b is disjoint then for all i ̸= j we have |bi| · |bj | = 0 since for each index ℓ, at least
one of bi,ℓ or bj,ℓ will be zero. Conversely, if b is not disjoint, then there exist some i ̸= j such that |bi| · |bj | > 0. To see this,
note that we must have some i ̸= j where bi and bj share a non-zero element at index ℓ. |bi| · |bj |, the sum of non-negative
numbers, is then greater than or equal to |bi,ℓ||bj,ℓ| > 0.

In particular, this implies that for a disjoint basis b, we have Lsbr(b) = 0, but otherwise Lsbr(b) > 0. By assumption, there
exists at least one disjoint basis so then the minimum of Lsbr over all possible bases of V is 0. This minimum is attained
exactly when the input basis is disjoint.

B. Additional Implementation Details
A common degenerate solution in discovering the Lie algebra basis is when all basis vectors tend towards 0, corresponding to
the identity transformation. To prevent this, we add the following growth regularization, where ι and β are hyperparameters.

Lgr = −ι

k∑
i=1

min(∥Bi∥, β)

The min term ensures that the model does not produce arbitrarily large generators. In the experiment details, we refer to ι as
the growth factor and β as the growth limit.

An important hyperparameter in the discovery of infinitesimal generators is k, the dimension of the basis. Forestano et al.
(2023) suggest setting the dimension as the highest number that results in a vanishing loss. However, we find that the
threshold for what constitutes “vanishing” can become ambiguous in real-world datasets. Therefore, to determine the final
value of k, we first run the model repeatedly, varying the basis dimension in different runs. We initially set k as the minimum
value such that a model with k generators always converges to the same algebra, irrespective of the starting conditions.
Then, we increment k one by one until the norm of the weakest generator drops below a threshold.

C. Experiment Details
In this section, we include some additional details for the performed experiments, including the hyperparameters and
synthetic dataset configurations.

C.1. Global Symmetry Discovery

The predictor for this task is a 3-layer MLP that takes the input of 30-leading constituents for each sample, constructed
of 4-momenta (E/c, px, py, pz). This results in an input dimension of 120. The predictor is trained for 10 epochs with a
learning rate of 0.001 prior to the discovery process. We use cross-entropy loss for training. We find that the predictor can
be relatively naive and still be suitable for symmetry discovery.

In the infinitesimal generator discovery, we seed the basis with 7 elements by our criteria for choosing the dimension
of the basis. Although the Lorentz group is 6 dimensional, our model occasionally finds an additional scaling generator.
Interestingly, Yang et al. (2023) find a similar generator using their methodology. We run the model for 10 epochs using
cross-entropy loss. We set the coefficient of standard basis regularization to be 0.1 and the growth factor of the generators to
be 1. We do note set a growth limit. The learning rate is 0.001.

For coset discovery, we seed the model with K = 64 basis elements and run 3 epochs with cross-entropy loss. To filter out
the final representatives, we find all the unique cosets in the top q = 16 matrices. The learning rate is 0.001.
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In the downstream task, we replace all Minkowski norms and Minkowski inner products of LorentzNet (Gong et al., 2022)
with those appropriate to our discovered metric. We construct the model with 6 group equivariant blocks with 72 hidden
dimensions and train it with a batch size of 32 for 35 epochs with dropout rate of 0.2, weight decay rate of 0.01, and learning
rate of 0.0003. Note that while our predictor used for symmetry discovery was limited to the 30 leading components, the
downstream model does not face the same restriction. We run our model and the baselines 3 times and record the average
and standard deviation in Table 1.

C.2. Partial Differential Equation

For this experiment, we create a dataset of 10000 samples, each of size 128x128. The exclusion region spans from (0.1, 0.2)
to (0.3, 0.5), where (0, 0) is the top left, and (1, 1) is the bottom right. The initial condition is given by creating a purely
vertical sinusoid with random parameters and adding it to a purely horizontal sinusoid with random parameters. To construct
the output for each input, we approximate the heat equation using a finite difference method. We use α = 1. In particular,
we numerically integrate 50 times with dt = 0.01. We use the Dirichlet boundary condition, where all boundary values
(including those on the excluded region) take the value

√
2.

The charts in the first atlas have an in-radius of 14 pixels (full dimension 29x29) and an out-radius of 10 (full dimension
21x21). There are a total of 19 charts centered at the following locations specified in the previously defined coordinate space:
(0.5, 0.15), (0.675, 0.15), (0.85, 0.15), (0.5, 0.325), (0.675, 0.325), (0.85,
0.325), (0.5, 0.5), (0.675, 0.5), (0.85, 0.5), (0.15, 0.675), (0.325, 0.675),
(0.5, 0.675), (0.675, 0.675), (0.85, 0.675), (0.15, 0.85), (0.325, 0.85), (0.5,
0.85), (0.675, 0.85), (0.85, 0.85). The φc do not perform any distortion, but do recenter each chart.

The charts in the second atlas have in-radius 26 (full dimension 53x53) and out-radius 20 (full dimension 41x41). They
are centered at the following locations: (0.65, 0.3), (0.675, 0.625), (0.35, 0.75). The φc act the same
way as in the first chart.

The predictors are simple 4-layer CNNs. They are trained for 10 epochs in tandem with the discovery process. In the
discovery process we seed the model with a single infinitesimal generator. The growth factor is set to 0.1 and growth limit is
1. We use mean absolute error as the loss. We seed the model with K = 16 cosets and took the top q = 8 matrices before
filtering duplicates. We run our model for 10 epochs. The learning rate is 0.001.

C.3. MNIST on Sphere

The dataset is constructed by creating 10000 spheres. Each sphere has 3 randomly selected digits from the MNIST dataset
projected onto its equator at fixed positions. In particular, we first rotate each of the three digits ±60 degrees. Then, all
three digits of size 28x28 are placed onto a cylinder of dimensions 120x60 at equal intervals. Finally, they are projected
onto a sphere using an equirectangular projection. To compute the output sphere, we label all pixels that are fully black as
background. The pixels that have non-zero color are labeled with their numeric value. Consequently, there are a total of 11
classes.

The chosen atlas uses 3 charts located at the locations of each of the three digits. In particular, the in- and out-radius
of each chart is 14 (full dimension 29x29). The predictors for each chart are CNNs that are identical in architecture but
independently trained. When training the predictors, we use cross-entropy loss and weigh background pixels 10 times less
than numeric pixels. The growth factor of the generator is set to 0.35 and growth limit is 1. The predictors are trained
in tandem with the discovery process. In particular, we run the discovery process for 20 epochs with a learning rate of
0.001. As a baseline, we compare to a modified LieGAN that can discover subgroups of SO(3). LieGAN is given a single
continuous generator as well. LieGAN is run for 20 epochs with a learning rate of 0.0002 for the discriminator and 0.001
for the generator.

In the downstream task, we train two CNNs that are identical in design, except that one has Z4 steerable kernels. The model
that has Z4 steerable kernels has less than a third of the parameters of the unmodified CNN. Both models are trained for 100
epochs on the dataset. During training, to compensate for the abundance of background pixels, we weigh the background
pixels 0.005 times as much as the numeric counterparts. In reporting accuracy, we fully ignore the background pixels and
focus only on the numeric pixels.
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C.4. ClimateNet

We use ClimateNet dataset, which is an expert labeled open dataset provided by Prabhat et al. (2021). There are roughly 200
input images in the training set, with some images having multiple human expert labelers.

In the symmetry discovery process, we use an atlas of 4 partially overlapping charts that are scattered across the equator.
The in-radius is set to 200 (full dimension 401x401) whereas the out-radius is 150 (full dimension 301x301). The individual
φc do not do any additional projection, i.e. they keep the projection that the dataset used to parameterize the sphere as a
rectangle. We use a modified CGNet (Wu et al., 2018; Prabhat et al., 2021) as the predictor for each chart. In particular, it is
given four atmospheric variables as input: TMQ, U850, V850, PSL. The predictors are trained in tandem with the discovery
process. The model is seeded with 4 generators, and we use a batch size of 16 and run for 30 epochs using cross-entropy
loss. The coefficient of the standard basis regularization is set to 0.05, the growth factor is 5.0, and the growth limit is 1.0.
The learning rate is 0.001.

The downstream models are implemented using a U-net (Ronneberger et al., 2015) version of icoCNN (Diaz-Guerra et al.,
2023). We also add strided convolutions and replace layer norm with batch norm. Since batch norm is typically not
equivariant, we perform average pooling beforehand when necessary. We set the resolution of the icosahedron to r = 6. We
train each model for 20 epochs with batch size of 4 with a learning rate of 0.001. Note that in the downstream models, we
give them all 16 atmospheric variables.

Table 3. ClimateNet dataset accuracy full results.

MODEL PARAM ↓ BG ↑ TC ↑ AR ↑ MEAN ↑ PRECISION ↑ RECALL ↑
SO(2) MODEL 766K 0.9107 0.1744 0.3839 0.4896 0.5983 0.6274
GL+(2) MODEL 111K 0.9086 0.1720 0.3790 0.4865 0.5846 0.6344
HUMAN - 0.9137 0.2475 0.3467 0.5026 - -

We elaborate on the results of table 3. For the first two rows, the mean IoU, precision, and recall are calculated between the
model predictions and every human expert label that exists for that image and then averaged. Then, these results themselves
are averaged across all input images in the test dataset Prabhat et al. (2021). We run each model 10 times and include the
run with the highest mean IoU. In the third row, we compute the mean IoU between human labels for the same input image
in the training set. All scores are computed after projection onto an icosahedron.

D. Additional Experiments
D.1. Coset Discovery on Imperfect Data

We want to see if AtlasD can discover multiple cosets in situations where the loss of a one coset (typically the identity)
is lower than the loss of another coset in the symmetry group. This could happen when the trained predictor is not super
accurate or if the symmetry of the true function itself is not perfect. To do so, we experiment on the global discrete
symmetries of the function f(x, y) = arctan

(
y+0.1

x

)
. The identity transformation is a perfect symmetry of f and rotation

by 180 degrees is an approximate symmetry. Although there is some variability between runs, Figure 13 highlights we are
able to consistently discover rotation coset representatives among the top 24 cosets.

D.2. Top-Tagging Experiment without Standard Basis Regularization

To test how effective Lsbr is at regularizing a basis towards standard form, we retry the the infinitesimal generator discovery
of the top-tagging experiment. This time, we replace Lsbr with cosine similarity and plot the resultant basis in Figure 14.

In this basis, all 21 pairs of generators share at least one non-zero term. On the other hand, the one produced by Lsbr (Figure
4) has a single such pair. We conclude that Lsbr is effective at forming a standard basis.

D.3. Top-Tagging and PDE Experiment without Coset Normalization

We want to see the usefulness of the normalization step during coset discovery. To do so, we repeat the discrete discovery
step of both the top-tagging and PDE experiments without normalization.
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Figure 13. Discovered cosets of arctan symmetry group. In each column, we plot the distribution of the top 24 cosets for a given run.
Red denotes the identity component and blue is the rotation component.
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Figure 14. Top-tagging basis using cosine similarity.

In the top-tagging experiments, we discover two cosets (Figure 15). There is more noise and a slight scaling factor as
compared to the result with normalization (Figure 4), but we are still able to discover the parity and identity components. In
the PDE experiment, we are usually able to discover the identity and reflection components (Figure 16), but the filtration
process fails and extraneous cosets are also included.
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Figure 15. Top-tagging cosets without normalization.

In both cases, we manage to find the ground truth cosets but there is more noise overall. We conclude that normalization is a
helpful step of the discrete discovery process.

D.4. Comparison with LieGG in PDE Experiment

To further highlight the necessity of considering local symmetry, we compare our results from the PDE experiment to
those of LieGG (Moskalev et al., 2022). We generalize LieGG to be able to discover global equivariances when the
group acts on R2. Specifically, we treat our dataset as modelling a collection of input and output feature fields (Fℓ, Gℓ)
where Fℓ, Gℓ : R2 → R. This is given to us in discretized form so that we only know Fℓ and Gℓ along some sampling
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Figure 16. PDE cosets without normalization.
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n) of R2. To construct the polarization matrix, for every single output location xi in every single

datapoint (Fℓ, Gℓ), we add a row given by the following linear equation equation 4. The equation is modified from the
original equation (3) from Moskalev et al. (2022) to learn equivariance instead of invariance. We keep the notations
consistent with those in Moskalev et al. (2022). We note that this procedure is rather space-intensive as the number of rows
is proportional to the number of total output pixels.

∑
j,k∈{1,2}

hk,j

(
xj
i

∂Gℓ(xi)

∂xk
i

−
n∑

p=1

xj
p

∂Fℓ(xp)

∂xk
p

∂Gℓ(xi)

∂Fℓ(xp)

)
= 0 (4)

For simplicity, we consider the setting where LieGG is given access to the ground truth partial differential equation instead of
a predictor network. We also do not perform time stepping and focus solely on the global symmetries of ∂u

∂t = α(∂
2u

∂x2 +
∂2u
∂y2 ).

This setup, while slightly different from the experiments for our method, only makes it easier for LieGG to learn the
symmetry. The singular values of the discovered generators were shown in Figure 8.

When we remove the heat source and there is a true global symmetry, the smallest singular value is 1.137 · 10−6 and
is associated with the SO(2) generator. When there is a heat source like the one in the PDE experiment, all singular
values become much higher. We conclude that global symmetry discovery methods such as LieGG are unable to discover
meaningful symmetries in systems that only have local symmetries.

D.5. Coset Discovery of Complex Component Groups

Next, we verify that the coset discovery algorithm of AtlasD can discover more complex component groups. In particular,
we search for the symmetries of the function f(x, y) = |x|+ |y|. The ground truth symmetry group is D4, which contains 8
elements.

We seed the discovery algorithm with K = 256 representatives and report the unique cosets among the top q = 128. In
Figure 17, we show that AtlasD finds exactly the 8 elements of D4.

D.6. Discovery under Sheared Charts

To further verify the resilience of AtlasD under the choice of atlas, we repeat the PDE experiment under a third atlas
where one of the coordinate charts is partially sheared (Figure 18).

We discover a single generator
[
−0.368 −1.035
1.101 0.386

]
and both cosets. While the noisy chart does worsen the learned generator,

it remains recognizable as a rotation.
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Figure 17. Discovered symmetry group for |x|+ |y|

Figure 18. Atlas with sheared chart

E. Algorithm Analysis
We analyze the space and time complexity of the different parts of our algorithm. In our analysis, we assume that dimM is
fixed as a constant. We use the notation that T is the number of training iterations for a given run, k is the dimension of the
ground truth symmetry, P is the number of localized predictors, K is the total number of cosets used during training, and q
is the max number of cosets reported.

E.1. Infinitesimal Generators

Our algorithm requires storing the discovered Lie algebra basis, which takes space proportional to k. We also need to store
each of the P localized predictors, giving us space complexity of O(k + P ).

We first consider the amount of time a single training step takes. Calculating the standard basis regularization takes O(k2)
time. For a given predictor, computing the main loss takes time proportional to k, which is needed for the sampling of the
group element. In our implementation, we evaluate all P predictors in a training step. There are T total training steps in a
given run. Then, we require at most k total runs to determine the optimal dimension of the basis. This gives the total time
complexity as O(kT (k2 + kP )) = O(k2T (k + P ))

The above result is somewhat misleading as it hides the high constant factor that the predictor evaluation entails. If we
ignore the regularizations and only consider the predictor evaluation, the time complexity becomes O(kTP ).

E.2. Discrete Symmetries

We require storing the K cosets as well as the P predictors. The space complexity is then O(K + P ).

In each training step, we evaluate each of the P predictors on K transformed inputs, corresponding to the K cosets. This is
repeated for all T training iterations. After the training process, we must filter the duplicate cosets. In the worst case, we
report q cosets in which case we need to do O(Kq) comparisons. The total time is then O(K(TP + q))
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