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ABSTRACT

Advances in reinforcement learning (RL) have led to its successful application in
complex tasks with continuous state and action spaces. Despite these advances in
practice, most theoretical work pertains to finite state and action spaces. We pro-
pose building a theoretical understanding of continuous state and action spaces by
employing a geometric lens to understand the locally attained set of states. The set
of all parametrised policies learnt through a semi-gradient based approach induce
a set of attainable states in RL. We show that training dynamics of a two layer neu-
ral policy induce a low dimensional manifold of attainable states embedded in the
high-dimensional nominal state space trained using an actor-critic algorithm. We
prove that, under certain conditions, the dimensionality of this manifold is of the
order of the dimensionality of the action space. This is the first result of its kind,
linking the geometry of the state space to the dimensionality of the action space.
We empirically corroborate this upper bound for four MuJoCo environments and
also demonstrate the results in a toy environment with varying dimensionality. We
also show the applicability of this theoretical result by introducing a local mani-
fold learning layer to the policy and value function networks to improve the per-
formance in control environments with very high degrees of freedom by changing
one layer of the neural network to learn sparse representations.

1 INTRODUCTION

The goal of a reinforcement learning (RL) agent is to learn a policy that maximises its expected,
time discounted cumulative reward (Sutton & Barto, 1998). Recent advances in RL have lead to
agents successfully learning in environments with enormous state spaces, such as games (Mnih
et al., 2015; Silver et al., 2016; Wurman et al., 2022) and robotic control in simulation (Lillicrap
et al., 2016; Schulman et al., 2015; 2017) and real environments (Levine et al., 2016; Zhu et al., 2020;
Deisenroth & Rasmussen, 2011; Kaufmann et al., 2023). However, we do not have an understanding
of the intrinsic complexity of these seemingly large problems.

We propose to investigate the complexity of RL environments through a geometric lens. We build
on the intuition behind the manifold hypothesis, which states that most high-dimensional real-world
datasets actually lie on or close to low-dimensional manifolds (Tenenbaum, 1997; Carlsson et al.,
2007; Fefferman et al., 2013; Bronstein et al., 2021); for example, the set of natural images are a
very small, smoothly-varying subset of all possible value assignments for the pixels. A promising
geometric approach is to model the data as a low-dimensional structure—a manifold—embedded
in a high-dimensional ambient space. In supervised learning, especially deep learning theory, re-
searchers have shown that the approximation error depends strongly on the dimensionality of the
manifold (Shaham et al., 2015; Pai et al., 2019; Chen et al., 2019; Cloninger & Klock, 2020), thereby
connecting learning complexity to the complexity of the underlying structure of the dataset. RL re-
searchers have applied the manifold hypothesis before—i.e., by hypothesizing that the effective state
space lies on a low dimensional manifold (Mahadevan, 2005; Smart & Kaelbling, 2002; Machado
et al., 2017; 2018; Banijamali et al., 2018; Wu et al., 2019; Liu et al., 2021), but the assumption has
never been theoretically and empirically validated.

RL shares many commonalities to control theory (Bertsekas, 2012; 2024). In a control theoretic
framework the objective is to drive the system, over time, to a desired state or goal. Consequently,
theoreticians and practitioners are often interested in the reachability of a control system to un-
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derstand what state is reachable given how system changes under control inputs i.e. the system
dynamics. Locally reachable states are the set of states the system can possibly transition to, starting
from a fixed state, under all smooth time variant controls. Control theorists have long studied the
set of reachable states (Kalman, 1960) using a differential geometric framework (Sussmann, 1973;
1987). Theoretical research in the study of control systems is focused on finding necessary and suf-
ficient conditions on the system dynamics such that all the states are reachable (Isidori, 1985; Sun
et al., 2002; Respondek, 2005; Sun, 2007) under all the admissible time variant policies. In RL, the
objective is to maximize the discounted return via gradient-based updates to the policy parameters,
so the focus is on states attained through a sequence of policies determined by these parameters.

Furthermore, a theoretical understanding of states attainable using neural network (NN) policies
gives us insight into the geometry and low-dimensional structure of data in RL. This requires util-
ising an analytically tractable model of NNs. Ever since the remarkable success of neural networks
researchers have developed various theoretical models to better understand their efficacy. A theo-
retical model intended to study a complex object such as a neural network often ends up making
simplifying assumptions for tractability. One such theoretical model studies the evolution of neu-
ral networks linearly in parameters during training of wide neural networks (Lee et al., 2019; Jacot
et al., 2018), meaning in a setting where the width approaches infinity. This has aided researchers
in developing theories of generalisation properties of neural networks (Jacot et al., 2018; Allen-Zhu
et al., 2019a; Wei et al., 2019; Adlam & Pennington, 2020). We similarly utilise a model of single
hidden layer neural network for the policy which is linear in terms of its parameters, not linear in
the state, as the width approaches infinity, as has been previously applied to RL (Wang et al., 2019;
Cai et al., 2019a).

Within this theoretical framework we provide a proof of the manifold hypothesis for deterministic
continuous state and action RL environments with wide two layer neural networks. We prove that
the effective set of attainable states is subset of a manifold and its dimensionality is upper bounded
linearly in terms of the dimensionality of the action space, under appropriate assumptions, indepen-
dent of the dimensionality of the nominal state space. The primary intuition is that the set of states
locally attained are restricted by two factors: 1) the policy is time invariant and state dependent, and
2) the set of policies is constrained by the optimization of a wide, two-layer neural network using
stochastic policy gradients. Our theoretical results are for deterministic environments with con-
tinuous states and actions, we empirically corroborate the low-dimensional structure of attainable
states on MuJoCo environments (Todorov et al., 2012), by applying the dimensionality estimation
algorithm by Facco et al. (2017). To show the applicability and relevance of our theoretical result,
we empirically demonstrate that a policy can implicitly learn a low-dimensional representation with
marginal computational overhead using the CRATE framework (Yu et al., 2023a;b; Pai et al., 2024).
We present an algorithm that does two things simultaneously: 1) learns a mapping to a local low
dimensional representation parameterised by a DNN, and 2) uses this effectively low-dimensional
mapping to learn the policy and value function. Our modified neural network works out of the
box with SAC (Haarnoja et al., 2018) and we show improvements in high dimensional DM control
environments (Tunyasuvunakool et al., 2020).

2 BACKGROUND AND MATHEMATICAL PRELIMINARIES

We first describe the continuous-time Markov decision process (MDP), which forms the foundation
upon which our theoretical result is based. Then we provide mathematical background on various
ideas from the theory of manifolds that we employ in our proof.

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

We first analyse continuous-time reinforcement learning in a deterministic Markov decision process
(MDP) which is defined by the tupleM = (S,A, T , fr, s0, λ) over time t ∈ [0, T ). S ⊂ Rds is
the set of all possible states of the environment. A ⊂ Rda is the rectangular set of actions available
to the agent. T : S × A × R+ → S and f ∈ C∞ is a smooth function that determines the state
transitions: s′ = T (s, a, τ) is the state the agent transitions to when it takes the action a at state s
for the time period τ . Note that T (s, a, 0) = s, meaning that the agent’s state remains unchanged
if an action is applied for a duration of τ = 0. The reward obtained for reaching state s is fr(s),
determined by the reward function fr : S → R. st denotes the state the agent is at time t and at is
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the action it takes at time t. s0 is the fixed initial state of the agent at t = 0, and the MDP terminates
at t = T . The agent lacks access to f and fr, and can only observe states and rewards at a given time
t ∈ [0, T ). The agents’ decision making process is determined by its policy, π : S → A. Simply
put, the agent takes action π(s) at state s. The goal of the agent is to maximise the discounted return
J(π) =

∫ ⊺
0
e−

l
λ fr(sl)dl, where st+ϵ = T (st, π(st), ϵ) for infinitesimally small ϵ and all t ∈ [0, T ).

We define the action tangent mapping, g : S ×A → Rds , for an MDP as

∇af(s, a) = lim
ϵ→0+

T (s, a, ϵ)− s
ϵ

=
∂T (s, a, ϵ)

∂ϵ
.

Intuitively, this captures the direction of change at state s upon taking an action a. We consider
the family of control affine systems, that represent a wide range of control systems (Isidori, 1985;
Murray & Hauser, 1991; Tedrake, 2023), such that ṡt = g(s) +

∑da
i=1 hi(s)ai, where ṡt is the

time derivative of the state, g, hi : Rds → Rds are infinitely differentiable (or smooth) functions.
Similarly, π(s) = [π1(s), . . . , πda(s)] is the direction of change in the agent’s state upon following
a policy π at state s for an infinitesimally small time. The curve in the set of possible states, or the
state-trajectory of the agent, is a differential equation whose integral form is:

sπt = s0 +

∫ t

0

g(sπl ) +

da∑
i=1

hi(s
π
l )πi(s

π
l )dl. (1)

This solution is also unique (Wiggins, 1989) for a fixed start state, s0, and Lipschitz continuous
policy, π. The above curve is smooth if the policy is also smooth. Therefore, given an MDPM and
a smooth deterministic policy π ∈ Π, the agent traverses a continuous time state-trajectory or curve
HM,π : [0, T ) → S . The value function at time t for a policy π is the cumulative future reward
starting at time t:

vπ(st) =

∫ T

t

e−
l+t
λ fr(s

π
l )dl. (2)

Note that the objective function, J(π), is the same as vπ(s0). Our specification is very similar to
classical control and continuous time RL (Cybenko, 1989; Doya, 2000a) but we define the transi-
tions, T , differently. More recently, researchers have developed theory for continuous time RL in a
model-free setting with stochastic policies and dynamics (Wang et al., 2020; Jia & Zhou, 2022a).

2.2 MANIFOLDS

MDPs, in practice, have a low-dimensional underlying structure resulting with fewer degrees of
freedom than their nominal dimensionality. In the Cheetah MujoCo environment, where the Cheetah
is constrained to a plane, the goal of the RL agent is to learn a policy to make the Cheetah move
forward as fast as possible. The actions available to the agent are providing torques at each one
of the 6 joints. For example, an RL agent learning from control inputs for the Cheetah MuJoCo
environment one can “minimally” describe the cheetah’s state by its “pose”, velocity and position
as opposed to the entirety of the input vector. The idea of a low dimensional manifold embedded in
a high dimensional state space formalises this.

A function h : X → Y , from one open subset X ⊂ Rl1 , to another open subset Y ⊂ Rl2 ,
is a diffeomorphism if h is bijective, and both h and h−1 are differentiable. Intuitively, a low
dimensional surface embedded in a high dimensional Euclidean space can be parameterised by a
differentiable mapping, and if this mapping is bijective we term it a diffeomorphism. Here X is
diffeomorphic to Y . A manifold is defined as follows (Guillemin & Pollack, 1974; Boothby, 1986;
Robbin et al., 2011).
Definition 1. A subset M ⊂ Rk is called a smooth m-dimensional submanifold of Rk (or m-
manifold in Rk) iff every point p ∈ M has an open neighborhood U ⊂ Rk such that U ∩M is
diffeomorphic to an open subsetO ⊂ Rm. A diffeomorphism, ϕ : U∩M → O is called a coordinate
chart of M and the inverse, ψ := ϕ−1 : O → U ∩M is called a smooth parameterisation.

We illustrate this with an example in Figure ??. Further note that, a coordinate chart is called local
to some point p ∈ U ⊂M the diffeomorphism property holds in that neighborhood. It offers a local
”flattening” of the local neighborhood. It is called global if it holds everywhere on M but not all
manifolds have a global chart (e.g. Figure ??). If M ⊂ Rk is a non-empty smooth m-manifold then
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m ≤ k, reflecting the idea that a manifold is of lower or equal dimension than its ambient space. A
smooth curve γ : I → M is defined from an interval I ⊂ R to the manifold M as a function that is
infinitely differentiable for all t. The derivative of γ at t is denoted as γ̇(t). The set of derivatives of
the curve at time t, γ̇(t), for all possible smooth γ, form a set that is called the tangent space Tp(M)
at point p. For precise definition see Appendix A. By taking partial derivatives of ψ with respect to
each coordinate xj , we obtain vectors in Rk:

∂ψ

∂xj
=

(
∂ψ1

∂xj
,
∂ψ2

∂xj
, . . . ,

∂ψk

∂xj

)
These vectors span the tangent space TpM at point p. Therefore, locally the manifold can be alter-
natively represented as the space spanned by the non-linear bases: Span(∂ψ

1

∂xj ,
∂ψ2

∂xj , . . . ,
∂ψk

∂xj ).

2.3 VECTOR FIELDS, LIE-SERIES, AND CONTROL THEORY

Curves and tangent spaces on manifolds naturally lead us to vector fields. Just how a curve represents
how an agent’s state changes continuously a vector field capture this change locally at every point
of the state space. A tangent vector can be represented as X = [v1, ..., vm]⊺, where each vi is a
function.

Definition 2. A vector field X on M is a section of the tangent bundle TM , i.e. X : M → T (M).
X is called a Cr vector field if this section is Cr. Under a coordinate chart a vector field can be
expressed as X(x) =

∑m
i vi(x)

∂
∂xi

.

We denote by V∞(M) the set of all smooth vector fields on manifold M . The rate of change of a
function f ∈ C∞(M) at a point x along the vector field X is defined by

LX(f) = X(f(x)) =

m∑
i=1

vi
∂f(x)

∂xi
. (3)

Associated with every such vector field X ∈ V∞(M) and x0 ∈ M is the integral curve: x(t).
Intuitively, upon following along the direction X for time t the curve starting from x0 reaches the
point x(t). The solution to the ODE with starting condition x(0) = x0 is denoted as the exponential
map eXt (x0). One can imagine that vector fields have a connection to policies in how a policy
determines the direction of change. Therefore, it is an effective way to model the change in an
agents’ state given a vector field and an arbitrary fixed starting state over a time period.

Taylor series help approximate complex functions with polynomials analogously we will us the Lie
series of the exponential map. To define this expansion we first recursively define the Lie derivative
LkX(f) = LX(Lk−1

X (f)) for k ∈ N+ where LX(·) is as in equation 3. The Lie series of the
exponential map with f(x) = x is (Jurdjevic, 1997; Cheng et al., 2011)

eXt (x) =x+ tX(x) +

∞∑
l=1

tl+1

(l + 1)!
Ll+1
X (x). (4)

3 MODEL FOR LINEARISED WIDE TWO-LAYER NEURAL POLICY

An RL agent in the policy gradient framework (Sutton et al., 1999; Konda & Tsitsiklis, 1999) is
equipped with a policy π parameterised by parameters θ and takes gradient ascent steps in direction
of ∇θJ(π(; θ)). Suppose the agent’s policy is parameterised by a wide two layer neural network
policy. This update direction can be estimated in different ways (Williams, 1992; Kakade, 2001).
Such an algorithm generates a sequence of parameters:

θτ+1 ← θτ + η∇θJ(π(; θ)), (5)

where η is the learning rate. In our setting, a neural RL agent parameterises the policy as a two layer
neural network with smooth activation. We highlight the salient details below.
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3.1 LINEAR PARAMETERISATION OF NEURAL POLICY

For the set of permissible policies we consider the family of two layer feed forward neural networks
with GeLU activation (Hendrycks & Gimpel, 2016), which is a smooth analog of the popular ReLU
activation (Nair & Hinton, 2010). We follow the parameterisation for a two layer fully connected
neural network employed by Cai et al. (2019b) and Wang et al. (2019) for analysis of RL algorithms,
which is also used in theoretical analyses of wide neural networks in supervised learning (Allen-Zhu
et al., 2019b; Gao et al., 2019; Lee et al., 2019). For a weight vector W of the first layer and weights
B for the last layer a shallow, two layer, fully connected neural network is parameterised as:

f(s;W,B) =
1√
n

n∑
κ=1

Bκφ(Wκ · s), (6)

where W ∈ Rnds is the vector of first layer parameters where each Wk is a ds length vec-
tor block and therefore the complete vector W = [W1,W2, ...,Wn], φ is GeLU activation, and
B ∈ Rda×n is a matrix comprised of n column vectors of dimension da denoted Bk, meaning
B = [B1, B2, ..., Bn]. Here n is the width of the neural network. The parameters are initialised
i.i.d randomly as Bk ∼ Unif(−1, 1) and Wk ∼ Normal(0, Ids/ds), where Ids is an ds × ds iden-
tity matrix and Unif is the uniform distribution. During training, Cai et al. (2019b) and Wang et al.
(2019) only updateW while keepingB fixed to its random initialisation despite which, for a slightly
different policy gradient based learning, the agent learns a near optimal policy. Researchers study
neural networks in simplified theoretical settings in order to advance the understanding of a complex
system while keeping the mathematics tractable (Li & Yuan, 2017; Jacot et al., 2018; Du et al., 2018;
Mei et al., 2018a; Allen-Zhu et al., 2019b). While this shallow model of neural networks does away
with complexity from multiple layers it captures the over-parametrization in NNs.

LetW 0 be the initial parameters of the policy network defined in Equation 6. A linear approximation
of the policy is defined as

f lin(s;W ) =f(s;W 0) +∇θf(s; θ)|θ=W0(W −W 0) = f(s;W 0) + Φ(s;W0)(W −W 0) (7)

where Φ(x;W0) =
1√
n

[
C0

1φ
′(W 0

1 · s)s⊺, C0
2φ

′(W 0
2 · s)s⊺, ..., C0

nφ
′(W 0

n · s)s⊺
]

is a da× nds fea-
ture matrix for the input s, φ′ is the gradient of GeLU function w.r.t the input, · represents the dot
product, and the matrix Φ formed by the concatenation of da × ds matrices Bkφ′(W 0

k · s)s⊺ for
k = 1, ..., n. This results in a matrix of size da × nds. W is an nds vector as described above.
We will omit the parameters W,W 0, and B from the representation of policies when there is no
ambiguity. It is a linear approximation because it is linear in the weights W and non-linear, within
Φ, in the initial weights W 0 and the state s. This leads us to the definition of family of linearised
policies for a fixed initialisation W 0, similar to Wang et al. (2019).
Definition 3. Let r > 0 be an absolute constant and W0 be fixed. For all widths n ∈ N, we define

FW0,r,n =

{
f̂ =

1√
n

n∑
κ=1

B0
κφ

′(W 0
k · s)s ·Wκ : ||W −W 0|| ≤ r

}
.

This linearised approximation of the policy simplifies our analysis of the set of reachable states. We
further note that it might seem restrictive to consider a network without bias, but we can extend this
analysis by adding another input dimension, which is always set to 1.

3.2 CONTINUOUS TIME POLICY GRADIENT

Under this parameterisation, the sequence of neural net parameters as described by the updates in
equation 5, are determined by the semi-gradient update direction

∇θJ =E
[
∇aQπ(s, a, t)∇θf lin(s;W )

]
,

where the expectation is over the visitation measure ρπ and Qπ : S ×A× [0, T ] is the action-value
function that represents the value of taking a constant action a at time t for a fixed time, say δt,
followed by acting according to the policy π until termination. We define the i-th component of the
gradient over the value function with respect to the actions as follows:

(∇aQπ(s, a, t))i = lim
h→0+

Qπh(s, a+ hei, t)− V π(st)
h

,

5
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where ei is a da dimensional vector with 1 at i and 0 otherwise, finally the function Qh is defined
as:

Qπh(s, a+ hei, t) =v
π(st+h) +

∫ h

0

e−
l+t
λ fr(s

a+hei
l )dl, such that

sa+heil =T (s, a+ hei, l),

where T is the transition function as defined in section 2.1. This is an application of the policy
gradient theorem (Sutton et al., 1999; Lillicrap, 2015) which is a semi-gradient based optimisation
technique.

As is usually done, the following stochastic gradient based update rule approximates the true gradi-
ent for the policy parameters

W(k+1)η −Wkη =
η

B

B∑
b=1

∇aQWkη (sb, ab, tb)Φ(sb;W0), (8)

whereWkη represents the parameters after k gradient steps with learning rate η, QWkη is the action-
value function associated with policy parameterised by f lin(;W kη), BWkη

= {(sb, ab, tb)}Bb=1 is
randomly chosen batch of data from samples of the SDE (Doya, 2000b; Jia & Zhou, 2022a)

dSt =

(
g(St) +

da∑
i=1

hi(St)f
lin
i (s;Wkη)

)
dt+ σ(St)dwt,

where W0 = W 0 (see section 3.1), wt is the ds dimensional Wiener process where σ : Rds →
Rds×ds is the exploration component of the agent. We assume access to an oracle that gives us the
gradients ∇aQWkη , which do not need to be true in practice. Therefore, a sample BW is an i.i.d.
set of samples from {1, . . . , N ′}, for large N ′, of size B. Thus we can write the expectation of the
gradient update as follows

EBW

[
η

B

B∑
b=1

∇aQ̂Wkη (sb, ab, tb)Φ(sb;W0)

]
=

η

N ′

N ′∑
i=1

∇aQ̂Wkη (si, ai, ti)Φ(si;W0),

where we have an appropriate function Q such that the above condition is satisfied. Let the term
on the right hand side be denoted by ∇WJ(W ) in the limit N ′ → ∞. Here, σ is the exploration
component of the dynamics. We re-write the update rule from equation 8 as follows,

W(k+1)η −Wkη = η∇WJ(W )|W=Wkη
+ ηξ(Wkη,BWkη

) = G(Wkη, η), (9)

where ξ(Wkη,BWkη
) =

(
1
B

∑B
b=1∇aQWkη (sb, ab, tb)Φ(sb;W0)−∇WJ(W )|W=Wkη

)
. There-

fore, we have EBW
[ξ(W,BW )] = 0 given an unbiased sampling mechanism for BW . Simiar formu-

lation of SGD is also used in supervised learning (Cheng et al., 2020; Ben Arous et al., 2022).

3.3 CONVERGENCE OF CONTINUOUS TIME ONLINE POLICY GRADIENT

It is not always guaranteed that the policy gradient algorithm will converge to globally optimal
policies for general dynamics in a straightforward manner (Sutton et al., 1999; Konda & Tsitsiklis,
1999; Marbach & Tsitsiklis, 2003; Xiong et al., 2022). We make some assumptions, common in
optimization theory, to ensure that the gradient ascent method provided above converges to near-
optimal policy in finite gradient steps.

We assume the following Lypunov like condition (Kushner, 1971) that ensures convergence:

∆U(W ) =EB(W )

[
U

(
W +

η

B

B∑
i=1

∇aQW (xi, a)Φ(xi;W )

)]
− U(W ) ≤ −βKU(W ),

where U(W ) = V ∗ −
∫ T

0

e
−l
λ

(
fr

(
s
π(;W )
l

))
dl,

(10)

V ∗ is the optimal discounted return at time t = 0, W is in some compact set K, and 0 < βK < 1 is
the contraction constant.
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4 MAIN RESULT: LOCALLY ATTAINABLE STATES

The state space is typically thought of as a dense Euclidean space in which all states lie but it is
not necessarily the case that all such states are reachable by the agent. Three main factors constrain
the states available to an agent: 1) the transition function, 2) the family of functions that the policy
belongs to, and 3) the optimisation process which determines the dynamics of parameters of the
policies. We therefore are interested in the set of states attained by the trajectories of linearised
policy with parameters that are optimised as in section 3.2 around a fixed state s for time δ. The
properties of this set gives us a proxy for the “local manifold” around any arbitrary state.

A vector field, its exponential map, and the corresponding Lie series described in section 2.3 are
analogous to parameterised policy, the state transition based on this policy, and an approximation
of this rollout. To formalise this, we denote the vector field determined by the parameters W of a
linearised policy with initialisation W 0 is

X(W ) = g(x) + h(x,Φ(x;W 0)W 0)Φ(x;W 0)W. (11)

The set of states attained by the rollout of this policy, parameterised by W,W 0, over time δ is
therefore eX(W )

(0,δ) (s), i.e. the image of the interval (0, δ) under the exponential map corresponding
to the vector field X(W,W0). Moreover, W0 is randomly initialised and the parameters W are
obtained through a stochastic semi-gradient updates (equation 9).

There are two time scales: one is the time of policy rollouts and the other is the policy parameter
optimisation. This complicates the analysis. We will use t for time in the physical sense of an
RL environment and τ for the gradient updates. Continuous time analogues for discrete stochastic
gradient descent algorithms at small step sizes have yielded remarkable theoretical analyses of al-
gorithms (Mei et al., 2018b; Chizat & Bach, 2018; Jacot et al., 2018; Lee et al., 2019; Cheng et al.,
2020; Ben Arous et al., 2022). Therefore, to analyse the evolution of the attainable states under a
time-discretized sequence of parameters we derive an approximate continuous time dynamics for the
evolution of the randomly initialised parameters W . Many theoretical frameworks that study SGD
in continuous time seek to approximate the evolution of the high-dimensional parameter distribution
but we seek to closely approximate the Lie series. We therefore utilise the theoretical framework
provided by Ben Arous et al. (2022), with appropriate modifications, to analyse continuous time
dynamics of relevant statistics in the infinite width limit.

Let ξn, Gn be the semi-gradients for linearised policy of width n, f lin
n . Let ηn be a sequence of

learning rates such that ηn → 0 as n→∞ at rate 1√
n

. For a random-variable Wn, that determines

the distribution of the nds parameters, let eX(Wn)
t (s) denote the push-forward of Wn of the expo-

nential map. In the case of random variables, the attained set of states is sampled from this time
dependent push-forward of the distribution Wτ

n, where τ is the gradient time step. We make the
following assumptions:
Assumption 4. Suppose Hn(W,BW ) = ξn(W,BW ) − Gn(W ) for any n and a given compact
set K we there exists a constant σH,K such that EBW

[
L2(Hn(W,BW ))4

]
≤ nσ2

H,K for W ∈ K,
where L2 is the norm.

This assumption is a relaxed version to the assumption on the variance of the gradient update (as-
sumption 4.4) made by Wang et al. (2019). We make a further assumption on the Lipschitz continuity
of Hn and Gn, similar to Ben Arous et al. (2022).
Assumption 5. Gn is locally Lipschitz continuous in W .

Furthermore, we assume that the activation, φ, has bounded first and second derivatives everywhere
in R. This assumption holds true for GeLU activation. We also denote by Jhj(s) the ds × ds
Jacobian of the ds × 1 vector valued function hj(s). We also define proximity of a random variable
to a manifold in a probabilistic manner.
Definition 6. A random variable, X , is concentrated around a manifold M with rate R and
modulo ϵ ≥ 0 if there exists an absolute constant C ≥ 0, independent of ϵ,D, such that
Pr(distance(X,M) ≤ D) ≤ e−R(D−Cϵ).

Intuitively, this means that the probability that the random variable X lies at some distance decays
exponentially in distance plus a “small” corrective term Cϵ.
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Theorem 1. Given a continuous time MDP M, a fixed state s, a sequence of two-layer
linearised neural network policy, f lin

n , initialised with i.i.d samples from Normal(0, 1/ds),
semi-gradient based updates (ηn, ξn, Gn) which satisfy assumptions 4, 5, then for varying
δt ∈ (0, δ) and fixed τ > 0 the random variable defined by the push-forward of the ran-
dom variable W τ

n w.r.t the exponential map eX(W τ
n )

δt (s) converges weakly to a random variable
X that concentrates around an m-dimensional manifold Mδ′,τ with m ≤ 2da + 1 at rate
R, that depends on the operator norms of the matrices Jhj(s), j ∈ {1, . . . , da}, the values
gk(s), k ∈ {1, . . . , ds}, τ , modulo δ3.

Intuitively, this means that in the infinite width limit for very low learning rates the probability mass
of the push-forward of the exponential map is concentrated around a 2da + 1 dimensional manifold
and this probability decays exponentially as one moves away from this manifold. The proof is
provided in Appendix F. The proof sketch is as follows:

1. We expand the Lie series up to an error term of δ3 (Appendix B).

2. We then show the weak convergence of the dynamics of random variables that determine the Lie
series in Appendix E, this section closely follows the proof by Ben Arous et al. (2022).

3. Finally, we show that the push forward of the random variable W τ through Lie series expansion
is concentrated around a space spanned by 2da + 1 vectors for fixed t and therefore for variable t
there are is a 2da + 2 around which the data lies, modulo the δ3 distance.

The manifold M is derived to be locally spanned by (hj , v
τ
j , tg + t2g′) locally at s. Here the

directions in which the individual action dimensions locally change the state are h1, . . . , hda . The
mean second order change: vτj =

∑ds
k=1

∂hj(s)
∂sk

∑da
j′=1 ā

τ
j′hj′,k(s), where Jhj is the Jacobian of

the function hj(s) and āτj′ is a constant that depends on the gradient time τ , and the paraboloid.
g′ is first order partial derivative of g, amnd therefore tg + t2g′ is a parabolois. This is similar to
how a local neighborhood is defined as being spanned by bases vectors in section 2.2. Informally
extending and intuiting this result one can hypothesize that over the training dynamics of a linearised
neural network, if the parameters remain bounded, the union of trajectories starting from a state s
over a “small” time interval δ then the trajectories are concentrated around a 2da + 3 manifold. The
reason being that their is an additional degrees of freedom from the gradient dynamics. This means
“locally” the data is concentrated around some low-dimensional manifold whose dimensionality is
linear in da.

5 EMPIRICAL VALIDATION

Our empirical validation is three fold. First we show the validity of the linearised parameterisation of
the policy (equation 7) as a theoretical model for canonincal NNs (equation 6). Second we verify that
the bound on the manifold dimensionality as in Theorem 1 holds in practice. In the third subsection,
we demonstrate the practical relevance of our result by demonstrating benefits of learning compact
low-dimensional representations, without significant computational overhead.

5.1 APPROXIMATION ERROR WITH LINEARISED POLICY

We empirically observe the impact of our choice of linearised policies as a theoretical model for
two layer NNs. We do so by measuring the impact on the returns by this choice. We calculate the
difference in returns for DDPG using canonical NNs and linearised NNs as parameterisations for
its policy network. Let the empirically observed return to which the DDPG algorithm converges
using a canonical NN policy be J∗

n, and J lin
n be the same for linearised policy. In figure ?? we

report the value (J∗
n − J lin

n ) on the y-axis and log2 n on the x-axis for the Cheetah environment
(Todorov et al., 2012; Brockman et al., 2016). We present additional training curves in appendix
(figure ??) that compares how the returns vary as training progresses. Interestingly, at large widths
(log2 n > 15) the discounted returns match across training steps for canonical and linearised policy
paramaeterisations. This suggests that the agent’s learning dynamics are captured by a linearised
policy as n→∞. All results are averaged across 16 seeds.
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5.2 EMPIRICAL DIMENSIONALITY ESTIMATION

To empirically corroborate our main result (Theorem 1) we perform experiments in the MuJoCo
domains provided in the OpenAI Gym (Brockman et al., 2016). These are all continuous state and
action spaces with da < ds for simulated robotic control tasks. The states are typically sensor mea-
surements such as angles, velocities or orientation, and the actions are torques provided at various
joints. We estimate the dimensionality of the attainable set of states upon training. To sample data
from the manifold, we record the trajectories from multiple evaluation runs of DDPG across differ-
ent seeds (Lillicrap et al., 2016), with two changes: we use GeLU activation (Hendrycks & Gimpel,
2016) instead of ReLU, in both policy and value networks, and also use a single hidden layer net-
work instead of 2 hidden layers for both the networks. Performance is comparable to the original
DDPG architecture (see Appendix L). For background on DDPG refer to Appendix J. These choices
keep our evaluation of the upper bound as close to the theoretical assumptions as possible while still
resulting in reasonably good discounted returns. We then randomly sample states from the evalua-
tion trajectories to obtain a subsample of states, D = {si}ni=1. We estimate the dimensionality with
10 different subsamples of the same size to provide confidecne intervals.

We employ the dimensionality estimation algorithm introduced by Facco et al. (2017), which es-
timates the intrinsic dimension of datasets characterized by non-uniform density and curvature, to
empirically corroborate Theorem 1. Further details about the dimensionality estimation procedure
are presented in Appendix I. The estimates for four MuJoCo environments are shown in Figure ??.
For all environments the estimate remains below the limit of 2da + 1 in keeping with theorem 1.

5.3 EMPIRICAL VALIDATION IN TOY LINEAR ENVIRONMENT

A deterministic system is fully reachable if given any start state, s0 ∈ Rds , the system can be
driven to any goal state in Rds . To contrast our result to classic control theory, we demonstrate that
for a control environment which is fully reachable using a time-variant or open loop policy the set
of all the attainable states using a bounded family of linearised neural nets (definition 3) is low-
dimensional. A common example of a fully reachable ds-dimensional linear control problem with
1D controller is:

ṡ(t) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
0 0 0 . . . 0

 s(t) +

0
0
...
0
1

π(t), (12)

which is fully reachable. This follows from the fact that a linear system ẋ = Ax + Bu(t) is
fully reachable if and only if its controllability matrix defined by C = [B,AB,A2B, . . . , Ads−1B]
is full rank (Kalman, 1960; Jurdjevic, 1997). We instead evaluate the intrinsic dimension of the
locally attainable set under feedback policies within our theoretical framework. We do so for the
set of states attained for small t under the dynamics ˙s(t) = As(t) + BΦ(x)W , where A,B are
as in equation 12. To achieve this, for fixed embedding dimension ds we obtain neural networks
sampled uniformly randomly from the family of linearised neural networks as in definition 3, with
r = 1.0, t ∈ (0, 5), n = 1024. Consequently we obtain 1000 policies with δt = 0.01, and therefore
a sample of 500000 states to estimate the intrinsic dimension of the attained set of states using
the algorithm by Facco et al. (2017). We vary the dimensionality of the state space, ds, from 3 to
10 to observe how the intrinsic dimension of the attained set of states varies with the embedding
dimension while keeping da fixed at 1. The dimensionality of attained set of states remains upper-
bounded by 2da + 1 = 3 for this system (figure ??). This bound is even lower (at da + 1 = 2) for
linear environments because the Lie series expansion (equation 4) gets truncated at l = 1 for GeLU
activation owing to the fact that the second derivative is close to zero in most of R.

5.4 REINFORCEMENT LEARNING WITH LOCAL LOW-DIMENSIONAL SUBSPACES

To demonstrate the applicability of our theoretical result we apply a fully-connected sparisifica-
tion MLP layer introduced by Yu et al. (2023a). In a series of work named the CRATE frame-
work (Coding RAte reduction TransformEr) (Chan et al., 2022; Yu et al., 2023a;b; Pai et al.,
2024), researchers have argued for better design of neural networks that compress and transform
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high-dimensional the data given that it is sampled from low-dimensional manifolds. They assume
that data lies near a union of low-dimensional manifolds ∪iMi where each manifold has dimen-
sional di ≪ ds. One innovation, that has remarkable empirical and theoretical results under the
manifold hypothesis, learns sparse high-dimensional representations of the data ϕ : Rds → Rn
with n ≥

∑
i di. These representations are orthogonal for data points across two manifolds,

xi ∈ Mi, xj ∈ Mj , i ̸= j =⇒ ϕ(si) · ϕ(sj) = 0, and low-rank on or near the same man-
ifold, rank([ϕ(x1i ), ϕ(x

2
i ), . . . , ϕ(x

k
i )]) ≈ di for xji ∈ Mi. This can be viewed as disentangling

representations across different manifolds via sparsification. The sparsification layer of width n (Yu
et al., 2023a) is defined as

Zℓ+1 = ReLU
(
Zℓ + αW ⊺

(
Zℓ −WZℓ

)
− αλ1

)
,

where α is the sparse rate step size parameter, Zℓ is the input to the ℓ-th layer, W are the n × n
weight matrix. As is evident, this is a linear transformation of the feed-forward layer and therefore
does not add computational overhead. To verify the efficacy of disentangled low-dimensional rep-
resentations, under the manifold hypothesis, we replace one feed-forward layer of all the policy and
Q networks ith sparsipfication layer within the SAC framework (see Appendix K for background
on SAC). We also use wider networks of width 1024, for both the baseline and modified architec-
ture, for comparison. This is to satisfy the assumption n ≥

∑
i di described above. With a simple

code change of about 5 lines with same number of parameters and two additional hyperparameters,
απ, αQ, we see improvements in the discounted returns for high-dimensional control environments:
Ant (Brockman et al., 2016), Dog Stand, Dog Walk, and Quadruped Walk (Tunyasuvunakool et al.,
2020), averaged across 16 seeds. Discounted returns are reported on the y-axes against the number
of samples on the x-axis in figure ??. We observe that SAC with fully connected network fails to
learn in high-dimensional Dog environments where as SAC equipped with a single sparsification
layer, instead of a fully connected layer, does far better. This demonstrates the efficacy of learning
local low-dimensional representations which arise from wide neural nets. The sparsity layer (equa-
tion in section 5.4) adds a constant computation factor of 2n2 in the forward and backward passes,
we show the impact on the steps per second metric in figuere ?? of Appendix. We use the same
hyperparameter for learning rates and entropy regularization for both the sparse SAC and vanilla
SAC as those provided in the CleanRL library (Huang et al., 2022). We report ablation for Ant and
Humanoid domains over the step size parameter in Appendix M.

6 DISCUSSION

We have proved that locally there exists low-dimensional structure to the continuous time trajectories
of policies learnt using a semi-gradient ascent method. We develop a theoretical model where both
transition dynamics and training dynamics are continuous time. Ours is not only the first result of its
kind but we also introduce new mathematical models for study of RL. Further, we exploit this low-
dimensional structure for efficient RL in high-dimensional environments with minimal changes. For
detailed related work refer to Appendix N and address the broader applicability of our theoretical
work in appendix O. We also assume access to the true value function, Q, this is not practical and
warrants an extension to the setting where this function is noisy. A key challenge that remains is
extending this theory to very high-dimensional datasets where ds → ∞ as n → ∞. We anticipate
that noise in this settings will further complicate analysis. Additionally, the impact of stochastic
transitions remains unexplored, as our current analysis assumes deterministic transitions.
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Appendix
A MANIFOLD BACKGROUND

Here, we provide precise definitions which are essential to the theory of differential geometry but
might not be absolutely essntial to understand our results in the main body of our work. The tangent
space characterises the geometry of the manifold and it is defined as follows.

Definition 7. LetM be anm-manifold in Rk and p ∈M be a fixed point. A vector v ∈ Rk is called
a tangent vector of M at p if there exists a smooth curve γ : I →M such that γ(0) = p, γ̇(0) = v.
The set TpM := {γ̇(0)|γ : R→ M is smooth, γ(0) = p} of tangent vectors of M at p is called the
tangent space of M at p.

Continuing our example, the tangent space of a point p in S2 is the vertical plane tangent to the
cylinder at that point. For a small enough ϵ and a vector v ∈ TpS

2 there exists a unique curve
γ : [−ϵ, ϵ] → S2 such that γ(0) = p and γ̇(0) = v. The union of tangent spaces at all points is
termed the tangent bundle and denoted by T (M). At point p, the tangent space TpM is spanned by

the vectors

{
∂

∂xi

∣∣∣∣
p

}
. Any tangent vector v ∈ TpM can be expressed as a linear combination:

v =

m∑
i=1

vi
∂

∂xi

∣∣∣∣
p

,

where vi ∈ R are the components of v in the basis

{
∂

∂xi

∣∣∣∣
p

}
.

B FEEDBACK ACTION LIE SERIES

Consider the vector fields for a feedback policy a(x) ∈ C∞:

X =g(x) + h(x)a(x).

Consider the Lie series and its first term:

eXt =x+ tX(x) +
∞∑
l=1

tl+1

(l + 1)!
Ll+1
X (x)

LX1(x) =g(x) + h(x)a(x).

The second order term can be written as:

(L2
X1
x)i =

ds∑
k=1

gk(x) + da∑
j=1

hj,k(x)aj(x)

 ∂gi(x) + hi(x)a(x)

∂xk

=

ds∑
k=1

(
gk(x)

∂gi(x)

∂xk
+

da∑
j=1

hj,k(x)aj(x)
∂gi(x)

∂xk

+ gk(x)

 da∑
j′=1

∂hi,j′(x)

∂xk
aj′(x) +

∂aj′(x)

∂xk
hi,j′(x)


+

da∑
j=1

da∑
j′=1

hj,k(x)aj(x)
∂hi,j′(x)

∂xk
aj′(x) + hj,k(x)aj(x)

∂aj′(x)

∂xk
hi,j′(x)

)
.
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While we do not use this third order term we present it to demonstrate that tracking the statistics of
this gets exponentially difficult:

(L3
X1
x)i =

ds∑
k′=1

gk(x) + da∑
j=1

hj,k(x)aj(x)

 (L2
X1
x)i

∂xk′

=

ds∑
k′=1

g′k(x) + da∑
j′′=1

hj′′,k′(x)aj′′(x)

( ds∑
k=1

∂gk(x)

∂xk′
+ gk(x)

∂gi(x)

∂xk′∂xk

+

da∑
j=1

∂hj,k(x)

∂xk′
aj(x)

∂gi(x)

∂xk
+ hj,k(x)

∂aj(x)

∂xk′

∂gi(x)

∂xk
+ hj,k(x)aj(x)

∂2gi(x)

∂xk′∂xk

+

da∑
j′=1

∂gk(x)

∂xk′

∂hi,j′(x)

∂xk
aj′(x) + gk(x)

∂2hi,j′(x)

∂xk′∂xk
aj′(x) + gk(x)

∂hi,j′(x)

∂xk

∂aj′(x)

∂xk′

+

da∑
j′=1

∂gk(x)

∂xk′

∂aj′(x)

∂xk
hi,j′(x) + gk(x)

∂2aj′(x)

∂xk′∂xk
hi,j′(x) + gk(x)

∂aj′(x)

∂xk

∂hi,j′(x)

∂xk′

+

da∑
j=1

da∑
j′=1

(
∂hj,k(x)

∂xk′
aj(x)

∂hi,j′(x)

∂xk
aj′(x) + hj,k(x)

∂aj(x)

∂xk′

∂hi,j′(x)

∂xk
aj′(x) + hj,k(x)aj(x)

∂2hi,j′(x)

∂xk′∂xk
aj′(x)

+ hj,k(x)aj(x)
∂hi,j′(x)

∂xk

∂aj′(x)

∂xk′
+
∂hj,k(x)

∂xk′
aj(x)

∂aj′(x)

∂xk
hi,j′(x) + hj,k(x)

∂aj(x)

∂xk′

∂aj′(x)

∂xk
hi,j′(x)

+ hj,k(x)aj(x)
∂2aj′(x)

∂xk′∂xk
hi,j′(x) + hj,k(x)aj(x)

∂aj′(x)

∂xk

∂hi,j′(x)

∂xk′

))
.

C RELEVANT STATISTICS FOR LIE SERIES UNDER POLICY LEARNING

We would like to determine the dynamics of some linear or quadratic function of these parameters,
for example the j -th output of the policy network Aj(s;W ) = Φj(s;W0)W . We would like to find
a setting where a continuous time SDE such as

dAj(s;W ) = µ(Aj(s;W ))dτ + σ(Aj(s;W ))dwτ , (13)

represent the dynamics ofAj(s;Wkη). In other words, we find the conditions under whichWkη, Ykη
are close together in some sense.

Furthermore, we assume that the activation, φ, has bounded first and second derivatives almost
everywhere in R. This assumption holds for GeLU activation. Moreover, we would like to show
that we can track the statistics corresponding elements of the Lie series

Aτj (s) = f lin
j (s;Y τ ),

Aτj,k(s) =
∂Aτj (s)

∂xk
,

Aτj,k,k′(s) =
∂2Aτj (s)

∂xk′∂xk
.
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D SOME HELPFUL DERIVATIONS

Here we derive various expressions to bound their magnitude in terms of the width of the NN n.
First we consider the gradient term:

G(Y ) = lim
N ′→∞

1

N ′

N ′∑
i=1

∇aQ̂Y (si, ai, ti)Φ(si;W0)

= lim
N ′→∞

η

N ′

N ′∑
i=1

qi(si)Φ(si;W0)

= lim
N ′→∞

1

N ′√n

N ′∑
i=1

sikφ′(W 0
m · si)

da∑
j=1

qij(si)C
0
j,m


m(ds−1)+k

=
1√
n

 da∑
j=1

C0
j,m lim

N ′→∞

1

N ′

N ′∑
i=1

sikφ
′(W 0

m · si)qij(si)


m(ds−1)+k

=
1√
n

 da∑
j=1

C0
j,mG

′
j,m(ds−1)+k(Y )


m(ds−1)+k

.

Similarly we expand the term for M2(Y )

ξ(Y ) =

√
η
√
n
EBY

 1

B

B∑
b=1

da∑
j=1

qj(s
b)C0

j,mφ
′(W 0

m · sb)sbk −
da∑
j=1

C0
j,mG

′
j,m(ds−1)+k(Y )


m(ds−1)+k

=

√
η
√
n
EBY

 da∑
j=1

C0
j,m

 1

B
qj(s

b)

B∑
b=1

φ′(W 0
m · sb)sbk −

da∑
j=1

G′
j,m(ds−1)+k(Y )


m(ds−1)+k

=

√
η
√
n

da∑
j=1

C0
j,mEBY

 1

B
qj(s

b)

B∑
b=1

φ′(W 0
m · sb)sbk −

da∑
j=1

G′
j,m(ds−1)+k(Y )


m(ds−1)+k

M2(Y ) =
η

n
EBY

[ 1

B

B∑
b=1

da∑
j=1

qj(s
b)C0

j,mφ
′(W 0

m · sb)sbk −
da∑
j=1

C0
j,mG

′
j,m(ds−1)+k(Y )


 1

B

B∑
b′=1

da∑
j′=1

qj′(s
b′)C0

j′,m′φ′(W 0
m′ · sb

′
)sb

′

k′ −
da∑
j′=1

C0
j′,m′G′

j′,m′(ds−1)+k′(Y )

]
m(ds−1)+k,m′(ds−1)+k′

=
η

n
EBY

[ 1

B2

B∑
b′=1

da∑
j′=1

B∑
b=1

da∑
j=1

qj(s
b)qj′(s

b′)C0
j,mφ

′(W 0
m · sb)sbkC0

j′,m′φ′(W 0
m′ · sb

′
)sb

′

k′


−

 1

B

da∑
j′=1

B∑
b=1

da∑
j=1

qj(s
b)C0

j,mφ
′(W 0

m · sb)sbkC0
j′,m′G′

j′,m′(ds−1)+k′(Y )


− 1

B

da∑
j=1

B∑
b′=1

da∑
j′=1

C0
j,mG

′
j,m(ds−1)+k(Y )qj′(s

b′)C0
j′,m′φ′(W 0

m′ · sb
′
)sb

′

k′

+

da∑
j=1

da∑
j′=1

C0
j,mG

′
j,m(ds−1)+k(Y )C0

j′,m′G′
j′,m′(ds−1)+k′(Y )

]
m(ds−1)+k,m′(ds−1)+k′

,
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which we combine to form:

M2(Y ) =
η

n

[
da∑
j=1

da∑
j′=1

C0
j,mC

0
j′,m′EBY

[
1

B2

B∑
b′=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

−

(
1

B

B∑
b=1

qj′(s
b)Cφ′(W 0

m · sb)sbkG′
j′,m′(ds−1)+k′(Y )

)

−

(
1

B

B∑
b=1

qj(s
b)φ′(W 0

m′ · sb)sbkG′
j,m(ds−1)+k(Y )

)

+G′
j,m(ds−1)+k(Y )G′

j′,m′(ds−1)+k′(Y )

]]
m(ds−1)+k,m′(ds−1)+k′

.

Let the internal term in the summation be defined as follows:

Hj,j′

m(ds−1)+k,m′(ds−1)+k′ =EBY

[
1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

−

(
1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j′,m′(ds−1)+k′(Y )

)

−

(
1

B

B∑
b=1

qj′(s
b)φ′(W 0

m′ · sb)sbkG′
j,m(ds−1)+k(Y )

)

+G′
j,m(ds−1)+k(Y )G′

j′,m′(ds−1)+k′(Y )

]

=EBY

[(
1

B

B∑
b′=1

qj(s
b′)φ′(W 0

m · sb
′
)sb

′

k −G′
j,m(ds−1)+k(Y )

)
(

1

B

B∑
b′=1

qj′(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k −G′
j′,m′(ds−1)+k′(Y )

)]

D.1 COVARIATE TERMS

We denote∇aQW (sb, a, tb)|a=ab by [q1(s
b), . . . , qda(s

b)] as shorthand. Consider the term:

E
[
M

Aj

l M
Aj′

l

]
=∇YAj(s) ·M2(Y )∇YAj′(s)

=Φj(s,W0) ·M2(Y )Φj′(s,W0)

=
1

n3/2
Φj(s,W0) ·

[
n∑

m′=1

ds∑
k′=1

da∑
l=1

da∑
l′=1

C0
l,mC

0
l′,m′H

l,l′

m′(ds−1)+k,m(ds−1)+k′(Y )

C0
j′,m′φ′(W 0

m′ · s)sk′
]
m(ds−1)+k

.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We further expand the dot product with the nds × 1 vector Φj(s,W0)

E
[
M

Aj

l M
Aj′

l

]
=

1

3n2

n∑
m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

da∑
l=1

da∑
l′=1

C0
l,mC

0
l′,m′C0

j′,m′C0
j,m

H l,l′

m′(ds−1)+k,m(ds−1)+k′(Y )φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk′

=
1

3n2

n∑
m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

da∑
l=1

da∑
l′=1

C0
l,mC

0
l′,m′C0

j′,m′C0
j,m

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

EBY B′
Y

[
1

B2

B∑
b=1

B∑
b′=1

ql(s
b)φ′(W 0

m · sb)sbkql′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

−

(
1

B

B∑
b=1

ql(s
b)Cφ′(W 0

m · sb)sbkG′
l′,m′(ds−1)+k′(Y )

)

−

(
1

B

B∑
b=1

ql′(s
b)φ′(W 0

m′ · sb)sbkG′
l,m(ds−1)+k(Y )

)

+G′
l,m(ds−1)+k(Y )G′

l′,m′(ds−1)+k′(Y )

]

=
2

3n2
EBY B′

Y

[
n∑

m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

(

(C0
j′,m′)2(C0

j,m)2
1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

− (C0
j′,m′)2(C0

j,m)2
1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j′,m′(ds−1)+k′(Y )

− (C0
j′,m′)2(C0

j,m)2
1

B

B∑
b′=1

qj′(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k G
′
j,m(ds−1)+k(Y )

+ (C0
j′,m′)2(C0

j,m)2G′
j,m(ds−1)+k(Y )G′

j′,m′(ds−1)+k′(Y )

)]

+
∑

l,l′ ̸=j,j′

2

3n2
M2
l,l′ .

In the n→∞ we note that 2
3n2M

2
l,l′,j,j′ → 0 because we have E[Cl]E[Cl′ ]→ 0 as a multiplicative

term, while the other terms are finite and bounded in second moment because of the boundedness
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properties of gradient GeLU activation φ′. For j = j′ we have the following expression

E
[
M

Aj

l M
Aj

l

]
=

2

3n2
EBY B′

Y

[
n∑

m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

(

(C0
j,m′)4

1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

− (C0
j,m′)4

1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j,m′(ds−1)+k′(Y )

− (C0
j,m′)4

1

B

B∑
b′=1

qj(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k G
′
j,m(ds−1)+k(Y )

+ (C0
j,m′)4G′

j,m(ds−1)+k(Y )2

)]
+O

(
1

n

)
,

(14)

where the O
(
1
n

)
term is a result of the convergence rate of strong law of large numbers (Vershynin,

2018).

E TRACKING STATISTICS

Notation: In this section we use x ≲ y to denote that x is less than y times some constant. We also
write Ln∞(EnK) when denoting the the supremum of a function that depends on n over the compact
set K. As noted in section C we aim track the following statistics for fixed s across gradient steps

Anj (s,W ), Anj (s,W )Anj′(s,W ), Anj,k(s,W ).

Moreover, we seek to derive their dynamics in the continuous time limit. Given linearised parame-
terisation of a two layer network policy (equation 7, and the gradient update is as described in section
3.2. We present a Lemma, whose proof follows the proof of Theorem 2.2 provided by Ben Arous
et al. (2022) except in our case the dimensionality of the input data remains constant, on the dynam-
ics of summary statistics linear in the parameters that describe the learning dynamics under SGD.
We provide the dynamics of the j-th action below.

Lemma 8. Given a fixed state s the j-th action, Anj (s; ·), determined by a linearised neural pol-
icy with two hidden layers as described and initialised in section 3, we assume W0 ∼ X0 =
Normal(0, Ids/ds) i.i.d whose gradient dynamics are described in equation 8 with learning rates
ηn → 0, and under assumptions 4, 5, we have that in the limit n→∞ the dynamics of Anj converge
weakly to the following random ODE

dĀj(s;Xt) = vj(s;Xt)dt, (15)

with the random variable Xt is the being the limit point of the sufficient random variables, Xnt , of
the parameters updated according to stochastic policy gradient based updates laid out in section
3.2 with η = ηn.

Proof. Suppose the evolution of W is according to the evolution

Wτ =Wτ−1 + ηnξn(W,BWτ−1
), where

ξn(W,BWτ−1
) =

1

B

∑
sb,ab∈BW

∇aQW (sb, a)|a=abΦn(sb, ab).

We further letGn(Wτ−1) = EBWτ−1

[
ξn(W,BWτ−1)

]
. LetHn(W,BY ) = ξ(W,BWτ−1)−Gn(W ).

Further let
Ξn(W ) = EBW

[Hn(W,BY )Hn(W,BY )⊺] .
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For the statistic Anj consider the following evolution

ντj − ντ−1
j =ΦnjGn(Wτ ),

ςτj − ςτ−1
j =ΦnjHn(Wτ ,BWτ ).

(16)

Omitting the subscript in ηn, since we take the limit ηn → 0 as n→∞, we now consider the uj as
follows,

uτj = u0j + η

τ∑
τ ′=1

(ντ
′

j − ντ
′−1
j ) + η

τ ′∑
τ ′=1

(ςτ
′

j − ςτ
′−1

j ).

Now for l ∈ [0, L] we define,

ν′j(l) = ν
[l/η]
j − ν[l/η]−1

j , and ς ′j(l) = ς
[l/η]
j − ς [l/η]−1

j .

If we let

µnj (l) =

∫ l

0

ν′j(l)dl
′ = ν′j(η[l/η]) + (s− η[l/η])

(
ν
[l/η]
j − ν[l/η]−1

j

)
σnj (l) =

∫ l

0

ς ′j(l)dl
′ = ς ′j(η[l/η]) + (s− η[l/η])

(
ς
[l/η]
j − ς [l/η]−1

j

)
,

be the continuous linear interpolations based on the discrete random variables ν, ς and combine them
together to obtain

vnj (l) = vnj (0) + µnj (l) + σnj (l). (17)
Given a compact set K ⊂ R and the exit time τK we aim to show that for all 0 ≤ s, t ≤ T ,

E||vnj (s ∧ τK)− vnj (t ∧ τK)||2 ≲K,T (t− s)4,

where the expectation over the stochastic updates. This proves that vnj (s ∧ τK) is 1/4 Hölder-
continuous by Kolmogorov’s continuity theorem (see section 2.2 in the textbook by Karatzas &
Shreve (2014)). We have for all s, t

||vnj (s)− vnj (t)|| ≤ ||µnj (s)− µnj (t)||+ ||σnj (s)− σnj (t)||.

For a fixed W the action j corresponding to the linearised policy in the limit n→∞ is defined as:

āj(s,W ) = lim
n→∞

Φnj (s)W
n.

Now further suppose W is a stochastic variable where each one of its entries are sampled i.i.d from
some distribution X ∈ P(R), where P(R) is a probability space over R with the canonical sigma
algebra. Therefore, the push forward of this stochastic random variable Wn in the limit n→∞ can
be defined as:

Āj(s,X ) = lim
n→∞

1√
n

n∑
m=1

C0
j,mφ

′(W 0
m · s)

ds∑
i=1

siWds(m−1)+i,

which converges in distribution to a Normal distribution, with the mean and the variance are depen-
dent on the state and the distribution Xn, by the Lindeberg–Lévy central limit theorem (Vershynin,
2018; Cai et al., 2019b) which is also a consequence of using GeLU activation which has bounded
derivatives a.e. We drop the argument X in the wherever it is implicit. The first term in the inequal-
ity, the norm of µnj , is upper-bounded as below:

E
[
|µnj (s ∧ τK)− µnj (t ∧ τK)|2

]
≲KE


∣∣∣∣∣∣η

[t/η]∧τK/η∑
τ ′=[s/η]∧τ ′

K/η

ΦnjG(W
n
τ ′)

∣∣∣∣∣∣
2


≤ (t− s)2||ΦnjG(Wn
τ ′)||2Ln

∞(En
K)

≲K,LG,s (t− s)2,
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where the second inequality is from the continuity of the function ΦnjG(W
n) in Wn. The last

inequality is from the Lipschitz condition on the gradient function G 5. For the second term, which
is a martingale, in equation 17 we seek a similar bound to the one presented above:

E
[
|σnj (s ∧ τK)− σnj (t ∧ τK)|4

]
=E


η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(ςτ
′

j − ςτ
′−1

j )

4


=E


η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

ΦnjHn(W,BWτ′ )

4


≲ E


η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(W,BWτ′ )

)22
 ,

where the last inequality is from the Burkholder’s inequality. We further expand the last term in the
inequality as follows:

E


η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(W,BWτ′ )

)22
 =η4

∑
τ ′,τ ′′

E
[(
ΦnjHn(W,BWτ′ )

)2 (
ΦnjHn(W,BWτ′′ )

)2]

≤

(
η
∑
τ ′

(
η2E

[(
ΦnjHn(W,BWτ′ )

)4])1/2)2

≲K,LH
(t− s)2,

where the inequality in the second line is from Cauchy-Schwarz and for the last inequality we use
the fact that (assumption 4) and the fact that η → 0 at rateO( 1√

n
). This proves that σn is 1/4 Hölder-

continuous by Kolmogorov’s continuity theorem. Since both the sequences µnj and σnj are uniformly
1/2 Hölder-continuous we have that vnj (s∧τK) (equation 17) is also 1/2 Hölder-continuous. Further,
we note that vnj (s ∧ τK) forms a tight sequence in n with 1/2 Hölder-continuous limit point and
vnj (s∧ τK)−µnj (s∧ τK) is a martingale with a martingale limit point that is 1/4 Hölder-continuous
limit point.

Now that we have proved that limit points exists and are 1/2 Hölder-continuous we seek to derive
this limit. To do so we derive the quadratic variation

σnj (t ∧ τK)2 −
∫ t

0

ηEB
Wl/η∧τK

[
(ΦnjHn(W[l/η]∧τK ,BWτ ))

2
]
,

which is a Martingale process. We seek to derive expression for the expectation above in the limit
n→∞. To do so we derive the following:

EB
Wl/η∧τK

[
(ΦnjHn(W[l/η]∧τK ,BWτ

))2
]
= Φnj Ξn(W[l/η]∧τK )(Φnj )

⊺,
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where we omit the subscript BWl/η∧τK
under the expectation in the expression on right side for

brevity. Letting Y =W[l/η]∧τK and writing out rhe above expression based on equation 14

Φnj Ξn(Y )(Φnj )
⊺ =

2

3n2
EBY B′

Y

[
n∑

m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

(

(C0
j,m′)4

1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

− (C0
j,m′)4

1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j,m′(ds−1)+k′(Y )

− (C0
j,m′)4

1

B

B∑
b′=1

qj(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k G
′
j,m(ds−1)+k(Y )

+ (C0
j,m′)4G′

j,m(ds−1)+k(Y )2

)]
+O

(
1

n

)
.

Given that the gradient updates have finite and bounded variance (assumption 4) the expression
including the expectation converges to a value that is O(1) and dependent on s,G(Y ), j, σH,K by
the strong law of large numbers at the rate O

(
1
n

)
. We have therefore have the following

lim
n→∞

ηnΦ
n
j Ξn(W[l/η]∧τK )(Φnj )

⊺ = 0.

Therefore, as n → ∞ and by localization technique (Karatzas & Shreve, 2014) we prove conver-
gence of equation 17 to:

dĀj(s;Wt) = v(s;Xt)dt, (18)

which admits a unique solution due to the assumption of Lipschitz condition ,assumption 5. Given
that we initialise W0 as drawn from a distribution in P(R) then the distribution of Aj is a push
forward of this distribution and therefore evolves as in equation 18 and gives us the result.

Similarly, from the linearity ofAj,k inW using a similar derivation as above we can derive an ODE.
To do so we first note

Anj,k(s;W ) = Φnj (1k)W +Φnj,k(s)W,

where 1k is a ds-dimensional vector with value at index k is set to 1 and rest 0, Φj,k(s) is defined
as below

Φnj,k(s) =
1√
n

[
W 0

1,kC
0
1,jφ

′′(W 0
1 · s)s⊺,W 0

2,kC
0
2,jφ

′′(W 0
2 · s)s⊺, ...,W 0

n,kC
0
n,jφ

′′(W 0
n · s)s⊺

]
∈ R1×nds .

Therefore, in the limit n→∞
dĀj,k(s) = v′(s;Xt)dt.

Now we derive and prove the dynamics of the quadratic term Aj(s;W )Aj′(s;W ).

Lemma 9. Given a fixed state s the j-th action, Anj (s; ·), determined by a linearised neural pol-
icy with two hidden layers as described and initialised in section 3, we assume W0 ∼ X0 =
Normal(0, Ids/ds) i.i.d whose gradient dynamics are described in equation 8 with learning rates
ηn → 0, and under assumptions 4, 5, we have that in the limit n→∞ the dynamics of Anj converge
weakly to the following random ODE

dĀj(s;Xt)Āj′(s;Xt) =
(
vj(s;Xt)Āj′(s;Xt) + vj′(s;Xt)Āj(s;Xt)

)
dt, (19)

with the random variable Xt is the being the limit point of the sufficient random variables, Xnt , of
the parameters updated according to stochastic policy gradient based updates laid out in section
3.2 with η = ηn, and vj , vj′ are as described in Lemma 8.
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Anj (s;W )Anj′(s;W ) = (Φnj (s;W0)W )(Φnj′(s;W0)W ).

Proof. Since we know that Āτj , Ā
τ
j′ follow the ODE in equation 15 we want to show that the update

for Anj (s;W )Anj′(s;W ) converges weakly to

d(Āj(s;Xt)Āj′(s;Xt)) =
(
vj(s;Xt)Āj′(s;Xt) + vj′(s;Xt)Āj(s;Xt)

)
dt

To do so consider the increments as in equation 16 for the statistic which a product of two actions
AnjA

n
j′ :

ντj,j′ − ντ−1
j,j′ =ΦnjGn(Wτ )(Φ

n
j′Wτ ) + (ΦnjWτ )Φ

n
j′Gn(Wτ ),

ςτj,j′ − ςτ−1
j,j′ =

(
ΦnjHn(Wτ ,BWτ

)
)
Φnj′Wτ +

(
ΦnjWτ

)
Φnj′Hn(Wτ ,BWτ

)

+ η
((
ΦnjHn(Wτ ,BWτ

)
)
Φnj′Gn(Wτ ) +

(
ΦnjGn(Wτ

)
Φnj′Hn(Wτ ,BWτ

)
)

Omitting the subscript in ηn we obtain

uτj = u0j + η
τ∑

τ ′=1

(ντ
′

j − ντ
′−1
j ) + η

τ ′∑
τ ′=1

(ςτ
′

j − ςτ
′−1

j ).

Now for l ∈ [0, L] we define,

ν′j(l) = ν
[l/η]
j − ν[l/η]−1

j , ς ′j(l) = ς
[l/η]
j − ς [l/η]−1

j ,

Similar to the rpevious proof, we let

µnj (l) =

∫ l

0

ν′j(l)dl
′ = ν′j(η[l/η]) + (s− η[l/η])

(
ν
[l/η]
j − ν[l/η]−1

j

)
σnj (l) =

∫ l

0

ς ′j(l)dl
′ = ς ′j(η[l/η]) + (s− η[l/η])

(
ς
[l/η]
j − ς [l/η]−1

j

)
,

be the continuous linear interpolations based on the discrete random variables ν, ς and combine them
together to obtain

vnj (l) = vnj (0) + µnj (l) + σnj (l). (20)

With exit time τK we want to show that for all 0 ≤ s, t ≤ T ,
E||vnj (s ∧ τK)− vnj (t ∧ τK)||4 ≲K,T (t− s)2,

where the expectation over the stochastic updates. This proves that vnj (s ∧ τK) is 1/4 Hölder-
continuous by Kolmogorov’s continuity theorem (as opposed to 1/2 in the previous proof).

We have for all s, t
||vnj (s)− vnj (t)|| ≤ ||µnj (s)− µnj (t)||+ ||σnj (s)− σnj (t)||.

The first term in the inequality, the norm of µnj , is upper-bounded as below:

E
[
|µnj (s ∧ τK)− µnj (t ∧ τK)|4

]
≲K E

[∣∣∣η [t/η]∧τK/η∑
τ ′=[s/η]∧τ ′

K/η

ΦnjGn(Wτ ′)(Φnj′Wτ ′)

+ (ΦnjWτ ′)Φnj′Gn(Wτ ′)
∣∣∣4]

≤ (t− s)4||(ΦnjWτ ′)Φnj′Gn(Wτ ′)

+ ΦnjGn(Wτ ′)(Φnj′Wτ ′)||4L∞(En
K)

≲K,LG,s (t− s)4.
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where the second inequality is from the continuity of the function ΦnjWτ ′)Φnj′Gn(Wτ ′) inWn. The
last inequality is from the Lipschitz condition on the gradient function G 5.

Further consider the second term

E
[
|σnj (s ∧ τK)− σnj (t ∧ τK)|4

]
=E


η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(ςτ
′

j − ςτ
′−1

j )

4


=E


η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

ςτ
′

j − ςτ
′−1

j )

4


≲ E


η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ςτ

′

j − ςτ
′−1

j

)22
 .

Using Cauchi-Schwarz inequality we can bound the two different types of terms separately. We can
first upper bound

E


η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(Wτ ′)

)
Φnj′Wτ ′

2


=η4
∑
τ ′,τ ′′

E
[((

ΦnjHn(Wτ ′)
)
Φnj′Wτ ′

)2 ((
ΦnjHn(Wτ ′′)

)
Φnj′Wτ ′′

)2]

≤

(
η
∑
τ ′

(
η2E

[((
ΦnjHn(Wτ ′)

)
Φnj′Wτ ′

)4])1/2)2

≲K,LH ,s (t− s)2,

where the inequality in the second line is from Cauchy-Schwarz and for the last inequality we use
assumption 4, η → 0 at rate 1√

n
and the fact that Φj only depends on s. Similarly, we bound the

other term below

E


η4 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(Wτ ′)

)
Φnj′Gn(Wτ ′)

2


= η8
∑
τ ′,τ ′′

E
[((

ΦnjHn(Wτ ′)
)
Φnj′Gn(Wτ ′)

)2 ((
ΦnjHn(Wτ ′′)

)
Φnj′Gn(Wτ ′′)

)2]

≤

(
η6
∑
τ ′

(
η2E

[((
ΦnjHn(Wτ ′)

)
Φnj′Gn(Wτ ′)

)4])1/2)2

≲K,LG
(t− s)2.

Where the last inequality follows from Assumptions 4, convergence of η → 0 and Lipschitz conti-
nuity of G. Combining these together we obtain the 1/2-Hölder-continuous limit point. Finally, to
derive the dynamics we once again show that the quadratic variation goes to 0.

σnj (t ∧ τK)2 −
∫ t

0

ηEB
Wl/η∧τK

((
ΦnjHn(Wτ )

)
Φnj′Wτ +

(
ΦnjWτ

)
Φnj′Hn(Wτ )

)2
.

Since we have already shown that EB
Wl/η∧τK

[
(ΦnjHn(W[l/η]∧τK ))2

]
= O(1) + O(1/n) (see sec-

tion D), similarly we have (Φnj′Wτ )
2 = O(1) +O(1/n). Therefore, as n→∞ and by localization

technique we have as required:
d(Āj(s;Xt)Āj′(s;Xt)) =

(
vj(s;Xt)Āj′(s;Xt) + vj′(s;Xt)Āj(s;Xt)

)
dt
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Similarly, we can show the convergence to a random ODE for the product of two linear terms
AjkAj′ .

F PROOF OF OUR MAIN RESULT

Proof. We put together these dynamics we have derived and proved convergence in the n → ∞
limit. We re-arrange the terms of second order expansion of the Lie series to group together the
terms that have the same multiplicative vector. We additionally denote the vector ∂g(s)

∂sk
by g′k(s)

similarly ∂hj(s)
∂sk

as h′j,k(s). From the derivation in Section B we have the following:

e
X(W )
t (s) =s+ t

g(s) + da∑
j=1

hj(s)Aj(s;W )


t2

(
ds∑
k=1

(
gk(s)g

′
k(s) +

da∑
j=1

hj,k(s)Aj(s,W )g′k(s)

+ gk(s)

 da∑
j′=1

h′j′,k(s)Aj′(s,W ) +Aj′,k(s,W )hj′(s)


+

da∑
j=1

da∑
j′=1

hj,k(s)Aj(s,W )h′j′,k(s)Aj′(s,W ) + hj,k(s)Aj(s,W )Aj′,k(s)hj′(s)

))

=s+ (tg(s) + t2
ds∑
k=1

gk(s)g
′
k(s))

+

da∑
j=1

thj(s)

(
Aj(s,W ) + t

 ds∑
k=1

gk(s)

(
Aj′,k(s,W ) +

da∑
j′=1

hj′,k(s)Aj′(s,W )Aj,k(s)

))

+ t2
da∑
j′=1

Aj′(s,W )

 ds∑
k=1

h′j′,k(s)

gk(s) + da∑
j=1

hj,k(s)Aj(s,W )

 .

The first four expressions in the summation account for da + 2 degrees of freedom. In other words,
the first three terms in the summation are spanned by da + 2 vectors. For the last term in the
summation consider the following representation:

fτj′ =A
τ
j′(s)

(
ds∑
k=1

h′j′,k(s)
(
hj,k(s)A

τ
j (s)

))

=Aτj (s)

ds∑
k=1

h′j′,k(s)

da∑
j′=1

Aτj′(s)hj′,k(s),

=Aτj (s)Jhj(s)h(s)A
τ (s),

Where Jhj is the Jacobian of the function hj(s). This leads us to the following vector:

vτj =

ds∑
k=1

∂hj(s)

∂sk

da∑
j′=1

āτj′(s)hj′,k(s),

=Jhj(s)h(s)B̄
τ
j (s),

B̄τj represents the da× 1 vector [E[AτjAτ1 ], . . . ,E[AτjAτ1 ]], where the expetation is over the stochas-
ticity of initialisation..

where Jhj(s) is the ds × ds Jacobian of hj w.r.t s, āτj (s) is the process determined by E
[
ντj
]
, and

h(x) is a concatenation of da vectors. We seek to upper bound the following, by showing that there
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is a continuous time martingale process in the limit n→∞,

D(fτ , vτ ) = D(

da∑
j=1

fτj ,Span(vτ1 , . . . , v
τ
da)),

where D(fτ , vτ ) is the distance between fτ and the span of vτ1 , . . . , v
τ
da

. This distance is upper
bounded as follows:

D(fτ , vτ ) ≤||
da∑
j=1

D(fτj , v
τ
j )||

≤L2

 da∑
j=1

D(fτj , v
τ
j )


≤L2

 da∑
j=1

aτj (s)Jhj(s)h(s)A
τ (s)− Jhj(s)h(s)B̄τj (s)


≤L2

 da∑
j=1

Jhj(s)h(s)(a
τ
j (s)A

τ (s)− B̄τj )

 ,

where both āj , Ā are the mean processes. Therefore, the data is concentrated around the space
spanned by the vectors: h1, . . . , hda , v

τ
1 , . . . , v

τ
da

and the paraboloid tg + t2g′. Let this product
space be M then dim(M) ≤ 2da + 1. The concentration property is a result of the concentration of
aτj (s)A

τ (s) around B̄τj due to the dynamics in 19.

While proofs in Appendix E closely follow that of Ben Arous et al. (2022) we list our contibtuions
in this work:

1. We show that the distribution of outputs, and its quadratic combinations, of a two layer
linearised NNs deviate only in mean and variance, and are dependent on a finite set of
summary statistics, despite the width and parameter size going to infinity as the learning
rate goes 0.

2. In this appendix section, We combine this with the idea of the exponential map being a
push forward of the parameter distribution at gradient time step τ , for a fixed state s, and
show that the distribution is concentrated around a low-dimensional manifold.

G SUFFICIENT STATISTICS

Here we prove the result on the sufficient satistics required for the random variables in Lemma 8.

H APPROXIMATION ERROR

Consider the standard two layer neural network policy at state s

f(s;W ′) =
1√
n

n∑
κ=1

Bκφ(W
′
κ · s),

f lin(s;W ) =f(s;W 0) + Φ(s;W0)(W −W 0).

We consider the following difference for k ≥ 0:

∆f lin(s;Wkη)−∆f(s;W ′
kη), where

∆f(s;W ′
kη) =Φ(s;W ′

ηk)
(
W ′

(k+1)η −W
′
kη

)
∆f lin(s;Wkη) =Φ(s;W0)

(
W(k+1)η −Wkη

)
.

(21)
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The gradient updates for W ′,W are as follows:

W ′
(k+1)η −W

′
kη =

η

B

B∑
b=1

∇a′bQ
W ′

kη (s′b, a
′
b)Φ(s

′
b;W

′
kη),

=⇒ ∆f(s;W ′
(k)η) =Φ(s;W ′

ηk)

(
η

B

B∑
b=1

∇a′bQ
W ′

kη (s′b, a
′
b)Φ(s

′
b;W

′
kη)

)
=
η

B
Φ(s;W ′

ηk)Θ(W ′
ηk,W

′
ηk)

where {(sb, ab, tb)}Bb=1 ∈ BW ′
kη

. Similarly, we have:

W(k+1)η −Wkη =
η

B

B∑
b=1

∇abQWkη (sb, ab)Φ(sb;W0)

=⇒ ∆f lin(s;W(k)η) =Φ(s;W0)

(
η

B

B∑
b=1

∇abQWkη (sb, ab)Φ(sb;W0)

)
,

=
η

B
Φ(s;W0)Θ(Wηk,W0)

for {(sb, ab, tb)} ∈ BWkη
. Here Θ(·, ·) is used to denote the gradient estimated with data sampled

from the policy determined by the first vector, and features Φ determined by the second feature.
Rewriting equation 21 using the notation and definitions introduced above we obtain:

∆f lin(s;Wkη)−∆f(s;W ′
kη) =

η

B

(
Φ(s;W0)Θ(Wηk,W0)− Φ(s;W ′

ηk)Θ(W ′
ηk,W

′
ηk)
)

=
η

B

((
Φ(s;W0)− Φ(s;W ′

ηk)
)
Θ(Wηk,W0)

+ Φ(s;W ′
ηk)
(
Θ(Wηk,W0)−Θ(W ′

ηk,W
′
ηk)
))

I DIMENSIONALITY ESTIMATION

We describe the algorithm for dimensionality estimation in context of sampled data from the state
manifold Se. Let the dataset be randomly sampled points from a manifold Se embedded in Rds
denoted by D = {si}Ni=1. For a point si from the dataset D let {ri,1, ri,2, ri,3, ...} be a sorted list
of distances of other points in the dataset from si and they set r0 = 0. Then the ratio of the two
nearest neighbors is µi = ri,2/ri,1 where ri,1 is the distance to the nearest neighbor in D of si and
ri,2 is the distance to the second nearest neighbor. Facco et al. (2017) show that the logarithm of the
probability distribution function of the ratio of the distances to two nearest neighbors is distributed
inversely proportional to the degree of the intrinsic dimension of the data and we follow their algo-
rithm for estimating the intrinsic dimensionality. We describe the methodology provided by Facco
et al. (2017) in context of data sampled by an RL agent from a manifold. Without loss of generality,
we assume that {si}Ni=1 are in the ascending order of ri. We then fit a line going through the origin
for {(log(µi),− log(1− i/N)}Ni=1. The slope of this line is then the empirical estimate of dim(Se).
We refer the reader to the supplementary material provided by Facco et al. (2017) for the theoretical
justification of this estimation technique. The step by step algorithm is restated below.

1. Compute ri,1 and ri,2 for all data points i.
2. Compute the ratio of the two nearest neighbors µi = ri,2/ri,1.
3. Without loss of generality, given that all the points in the dataset are sorted in ascending

order of µi the empirical measure of cdf is i/N .
4. We then get the datasetDdensity = {(log(µi),− log(1− i/N)} through which a straight line

passing through the origin is fit.

The slope of the line fitted as above is then the estimate of the dimensionality of the manifold.
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J DDPG BACKGROUND

An agent trained with the DDPG algorithm learns in the discrete time but with continuous states
and actions. With abuse of notation, a discrete time and continuous state and action MDP is defined
by the tuple M = (S,A, P, fr, s0, λ), where S,A, s0 and fr are the state space, action space,
start state and reward function as above. The transition function P : S × A × S is the transition
probability function, such that P (s, a, s′) = Pr(St+1 = s′|St = s,At = a), is the probability
of the agent transitioning from s to s′ upon the application of action a for unit time. The policy,
in this setting, is stochastic, meaning it defines a probility distribution over the set of actions such
that π(s, a) = Pr(At = a|St = s). The discount factor is also discrete in this setting such that an
analogous state value function is defined as

vπ(st) = Esl,al∼π,P

[
T∑
l=t

λl−tfr(sl, al)|st

]
,

which is the expected discounted return given that the agent takes action according to the policy
π, transitions according to the discrete dynamics P and st is the state the agent is at time t. Note
that this is a discrete version of the value function defined in Equation 2. The objective then is to
maximise J(π) = vπ(s0). One abstraction central to learning in this setting is that of the state-action
value function Qπ : S ×A → R, for a policy π, is defined by:

Qπ = Esl,al∼π,P

[
T∑
l=t

λl−tfr(sl, al)|st, at

]
,

which is the expected discounted return given that the agent takes action at at state st and then fol-
lows policy π for its decision making. An agent, trained using the DDPG algorithm, parametrises the
policy and value functions with two deep neural networks. The policy, π : S → A, is parameterised
by a DNN with parameters θπ and the action value function, q : S × A → R,is also parame-
terised by a DNN with ReLU activation with parameters θQ. Although, the policy has an additive
noise, modeled by an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930), for exploration
thereby making it stochastic. Lillicrap et al. (2016) optimise the parameters of the Q function, θQ,
by optimizing for the loss

LQ =
1

N

N∑
i=1

(yi −Q(si, ai; θ
Q))2, (22)

where yi is the target value set as yi = ri + λQ(s′i+1, π(si+1; θ
π); θQ). The algorithm updates the

parameters θQ by θQ ← θQ + αQ∇θQLQ, where LQ is defined as in Equation 22. The gradient of
the policy parameters is defined as

∇θπJ(θπ) =
1

N

∑
i

∇aQ(s, a; θQ)|s=si,a=π(si)∇θQπ(s; θ
π)|s=si , (23)

and the parameters θπ are updated in the direction of increasing this objective.

K BACKGROUND ON SOFT ACTOR CRITIC

The goal of the SAC algorithm is to train an RL agent acting in the continuous state and action but
discrete time MDPM = (S,A, P, fr, s0, λ), which is as described in Appendix J. The SAC agent
optimises for maximising the modified objective:

J(θπ) =

T∑
t=0

Est,at∼π,P [fr(st, at) +H(π(·, st; θπ))] ,

where H is the entropy of the policy π. This additional entropy term improves exploration (Schul-
man et al., 2017; Haarnoja et al., 2017). Haarnoja et al. (2018) optimise this objective by learning 4
DNNs: the (soft) state value function V (s; θV ), two instances of the (soft) state-action value func-
tion: Q(s1, at; θ

Q
i ) where i ∈ {1, 2}, and a tractable policy π(st, at; θπ). To do so they maintain
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a dataset D os state-action-reward-state tuples: D = {(si, ai, ri, s′i)}. The soft value function is
trained to minimize the following squared residual error,

JV (θ
V ) = Es∼D

[
1

2

(
V (s; θV )− Ea∼π

[
Q(s, a; θQ)− log π(s, a; θπ)

])2]
, (24)

where the minimum of the values from the two value functions Qi is taken to empirically estimate
this expectation. The soft Q-function parameters can be trained to minimize the soft Bellman resid-
ual

JQ(θ
Q) = Es,a,r,s′∼D

[
1

2

(
Q(s, a; θQ)− r − λV (s′; θ̄V )

)2]
, (25)

where θ̄V are the parameters of the target value function. The policy parameters are learned by
minimizing the expected KL-divergence,

J(θπ) = Es∼D

[
DKL

(
π(s, ·; θπ), exp(Q(s, ·; θQ))

ZθQ(s)

)]
, (26)

where ZθQ(s) normalizes the distribution.

L DDPG MODIFIED ARCHITECTURE COMPARISON

We provide the comparison between single hidden layer network and multiple hidden layer network
because our results in section 4 are for single hidden layer. The same architecture is used by Lillicrap
et al. (2016) for the policy and value function DNNs which is two hidden layers of width 300 and
400 with ReLU activation. Here we provide the comparison to single hidden layer width 400 with
GeLU activation for the architecture used by Lillicrap et al. (2016). We provide this comparison
in Figure ?? and note that the performance remains comparable for both the architectures. All
results are averaged over 6 different seeds. We use a PyTorch based implementation for DDPG with
modifications for use of GeLU units. The base implementation of the DDPG algorithm can be found
here:https://github.com/rail-berkeley/rlkit/blob/master/examples/ddpg.py. The hyperparameters are
as in the base implementation.

M FURTHER EXPERIMENTAL RESULTS

We observe that the discounted returns dont vary for the ant MujoCo domain (Todorov et al., 2012)
as shown in figure ?? with the environment steps on the x-axis. We see a lot of variance across and
within choices of αQ for humanoid walk and stand environment of DM control suite (Tunyasuvu-
nakool et al., 2020) even though the sparse method remains superior to SAC with fully connected
feed forward. We attribute this to being an exploration problem, while our method is able to over-
come learning related bottlenecks it is unable to overcome the efficient exploration issue which holds
back the agent from attaining optimum returns in higher dimensional control tasks.

N RELATED WORK

There has been significant empirical work that assumes the set of states to be a manifold in RL.
The primary approach has been to study discrete state spaces as data lying on a graph which has
an underlying manifold structure. Mahadevan & Maggioni (2007) provided the first such frame-
work to utilise the manifold structure of the state space in order to learn value functions. Machado
et al. (2017) and Jinnai et al. (2020) showed that PVFs can be used to implicitly define options
and applied them to high dimensional discrete action MDPs (Atari games). Wu et al. (2019) pro-
vided an overview of varying geometric perspectives of the state space in RL and also show how the
graph Laplacian is applied to learning in RL. Another line of work, that assumes the state space is
a manifold, is focused on learning manifold embeddings or mappings. Several other methods ap-
ply manifold learning to learn a compressed representation in RL (Bush & Pineau, 2009; Antonova
et al., 2020; Liu et al., 2021). Jenkins & Mataric (2004) extend the popular ISOMAP framework
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(Tenenbaum, 1997) to spatio-temporal data and they apply this extended framework to embed hu-
man motion data which has applications in robotic control. Bowling et al. (2005) demonstrate the
efficacy of manifold learning for dimensionality reduction for a robot’s position vectors given addi-
tional neighborhood information between data points sampled from robot trajectories. Continuous
RL has been applied to continuous robotic control (Doya, 2000a; Deisenroth & Rasmussen, 2011;
Duan et al., 2016) and portfolio selection (Wang et al., 2020; Wang & Zhou, 2020; Jia & Zhou,
2023; 2022b). We apply continuous state, action and time RL as a theoretical model in conjuction
with a linearised model of NNs to study the geometry of popular continuous RL problem for the
first time.

More recently, the intrinsic dimension of the data manifold and its geometry play an important role
in determining the complexity of the learning problem (Shaham et al., 2015; Cloninger & Klock,
2020; Goldt et al., 2020; Paccolat et al., 2020; Buchanan et al., 2021; Tiwari & Konidaris, 2022)
for deep learning. Schmidt-Hieber (2019) shows that, under assumptions over the function being
approximated, the statistical risk deep ReLU networks approximating a function can be bounded
by an exponential function of the manifold dimension. Basri & Jacobs (2017) theoretically and
empirically show that SGD can learn isometric maps from high-dimensional ambient space down
to m-dimensional representation, for data lying on an m-dimensional manifold, using a two-hidden
layer neural network with ReLU activation where the second layer is only of width m. Similarly,
Ji et al. (2022) show that the sample complexity of off-policy evaluation depends strongly on the
intrinsic dimensionality of the manifold and weakly on the embedding dimension. Coupled with our
result, these suggest that the complexity of RL problems and data efficiency would be influenced
more by the dimensionality of the state manifold, which is upper bounded by 2da + 1, as opposed
to the ambient dimension.

We summarise several approaches for better representation learning in RL using information bot-
tlenecks. Like our work, this approach reduces noise and irrelavant signal One common approach
is to compress the state representation that is used by the agent for learning (Goyal et al., 2019a;b;
2020; Islam et al., 2022). The central idea is to extract the most informative bits with an auxiliary
objective. This auxiliary objective could be exploration based (Goyal et al., 2019a), enables hierar-
chical decision making (Goyal et al., 2019b), predicting the goal (Goyal et al., 2020), and relevance
to task dynamics (Islam et al., 2022). While these are practical methods they do not provide a the-
oretical limit on the dimension of the bottleneck. In contrast, our representation is a local manifold
embedding that preserves the geometry of the emergent state manifold.

Another closely related line of research exploits the underlying structure and symmetries in MDPs.
Ravindran & Barto (2001) provide a detailed and comprehensive study on on reducing the model size
for MDPs by exploiting the redundancies and symmetries. There have been with other more specific
approaches to this (Ravindran & Barto, 2003; 2002) and more recent work follow ups by van der Pol
et al. (2020). The broader study of manifolds, within differential geometry, is related to the study of
symmetries and invariances. We anticipate that further reducing the effective state manifold based
on redundancies, to extend our work, would be highly promising. Givan et al. (2003) and Ferns et al.
(2004) also provide closely related state aggregation techniques based on bisimulation metrics which
have been developed further (Castro & Precup, 2010; Gelada et al., 2019; Zhang et al., 2020; Lan
et al., 2021). The bi-simulation literature defines metrics that incorporates transition probabilities
or environment dynamics of the environments. The underlying metric is probabilistic in nature.
The manifold and metric are defined in such a way as to facilitate better representation learning for
RL. The primary difference is that our approach proves how a low-dimensional manifold “emerges”
from the design and structure of certain continuous RL problems.

We finally contextualize our work in light of various control theoretic frameworks. Control systems
on a non-linear manifolds have been studied widely (Sussmann, 1973; Brockett, 1973; Nijmeijer &
van der Schaft, 1990; Agrachev & Sachkov, 2004; Bloch & Bloch, 2015; Bullo & Lewis, 2019).
Like most control theoretic frameworks the transitions, dynamics, and the geometry of the system
are assumed known to the engineer. (Liu et al., 2021) recently provide a framework for controlling
a robot on the constraint manifold using RL. As noted previously, our work is also closely related to
the notion reachability in control theory (Kalman, 1960; Jurdjevic, 1997; Touchette & Lloyd, 1999;
2001) which deals with sets reachable under fixed and known dynamics of a system. Reachability
sets from control theory have been applied for safe control under the RL framework (Akametalu
et al., 2014; Shao et al., 2020; Isele et al., 2018). While the objective is similar, to find the sets of
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states reached with any controller, the assumptions, on the underlying dynamics are different leading
to different results.

O EXTENSION TO OTHER ACTIVATIONS AND ARCHITECTURES

It is a difficult to theoretically analyse complex engineered systems such as neural networks for
continuous control learned using policy gradient methods. We have simplified this setting by us-
ing linearised policies (section 3.1) with GeLu activation and access to the true gradient of the
value function (section 2.1). We show results in GeLu activation because it is the closest (smooth)
analogue to the most popularly used ReLu activation which is very commonly used in continuous
control with RL (Lillicrap, 2015; Schulman et al., 2017; Haarnoja et al., 2018). Despite our choice
of GeLu, as noted in section 4, our results extend to activations which are twice differentiable ev-
erywhere with bounded derivatives. Moreover, our results capture the setting of neural policies that
have a very high-dimensional parameter space but also have structured outputs (Lee et al., 2017;
Ben Arous et al., 2022). In study of supervised deep learning results emanating from theoretical
models that approximate shallow wide NNs have been extended to deeper networks, e.g. the neural
tangeent kernel (NTK) framework (Jacot et al., 2018). Moreover, there have also been mechanisms
to make finite depth and width corrections to NTK (Hanin & Nica, 2019). Theoretical inferences
made in simplified settings have been extended to applications and a wide range of architectures
as well (Yang & Hu, 2021; Yang et al., 2022; Fort et al., 2020; Wang et al., 2022). We anticipate
that extending our results to a broader set of activations, architectures, and reinforcement learning
algorithms would lead to better applications by means of improved theoretical understanding.

Another assumption we make is deterministic transitions. While this is true in many popular bench-
mark environments (Todorov et al., 2012; Tunyasuvunakool et al., 2020), the most general setting of
RL as a model for intelligent agent the transitions are stochastic. This is a common feature in control
theory where results in deterministic control: ṡ(t) = g(s(t), u(t), t), with continuous states, actions,
and time, can be extended to stochastic transitions by considering bounded stochastic perturbations

ṡ(t) = g(s(t), u(t), t) + d(s(t), u(t), t)dwt,

where d is the stochastic perturbation aspect with wt being the Wiener process and u(t) is the open
loop control. Tor example, the contraction analysis by Lohmiller & Slotine (1998) in deterministic
transitions is extended to stochastic perturbations by Pham et al. (2009). We anticipate that our
analysis, under appropriate assumptions on the stochastic perturbations, has promise of extensions.
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