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Enabling Synergistic Full-Body Control in Prompt-Based
Co-Speech Motion Generation

Anonymous Authors

Figure 1: Given audio and script of speech, as well as arbitrary motion-related text prompt, our method can generate full-body
synergistic motion matching both speech content and prompt even if the motion is unseen in the speech-to-motion dataset
used for training, such as the "walking in a clockwise circle" example in the figure. Meanwhile, the generation result is also
highly consistent with the script content and the audio rhythm of the input speech.

ABSTRACT
Current co-speech motion generation approaches usually focus on
upper body gestures following speech contents only, while lacking
supporting the elaborate control of synergistic full-body motion
based on text prompts, such as talking while walking. The major
challenges lie in 1) the existing speech-to-motion datasets only in-
volve highly limited full-bodymotions, making a wide range of com-
mon human activities out of training distribution; 2) these datasets
also lack annotated user prompts. To address these challenges, we
propose SynTalker, which utilizes the off-the-shelf text-to-motion
dataset as an auxiliary for supplementing the missing full-body
motion and prompts. The core technical contributions are two-fold.
One is the multi-stage training process which obtains an aligned
embedding space of motion, speech, and prompts despite the signif-
icant distributional mismatch in motion between speech-to-motion
and text-to-motion datasets. Another is the diffusion-based condi-
tional inference process, which utilizes the separate-then-combine
strategy to realize fine-grained control of local body parts. Extensive
experiments are conducted to verify that our approach supports
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precise and flexible control of synergistic full-body motion gener-
ation based on both speeches and user prompts, which is beyond
the ability of existing approaches. The code is released on (link will
be published upon acceptance).
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graphics.

KEYWORDS
co-speech motion generation, text-to-motion generation, vector
quantization, diffusion model.

1 INTRODUCTION
Co-speech motion generation [9, 10, 12, 27, 48, 56], which gener-
ates stylized movements of human body following speech audio
inputs, is among the central tasks in creating digital talking avatars.
Though growing rapidly in recent years, current co-speech motion
generation approaches usually focus on upper-body gestures, such
as head and hands, or only support limited full-body motions, in
special restricted low-body movements. One of the fundamental
challenges here is that the speech signal is too weak to uniquely de-
termine full-body motions. For example, for generating co-speech
motion of a digital host for releasing a new product, both "talking
while walking" and "talking while standing still" are reasonable
motions. As a result, it would be meaningful to realize precise
and flexible control of full-body motion for achieving natural and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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synergistic effects based on additional input signals to reflect user
intentions, such as text prompts.

On the other hand, prompt-based co-speech motion generation
is a highly nontrivial task with two major reasons. On one hand, the
existing speech-to-motion datasets, such as BEATX [26], focuses on
subtle hand movements yet involve fairly limited full-body motions,
especially in lower body. For example, the lower body of the speaker
usually remains relatively stable during talking. This makes a wide
range of common human activities out of training distribution. On
the other hand, these datasets also lack annotated user prompts.
Furthermore, crafting of a diverse and annotated dataset at scale is
extremely costly. This has significantly constrained the potential
for quality and diversity in motion generation.

One possible solution to deal with the data lacking issue is to
augment trainingwith text-to-motion datasets, such as AMASS [30],
which include a relatively complete set of full-body motions with
vast scale and strong diversity, as well as annotated text prompts [16,
35]. Superficially, jointly training with both speech-to-motion and
text-to-motion datasets could lead to the ideal model, whose key
is to build a joint embedding space of speech, text, and motion.
However, due to the significant distribution mismatch in motion
between the two kinds of datasets, a large number of full-body
motions are missing their corresponding speech signals, making
building such an embedding space still a challenging task.

To deal with issue, we propose SynTalker, a prompt-based co-
speech motion generation approach which utilizes off-the-shelf
text-to-motion datasets to augment co-speech training, meanwhile
addressing the distributional mismatch challenge. For training, we
propose a multi-stage approach, which utilizes motion represen-
tation pre-training and motion-prompt alignment pre-training to
address the issue of motion distribution mismatch and the problem
of lacking prompt annotation for speech-to-motion data. For infer-
ence, we designed a novel separate-then-combine strategy under
for both input conditions and body parts, such that the separate
operations map the input signal to their most proper body part to
control, meanwhile the combine operations leads to the synergy
among body parts. Extensive experiments show that, our approach
is able to achieve significant performance in using both speech and
text prompt to guide the generation of synergistic full-body motion
precisely and flexibly, which is beyond the capability of the existing
co-speech generation approaches.

In summary, by proposing SynTalker, our main contributions
are: 1) We propose the first approach to enable synergistic full-body
control with general text prompts for co-speech motion generation,
under the situation of lacking fully annotated datasets of speech,
text, and motion; 2) We propose a novel multi-stage training ap-
proach to address the motion distributional mismatch and prompt
annotation lacking challenges; 3) We propose a novel separate-
then-combine approach for model inference to achieve both precise
control and synergistic motion generation.

The rest of the paper is organized as follows. In Section 2, we dis-
cuss the related work from two closest research areas, i.e. co-speech
motion generation and text-to-motion generation. In Section 3-5,
we introduce the model design, training process, and inference pro-
cess of our approach in detail. In Section 6, we report experimental
results. In section 7-8, we discuss limitations and future work as
well concluding the paper.

2 RELATEDWORK
2.1 Co-Speech Motion Generation
Early rule-based approaches to co-speech motion generation [5,
6, 21] utilize linguistic rules to translate speech into sequences of
predefined gesture segments. This process, being time-consuming
and labor-intensive, requires significant manual effort in defining
rules and segmenting motions. Previous generative methods of-
ten produce overly smooth motions [3, 12, 27, 40], attributable to
the use of traditional deterministic generative models, which are
inadequate for many-to-many mapping problems. Despite some
attempts to introduce control signals and prior information into
model design [1, 22, 27, 49], the capabilities of these models remain
limited. Recent advancements have leveraged modern generative
models like Diffusion [11] to tackle these challenges. For instance,
DiffGesture [56] employs a diffusion model to capture the relation-
ship between speech and gesture. Nonetheless, the weak semantic
signals in audio often result in motions that are misaligned with
the semantic content of the input audio. DiffuseStyleGesture [48]
advances this by integrating emotional control into the gesture
generation process, while Amuse [9] and EMOTE [10] explicitly
extract and disentangle emotions from given conditions to pro-
vide stronger control signals. UnifiedGesture [47] additionally use
reinforce learning to strength gesture. GestureDiffuCLIP [2] incor-
porates existing contrastive learning frameworks [41] to enable
prompt-based gesture style control, offering finer-grained style con-
trollability for end-users. However, these methods still struggle to
meet diverse real-world user requirements, such as accommodating
gestures while walking, due to the limited motion distribution in
co-speech datasets.

2.2 Text-to-Motion Generation
In parallel to co-speech motion generation problems, text-based
motion generation aims to generate general motions from textual
prompts. Pioneering works [7, 29, 42, 54, 55] such as Motion Diffuse
and T2M-GPT utilize a diffusion-based architecture or GPT-based
architechture to model the many-to-many challenges in text-to-
motion generation. Subsequent studies, such as PriorMDM, TLCon-
trol, and OmniControl [38, 45, 46], further employ trajectory and
end-effector tracking to provide finer-grained control. GMD [20]
introduces additional scene information during the generation of
human actions, and MotionClip [41] attempts to align motions with
the CLIP space [36], enabling the capability to generate motion
from images. TM2D [14] and FreeTalker [50] have explored this by
learning both speech-to-motion and text-to-motion tasks simulta-
neously. Even though this enables a single model to switch between
two tasks, it does not provide synergistic generation conditioned
on both signals.

3 MODEL DESIGN
In this section, we introduce our prompt-based co-speech motion
generation model. We first provide an overview of the model design
and the corresponding generation process. Afterwards, we provide
detailed descriptions of two core modules for motion representation
and conditional generation.
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Figure 2: The structure of our prompt-based co-speech gen-
eration model.

3.1 Overview
Our model takes speech audio and the corresponding transcripts
as inputs, targeting at outputting realistic and stylized full-body
motions that align with the speech content rhythmically and se-
mantically. Compared with traditional co-speech generation model,
besides speech, it further allows to use a short piece of text, namely
a text prompt to provide additional descriptions for the desired
motion style. The full-body motions are then generated to follow
the style given by both speech and prompt as much as possible.

The overall model structure is illustrated in Figure 2, which
consists of three major components. The first is the motion repre-
sentation module, which consists of motion encoder and decoders.
We include three separate encoder and decoders to represent local
body parts. The second is the conditional generation module for
aligning latent motion representations with conditional inputs of
speeches and prompts. The module is based on the latent diffusion
model [37], which apply diffusion and denoising steps in the latent
space. The third is the conditional representation module, which con-
sists of the speech content encoder and contrastive text encoder to
obtain scalar-valued prompt and speech conditions in the diffusion-
based conditional generation model. Below we dive into detailed
structures of the first two modules.

3.2 Motion Representation Module
Motion encoding. Recent studies inmotion generation have demon-
strated that vector-quantized autoencoder (VQ-VAE) [43] possesses
a remarkable capability for compressing motion information [2,
15, 54]. We also utilize vector quantization for motion encoding.
Following [15, 31, 53], we use a residual VQ-VAE (RVQ-VAE) as
the quantization layer. To further decrease the coupling between

body parts, we segment the body into three parts: upper body, fin-
gers, and lower body, like in [2, 26], and train a separate RVQ-VAE
for each part. In details, the motion sequence M can be repre-
sented as m1:𝑁 ∈ R𝑁×𝐷 , which is firstly encoded into a latent
vector sequence z1:𝑛 ∈ R𝑛×𝑑 with downsampling ratio of 𝑛/𝑁
and latent dimension 𝑑 , using 1D convolutional encoder E; The
z1:𝑛 ∈ R𝑛×𝑑 obtained through the encoder then enters the first
quantization layer Q1, each vector subsequently finds its nearest
code entry in the layer’s codebook C1 = {c1k}

𝐾

𝑘=1 ⊂ R𝑑 to get the
first quantization code ẑ11:n, also we can calculate the quantization
residual1:𝑛 = ẑ11:n − z1:𝑛 . The residual1:𝑛 then enter the second
quantization layer Q2 finds its nearest code entry in the layer’s
codebook C2 = {c2k}

𝐾

𝑘=1 ⊂ R𝑑 to get the second quantization code
ẑ21:n. Accordingly, ẑ

3
1:n,ẑ

4
1:n... can be calculated in this manner. As

the last step of motion encoding, we sum all quantization code
together to get the final code 𝑧 =

∑𝑄
𝑞=1 ẑ

𝑣 .
Motion decoding. Similar to motion encoding, three separated
decoders are introduced for generating corresponding motions for
all body parts, which are 1D convolutional decoders. During train-
ing, the motion data is encoded with motion encoders and fused
with speech and prompt conditions by the diffusion-based condi-
tional generation module, and then passed through the decoders
to get the reconstructed motions. During inference, the motion
encoder is not utilized, the generated motion is obtained directly
from the speech and prompt conditions with the diffusion module
and motion decoders.

3.3 Conditional Generation Module
The conditional generation module is based on the latent diffusion
model [37], which is a variant of diffusion models that applies
the forward and reverse diffusion processes in a pre-trained latent
feature space. The diffusion process is modeled as a Markov noising
process. Starting from a latent gesture sequence 𝑍0 drawn from the
gesture dataset, the diffusion process progressively adds Gaussian
noise to the real data until its distribution approximates N(0, 𝐼 ).
The distribution of the latent sequences thus evolves as

𝑞(𝑍𝑛 |𝑍𝑛−1) = N(√𝛼𝑛𝑍𝑛−1, (1 − 𝛼𝑛)𝐼 ), (1)

where 𝑍𝑛 is the latent sequence sampled at diffusion step 𝑛, 𝑛 ∈
{1, . . . , 𝑁 }, and 𝛼𝑛 is determined by the variance schedules. In
contrast, the reverse diffusion process, or the denoising process, es-
timates the added noise in a noisy latent sequence. Starting from
a sequence of random latent codes 𝑍𝑁 ∼ N(0, 𝐼 ), the denoising
process progressively removes the noise and recovers the origi-
nal latent code 𝑍0. To achieve conditional motion generation, we
train a network 𝐸𝜃 (𝑍𝑛, 𝑛, 𝐴, 𝑃), the denoising network, to recover
the noise-free codes based on the noisy latent motion codes 𝑍𝑛 ,
the diffusion step 𝑛, the audio 𝐴, and the prompt feature 𝑃 from
the joint align space. Finally, the recovered code is input into the
motion decoders for motion generation.

4 MODEL TRAINING
The overall training pipeline is shown in Figure 3, which consists
of a pre-training stage and a generation model training stage. The
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Figure 3: Illustration of the training and inference processes. We initially train a contrastive learning space between text and
motion, alongside a motion auto-encoder that uses motion from both speech-to-motion and prompt-to-motion dataset for an
expressive latent space. Subsequently, our co-speech latent diffusion model is trained under the guidance of an implicit label
extracted from motion using the contrastive space, effectively bypassing the lack of textual motion annotations in co-speech
data. During inference, we implement a separate-then-combine strategy in every diffusion step, enabling finer control over
individual body parts while preserving their synergistic interaction.

pre-training stage involves two tasks. The first task, motion rep-
resentation pre-training, targets at training the motion encoders
and decoders for all body parts based on motion data from both
the speech-to-motion and prompt-to-motion datasets in order to
address the issue of motion distribution mismatch. The second
task, prompt-motion alignment pre-training, targets at obtaining
prompt-motion aligned embedding space [34, 41] based on the
prompt-to-motion dataset and address the issue of lacking prompt
annotations for speech-to-motion data. In the generation model
training stage, both the speech-to-motion and prompt-to-motion
data are utilized jointly with the motion encoders and decoders
as well as the prompt-motion alignment space to obtain the final
diffusion-based generation model [42]. Below we discuss the details
of the training process.

4.1 Motion Representation Pre-Training
The target of motion representation pre-training is to obtain the
motion encoders and decoders based on motion data only, which
are from the speech-to-motion and prompt-to-motion datasets. By
this way, the obtained primitive motion representation space are
independent of any conditional speech and prompt signals. From ex-
tensive experiments, we find that this approach effectively alleviates
the motion distribution mismatch issue between speech-to-motion
and prompt-to-motion datasets, which can not be addressed when
directly mixing the two datasets for conditional generation model
training without such a pre-training process.

Concretely, utilizing all motion data from the two kinds of datasets,
the motion encoders and decoders are trained via a motion re-
construction loss combined with a latent embedding loss at each

quantization layer of the RVQ-VAE structures:

L𝑟 𝑣𝑞 = ∥Z − Ẑ∥1 + 𝛽

𝑄∑︁
𝑞=1

∥z𝑞 − sg[ẑ𝑞] ∥22, (2)

where sg[·] denotes the stop-gradient operation, and 𝛽 a weight-
ing factor for embedding constraint. This framework is optimized
with straight-though gradient estimator [44], and our codebooks
are updated via exponential moving average and codebook reset
following T2M-GPT [54]. After training, the motion encoder and
decoders are frozen in the rest of the training process.

4.2 Prompt-Motion Alignment Pre-Training
The target of prompt-motion alignment pre-training is to obtain the
prompt-motion alignment embedding space, which consists of the
contrastive text encoder in Figure 2 and an additional contrastive
motion encoder. These two encoders play the essential role to ad-
dress the issue of missing prompt annotations for speech-to-motion
data by employing the implicit label strategy. During downstream
training, assume that the prompt annotation is needed for some
speech-to-motion instance, which is lacking in the original dataset.
We can directly input the motion into the contrastive motion en-
coder and get its corresponding embedding in the prompt-motion
aligned space. It is easy to see that this motion embedding is an
ideal substitution of the missing prompt embedding if the aligned
space is well-trained.

Concretely, motivated by [34], we formulate this pre-training
task as a contrastive learning problem. Besides the contrastive text
and motion encoders, we employ an additional motion decoder,
which is different from the motion encoder in our final inference
model. On the premise that the latent space is a probabilistic space,
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this setup aims to bring the feature vectors of corresponding text
and motion pairs as close as possible. The decoder then decodes
these latent feature vectors into motion to calculate the reconstruc-
tion loss with real motions. The loss gradients are back-propagated
to update the prompt and motion encoders. This technique has
been proven to be highly effective in numerous studies [33, 34, 41].

Loss function design.We introduce the same set of sub-loss
terms to [34], and the total loss can be defined as the weighted
sum formulation LCON = LR + 𝜆KLLKL + 𝜆ELE + 𝜆NCELNCE.
For sub-losses, the reconstruction loss LR measures the motion
reconstruction given prompt or motion input (via a smooth L1 loss).
The Kullback-Leibler (KL) divergence loss LKL is to regularize the
distances between motion and prompt embedding distributions as
well as making them closer to the standard normal distribution. The
cross-modal embedding similarity loss LE enforces both prompt
𝑧𝑇 and motion 𝑧𝑀 latent codes to be similar to each other (with a
smooth L1 loss). A contrastive loss term LNCE additionally uses
negatives prompt-motion pairs to ensure a better structure of the
latent space. More detailed introductions of these loss terms are
included in the appendix.

After training, the contrastive text and motion encoders are
frozen and utilized in the downstream generation model training.

4.3 Generation Model Training
After the pre-training stage, we obtain two sets of outcomes: the mo-
tion encoders and decoders, as well as the contrastive text and mo-
tion encoders. Based on the motion encoders obtained from motion
representation pre-training, we can map all motions in the global
motion distribution to the same compact latent space. Utilizing
the contrastive text and motion encoders from the prompt-motion
alignment pre-training, for motions without prompt annotations in
the speech-to-motion dataset, we can provide them with an implicit
label using the contrastive motion encoder. What is essential here
is that 1) the motion distribution mismatch problem is addressed
for motion representations; 2) all co-speech training data have their
corresponding (implicit) prompt annotations.

The training of the generation model mostly follows the standard
training process of denoising diffusion models [11, 37]. We train
the denoising network 𝐸𝜃 by drawing random tuples (𝑍0, 𝑛, 𝐴, 𝑃)
from the training dataset, corrupting 𝑍0 into 𝑍𝑛 by adding random
Gaussian noises 𝐸 to obtain 𝑍𝑛 , applying denoising steps to 𝑍𝑛
using 𝐸𝜃 , and optimizing the loss

L𝑛𝑒𝑡 = 𝐿1𝑠𝑚𝑜𝑜𝑡ℎ [𝑍0 − 𝐸𝜃 (𝑍𝑛, 𝑛, 𝐴, 𝑃)] . (3)

Specifically, the latent motion representation 𝑍0 is encoded by
the motion encoder with the RVQ-VAE structure, and the prompt
embedding is obtained from the implicit labels generated by the
contrastive motion encoder. Since the speech audio and speech
text transcript always occur simultaneously during speech, we
uniformly denote them as𝐴 here.𝐴 is processed through a temporal
convolutional network for feature extraction and to align with the
latent motion sequences in the time series.

We utilize the classifier-free guidance [19] to train our model.
To strengthen the understanding of the two conditional signals,
speech𝐴 and prompt 𝑃 , we make the diffusion model to learn under
both conditioned and unconditioned distributions during training
by randomly setting conditional variables A and P = 0 for 𝜂𝑎 and

𝜂𝑝 . This makes the diffusion model better understand the impact of
various conditional signals on the generation results. More details
of the training techniques are introduced in the appendix.

5 MODEL INFERENCE
Through the multi-stage training process, the generation model is
obtained. However, utilizing this for conditional generation is not
a straightforward task. Even though an aligned space of motion,
speech, and prompt is obtained, precise control and generation still
requires carefully aligning generation conditions to local body parts.
To achieve this target, we introduce the separate-then-combine
generation strategy for manipulating latent codes of the diffusion
model for both input conditions and body parts.

General diffusion-based generation process. During infer-
ence, the diffusion network leverages the sampling algorithm of
DDPM [18] to synthesize motions. It first draws a sequence of ran-
dom latent codes 𝑍 ∗

𝑁
∼ N(0, 𝐼 ) then computes a series of denoised

sequences {𝑍 ∗
𝑛}, 𝑛 = 𝑁 − 1, . . . , 0 by iteratively removing the esti-

mated noise 𝐸∗𝑛 from 𝑍 ∗
𝑛 . The entire process is carried out in an

autoregressive manner.
Sampling from 𝑝 (𝑍0 |𝑛,𝐴, 𝑃) is done in an iterative manner, ac-

cording to [18]. In every time step 𝑛 we predict the clean sample
𝑍0 = 𝐺 (𝑍𝑡 , 𝑛, 𝐴, 𝑃) and noise it back to 𝑍𝑡−1. This is repeated from
𝑡 = 𝑁 until 𝑍0 is achieved.
Separate-then-combine for conditions.Motivated by Motion-
Diffuse [55] and PIDM [4], we extend our system to allow separated
guidance to apply the effect of the conditional signal audio and
prompt. To achieve this, from the dimension of conditions, we
separate latent codes into the following formulation:

Zcond = Zuncond +waZspeech +wpZprompt, (4)

where 𝑍uncond = 𝑍𝜃 (𝑍𝑛, 𝑛, 0, 0) is the unconditioned prediction of
the model, such that both the speech and prompt conditions are
set as the all-zero tensor 0. The audio-guided prediction and the
prompt-guided prediction are respectively represented by𝑍speech =

𝑍𝜃 (Zt, t,A, 0) −Zuncond and 𝑍prompt = 𝑍𝜃 (Zt, t, 0, P) −Zuncond.𝑤𝑎
and𝑤𝑝 are guidance scale corresponding to speech and prompt.
Separate-then-combine for body parts. Furthermore, we ex-
tend our system to allow fine-grained style control on individual
body parts.We utilize the diffusion model to generate codes for
each body part based on masking. The full-body motion codes
ZO ∈ RO×(L×C) is then computed by stacking the motion codes
of each body part. At inference time, we predict full-body sig-
nal {E∗cond,o}o∈O conditioned on a set of style prompts {Po}o∈O
for every body part, where each E∗cond,o is calculated by Equa-
tion(4). These body part signals can be simply fused as E∗cond =∑
o∈O E∗cond,o ·Mo, where {𝑀𝑜 }𝑜∈O are binary masks indicating the

partition of bodies in O. To achieve better motion quality, we add a
smoothness item to the denoising direction as suggested by [55],

Z∗cond =
∑︁
o∈O

(
Z∗cond,o ·Mo

)
+wbody∇ZO

n

©«
∑︁

i,j∈O,i≠j
Z∗cond,i − Z∗cond,j

ª®¬,
(5)

where ∇ denotes the gradient operator.𝑤𝑏𝑜𝑑𝑦 is set to 0.01.
Afterwards, the following generation procedure follows the nor-

mal diffusion generation process as discussed above. By utilizing
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Figure 4: Qualitative results for synergistic full-body motion generation. More results are included in the appendix as well as
demo videos.

the two separate-then-combine strategies, the control of the mo-
tion generation process can be more flexible. The separation steps
effectively build more precise mapping between input conditions
and body parts. On the other hand, the combine steps ensure to
generate synergistic full-body motions, avoiding unnatural motions
to appear in generation.

6 EXPERIMENTS
In this section, we report experimental results to verify the follow-
ing questions:

• Full-body synergistic generation. Is SynTalker able to
generate full-body synergistic motion desirably aligned with
both speech and prompt inputs, which is the first co-speech
motion generation approach to achieve this functionality?

• Sinlge-source conditional generation. Is SynTalker able
to achieve comparable or even better performance over state-
of-the-art approaches under single-source conditional gener-
ation, verifying that besides motions, SynTalker truly learns
desirable representations for both speeches and prompts?

• Ablation study. Is the multi-stage training strategy and the
separate-then-combine inference strategy indeed essential
to achieve desirable performance?

Below we explore all three questions in details. More experimental
results can also be found in the appendix.

6.1 Experimental Setup
Dataset. Our model smartly avoids the need for annotated co-
speech motion data by leveraging existing speech-to-motion and
prompt-to-motion datasets. For the speech-to-motion dataset, we
utilize BEATX-Standard [26], which includes 30 hours of co-speech
motion, pairedwith audio and transcripts. For the prompt-to-motion
dataset, we employ HumanML3D [16], which annotates motion in

the AMASS dataset [30], consisting of 14,616 annotated motion se-
quences and 44,970 annotations. All motions are in SMPLX format
[32] and consist of 30 frames per second.
Implementation Details. We utilize the RVQVAE [53] as our
auto-encoder architecture, featuring resblocks in both the encoder
and decoder with a downscale factor of 4. Residual quantization
employs 6 quantization layers, each with a code dimension of 512
and a codebook size of 512, with a quantization dropout ratio set
at 0.2. During contrastive pre-training, we establish a space with a
dimension size of 256 and a batch size of 32. We also set the temper-
ature 𝜏 to 0.1, contrastive loss weight to 0.1, and negative-filtering
threshold to 0.8. Our diffusion model incorporates 8 transformer
layers and is trained with a batch size of 200 and a latent dimension
of 512. The number of diffusion steps is 1000. All components can
be trained on a single 4090 GPU within three days.

6.2 Full-Body Synergistic Generation
In the first experiment, we aim to verify whether our approach
effectively supports the generation of synergistic full-body motions
conditioned on both speech and flexibly-chosen prompts. As no
previous research has addressed this specific task, we focus on
evaluating the generation results of our approach using carefully
designed input speeches and prompts. It’s important to note that we
also provide experimental analysis on GestureDiffuseCLIP [2] and
FreeTalker [50] in the appendix. These works address related but
distinct tasks. GestureDiffuseCLIP also supports prompt-based co-
speech motion control. However, this control is limited to motions
inside of the speech-to-motion dataset. In comparison, our approach
supports general out-of-distribution motions. FreeTalker, on the
other hand, trained amodel capable of switching between speech-to-
motion and text-to-motion generation tasks, but it does not produce
synergistic results under both speech and prompt conditions.
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Table 1: Comparisonwith the state-of-the-artmethods onHumanML3D [16] test set.We compute standardmetrics following [16].
For each metric, we repeat the evaluation 20 times and report the average with 95% confidence interval. For MDM and MLD, we
report the results using ground-truth motion length.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity ↑Top-1 Top-2 Top-3

Real motion 0.490±.003 0.682±.003 0.783±.003 0.001±.001 3.378±.007 10.471±.083
MDM [42] 0.363±.007 0.553±.008 0.662±.007 1.390±.088 4.599±.037 10.704±.066
T2M-GPT [54] 0.433±.003 0.615±.002 0.716±.003 0.564±.012 3.867±.008 10.558±.083
MLD [8] 0.429±.003 0.613±.003 0.717±.002 0.963±.029 3.898±.012 10.401±.096
MoMask [15] 0.461±.002 0.657±.003 0.760±.002 0.222±.007 3.620±.011 10.621±.096

SynTalker (w/o prompt-to-motion alignment) 0.429±.003 0.622±.004 0.732±.004 0.509±.013 4.033±.013 10.231±.096
SynTalker (w/o motion representation pre-training) 0.097±.002 0.178±.002 0.253±003 17.797±.056 7.146±.010 6.127±.057
SynTalker 0.375±.003 0.564±.003 0.681±.002 4.385±.034 4.499±.012 9.374±.073

Table 2: Comparison with the state-of-the art methods on
BEATX [26] test set. Quantitative evaluation on BEATX. We
report FGD ×10−1, BC ×10−1, and diversity.

Method FGD ↓ BC ↑ Diversity ↑
GT 0.000 6.897 12.755
recons 1.729 7.122 12.599
recons(w/o residual) 3.913 6.758 13.145

S2G[13] 25.129 6.902 7.783
Trimodal[52] 19.759 6.442 8.894
HA2G[28] 19.364 6.601 9.671
DisCo[25] 21.170 6.571 10.378
CaMN[27] 8.752 6.731 9.279
DiffStyleGesture[48] 10.137 6.891 11.075
Habibie et al.[17] 14.581 6.779 8.874
TalkShow[51] 7.313 6.783 12.859
EMAGE [26] 5.423 6.794 13.057

SynTalker (w/o mo.rep.) 5.759 7.181 10.731
SynTalker (w/o align.) 5.242 8.010 13.521
SynTalker (w/o both) 4.687 7.363 12.425
SynTalker 6.413 7.971 12.721

As shown in Figure 4, we conduct qualitative experiments to
evaluate the synergistic generation results of our model. To better
demonstrate that the generation results synergistically integrate
both speech and text prompt guidance, we present outcomes under
two distinct speech audios: one excited and the other calm. We eval-
uate our method using four different text prompts: sitting, waving
while walking, standing on the right foot, and walking straight
forward. The results show that our model produces talking motions
that closely align with the input speech audio while accurately
adhering to the text prompt requirements for body gestures. With
the excited audio, the motions exhibit more pronounced changes
compared to the calm speech. These include increased arm move-
ments, higher arm raises, more pronounced left-right body turns
with larger arm movements, and a tendency for hands to reach

outward while talking. For additional results, please refer to the
appendix.

6.3 Single-Source Conditional Generation
In the second experiment, we focus on verifying whether our ap-
proach indeed learns a desirable joint embedding space, in special
for the input conditions. To achieve this purpose, we introduce two
single-source conditional generation benchmarks, i.e. speech-to-
motion generation without prompts and prompt-to-motion genera-
tion without speeches. By quantitative comparison with state-of-
the-art approaches under these two distinguished domains, we are
able to verify whether our approach successfully distills information
from both speech and prompts, meanwhile avoiding interference
among them, which would be revealed by performance degener-
ation in single-condition generation. Note that for our approach,
single-source generation is realized by the similar method utilized in
generating Zspeech and Zprompt in Equation 4. The implementation
details of all contenders are included in the appendix.
Speech-to-motion.We compare our approach with state-of-the-
art speech-to-motion generation approaches, whose results are
cited from [26]. As shown in Table 2, our method significantly
outperforms baselines in terms of FGD [52], BC [24], and diver-
sity [23]. This result provides convincing proof that our approach
generates significantly desirable speech representation to support
strong speech-to-motion generation. To further verify how speech
representations are affected by the multi-stage training process,
we also conducted ablation studies under this task. The details are
discussed in Section 6.5.
Prompt-to-motion. In this task, we compare our method with four
state-of-the-art text-to-motion generation approaches. The results
are reported in Table 1. It can be observed that our approach could
achieve comparable performance to the existing baselines, showing
its effectiveness in understanding text prompts. Similar to speech-
to-motion, we conduct ablation studies for further justification,
whose results are reported in the next subsection.

6.4 Ablation Study
In this section, we demonstrate qualitative examples of ablation
study on model components and assess their contribution to the
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synergistic generation capability. For clarity, we demonstrate the
results using a single prompt. Please refer to the appendix for addi-
tional results. As shown in the Figure 5, given the same speech and
the text prompt "a person is talking while sitting", compared to the
sitting and talking motion in Figure 5(a), removing our proposed
components result in non-ideal generation results. Figure 5(b) cor-
responds to the removal of implicit labeling in train stage, Figure
5(c) corresponds to the removal of separate-then-combine strategy
in inference stage, and Figure 5(d) corresponds to the removal of
motion representation pre-training in pre-training stage.
Implicit labeling. Figure 5(b) demonstrates the impact of remov-
ing implicit labeling during the training stage. Without implicit
labeling, themodel defaults tomerely reacting to the textual prompt,
producing only a static sitting motion. This confirms that without
our proposed implicit labeling method, the diffusion model does not
automatically learn to synthesize and integrate input to produce
synergistic motions conditioned on both signals.
Separate-then-combine strategy. Figure 5(c) illustrates the ef-
fect of omitting the separate-then-combine strategy. Although the
model learns to respond to both audio and prompt signals when
trained with the implicit labeling method, the textual prompt inher-
ently imposes different requirements on various body parts. The
absence of the separate-then-combine strategy eliminates part-level
guidance, leading the diffusion model to incorrectly merge multiple
features. In this scenario, the model misinterprets the instruction
to sit as merely lowering the arms and slightly bending the legs,
rather than sitting.
Motion representation pre-training. Figure 5(d) shows the re-
sults when the joint training stage is omitted from the training
process. The character shows an inclination to sit, but such motion
is not represented within the limited distribution of the speech-to-
motion datasets, rendering accurate generation unfeasible.
Single-condition experiment ablation. Though our work fo-
cuses on the synergistic co-speech motion generation that follows
audio and text motion prompts at the same time, we also evaluate
the impact of our proposed methods on the single-source condition
generation ability, whose results are shown in both Table 1 and 2.

We first remove all our propose components for synergistic co-
speechmotion generation, which results in a pure co-speechmotion
generation model conditioned on audio signal. This base model
achieves the state-of-the-art performance in pure co-speech motion
generation task, which serves as a solid base for our synergistic
generation. Note that our base model only performs co-speech
motion generation and it is unable to operate on text-to-motion
task, resulting in one less ablation result in Table 1.

We then evaluate the result with prompt-motion alignment while
motion representation pre-training is removed. This removal has a
positive impact on the text-to-motion generation, as prompt-motion
alignment enables the model to accept both the audio and text
prompt as input, which drags the model’s output distribution to co-
speech generation instead of pure prompt-based motion generation.

Finally, we evaluate the single-condition performance when
prompt-to-motion alignment is removed while motion represen-
tation pre-training is kept. This results in significant performance
drop in text-to-motion generation due to the lack of solution space
in text-to-motion generation. In co-speech motion generation, this

Figure 5: Qualitative ablation studies on training and infer-
ence procedures. More results are included in the appendix.

results in a minor performance drop due to the solution space ex-
panding beyond the original co-speech motion distribution, which
is desirable in generating synergistic co-speech full body motion.

7 LIMITATIONS AND FUTUREWORK
Our method necessitates processing noise and performing parallel
inferences at every diffusion step due to the separate-then-combine
strategy. On a single RTX 4090, it achieves a generation rate of
10 frames per second without speed-up strategies and 200 frames
per second with scheduling methods like DDIM [39]. While this
is sufficient for real-time streaming generation applications, our
method incurs a higher inference cost than a regular latent diffusion
model with the same number of parameters, leading to increased
computational demands during deployment.

Although our model implements semantically correct body-level
control through the separate-then-combine strategy, it primarily
treats conditional inputs as signals of varying strength rather than
fully comprehending them. This limitation highlights the inherent
challenge in the field of motion generation: the difficulty of gen-
erative models in accurately interpreting multi-modal conditions.
This difficulty underscores the need for future research to focus
on the deeper comprehension of user prompts, which remains a
formidable and crucial challenge. Additionally, hand gestures play
a significant role in the realism and expressiveness of generated
gestures. Currently, the lack of an annotated hand gesture dataset
limits the ability to control gestures via textual prompts, which can
see significant improvements through future related work.

8 CONCLUSION
In this paper, we propose SynTalker, targeting at addressing the lack
of elaborate control issue of current co-speech motion generation
approaches. Our main contributions are: 1) By introducing a multi-
stage training process, we effectively utilize off-the-shelf text-to-
motion datasets to enable the diffusion model to simultaneously
understand both co-speech audio signals and textual requirements.
This approach allows for the generation of synergistic full-body
co-speech motions; 2) A separate-then-combine strategy during the
inference stage, enabling fine-grained control over different local
body parts. Extensive experiments demonstrate the effectiveness of
our method and show that it can achieve precise control over the
generated synergistic full-body motions, surpassing the capabilities
of existing methods.
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