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Figure 1: Roadmap of Foundation Agent Memory. A timeline illustrating the trend of foundation
agent memory frameworks, categorized by memory substrates and subjects (user or agent-centric).
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Abstract

The research of artificial intelligence is undergoing a paradigm shift from prioritizing model
innovations over benchmark scores towards emphasizing problem definition and rigorous
real-world evaluation. As the field enters the “second half,” the central challenge becomes
real utility in long-horizon, dynamic, and user-dependent environments, where agents face
context explosion and must continuously accumulate, manage, and selectively reuse large
volumes of information across extended interactions. Memory, with hundreds of papers re-
leased this year, therefore emerges as the critical solution to fill the utility gap. In this sur-
vey, we provide a unified view of foundation agent memory along three dimensions: memory
substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, work-
ing, and procedural), and memory subject (agent- and user-centric). We then analyze how
memory is instantiated and operated under different agent topologies and highlight learning
policies over memory operations. Finally, we review evaluation benchmarks and metrics for
assessing memory utility, and outline various open challenges and future directions.

1 Introduction

The landscape of Artificial Intelligence (AI) has now undergone a fundamental paradigm shift: from prioritiz-
ing foundation model architecture and simplified benchmark performance to emphasizing problem definition
and rigorous real-world evaluations. This marks the end of the “first half” of AI development, in which
progress was primarily driven by training methods (Liu et al., 2024a), scaling (He et al., 2016; Achiam et al.,
2023; Gu et al., 2025), and model architectures (Vaswani et al., 2017), which repeatedly pushed higher scores
on standardized benchmarks (Wang et al., 2024n; Krizhevsky et al., 2012). In the first half of AI develop-
ment, the field has evolved towards a dominant paradigm of scaling data and model size. A general recipe
of massive pre-training (Minaee et al., 2024) followed by a post-training process (Ouyang et al., 2022) that
solves traditional benchmarks with remarkable accuracy. Under well-defined training pipelines, Large Lan-
guage Models (LLMs) and agents can achieve over 90% accuracy on benchmarks such as MMLU (Hendrycks
et al., 2021b) or MATH (Hendrycks et al., 2021c). As a result, LLMs and agents have rapidly evolved from
static predictors, like conventional machine learning models, into general-purpose agents capable of complex
reasoning (Wu et al., 2025f), planning (Li et al., 2025i), and tool use (Huang et al., 2025a; Zou et al., 2025b)
in various tasks and environments.

Despite the impressive capabilities demonstrated on standard benchmarks, a significant gap remains be-
tween the reported performances and the utility in many real-world tasks and environments (Yu et al.,
2024b). The majority of evaluation protocols largely simplify experimental assumptions and design static,
pre-defined rules, with relatively short and isolated task settings (Cobbe et al., 2021; Chen et al., 2021;
Budzianowski et al., 2018). In particular, most recent agent evaluation benchmarks are coupled with short
agentic execution times without multi-turn, long-term interaction (Wang et al., 2024k; Lu et al., 2025a). As
a result, these evaluations no longer reflect the foundation agent’s ability in reality, where interactions are
inherently long-horizon, long-context, and deeply user-dependent with high-level complexity. As the field
transitions towards more realistic settings, such as embodied agents (Li et al., 2024b), GUI automation (Ye
et al., 2025a), deep research (Huang et al., 2025c), personal health-care (Zhan et al., 2024), and human-
agent collaborations (Feng et al., 2024; Zou et al., 2025c), the complexity of the operational environment
explodes, exposing agents to exceptionally large and dynamic contexts. In such settings, static, one-shot
capabilities are insufficient. Instead, agents must accumulate, retain, and selectively reuse information across
interactions. Memory thus emerges as the critical and natural solution to bridge the gap between idealized
benchmark performance and real-world implementation and environment (Zhang et al., 2025o).

As the field enters the “second half” of AI development, the focus shifts from improving training recipes to
solving the critical utility problem in reality (Bell et al., 2025; Yao et al., 2025). How to design a benchmark to
evaluate an agent in the real environment has become one of the most important challenges (Xu et al., 2025c),
particularly as agents strive to adapt along two primary empirical dimensions: user-facing personalization
(Cai et al., 2025; Zhang et al., 2025m; Wu et al., 2025e) and task-oriented specialization (Ling et al.,
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Foundation Agent Memory System

Memory Substrate

Based on the human feedback...

Internal (Parametric, etc…)
Model weight, latent-state, and KV cache are adjusted.
Update working state + cache. Small weight shift 
toward rail-first plans.

External (Non-Parametric, etc…)
Storage and database are updated.
write preference (“prefer trains; fewer transfers”) 
+ log episode (Tokyo-2025 itinerary accepted)
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Parametric priors: transit & costs; Latent state: 
current constraints + intermediate reasoning; KV 
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External (Non-parametric, etc…)
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or hierarchical store
Preference: trains; avoid rush-hour transfers; 
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Stores contextualized experience records 
(what/where/when and outcomes) for later 
retrieval and reuse.
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concepts, and schemas, usable across tasks 
beyond specific episodes.

Procedural
Stores reusable skills, routines, and workflows 
that enable consistent tool use and action 
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Short-term Memory
Temporarily maintains and 
manipulates task-relevant state 
for immediate reasoning and 
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budget.

Long-term Memory
Persistently stores 
experiences, knowledge, 
and skills across 
interactions so they can be 
retrieved and reused over 
extended time horizons.

User-Centric
Memory

Stores persistent user facts
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interaction history) 
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agent’s own experiences
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Figure 2: The taxonomy of Foundation Agent Memory. The Memory Substrate (what form is
represented) for foundation agents includes the internal and external memory. In the Memory Cognitive
Mechanism (how memory functions) perspective, memories are categorized into episodic, semantic,
sensory, working, and procedural memory. Based on the Memory Subject (who is supported), the
memory is characterized into user-centric and agent-centric perspectives.

2025; Zhang et al., 2025i). In both dimensions, the interaction contexts of a specific user’s long-term history
or the vertical tasks like coding (Islam et al., 2024) and web search (He et al., 2024a) expand far beyond what
can be accommodated by prompt-based mechanisms alone. As multi-session data from daily interactions or
accumulated context from project work expands exponentially, reliance on a static memory mechanism is
insufficient. As a result, memory architectures evolve from a static, predefined, and simple mechanism (Hao
et al., 2023; Hu et al., 2023) towards a self-adaptive, self-evolving, and flexible unit (Liu et al., 2025g;f), to
intelligently store, load, summarize, forget, and refine to keep the informative experience for downstream.

Although the rapid growth of foundation agent memory research has produced several surveys, important
gaps remain in how agent memory is analyzed from a system design perspective in real-world agent utility
backgrounds. Such memory design has shifted from short, isolated prompts to long-horizon interaction,
where agents must operate over exploding context windows, multi-session workflows, and persistent real-
world user relationships. Early works often organize memory primarily by task applications or management
strategies (Zhang et al., 2025o; Du et al., 2025), or adopt neuroscience-inspired perspectives that project
AI memory onto human memory through functional analogies and memory lifecycles (Wu et al., 2025g;
Liang et al., 2025). While these approaches provide useful conceptual grounding, they do not systematically
characterize underlying memory substrates or explicitly model the subject that memory serves within an
agent system, which are significant when the context exceeds the foundation model’s limitations. As a
result, they fall short of distinguishing the optimization goals of agent memory and overlook complementary
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dimensions connections that are essential for designing and deploying autonomous agent systems in real-
world applications. More recent work begins to broaden this conceptual landscape. In particular, Hu et al.
(2025d) organizes agent memory along forms, functions, and temporal dynamics. Despite offering a valuable
consolidation of memory, it remains largely partial, focusing mainly on how memory functions in agent-
centric tasks rather than how memory should be designed, optimized, and deployed for users. Motivated by
these, this survey analyzes foundation agent memory of hundreds of papers from three major complementary
perspectives that connect memory with system-level design choices in increasingly complex environments.

Specifically, we introduce a unified taxonomy that is organized around three core design dimensions: the
memory substrate, the cognitive mechanism, and the memory subject, as shown in Figure 2. We
classify existing foundation agent memory works by substrate into external and internal, by cognitive mech-
anism into functional categories such as episodic, sensory, working, semantic, and procedural memory, and
by subject into user-centric versus agent-centric subjects. From a system perspective, we further analyze
how these foundation agent memory systems are operated under different agent topologies, distinguishing the
fundamental memory operations in single-agent systems from those memory routings in multi-agent settings.
Furthermore, we highlight the growing role of learning policies, showing how agents are increasingly trained
to conquer memory management itself and thus to learn from their interaction histories and self-evolve
over time. To reflect the impact of shifting environments on foundation agent memory design, we discuss
scalability issues across context length and environment complexity, and we review the evaluation method
and metrics used to measure memory performance and utility. Finally, we outline six open challenges in
foundation agent memory to guide the next generation of foundation agent memory design.

2 Background

2.1 Large Language Models and Foundation Agents

Recent advances have pushed large language models beyond one-shot question answering into foundation
agents (Park et al., 2023; Xi et al., 2025a; Luo et al., 2025; Liu et al., 2025a): systems capable of perceiv-
ing environments, reasoning through complex objectives, and executing actions to achieve assigned goals.
Unlike traditional “one-shot” chatbots, an agent operates in a full loop: it interprets instructions, selects
actions, observes outcomes, and updates its internal state or memory. This iterative interaction makes
agents particularly well-suited to long-horizon, dynamic problem solving. This trend is already visible in
emerging agentic products such as Deep Research and Manus, which emphasize multi-step execution and
tool-augmented decision making over single-turn responses (Zhang et al., 2025l).

A foundation agent is typically an autonomous or semi-autonomous system that uses foundation models, such
as LLMs, as its core decision modules, augmented with mechanisms for state estimation, action execution,
and memory management. In this survey, we use the term foundation agent to denote an AI agent whose
core decision-making is driven by a general-purpose foundation model, including large language models,
vision–language models, or learned world models. Core capabilities commonly include planning for task
decomposition and decision making (Yao et al., 2023; Huang et al., 2024b), tool use through external functions
or models (Wu et al., 2025c; Yuan et al., 2025c; Lu et al., 2025a), multimodal perception (Liu et al., 2023a;
Bai et al., 2025), and memory that spans both short-term context and longer-term horizons (Lumer et al.,
2025; Wang et al., 2025s). Memory (Zhang et al., 2025o; Xiong et al., 2025d) becomes especially important
because context windows are limited and environments evolve over time; accordingly, many agents rely on
external memory stores, coupled with summarization (Lu et al., 2025b), reflection (Renze & Guven, 2024),
or consolidation procedures that compress experience into reusable knowledge (Kang et al., 2025c; Yu et al.,
2025b). Multi-agent systems (Talebirad & Nadiri, 2023; Wu et al., 2024b) extend this paradigm by assigning
specialized roles and memories to multiple agents that communicate, coordinate (Lan et al., 2024; Estornell
et al., 2025).

Foundation agents are now being explored for different real-world applications, such as workflow automation
(Xiong et al., 2025c), tutoring (Wang et al., 2025l), web and GUI interaction (He et al., 2024a; Wang et al.,
2025e), embodied control in simulated or real environments Fan et al. (2022); Yang et al. (2025c), and early
forms of agentic scientific assistance (Ren et al., 2025; Pantiukhin et al., 2025; Zheng et al., 2025d). Despite
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Figure 3: Cumulative publication trends of memory-related research in LLM agents (2023 Q1
– 2025 Q4). The plots illustrate the distribution of 218 collected papers across three key dimensions:
memory substrate (left), memory cognitive mechanism (middle), and memory subject (right). The shaded
region highlights the rapid acceleration of research output observed in 2025.

this progress, several foundational challenges remain. First, long-horizon reliability (Huang et al., 2024b; Xi
et al., 2025b) requires preventing compounding errors, behavioral loops, and unreliable replanning. Second,
evaluation (Yehudai et al., 2025) should move beyond static QA toward benchmarks that measure dynamic,
interactive capabilities, such as tool use, multi-step decision making, and long-horizon feedback. Third,
alignment and safety (Hua et al., 2024; Yuan et al., 2024a; Tian et al., 2023; Zhang et al., 2024c) become
increasingly important as autonomy and tool access expand, demanding stronger guarantees of controllability.
Addressing these challenges could ultimately turn today’s tool-using assistants into agents that are capable
and trustworthy to solve more complex tasks and stay predictable and controllable in real-world deployments.

2.2 Memory

Memory generally refers to a system’s ability to retain, organize, and exploit information over time. In
the context of LLM-based foundation agents, memory is used to explain how agents go beyond single-turn
contexts to support long-term interaction, behavioral consistency, and experience accumulation (Luo et al.,
2025). While biological studies often characterize memory as persistent, experience-driven neural change
(e.g., synaptic plasticity and consolidation (Hebb, 2005; Bliss & Lømo, 1973; Tonegawa et al., 2015)), for
agent systems, the more relevant insight lies in how memory is designed, realized, and used in practice to
support different functions, representations, and targets.

In human cognitive models, memory is commonly understood as a set of interacting subsystems organized
across different time scales. Short-term memory supports the temporary retention and manipulation of
information during ongoing processing. Sensory memory briefly buffers raw perceptual input, enabling
downstream processing (Sperling, 1960), while working memory operates under strict capacity constraints
and supports online information manipulation, reasoning, and control (Baddeley, 2020; 2000). Long-term
memory supports information retention over extended periods and comprises multiple functionally distinct
systems. Episodic memory stores specific experiences situated in time and context, semantic memory ac-
cumulates abstract facts and conceptual knowledge (Tulving, 1972; 1985), and procedural memory captures
skills, habits, and action policies that are typically expressed implicitly through performance rather than
explicit recall (Cohen & Squire, 1980; Squire, 1992). In biological systems, functional distinctions in memory
are ultimately grounded in physical substrates, such as synaptic plasticity (Hebb, 2005; Bliss & Lømo, 1973;
Martin et al., 2000) and circuit-level changes that give rise to enduring memory traces or engrams (Tonegawa
et al., 2015; Josselyn & Tonegawa, 2020). While these cognitive and biological perspectives provide essential
grounding, foundation agent memory systems introduce additional design considerations, including explicitly
distinguishing whose information memory is designed to capture and support.
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MADial-Bench (He et al., 2025a), LoCoMo (Maharana et al., 2024), DuLeMon (Xu et al.,
2022b), MemoryAgentBench (Hu et al., 2025c), MemoryBench (Ai et al., 2025)

LLM-as-
a-Judge

LongMemEval (Wu et al., 2025b), MemTrack (Deshpande et al., 2025), PrefEval (Zhao
et al., 2025c), ConvoMem (Pakhomov et al., 2025), LiveResearchBench (Wang et al., 2025f)

Figure 4: A taxonomy of the Foundation Agent Memory System
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3 Taxonomy of Memory in Foundation Agents

We conducted a systematic literature collection by querying Google Scholar with memory-related keywords
(e.g., agent memory, long-term memory, context management, personalization memory) and manually scru-
tinizing proceedings of major computer science conferences and journals (including top-tier NLP, ML, IR,
and AI venues). From an initial pool of several hundred papers, we curated the most relevant contributions
through iterative screening, ultimately selecting 218 key articles published between 2023 Q1 and 2025 Q4.
The resulting trends, illustrated in Figure 3, demonstrate a dramatic escalation in research activity. Most
notably, the publication volume witnesses an exponential surge throughout 2025, culminating in a significant
peak in Q4. The trends show that the improvement need of the intelligence memory design to support the
agent complete the long-horizon, long-context task in the more complex environment.

To better distinguish memory design, we categorize memory in foundation agents along three orthogonal
perspectives, as shown in Figure 2: (1) Memory Substrates, or so-called storage format, describing what
form memory is represented in different settings, are presented in Section 3.1; (2) Memory Cognitive
Mechanisms, describing the functional role memory serves in the pipeline or workflow, are described in
Section 3.2; (3) Memory Subjects, whose information the memory is designed to capture and support, are
elaborated in Section 3.3. In addition, we present the taxonomy in Figure 4. The operation and management
of memory in single- and multi-agent systems is introduced in Section 4. The learning policy is introduced
in Section 5. The scaling of the foundation agent system is introduced in Section 6. The Evaluation of the
foundation agent is introduced in Section 7. The application of the foundation agent system is introduced
in Section 8. The future challenge of the foundation agent system is highlighted in Section 9.

3.1 Memory Substrates

Memory substrates serve as the essential mechanisms for retaining historical knowledge produced during
interactions between foundation agents and humans in various tasks and environments. Based on the frame-
work, storage mediums, and persistence mechanisms of current research, we categorize these substrates into
external and internal memory. The definitions and implementations of these categories are elaborated in
Sections 3.1.1 and Section 3.1.2, respectively.

3.1.1 External Memory

External Memory

External memory refers to any memory substrate that stores the knowledge, information, and past
experience outside the agent model’s parameter or state. The agent can explicitly read from and
write to the external memory via retrieval and update operations, enabling scalable, easy-to-update,
cross-session retention of knowledge and interaction history.

The external memory represents information storage systems that store information in an vector index,
text-record, structural store, and hierarchical store (Lewis et al., 2020; Zhang et al., 2023b). It
operates independently of the gradient-updated weights within the neural network. And, it is characterized
by a clear separation between the computation, performed within the LLM’s internal parameters, and the
knowledge, stored in an external database or memory module (Mallen et al., 2023; Zhong et al., 2024).
This separated computation and retrieval design allows agents to access extensive and continually updated
information without requiring expensive retraining of the foundation model (Omidi et al., 2025; Aratchige
& Ilmini, 2025). In addition, external memory is both scalable and flexible. With just a few changes, it can
be easily added, replaced, or inserted into most frameworks. Moreover, unlike internal memory (Saha et al.,
2021), where knowledge may be overwritten or adjusted due to weight updates from new experience, external
memory can preserve past information in its original form, helping reduce hallucinations or knowledge cutoff
by utilizing an additional storage module (Castrillo et al., 2025).

However, this design also has drawbacks and trade-offs. Normally, inference takes a longer time since the
agent has to retrieve information from external storage. This problem will be severe when running in multi-
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turn iterations or in complex environments. In addition, the retrieval can be unreliable. If the similarity
or ranking algorithms are not well-developed, they may provide results that are irrelevant or unhelpful for
the current task. This irrelevant information would introduce noise that may reduce the agent’s utility (Xu
et al., 2025a). As the system operates for longer periods, with more turns, and when the memory grows, the
escalating costs of storage and indexing may further diminish efficiency and performance (Chen et al., 2025e).
As a result, a well-constructed external memory usually demands solid procedures for regulating memory size
and quality, including summarization, selective retention, forgetting, deduplication, and periodic pruning of
low-value or obsolete items (Du et al., 2025; He et al., 2024b).

Vector Index. Vector index is implemented by embedding memory items or query into a shared vector
space, running approximate nearest-neighbor search to fetch top-k items, and appending those snippets to
the prompt as grounding context (Lewis et al., 2020; Zou et al., 2025a). The dominant implementation of
external memory in the current work of agents or LLMs is the vector database, utilized within the RAG
framework (Quinn et al., 2025; Li et al., 2025i; Zhang et al., 2025l). This approach operates memory as
a geometric problem. By embedding textual or multi-modal information into high-dimensional vectors, it
represents each memory item as a point in continuous space. New queries are also transformed into vectors
with the same embedding mechanism, and the agents search for the closest points, the data representing the
closest semantic information. Current techniques, such as hierarchical navigable small-world (HNSW) (Liu
et al., 2025h), inverted file (IVF) (Rege et al., 2023), or product quantization (PQ) (Huang & Huang, 2024)
indexing, are developed and optimized to find the most semantically similar documents or past interactions
efficiently in a high-dimensional embedding space. This approximate-nearest-neighbor search retrieves a
small set of context snippets, which are mapped back to their original form and fed into the agent or LLM
to integrate its response with relevant, previously unseen information (Guu et al., 2020).

Text-record. Text-record memory treats an agent’s long-term memory as a set of explicit text documents
rather than embeddings or graphs (Zhang et al., 2025o). It is implemented as persistent human-readable
text artifacts (e.g., a running “core summary” plus episodic logs) that are periodically summarized or edited,
and selectively copied into the prompt when generating the next response. A common implementation keeps
a persistent core summary and augments it with semantic and episodic lists. The semantic list stores
discrete facts and can be modified via insert, update, and delete operations. In contrast, the episodic
list is a chronological ledger of timestamped events and interactions. During memory updates, the agent
modifies these structures (Zhu et al., 2025c; Wang & Chen, 2025). During response generation, it extracts
a limited selection of pertinent information and instances, then reintegrates them into the prompt with the
primary summary. The architecture facilitates transparency and fast integration by structuring memory as
human-readable summaries and lists (Yue et al., 2025; Park et al., 2023). However, it requires meticulous
summarization and pruning to maintain a succinct core summary and manageable lists.

Structural Store. Structural store is implemented by storing memories in explicit schemas and retrieving
them via symbolic queries or traversal before formatting the returned records for the LLM’s context. The
structured memory architecture (Jia et al., 2025a; Bei et al., 2025), based on the topological design, can
be partitioned into relational tables, graph-based structured, or tree-structure memories. Relational tables
use SQL to retrieve row records from a table. They can store facts and preferences as structured records,
separate short-term transactions and long-term events into different tables, and use joins and indexes for
efficient retrieval between different tables (Wang et al., 2024d). Graph-based memory represents episodes
or pieces of information as nodes and edges within a knowledge graph (Anokhin et al., 2024). A knowledge
graph is essentially a semantic network. It typically organizes information into nodes with entities and edges
capturing the relationships between them. When new information arrives, the system combines semantic
embeddings, keyword search with traversal to detect edge changes, resolve conflicts, and maintain the valid
graph structure (Jiang et al., 2025c). Tree-based memory organizes knowledge hierarchically, with each
node in the tree storing an aggregated summary of textual content and a corresponding semantic embedding,
and deeper branches representing more specific details (Sarthi et al., 2024). When new information arrives,
the system traverses the tree and updates or creates nodes based on embedding similarity to decide where
the information is stored. This dynamic mechanism supports multi-level abstraction and efficient retrieval
to support long conversation tasks (Rezazadeh et al., 2025b). The structured memory, with its different
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types of formats, can capture sequential history and relationships and support multi-level abstraction. This
technique offers the agent flexibility and control over how memories are stored, updated, and queried.

Hierarchical Store. Hierarchical memory separates memory into multiple storage units, each with its
own schema and storage strategy. Instead of keeping everything in a single flat archive, the agent
maintains dedicated memory modules (Rezazadeh et al., 2025b; Zhai et al., 2025). For instance, a
core memory for persistent persona and user facts, an episodic memory for time-series or sensitive events,
a semantic memory for abstract concepts, a procedural memory for step-by-step instructions, a resource
memory for documents and media, and a knowledge store for sensitive or private information (Yang et al.,
2025a; Wang et al., 2025p). Each module utilizes a data structure suited to its content. For example,
episodic memory might store records with event_type, summary, details, and timestamp; semantic mem-
ory may organize entries by type, summary, and source; procedural memory encodes workflows as JSON
sequences; and the knowledge store applies strict access controls to secure credentials and API keys. A meta-
memory manager (Wang & Chen, 2025; Zhang et al., 2023a) coordinates these modules, directing queries to
the correct store and utilizing specialized retrieval methods (e.g., embedding similarity (Xu et al., 2025d),
BM25 match (Hu et al., 2025c), string match (Alla et al., 2025)) for each storage unit. This multi-store
substrate has advantages such as modularity, separation of concerns, and scalability, making it easier to
design specialized schemas and retrieval paths while supporting nuanced personalization across long-term
interactions. However, coordinating multiple memory agents increases the system’s architectural complex-
ity. It can potentially add latency and additional resource cost when querying several stores, and requires
well-designed mechanisms to maintain data consistency and synchronize updates between different turns in
the long-horizon task (Sun & Zeng, 2025; Li et al., 2025k; Maragheh & Deldjoo, 2025).

3.1.2 Internal Memory

Internal Memory

Internal memory refers to the information stored directly within the model’s architecture,
encompassing both the persistent knowledge embedded in its parameters (i.e., parametric memory)
and the working states utilized during inference.

Weights. Weight memory is implemented by writing memory into parameters, so the model later recalls the
information without retrieving external context. Knowledge or experience is embedded directly into
the neural network’s parameters (Mallen et al., 2023) through pre-training, post-training, or targeted
parameter editing (Wang et al., 2025q; Ampel et al., 2025; Wang et al., 2024h). Because this knowledge is
internal, these models recall facts and past events efficiently and robustly without communicating with an
external store. However, maintaining and updating internal weights is challenging. Therefore, recent research
has divided weight updates into three main strategies: continual learning, model editing, and distillation.
Continual learning methods incrementally update the model’s weights with the new information while
attempting to avoid catastrophic forgetting (De Lange et al., 2021). Methods like regularizing changes to
prevent overwriting important weights and applying soft masks to selectively update parameters can largely
preserve the previous domain knowledge while recognizing new information (Serra et al., 2018). Model
editing strategies treat specific factual associations as localized memories and adjust the corresponding
parameters: one line of work locates decisive mid-layer weights and applies rank-one updates to change a
single factual association, whereas another extends this idea to update thousands of memories by applying
small updates across multiple layers (Abdali et al., 2024; Meng et al., 2022a). For instance, some methods
show that carefully fine-tuning the model with augmented data can achieve comparable editing performance.
Another method inserts a few new neurons to correct mistakes sequentially without affecting unrelated
behavior. Another approach adds calibration memory slots that store corrected facts without altering the
original parameters (Chhetri et al., 2025; Luo & Specia, 2024). Distillation techniques compress contextual
knowledge into the parameters themselves. It can internalize prompt- or context-dependent behaviors into
model parameters by training a student to reproduce a prompted teacher’s outputs (e.g., prompt-to-weights
or in-context distillation). Concretely, some approaches optimize the model so it behaves as if a fixed
prompt were implicitly present at inference time (Cao et al., 2025a; Padmanabhan et al., 2023). While such
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parameter-based memorization can make recall efficient at inference, modifying weights is computationally
costly and may introduce interference, overwriting, or distortion of previously learned knowledge (Meng
et al., 2022b).

Latent-State. Latent-state memory is implemented by carrying forward and reusing intermediate hidden
states across steps or segments. Earlier activations can directly impact later computation even when the
raw tokens are no longer in the window. The intermediate activations or hidden-state tensors are produced
as information flows through layers during the forward pass process (Ibanez-Lissen et al., 2025). These
hidden states are the per-layer-wise representations that combine the fixed learned parameters with the
current prompt, forming the model’s working state that drives the next-token prediction. Unlike weight-
based memory, state memory is not durable. It is usually created during runtime activations, then used,
and typically discarded or reset at the end of a request (Jelassi et al., 2024). Therefore, it supports within-
session coherence and reasoning but does not persist knowledge across sessions unless exported externally.
The key trade-off is resource cost. The environment must hold not only parameters but also intermediate
states in memory, and this activation value scales with model depth, batch size, and precision. Efficient
and optimized latent-state management reduces inference latency and memory cost. One representative
direction reconstructs hidden representations across layers to reinforce earlier context at a controllable cost
(Dillon et al., 2025). In contrast to reconstruction, other work caches a compact subset of hidden-state
vectors or memory tokens across segments, thereby extending the effective context length beyond a fixed
window while reducing memory and computation costs (Dai et al., 2019). Beyond reusing existing states,
latent-state memory can also be generated. A memory trigger and memory weaver synthesize machine-
native latent tokens that are fed back into the model to enrich downstream reasoning (Zhang et al., 2025d).
Meanwhile, structured modulation of hidden-state transitions maintains latent trajectories aligned with prior
context, which can reduce semantic drift in long sequences (Carson & Reisizadeh, 2025). Additionally, some
architectures integrate compressive memory into the attention mechanism to store and reuse key-value pairs
from previous segments, enabling the processing of very long inputs with bounded memory (Munkhdalai
et al., 2024). Other strategies treat the hidden state as a fast-weight updated through small optimization
steps during inference to refine internal representations over extended contexts (Zhu et al., 2025b).

KV Cache. In transformer-based LLMs, the KV cache is a transient, inference-time memory that speeds
up autoregressive decoding (Kwon et al., 2023; Liu et al., 2023c). It is implemented by caching per-layer
attention keys and values from previous tokens during decoding and reusing them for subsequent tokens.
During self-attention, each token is projected into keys and values (Ge et al., 2023; Pope et al., 2023). Without
KV caching, these matrices are recomputed for all previous tokens at every step, leading to unwanted resource
waste and slowing generation for long sequences (Cai et al., 2024; Feng et al., 2025b). The KV cache stores
the keys and values from earlier tokens and, at each new step, only computes them for the freshly generated
token and retrieves the rest from the cache. This mechanism significantly accelerates inference, especially on
long outputs or large and deep models, but comes at the cost of higher memory usage and implementation
complexity (Pope et al., 2023; Kwon et al., 2023). Recent research proposes several high-impact approaches
for compressing the KV cache. One approach recognizes that a small portion of tokens contribute most to
attention scores and dynamically evicts the rest, balancing “heavy hitters” with recently generated tokens.
This method achieves large throughput improvements while retaining only a fraction of the cache (Zhang
et al., 2023c). Another technique identifies consistent attention patterns within a prompt’s observation
window and clusters important features to enable substantial speed and memory savings for long input
sequences (Li et al., 2024d). Another approach observes that layers differ in how many key-value vectors
they truly need, and instead of giving every layer the same cache size, ranks vectors by importance and uses
a binary search to decide how many to keep per layer under a global budget, so only the most informative
vectors are retained (Wang et al., 2024a). These current studies demonstrate that the KV cache can be used
efficiently to improve model performance significantly.

3.1.3 Tradeoffs Across Memory Substrates

Different memory substrates can have different advantages and drawbacks. They have trade-offs in terms of
access speed, scalability, adaptability, and reliability in ways that show up quickly on long-horizon tasks. In
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practice, the choice often comes down to fast, precise internal state versus scalable external storage that can
become noisy as it grows.

Internal memory, including parametric memory encoded in model weights, usually offers high-speed access
and tight integration with reasoning. However, it is expensive to update and can suffer from catastrophic
forgetting due to frequent modifications. It therefore fits stable, general-purpose knowledge better than
rapidly changing or user-specific information. Latent substrates such as hidden activations or KV caches are
fast and transient, making them well-suited to within-session state. However, their ephemeral nature and
linear scaling with sequence length limit capacity and make them unsuitable for cross-session retention.

External memory, consisting of vector databases or stores, scales naturally with experience and supports
flexible editing without retraining. However, retrieval adds latency and makes performance sensitive to
indexing and retrieval quality. Prior work shows that storing excessive or low-quality items can inject noise
and increase the difficulty of targeting the informative items, which degrades tightly coupled decision-making
(Liu et al., 2024b). To better tackle the issue, explicit memory management mechanisms such as pruning,
summarization, and hierarchical organization are required and necessary.

Overall, no single substrate dominates across settings and environments. Effective system design increasingly
adopts hybrid memory architectures, using internal or parametric memory for inherent knowledge or facts,
latent memory for fast short-term reasoning, and external memory for scalable experience storage. This
pattern reflects a broader shift from a static or persistent, defined knowledge storage mechanism to a more
dynamic and adaptive approach that can handle the complexities of real-world tasks.

3.2 Memory Cognitive Mechanisms

Human memory provides a conceptual scaffold for analyzing memory in LLM-based agents (Kim et al., 2023b;
Li & Li, 2024). Cognitive psychology distinguishes multiple interacting systems that explain how information
is perceived, maintained, and reused (Baddeley, 2020; Tulving, 1972). While a wide range of cognitive
memory types have been proposed in the literature, we focus on a set of five atomic cognitive memory
systems that are particularly relevant for LLM-based agents: sensory, working, episodic, semantic, and
procedural memory. Table 1 summarizes these five memory systems by mapping their core functional
roles to representative research directions and illustrative agent-level implementations. These five systems
constitute a minimal and architecturally complete decomposition of cognitive memory, whereas other memory
constructs such as autobiographical (Conway & Pleydell-Pearce, 2000) or prospective memory (Einstein &
McDaniel, 1990) can be understood as compositions or functional abstractions built upon them. Accordingly,
our taxonomy is organized around these five atomic memory types, which cover both short-term and long-
term memory mechanisms commonly realized, either explicitly or implicitly, in current agent architectures.

3.2.1 Sensory Memory

Sensory Memory

Sensory memory refers to the temporary retention of incoming perceptual signals, allowing attention
and selection mechanisms to operate before higher-level processing occurs, by briefly holding raw
inputs long enough for the system to decide what to attend to next.

In current foundation agents, sensory memory is typically not explicitly modeled. This is largely due to
the highly abstracted nature of textual inputs, where perceptual processing has already been collapsed into
symbolic or linguistic representations. In contrast to memory systems that encode stable knowledge, sen-
sory memory functions as a transient interface between perception and cognition, operating over very short
timescales and across multiple sensory modalities (Atkinson & Shiffrin, 1968). However, in multimodal or
embodied agents, analogous mechanisms emerge in the form of short-lived perceptual buffers, such as caches
of visual, auditory, or interaction embeddings. These buffers function as a sensory stage by temporarily re-
taining minimally processed observations before they are filtered, summarized, or routed to working memory
for downstream reasoning and control.
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Table 1: Mapping five cognitive memory systems to their functional roles and corresponding memory design
directions in foundation agents, with illustrative agent-level examples.
Cognitive
Type Functional Role Core research focuses in LLM agents

(representative works) Implementations

Short-Term Memory

Sensory
Memory

What is perceived.
Brief retention of
recent visual,
auditory, or other
sensory inputs before
further processing.

Perceptual buffering and lightweight caching for
multimodal streams, such as short-lived embedding
queues and perceptual state buffers (He et al., 2025c;
Fang et al., 2025a; Zhou et al., 2025b; Di et al., 2025).
Temporal gating and selection mechanisms that
stabilize noisy or high-bandwidth observations for
downstream reasoning and control (Mon-Williams et al.,
2025; Bjorck et al., 2025; Black et al., 2025; Ravi et al.,
2024; Liu et al., 2025d).

Keep the last 2–5
seconds of audio
and video frames
(or recent sensor
embeddings) to
smooth perception
and handle brief
occlusions.

Working
Memory

What is currently
handled.
Temporary holding
and manipulation of
current information.

Pre-write representation shaping that reduces what
must enter the active context, including compression,
folding, and abstraction-aware representations (Labate
et al., 2025; Kang et al., 2025c; Wu et al., 2025d; Sun
et al., 2025b; Ye et al., 2025b).
Online state maintenance under fixed budgets,
including update, eviction, and runtime control of context
and KV states during execution (Zhang et al., 2025n;
Yuan et al., 2025a; Kim et al., 2025b; Liu et al., 2025j;
Kwon et al., 2023; Ni et al., 2025).

An in-progress
reasoning state
(chain of thought):
“goal: refine the
survey; earlier sections
set the framing; the
next revision should
preserve framing
consistency.”

Long-Term Memory

Episodic
Memory

What happened.
Contextual record of
specific experiences.

Episode recording and structuring, including what
to write, how to organize events and trajectories, and
multi-scale episode formation (Rajesh et al., 2025; Yeo
et al., 2025a;b; Anokhin et al., 2024).
Retrieval and reflection at decision time, including
adaptive triggering, episode selection, and retention
policies that shape long-term accessibility (Yeo et al.,
2025b; Latimer et al., 2025; Li et al., 2025f; Sarin et al.,
2025; Alqithami, 2025).

A past interaction
log: “last time you
preferred a 2-page
summary; the
previous plan failed
due to missing API
keys,” stored with its
time and situational
context.

Semantic
Memory

What is known.
Conceptual and
factual knowledge
about the world.

Knowledge induction and organization into reusable
representations, including memory graphs, schemas, and
compact neural representations (Zhao et al., 2025a; Jia
et al., 2025a; Li et al., 2025d; Rasmussen et al., 2025;
Behrouz et al., 2024; Wang et al., 2024m; Pouransari
et al., 2025).
Knowledge access and reliability control during
reasoning, including selective activation, validation, and
continual revision under distribution
shift (Jimenez Gutierrez et al., 2024; Wang et al., 2025m;
Rezazadeh et al., 2025b; Yan et al., 2025b; Wang et al.,
2024f; Alqithami, 2025).

A knowledge base:
entities or facts (e.g.,
project info,
preferences,
definitions) retrieved
by query and checked
for reliability.

Procedural
Memory

How to act.
Skills and action
patterns.

Skill induction and packaging, learning reusable
procedures from experience, tools, or interaction
traces (Hong et al., 2023; Fang et al., 2025b; Han et al.,
2025; Zhang et al., 2025d; Xia et al., 2025).
Skill execution, composition, and adaptation,
invoking and refining procedures under changing contexts
over long horizons (Ouyang et al., 2025; Li et al., 2025h;
Tablan et al., 2025; Terranova et al., 2025; Wang & Chen,
2025).

A reusable
workflow or tool
skill: “search → read
→ extract → cite,” or
“debug with
sanitizer,” invoked as
a routine.

Only a limited number of LLM agent works explicitly instantiate sensory memory as a distinct stage in their
memory architectures. Hierarchical and multi-stage designs such as HMT (He et al., 2025c), LightMem (Fang
et al., 2025a), and M2PA (Zhou et al., 2025b) model sensory memory as an initial buffer that retains
recent, minimally processed inputs before selection, compression, or consolidation into downstream memory
components. Beyond these explicit formulations, implicit sensory memory realizations are more commonly
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realized in streaming and embodied agents. Systems such as SAM2 (Ravi et al., 2024) and ReSurgSAM2 (Liu
et al., 2025d) maintain short-term perceptual queues over recent video frames, while ReKV (Di et al., 2025)
and V-Rex (Kim et al., 2025a) rely on streaming KV caches or memory queues to retain recent tokens or
visual representations during online inference. Although these mechanisms are rarely labeled as sensory
memory, they serve an analogous function by buffering recent observations to support perceptual continuity
and computational efficiency, and are typically tightly coupled with working and semantic memory rather
than implemented as standalone cognitive modules.

Despite its limited explicit treatment in current LLM agent research, sensory memory is likely to become
increasingly important as agents are deployed in multimodal, embodied, and robotic settings. In such
environments, agents must process continuous, high-bandwidth sensory streams, such as video frames, audio
signals, and proprioception, under real-time and memory constraints (Black et al., 2025; Bjorck et al., 2025;
Mon-Williams et al., 2025). In these extensive embodied applications, sensory memory is often instantiated
through sensory-level buffering and gating mechanisms, such as short-lived perceptual embedding buffers,
attention-driven filtering, and temporal integration, rather than explicitly labeled cognitive modules. These
designs reduce redundant computation, stabilize partially observable environments, and support principled
consolidation from raw sensory input into working and episodic memory. As a result, more explicit modeling
of sensory memory may become a key design for scalable embodied and robotic foundation agents.

3.2.2 Working Memory

Working Memory

Working memory refers to a short-term memory mechanism that supports the temporary storage and
active manipulation of information necessary for complex tasks such as reasoning, comprehension,
and learning, enabling information to be actively maintained during ongoing operations.

In the LLM-based agent setting, the core goal of working memory (Baddeley, 2020) is to maintain and
manipulate task-relevant state under strict online capacity constraints, such that multi-step reasoning and
action can proceed without interruption. Since LLMs are inherently stateless, working memory provides the
mechanism through which such state is explicitly carried and updated across interaction steps.

Working memory in foundation agents is most commonly instantiated through the active context, which
includes the prompt context, intermediate reasoning traces, tool outputs, and runtime states such as key-
value caches that are accessible during inference. Within this instantiation, existing approaches differ in
where they intervene during execution. One line of work focuses on how task-relevant state is represented
before or as it is written into the active context. By compressing (Kang et al., 2025c; Wu et al., 2025d),
restructuring (Sun et al., 2025b; Ye et al., 2025b), or abstracting interaction history (Labate et al., 2025),
these methods aim to delay or avoid context saturation at the source. Specifically, (Labate et al., 2025)
replaces large intermediate outputs with lightweight references, while (Kang et al., 2025c; Wu et al., 2025d;
Sun et al., 2025b; Ye et al., 2025b) periodically summarize or fold completed reasoning segments to maintain
a compact working context. A second line of work addresses the problem after working state has already
accumulated. These approaches study how task-relevant state can be continuously maintained, updated,
or evicted under a fixed online budget during execution. They include agent-level policies that explicitly
decide memory updates (Zhang et al., 2025n; Yuan et al., 2025a) and system-level mechanisms that manage
runtime states such as key-value caches and scheduling (Kim et al., 2025b; Liu et al., 2025j; Kwon et al.,
2023; Ni et al., 2025).

In summary, working memory in foundation agents serves as the agent’s online workspace, realized through
the active context under strict capacity constraints. Rather than treating longer context windows as the
sole solution, existing work shows that sustaining coherent long-horizon reasoning depends on selectively
retaining and manipulating task-relevant state during execution. This shift reframes working memory from
a passive context buffer to an actively managed computational resource. As agents scale to longer horizons
and more complex interaction settings, progress in working memory will increasingly hinge on principled
state selection and transformation, rather than unbounded context expansion.
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3.2.3 Episodic Memory

Episodic Memory

Episodic memory refers to a form of long-term memory dedicated to the persistent storage of an agent’s
interactive experiences. It records specific events situated in particular temporal and environmental
contexts, typically organized as interaction trajectories, action sequences, and associated feedback.

The primary role of episodic memory in foundation agents is to preserve historical interaction contexts and
outcomes over extended time horizons, enabling agents to reference past experiences when relevant to ongoing
interactions or decision making (Tulving, 1983; 2002). By maintaining access to concrete past experiences,
episodic memory supports background reconstruction and cross-session continuity in dynamic environments.
This allows agents to ground their behavior in previously observed situations, maintain consistency across
repeated interactions, and recover relevant context that would otherwise be lost between sessions.

Episodic memory in foundation agents is most commonly instantiated as an explicit experience repository
that accumulates interaction histories across sessions and can be accessed by the agent when needed. From
a methodological perspective, existing work on episodic memory in foundation agents can be grouped into
two dominant lines of research based on their primary focus. One line of work focuses on episode recording,
namely how historical interactions across sessions are organized into coherent episodic records that preserve
event structure and situational context. For cross-session interaction histories, (Rajesh et al., 2025) em-
phasizes selective episode writing and structured organization of past interactions, making what to store
and how to organize episodic content explicit. For long video understanding, (Yeo et al., 2025a) constructs
episodic records by organizing events together with their temporal and causal relations, enabling coherent
episode-level representations of extended visual experiences. More broadly, (Yeo et al., 2025b) represents
episodic events at multiple temporal scales, allowing episode formation and access to adapt to different levels
of granularity. (Anokhin et al., 2024) links episodic observations with semantic anchors, enabling episodic
recall during planning. A second line of work focuses on retrieval and reflection, namely how stored episodes
are triggered, selected, and leveraged at decision time. (Yeo et al., 2025b) formulates episodic retrieval as an
adaptive process that iteratively selects a memory source and temporal scale conditioned on the query and
retrieval history. (Latimer et al., 2025) defines explicit recall and reflection operations that retrieve episodes
based on their relevance to the current reasoning context and use them to guide subsequent behavior. In
tool-use settings, (Li et al., 2025f) retrieves episodic experience by matching the current execution state
against structured representations induced from past trajectories. For multi-session dialogue, (Sarin et al.,
2025) triggers episodic retrieval using session-level context and user state cues to recall relevant episodic
summaries across sessions. Finally, (Alqithami, 2025) shows that retention policies under fixed memory
budgets directly shape which episodes remain retrievable over long horizons.

Overall, episodic memory research in foundation agents centers on preserving concrete interaction experiences
across sessions and enabling selective access to those experiences at decision time. Existing work primarily
addresses two methodological questions: episode recording and episodic retrieval or reflection. Open problems
include how agents should define episode boundaries, regulate the influence of episodic recall during reasoning,
and manage long-term retention as episodic memory scales.

3.2.4 Semantic Memory

Semantic Memory

Semantic memory refers to a form of long-term memory dedicated to the storage of abstract facts,
general concepts, and structured knowledge. It provides agents with decontextualized information
that remains stable over time and can be reused across different situations and objectives.

In foundation agent architectures, semantic memory functions as a stable knowledge base that supports
knowing-what factual reasoning (Tulving, 1972). Its content is typically derived through the distillation and
decontextualization of recurring facts accumulated in episodic memory. When an agent encounters similar
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knowledge patterns across multiple tasks, fragmented factual information from individual experiences is
consolidated into universal concepts, entity relations, or attribute summaries via summarization mechanisms.
This semanticization process equips the agent with a knowledge substrate analogous to an encyclopedia or
technical manual. By enabling direct access to verified conceptual knowledge rather than repeated retrieval
of raw interaction logs, semantic memory provides a coherent and reliable factual foundation for complex
reasoning and decision-making. Importantly, in long-horizon agent settings, semantic memory is not static
but subject to continual access, revision, and control as new information accumulates.

Existing semantic memory approaches mainly differ in how abstract knowledge is constructed and stabilized,
and how it is selected, validated, and maintained as agents reason over long horizons. One line of work focuses
on knowledge induction and organization, studying how stable, decontextualized knowledge is distilled from
interactions, documents, or external evidence and stored in forms that can be reliably reused by agents.
Representative approaches organize semantic knowledge using hierarchical schemas (Zhao et al., 2025a;
Jia et al., 2025a), memory graphs (Rasmussen et al., 2025; Wang et al., 2024o), or entry-centric semantic
structures (Xu et al., 2025e; Li et al., 2025d), supporting long-term maintenance and structured access
during reasoning. Other approaches encode semantic knowledge into neural memory modules (Behrouz
et al., 2024; Wang et al., 2024m) or auxiliary parameters (Wang et al., 2025o; Pouransari et al., 2025),
emphasizing compact representations and fast reuse without relying on explicit external structures. A
second line of work focuses on how semantic knowledge is activated, validated, and updated during agent
reasoning as new evidence accumulates. Representative approaches treat semantic access as a decision-time
control process in which abstract knowledge is selectively chosen, checked for applicability, and applied to
the current reasoning state, rather than retrieved through a fixed similarity lookup (Jimenez Gutierrez et al.,
2024; Wang et al., 2025m; Rezazadeh et al., 2025b; Yan et al., 2025b). Other work emphasizes long-term
semantic reliability by introducing mechanisms for preference drift detection (Sun et al., 2025a), retention
or forgetting policies (Alqithami, 2025), and continual knowledge editing (Wang et al., 2024f) to prevent
outdated or inconsistent knowledge from degrading agent behavior.

In summary, semantic memory complements working and episodic memory by providing a stable yet revisable
knowledge substrate. It serves as the primary site for distilling fragmented experiences into static laws
and facts. By stripping universal knowledge ontologies from specific episodes, it equips the agent with
the common-sense foundation necessary for cross-domain tasks. As research progresses, semantic memory is
evolving from simple document storage toward self-evolving semantic networks, ensuring that agents maintain
an accurate and consistent knowledge system over long-term operation.

3.2.5 Procedural Memory

Procedural Memory

Procedural memory refers to a form of long-term memory dedicated to how to perform tasks. It
encodes operational skills, execution strategies, and automated routines for specific scenarios. Unlike
memory that stores factual knowledge, it abstracts complex action sequences into reusable patterns,
enabling agents to complete tasks efficiently and coherently.

In foundation agent architectures, procedural memory is typically reflected in the execution layer, where
repeated action sequences, decision rules, or workflows shape how high-level decisions are carried out. Rather
than being tied to a single memory substrate, such knowledge may be distilled from prior executions, learned
through optimization, or shared across agents. As execution experience accumulates, short-lived action states
can be consolidated into reusable skills or routines, allowing agents to execute tasks more consistently over
long interaction horizons (Fang et al., 2025b).

The instantiation of procedural memory exhibits an evolution from explicit non-parametric templates toward
implicit parametric neural policies through diverse mechanisms. Experience distillation and metacognitive
control involve transforming historical trajectories into reusable schemes; for instance, From Experience
to Strategy distills interactions into structured strategies (Xia et al., 2025), while Adapting Like Humans
focuses on metacognitive routines for error correction at test time (Li et al., 2025h). Learning optimization
and policy refinement emphasize the internalizing of skills into parametric weights; for example, Retroformer
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Figure 5: Connections between memory cognitive mechanism and memory subject. Each cluster
corresponds to number of paper of memory cognitive mechanism (sensory, working, semantic, episodic,
procedural) for agent- or user-centric memory work, and the area size is proportional to the paper number.
The scatter distribution represents the publication time for the paper, from 2023 to 2025.

employs policy gradient optimization to refine agent actions (Yao et al., 2024), and BREW enhances task-
handling through continuous training and refinement (Kirtania et al., 2025). Multi-agent coordination and
shared practices establish common operational norms in collaborative environments, as explored in Smarter
Together, MetaGPT, and MIRIX (Tablan et al., 2025; Hong et al., 2023; Wang & Chen, 2025). Workflow
externalization and automation transform complex operations into explicit automation templates, as seen
in Agent Workflow Memory and LEGOMem (Wang et al., 2025u; Han et al., 2025). Furthermore, self-
evolving mechanisms in works like MemGen and ReasoningBank facilitate the accumulation of reasoning
traces for long-term procedural evolution (Zhang et al., 2025d; Ouyang et al., 2025). Finally, while work
like Evaluating Long-Term Memory signals growing interest in assessment, procedural memory evaluation
remains less standardized than fact-centric settings (Terranova et al., 2025).

In summary, procedural memory complements semantic and episodic memory by providing reusable action
abstractions. It is currently undergoing a pivotal transition from explicit non-parametric instruction retrieval
to implicit parametric neural strategies. This evolution not only supports skill acquisition but also ensures
the stable and efficient implementation of complex decisions in long-horizon autonomous agents.

3.3 Memory Subjects

Memory subjects characterize who the memory is primarily modeling and serving for. This dimension is
orthogonal to memory substrate and cognitive mechanism, and is critical for understanding the optimization
goal of the memory in foundation agents. Figure 5 illustrates how this subject-level distinction connects with
cognitive memory mechanisms. Working memory, procedural memory, and sensory memory are predomi-
nantly agent-centric, reflecting their roles in supporting many real-world downstream tasks. Semantic and
episodic memory appear in both user- and agent-centric settings. For users, they encode stable preferences
and interaction histories, whereas in agent-centric memory, they support world modeling and experience
accumulation. Together, we may find that memory subjects interleave with cognitive categories, offering
a complementary perspective for organizing memory research beyond the single classifications as in prior
surveys (Zhang et al., 2025o; Du et al., 2025) alone.
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3.3.1 User-Centric Memory

User-Centric Memory

User-centric memory refers to an abstraction of user-specific facts and preferences, including
biographical data, historical interactions, and expressed preferences, that could be leveraged across
sessions and domains, to align with the user for coherent interactions and assistant task execution.

User-centric memory constitutes the foundational section of LLM agents towards user-related, especially
personalization tasks (Liu et al., 2025e; Chen et al., 2024b; Zhang et al., 2025m). Beyond general instruction
prompts, which only inform temporal task states, user-centric memory underpins the agent’s action and re-
sponse regarding the user identity and grounding user contexts for both short-term and long-term (Tan et al.,
2025c). This component is particularly critical in domains, including but not limited to counseling (Litam
et al., 2021), recommendation (Chen et al., 2018), and personal healthcare (Velliangiri et al., 2022), where
the agent must demonstrate both instant and longitudinal awareness of the user’s evolving preference or
behavioral traits. Below, rather than imposing a strict taxonomy, we highlight the key objectives in which
maintaining accurate and persistent user-centric factual memory is indispensable for enabling robust and
coherent user-related tasks.

Memory Management in Dialogues. The dialogue system is one of the most popular real-world applica-
tion scenarios for user-agent interactions (Chen et al., 2017; Xu et al., 2025e). Within the LLM’s finite context
window, existing dialogue systems can generally only process multi-turn conversations in limited sessions
contexts (Li et al., 2025a). Prompting LLM agents with all details in prior conversations is computationally
infeasible and often counterproductive due to noise accumulation and topic drift. Effective user memory
thus requires principled mechanisms for relevant conversation context retrieval (Maharana et al., 2024), up-
date (Xu et al., 2025e), summarization (Chhikara et al., 2025; Salama et al., 2025), and forgetting (Zhong
et al., 2024). Recent real-world memory systems such as MemGPT (Packer et al., 2023) explicitly formalize
memory hierarchies to manage long-term conversational state. In parallel, OpenAI’s ChatGPT memory fea-
ture implements a persistent memory mechanism that retains user-relevant details while giving users explicit
control over what is stored or forgotten (OpenAI, 2025). These developments illustrate a central challenge
in dialogue memory management: determining which pieces of information will remain important for future
dialogue accumulated during the user-agent conversations, such as stable preferences, life events, or sensitive
constraints.

Persistent User Simulation. High-fidelity user simulators are essential for realistic interactive online
platforms because they provide scalable, reproducible, and controlled environments for training and evalu-
ation, without accessing extensive real-user data, thereby respecting privacy and reducing costs associated
with live user studies and online A/B testing (Park et al., 2023; Zhu et al., 2024; Samuel et al., 2024; Zhang
et al., 2025q). In online digital platforms such as recommender systems (Zhu et al., 2025a) and social net-
works (Gao et al., 2023), simulators help approximate long-term user behaviors and preferences, enabling
evaluation of policy optimization, ranking strategies, and interventional impacts under dynamic conditions
rather than static test collections (Jin et al., 2013; Zhang et al., 2025k). In such scenarios, user-centric
memory support both longitudinal consistency and fine-grained preference evolution, as simulators need to
maintain personalized profiles and adaptive interaction patterns over extended horizons.

Long-Term Personalization. Unlike user simulation, which primarily targets group- or platform-level
benefits, and dialogue systems, that mainly capture preferences expressed within user-agent conversational
contexts, long-term personalization focuses on optimizing the experience of a specific user over extended
time horizons spanning days, months, or even years. By maintaining an explicit user profile or persistent
personal knowledge base across sessions, agents can adapt linguistic style, decision-making, and behavior
in a manner that consistently supports satisfaction of the same individual over time. Early work in long-
term personalization (Salemi et al., 2024) generates contextually relevant responses with episodic memory
construction. Subsequent research (Tan et al., 2024a) further explores encoding personal memory into
parameter-efficient modules, such as LoRA-based parameters (Hu et al., 2022). However, these approaches
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either struggle to fully exploit rich personal user data or incur substantial computational overhead. More
recent frameworks therefore emphasize more efficient memory mechanisms that can reconcile newly observed
behaviors with existing memory structures for personalized alignment (Cai et al., 2025; Zhang et al., 2025m).

Privacy-Preserving Memory. Persistent user memory introduces substantial demands in privacy, se-
curity, and data governance, because sensitive attributes may be stored, retrieved, and inadvertently ex-
posed through both training-time memorization and inference-time context leakage in memory-augmented
agents (Mireshghallah & Li, 2025). Recent work has systematically demonstrated that memory modules in
LLM agents are vulnerable to targeted extraction attacks (Wang et al., 2025a), and one can easily recover
private user data stored in agent memory under a black-box threat model. In multi-agent settings, privacy
risks are further compounded by heterogeneous agent roles and dynamic collaboration, which complicates the
enforcement of consistent privacy protocols across interacting memory banks (Shi et al., 2025b). To ensure
safe deployment, agents must support selective memory retention, secure storage, user-controlled deletion,
and transparent auditing of what information is remembered or forgotten. Practically, it is often combined
with differential privacy mechanisms (especially in personalized or federated adaptation), encryption-based
storage and retrieval (private vector database), and explicit retention or access-control policies to mitigate
leakage risks from both stored content and embeddings Tran et al. (2025); Shi et al. (2025b).

3.3.2 Agent-Centric Memory

Agent-Centric Memory

Agent-centric memory refers to distilled knowledge, skills, and operational task priors that an
agent accumulates through its own history of task execution or gained via environment interaction.
This supports long-context, long-horizon, and long-running tasks across real-world environments.

Unlike user-centric memory preserves personalized information mainly about the corresponding user, agent-
centric memory encodes more general lessons and experiences in the agent’s own history of solving real-world
tasks (Luo et al., 2025; Shinn et al., 2023; Wang et al., 2025c; Zhang et al., 2025i). This memory is agent-
centric, capturing lessons that are generally applicable rather than tied to any single user. In essence,
it is how an agent “learns from experience and environments”, retaining important facts, strategies, and
world knowledge gained through previous experiences to improve future performance (Wei et al., 2025e;d;
Zhang et al., 2025i). Different from user-centric memory to optimize the particular user satisfaction, agent-
centric experience memory cares more about broader real-world problems, where the solution and results are
intended to generalize across different users. This is crucial for long-horizon autonomy: an agent tackling
complex, multi-step tasks or lifelong learning (Zheng et al., 2025c;b) must be able to remember and build
upon what it has encountered before. Below, we outline the key motivations and scenarios that necessitate
agent-centric memory approaches.

Long-Horizon Tasks. LLM agents frequently engage in tasks requiring hundreds or thousands of reasoning
and action steps, such as coding (Jimenez et al., 2025), web navigation (Zhang et al., 2025l; Zhou et al., 2024),
complex multi-turn decision-making Shani et al. (2024), or sequential tool use (Qin et al., 2024). In these
settings, immediate working memory is easily overwhelmed by accumulated observations and intermediate
reasoning. Agent-centric memory provides an externalized mechanism for storing and retrieving key inter-
mediate states, enabling agents to operate beyond their native context window. For instance, MEM1 (Zhou
et al., 2025c) introduces an end-to-end RL framework that maintains a compact internal state, enabling
agents to consolidate relevant information while discarding redundant context and thereby operate with
near-constant memory usage across arbitrarily long, multi-turn interactions. Complementary to MEM1,
MemAgent (Yu et al., 2025b) proposes an RL-based memory agent tailored for long-text processing. It
reads long inputs in segmented chunks and uses a fixed-length, overwriteable memory that is updated incre-
mentally. This design enables LLM agents to scale to extremely long contexts with linear complexity and
minimal performance degradation. More recent approaches include hierarchical memory modules (Hu et al.,
2025b), context folding schemes (Sun et al., 2025b), and learned memory controllers (Zhang et al., 2025n)
that decide what to store and when to compress or discard outdated information.
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Domain-Specific Long-Tail Solutions. Many real-world problems exhibit long-tail phenomena (Zhang
et al., 2021; Kandpal et al., 2023; Park & Tuzhilin, 2008), where rare but important patterns, error cases, or
domain-specific heuristics occur infrequently in the training data. Agent-centric experience memory supports
the retention of these rare insights and knowledge, enabling agents to reuse them efficiently when similar or
related cases arise in the future (Li et al., 2024a). For example, in software debugging (Jimenez et al., 2025),
most errors follow common patterns, yet real-world systems often fail due to highly specific configuration
issues, dependency conflicts, or environment-dependent bugs. Similarly, in scientific research (Ghafarollahi &
Buehler, 2025), while general reasoning patterns and experimental procedures are often shared within a disci-
pline, many sub-area–specific experimental setups (e.g., specialized channel-coding configurations in wireless
communications) or highly domain-dependent troubleshooting practices (e.g., field-specific protocols in ar-
chaeology) are rarely encountered across researchers, and are therefore unlikely to be sufficiently represented
in pretraining data. Comparable long-tail dynamics also arise in complex information search (Wei et al.,
2025a) and professional workflow automation (Zhang et al., 2025g), where agents must address narrowly
scoped, context-dependent problems that benefit from storing customized one-off solutions and reapplying
them over time (Yang et al., 2025a).

Cross-Task Knowledge Transfer. Long-term memory enables agents to accumulate durable knowledge
across tasks and episodes, supporting continual improvement without catastrophic forgetting (Hatalis et al.,
2023). At a high level, cross-task knowledge transfer concerns how agents abstract and retain task-agnostic
cognitive knowledge from diverse interactions, enabling generalization across heterogeneous tasks, domains,
and environments rather than improving execution within a single setting or environment. For example,
Agent KB (Tang et al., 2025b) constructs a cross-domain experience framework that aggregates high-level
strategies and execution lessons distilled from heterogeneous agent trajectories into a shared knowledge
base, enabling agents to retrieve and reuse transferable problem-solving knowledge when facing novel tasks
across different domains. Unlike specific trajectory replay, the goal of cross-task memory is to distill interac-
tion experience into task-agnostic abstractions that generalize across environments and objectives. Another
representative example is the action–thought patterns used across WebShop (Yao et al., 2022) and ALF-
World (Shridhar et al., 2021) in ReAct (Yao et al., 2023). Such abstractions also include reusable tool-use
patterns (e.g., stable tool-use strategies (like Toolformer (Schick et al., 2023) and ToolLLM (Qin et al.,
2024), and error-avoidance execution heuristics accumulated through repeated failures (Shinn et al., 2023).
This enables LLM agents to progressively evolve into more capable and efficient problem solvers, exhibiting
behavior that mirrors human-like expertise development across diverse tasks over time.

Strategy and Skill Learning. In contrast to cross-task knowledge transfer, strategy and skill learning
for the agent-centric memory focuses on retaining environment-grounded procedural memories that encode
how to efficiently execute multi-step actions within a specific interaction regime, such as a web interface,
GUI system, or physical environment. For instance, Web agents (Wei et al., 2025e) in environments like We-
bArena (Zhou et al., 2024) learns how to reuse successful multi-step browsing policies rather than re-exploring
interfaces from scratch. For GUI agents, such procedural memory stores interface-specific action sequences,
such as menu traversal, widget manipulation, and error recovery strategies in constraints of desktop or mobile
environments (Qin et al., 2025; Wang et al., 2025e). In embodied agents, procedural memory manifests as
executable skills and control policies that respect physical dynamics and action preconditions (Fung et al.,
2025; Yang et al., 2025c). These stored experiences can be reused as templates, demonstrations, or priors
for solving tasks more efficiently. Memory-based skill learning allows agents to refine effective behaviors over
repeated episodes and internalize world models at the level of action–outcome regularities. This capability
is central to long-horizon autonomy and forms the basis for emerging research in lifelong learning (Zheng
et al., 2025c), long-running agents (Yang et al., 2025a).

4 Memory Operation Mechanism

4.1 Memory Operations in the Single-Agent System

In a single-agent system, memory operation mechanisms define how a foundation agent actively constructs,
updates, controls, and utilizes memory throughout long-horizon interaction and task execution. Rather

20



Operation Mechanism

Single-Agent

Multi-Agent

Memory Update and Consolidation
Agent integrates newly generated information to 
keep long-term knowledge consistent and up to 
date.

Memory Operation Mechanism refers to the procedures an agent uses to construct, organize, access, and maintain memory over long-horizon 
interaction. These operations jointly determine what historical information becomes accessible within the limited context 
window and. In multi-agent systems, memory operations must also respect the memory architecture, routing and access policies, and conflict and isolation 
controls, so that agents can coordinate cross agent read and write while reducing redundancy, inconsistency, and information leakage.

Memory routing
It governs how memories are selected for each role, via orchestrator-based 
routing, agent-initiated routing, or memory-driven routing. The routing 
rule decides what gets retrieved and injected into each agent’s context.

Memory isolation and conflicts
It limits leakage, redundancy, and contradictions when multiple agents 
update memory in parallel. Typical mechanisms include explicit memory 
editing and constraint feedback dual memory methods to keep the shared 
state consistent.

Memory architecture
It defines where memory resides and who can read or write it, covering 
private, shared workspace, hybrid, and orchestrated setups. These choices 
trade-off reuse, isolation, and controller logic.

Storage & Index
Storage organizes information using vector, structured, 
or text formats to ensure efficient retrieval.

Update & Refresh
Agents dynamically revise or refresh memory 
entries to adapt to new information.

Loading & Retrieval
Retrieval mechanisms filter and rank relevant 
memories to inject into agent's current context.

Compression & Summarization
Compression condenses detailed interaction histories 
into compact abstracts to regulate memory growth.

Forgetting & Retention
Forgetting removes obsolete data while retention 
preserves high-utility knowledge for long-term reasoning

Figure 6: The Operation Mechanism of Foundation Agent Memory System. The diagram illus-
trates the complete operation mechanism of the foundation agent memory system. For single-agent system,
it defines five core operations: storage & index, loading & retrieval, update & refresh, compression & sum-
marization, and forgetting & retention, that govern how historical information is preserved and accessed
to support downstream work. For multi-agent systems, the framework extends to address coordination
challenges through memory architecture definitions, routing protocols, and isolation and conflict resolution
strategies, ensuring data consistency and efficient collaboration across distributed agents.

than treating memory as a static repository, modern agents manipulate memory through a sequence of
operations, including indexing, retrieval, updating, compression, summarization, forgetting, and pruning.
These operations collectively regulate how past experience is incorporated into ongoing reasoning and future
decision-making, forming the operational backbone of single-agent memory systems.

4.1.1 Storage and Index

As an agent’s memory grows over time, how information is stored and organized becomes essential for ensur-
ing that relevant information can be efficiently and reliably retrieved when needed. In single-agent systems,
memory is typically indexed at write time by associating each entry with semantic embeddings and auxil-
iary metadata such as timestamps, task identifiers, entities, or tool usage (Lewis et al., 2020; Zhang et al.,
2023b; Rezazadeh et al., 2025b). Vector-based storage remains the dominant paradigm in non-parametric
agent memory, enabling efficient approximate nearest-neighbor search over episodic or semantic memory
in retrieval-augmented agents (Guu et al., 2020; Quinn et al., 2025). Beyond flat vector indices, agents
increasingly adopt structured storage formats, including relational tables, graph-based memory, and hierar-
chical tree representations, which enable relational queries, multi-level abstraction, and schema-aware access
aligned with task structure (Anokhin et al., 2024; Sarthi et al., 2024; Rezazadeh et al., 2025b). In parallel,
some systems maintain text-record memories that store explicit, human-readable summaries and chronolog-
ical logs, relying on keyword matching or lightweight string-based retrieval to prioritize transparency and
controllability (Park et al., 2023; Zhang et al., 2025o). Finally, storage is not limited to external memory
modules: parametric memory embedded in model weights, transient working memory in the context window,
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and inference-time internal states such as KV caches collectively serve as implicit storage substrates that
influence retrieval behavior and reasoning dynamics (Mallen et al., 2023; Kwon et al., 2023; Pope et al.,
2023). As memory scales across longer horizons, the choice of storage format and indexing strategy directly
affects retrieval precision, computational overhead, and downstream reasoning reliability.

4.1.2 Loading and Retrieval

To utilize stored experience during ongoing reasoning and decision-making, an agent relies on retrieving task-
relevant memories while limiting the influence of irrelevant or outdated information. In single-agent systems,
this process typically begins with lightweight loading operations that filter or preselect memory entries based
on metadata such as recency, task scope, or memory type, followed by similarity-based retrieval over vector-
ized representations (Lewis et al., 2020; Mallen et al., 2023; Zhang et al., 2025o). Loaded memories are then
ranked or refined using semantic similarity, heuristic constraints, or budget-aware selection strategies before
being injected into the model’s prompt or working context, forming the primary interface between external
memory and the LLM’s inference process (Park et al., 2023; Wang et al., 2025p). Prior studies indicate that
retrieval quality has a substantial impact on agent performance. Retrieving excessive memory can introduce
noise and context overload, while overly restrictive retrieval may prevent access to critical historical infor-
mation (Xu et al., 2025e; Hu et al., 2025c). Consequently, effective loading and retrieval mechanisms aim to
balance relevance, diversity, and context budget to support coherent long-horizon behavior.

4.1.3 Updates and Refresh

As agents interact with their environment over extended horizons, previously stored memory may become
incomplete, outdated, or misaligned with newly observed information, making static or append-only memory
representations insufficient. Update mechanisms enable a single agent to revise existing memory entries in
response to new observations, external feedback, or reflective reasoning, allowing memory content to evolve
rather than merely accumulate. In practice, updates are often triggered after task completion, evaluation
signals, or detected inconsistencies, and may involve rewriting semantic summaries, merging overlapping
episodic records, or adjusting the importance of stored information (Park et al., 2023; Tan et al., 2025c;
Wang et al., 2023a). In parallel, refresh operations focus on adjusting the relative prominence and accessi-
bility of memory without altering its core content, such as re-ranking salient entries, regenerating condensed
summaries, or reinforcing frequently accessed memories to preserve their influence over future reasoning. Re-
cent agent systems further demonstrate that reflective or self-evaluative processes can autonomously trigger
both updating and refresh actions, leading to improved long-term coherence and task performance (Shinn
et al., 2023; Ouyang et al., 2025). Together, these mechanisms allow memory representations to evolve
dynamically, supporting adaptation in non-stationary environments while mitigating the accumulation of
obsolete or misleading information.

4.1.4 Compression and Summarization

Long-horizon agent memory systems require mechanisms that regulate growth while preserving information
essential for future reasoning and decision-making. Compression and summarization address this need by
converting fine-grained episodic records into more compact and abstract representations that reduce redun-
dancy and improve memory efficiency. In practice, many agent systems perform summarization periodically
or after task completion, consolidating interaction histories into semantic or hierarchical memory suitable
for long-term storage (Wang et al., 2025j; Chen et al., 2025d). Hierarchical consolidation further organizes
compressed memory into multi-level or tree-structured representations, enabling scalable retrieval across
different abstraction levels (Sarthi et al., 2024; Rezazadeh et al., 2025b). Dynamic Cheatsheets further in-
stantiate this idea by maintaining a compact, task-adaptive summary that is continuously updated to surface
only the most salient information for ongoing reasoning, reducing repeated large-scale retrieval and context
expansion at inference time (Suzgun et al., 2025). While these mechanisms improve context utilization and
scalability, prior work highlights an inherent trade-off between abstraction fidelity and long-term recall, mak-
ing summarization strategies a critical design in single-agent memory systems (Lee et al., 2024; Wu et al.,
2025d).
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4.1.5 Forgetting and Retention

In agent systems, memory relevance evolves over time as task objectives change and environments become
non-stationary, making indiscriminate memory accumulation increasingly misaligned with effective long-term
reasoning. Forgetting mechanisms address this challenge by reducing the influence of obsolete or low-utility
information through explicitly removing or suppressing memory entries that are no longer aligned with an
agent’s ongoing objectives. In practice, forgetting is commonly implemented via heuristic policies such as
recency-based decay or importance thresholds, as well as learned strategies that optimize memory removal
under explicit resource or efficiency constraints (Alla et al., 2025; Wang et al., 2025p). In contrast, reten-
tion mechanisms determine which memories should be preserved and prioritized over extended interaction
horizons, ensuring that task-relevant knowledge remains accessible despite continual memory growth. Re-
cent work emphasizes adaptive retention strategies, where agents dynamically adjust preservation priorities
based on task context, feedback signals, or long-term performance objectives, enabling robust behavior in
non-stationary environments (Yan et al., 2025b; Zheng et al., 2025a).

4.2 Memory Mechanism in the Multi-Agent System

In a multi-agent system, memory operation mechanisms describe how several agents build and reuse memory
together during collaboration: each agent can keep its own private memory, and they can also share experi-
ence through a shared workspace. As in single-agent systems, this mechanism still includes basic operations
such as indexing, retrieval, updating, compression, summarization, forgetting, and pruning. Beyond these
basic operations, what matters more in multi-agent settings is cross-agent read and write rules: in each task,
the system needs to choose suitable memory for agents with different roles. In addition, the system often
needs extra operations to remove redundancy, resolve conflicts, and keep the memory consistent.

4.2.1 Memory Architecture

In multi-agent systems, memory can be organized in different ways, varying in which layer it is stored, how
read and write permissions are defined across agents, and whether the system introduces a controller. These
design choices determine whether routing can construct an efficient memory view and whether systemic
issues such as information leakage may arise.

Private-only. In a private-only architecture, each agent has its own independent memory, and its read and
write rights only take effect inside that agent’s memory. In multi-agent collaboration, agents can only rely
on their own memory and the current task context to work. This setup gives strong isolation and makes the
system easier to check. However, the same memories are often created again in multiple private spaces, which
can waste resources. Representative examples include RecAgent (Wang et al., 2025h), which instantiates
one agent per user and keeps a private memory to avoid mixing different users’ histories to better protect
privacy; TradingGPT (Li et al., 2023b), where each trading agent maintains its own memory so it can follow
a consistent risk preference and sector focus, and collaboration mainly happens through exchanging selected
viewpoints rather than sharing full memories; and MetaAgents (Li et al., 2025j), which equips each role
with an isolated memory of its past thoughts and decisions so the role stays stable and consistent, while any
information gained from dialogue is written back locally.

Shared-workspace. Unlike private-only memory, shared-workspace designs use a common pool that all
agents can read and write. Agents share intermediate results through this shared state, so they do not
need heavy peer-to-peer messaging, which reduces communication cost. However, the shared pool may
quickly become noisy and therefore requires filtering mechanisms, as well as coordination strategies to avoid
conflicts when multiple agents update the same information. As representative shared-workspace designs,
MetaGPT (Hong et al., 2023) uses a simple shared pool to publish role agents’ intermediate artifacts, and
each agent applies its role profile to filter the pool and pull only relevant memory into context. InteRecA-
gent (Huang et al., 2025b) makes the shared state more task-specific by establishing a Candidate Bus: tools
repeatedly read the current candidate set and write back filtered candidates, so the set is progressively nar-
rowed which can avoid prompt length overflow. MAICC (Jiang et al., 2025d) further scales the workspace
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into a shared experience pool with offline data and an online replay buffer, where agents query with their
current sub-trajectory and retrieve top-k similar trajectories to reuse in-context.

Hybrid. This setup keeps both a private layer and a shared layer. It uses a policy to decide whether
new information is written to the private space or to the shared space. At each call, it builds a permission-
limited memory view for the agent, so the agent only sees what it is allowed to see. This gives a balance
between maximizing memory reuse and keeping sensitive information isolated. For example, in Collaborative
Memory (Rezazadeh et al., 2025a), the system separates all memory fragments into private memory and
shared memory. During writing, a write policy decides whether the information is generally useful or user-
specific, and then writes it to the shared or private layer. During reading, a read policy uses an access
graph provided by the system to build a permission-limited memory view for the current call. Similarly, in
MirrorMind (Zeng et al., 2025), each Author Agent maintains a private memory corresponding their research
interests, while sharing foundational disciplinary knowledge through a public memory. This hybrid design
forms the structure of an AI Scientist.

Orchestrated. The previous three categories mainly differ in where memory lives and who can see it.
By contrast, orchestrated designs introduce an explicit controller that coordinates agents in a hierarchical
workflow and mediates memory access. Concretely, the controller decomposes the task, assigns subtasks to
role agents and decides what each agent can read or write. This centralized coordination is well-suited for
multi-stage workflows and strongly constrained settings, but it may also introduce a bottleneck and additional
system complexity. ChatDev (Qian et al., 2024a) exemplifies this pattern by running role agents under a
predefined ChatChain (design, coding, testing), where stage outputs serve as structured handoffs to reduce
cross-stage context overload. MIRIX (Wang & Chen, 2025) similarly orchestrates memory maintenance: a
Meta Memory Manager routes updates/retrieval to specialized Memory Managers and aggregates their results
into a unified response. Notably, this control layer is orthogonal to storage layout and can be combined with
private-only, shared-workspace, or hybrid memory stores. For instance, MGA (Cheng et al., 2025) organizes
GUI interaction as an observe, plan and ground agent pipeline. A Planner acts as the controller, while
lower-level agents can submit intermediate states in a shared workspace, with the planner selecting what
history is retrieved and injected at each step. Similarly, AgentFlow also combines orchestration with a shared
workspace: a planner controls all modules and writes key intermediate results into a shared memory for later
retrieval (Li et al., 2025l).

4.2.2 Memory Routing

Given an architecture, routing describes a set of memory allocation and access rules. When a new task
arrives, the system needs to build a separate memory view for agents with different roles: it decides which
past memories should be retrieved and how they should be injected into each agent’s context. We group
routing methods by where the routing decision is made: a central orchestrator, individual agents, or the
memory store itself via retrieval and matching.

Orchestrator-based Routing. This refers to a setting where a centralized orchestrator makes routing
decisions in a unified way. It maintains the global task state and collaboration progress, breaks a complex
goal into subtasks, and then assigns subtasks to different worker agents based on their roles and abilities,
while also distributing the required memory and deciding the execution order. These decisions can be
updated dynamically as the task state change. This method emphasizes a centralized global workflow, but
the cost is that the orchestrator may become a bottleneck for performance and robustness, creating a single
point of load and failure risks. For example, in LEGOMem (Han et al., 2025), the orchestrator keeps the
global state, generates the next subtask, selects an agent to execute it, and updates the state using the
agent’s summary; memory is scheduled in the same way, with task memories injected to the orchestrator for
planning and subtask memories routed to the selected agent for execution. GameGPT (Chen et al., 2023)
shifts the focus to a workflow routing: a manager defines a multi-stage pipeline and requires each stage
to write key intermediate outputs into a shared workspace Pt, so later stages can inherit and reuse them.
Finally, Westhäußer et al. (2025) extends orchestration to memory-source routing, where the orchestrator
using MCP selects which memory sources to call and injects the most relevant snippets; if the injected
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evidence is insufficient, If the injected information is not enough, the Self-Validator asks for more retrieval
and updates the context, enabling centralized memory control.

Agent-Initiated Routing. Compared with orchestrator-based routing, this method routing decisions are
not assigned by a centralized orchestrator. Instead, each agent initiates them locally based on its role and
task. Information is usually published into a shared memory pool first, and then agents use constraint
mechanisms to select the memories they need, forming their own memory views. This method is often more
flexible, but it also depends more on good filtering design to avoid noise, conflict, or missing important
information in the shared pool. In SRMT (Sagirova et al., 2025), each agent keeps a personal memory
vector and decides locally how much to read from shared memory: at each step it uses cross attention over
its memory to select from the shared memory sequence and updates its personal memory. Taking a more
explicit filtering route, S3 (Gao et al., 2023) treats shared memory as a platform-wide message stream and
scores items with factors such as forgetting, relevance, and source credibility, retaining only a small subset as
the agent’s own memory view. In the Talker-Reasoner setup (Christakopoulou et al., 2024), a shared store
(mem) is written by the Reasoner and read by the Talker, and the Talker can choose what to read or wait
for a fresh update before replying, showing that agent can decide when to read from memory.

Memory-driven Routing. Different from the above two, routing here is mostly done by retrieval from the
memory store. The system represents the current task as a query, and then performs “retrieval, scoring and
reranking, selection” in the memory store to obtain the most relevant subset of memories and inject it into
the context. Sometimes it can also use structured links between memories (like graph-based expansion) to
extend the retrieved results into a more complete set of experience pieces. As a typical form of memory-driven
routing, G-Memory (Zhang et al., 2025c) organizes multi-agent histories as a hierarchical graph, retrieves
relevant nodes for a new task, expands them through neighborhood links, and compresses the result into a
core subgraph before trimming it into role-specific memory views. CRMWeaver (Lai et al., 2025) instead
routes at the level of reusable guidelines, it retrieves the most relevant workflow guideline from past successful
trajectories and injects it into the current context, and writes back a new guideline when no match exists.
Finally, in Spark (Tablan et al., 2025), each coding problem is treated as a query, and a retrieval agent
analyzes intent and selects the most relevant documentation and past experience traces from a shared store.

4.2.3 Memory Isolation and Conflicts

Building on multi-agent architecture and memory routing, memory isolation is very important because
memory is read and written by multiple agents rather than updated in a single, sequential loop. Multiple
agents may produce conclusions in parallel, and their accessible resources and permissions often change over
time. The system writes all the information into the same shared pool without any separation and make
it visible to every agent, and there might be consistency conflicts: different agents may write facts that
contradict each other, and outdated information may not be removed and still retrieved later, which can
mislead reasoning. Agents Thinking Fast and Slow (Christakopoulou et al., 2024) reports that the Talker
may produce wrong or rushed answers because it can read an outdated belief state before the Reasoner
updates it. Here, memory conflicts are mainly handled in two ways: controlling at write time, or gradually
improving consistency through an iterative loop.

Write Control for Memory Isolation. A direct strategy is to enforce isolation at the memory write and
update stage. In each interaction round, an agent first compares newly extracted candidate facts against the
existing memory state and selectively updates memory through a controlled evaluation mechanism, rather
than blindly appending new information. In Memory-R1 (Yan et al., 2025b), the memory manager agent is
the only agent allowed to mutate memory. This includes four kinds of discrete editing actions, like ADD,
UPDATE, DELETE, and NOOP. The ADD writes a new entry; UPDATE rewrites or merges an existing
entry (especially when the new information is a refinement or correction of the old one, the system tends
to keep the version with more information); DELETE removes an entry that is clearly contradicted by new
evidence or becomes outdated; and NOOP means the information is already covered or is not important for
long-term memory, so no update is made. For each user query, the memory manager observes the current
memory state and decides which specific memory slots to operate on. As a result, irrelevant memory entries

25



remain untouched. A related form of write-time isolation is adopted in WebCoach (Liu et al., 2025b), where
the memory store is updated only after an episode is completed, so partial trajectories are never written into
long-term memory, which is isolated and preventing memory conflicts.

Memory Consistency with Feedback Loop. In contrast to write control, this line of work treats
memory conflicts as an iterative optimization process for consistency. Generally, the multi-agent memory
system enforces the task’s hard requirements in a stable constraint memory that later iterations can consult,
and it keeps a growing feedback memory that records failures from earlier rounds to support learning in
subsequent iterations. EvoMem (Fan et al., 2025b) is a representative example. Its verifier compares each
candidate with the stored constraint memory and outputs a score. The system accepts a solution only when
the score reaches one hundred.

Learning Policy

Learning policy refers to how an agent learns to manage memory,what to store, when to store it, how to represent it,when to 
retrieve or discard it, andwhere to store or retrieve, rather than relying on fixed, hand-crafted heuristics. Such policies are typically 
optimized from data or feedback (e.g., supervised signals, reinforcement learning, or self-improvement)

Reinforcement Learning
Learning memory management through trial and error to increase or
balance performance by optimizing long-horizon rewards

Prompting
Designing structured to guide when and how the agent updates and uses 
memory, without changing model parameters.

Fine-Tuning
Updating model parameters with curated data to internalize effective 
memory behaviors and improve robustness and consistency across tasks.

Figure 7: Learning Policy for Foundation Agent Memory System. We illustrate how learning policies
guide agents in deciding what to store, when to store it, how to represent it, and when and where to retrieve or
discard memories. The figure summarizes three common approaches, including prompting, fine-tuning, and
reinforcement learning, that progressively improve memory decisions from imprecise memory management
toward effective and accurate memory management.

5 Memory Learning Policy

This section examines how agents acquire strategies to perform memory operations (reading, writing, prun-
ing) effectively. Rather than relying on hard-coded heuristics, these policies dictate when and what to
remember based on task requirements. We categorize these policies into three distinct paradigms based on
the learning signal: prompting, fine-tuning, and reinforcement learning.

5.1 Prompt-based Memory Learning

This paradigm parameterizes the memory policy as natural language prompts. The agent executes these
prompts to determine when to access, modify, or prune memory. The primary advantages of this approach
include the elimination of expensive model fine-tuning and the high interpretability of the policy. We further
categorize this paradigm into Static Prompt-based Control and Prompting Optimization.

5.1.1 Static Prompt-based Control

Static prompt-based control encodes memory policies as fixed, human-designed rules that remain invariant
during execution. Memory decisions are specified at design time through prompt templates or predefined
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schemas, offering strong interpretability and predictable behavior, but lacking the ability to adapt based on
interaction feedback or distributional shifts.

Existing work on static prompt-based memory control can be grouped into three design targets: static mem-
ory OS and organization, where memory is treated as a structured container or a operation system with a
fixed form and enforced through hierarchical partitioning, indexing, summarization, or schema-based repre-
sentations to mitigate long-horizon context degradation (e.g., SCM (Wang et al., 2023a), MemGPT (Packer
et al., 2023), LiCoMemory (Huang et al., 2025e), MemoChat (Lu et al., 2023), A-Mem (Xu et al., 2025e), D-
SMART (Lei et al., 2025), MemWeaver (Yu et al., 2025d), and Zep (Rasmussen et al., 2025)); static memory
control in single-agent settings, where access and retention are constrained by persona identities or domain-
specific priors encoded in prompts rather than learned relevance signals (e.g., RoleLLM (Wang et al., 2024e),
ChatHaruhi (Li et al., 2023a), Mem-PAL, WarAgent (Hua et al., 2023), MemoTime (Tan et al., 2025b), Fin-
Mem (Yu et al., 2025e), TradingGPT (Li et al., 2023b), and MemoCRS (Xi et al., 2024)); and static memory
assignment and coordination in multi-agent systems, where memory is distributed across agents through
predefined roles, modular decomposition, and structured communication protocols without learning-based
coordination (e.g., MIRIX (Wang & Chen, 2025), LEGOMem (Han et al., 2025), G-Memory (Zhang et al.,
2025c), MADRA (Wang et al., 2025g), GameGPT (Chen et al., 2023), and ChatDev (Qian et al., 2024a)).

5.1.2 Dynamic Prompt-based Control

Dynamic prompt-based control explores whether memory policies encoded in natural language prompts can
be adapted at test time based on experience and feedback, without updating model parameters. Rather
than fixing memory behavior at design time, this paradigm treats memory control as a language-mediated
and continually revisable process.

Existing work in this space centers on a set of closely related research questions. One line of work asks
whether memory usage policies can be corrected through reflection on past outcomes, prompting agents to
analyze failures or successes and convert these insights into revised memory instructions that guide future
behavior (e.g., Reflexion (Shinn et al., 2023), ReasoningBank (Ouyang et al., 2025), WebCoach (Liu et al.,
2025b), and QuantAgent (Wang et al., 2024g)). Another line investigates whether memory representations
themselves can be dynamically optimized to improve information efficiency under limited context budgets,
treating compression, denoising, and structural reorganization as adaptive, prompt-driven processes (e.g.,
ACON (Kang et al., 2025c), ACE, SeCom (Pan et al., 2025), Nemori (Nan et al., 2025), CAM (Li et al.,
2025d), EvoMem (Fan et al., 2025b), and ViLoMem (Bo et al., 2025)). A further question concerns whether
dynamic prompting can distill accumulated experiences into reusable procedural knowledge, such as reasoning
templates, execution scripts, or tool-usage strategies that generalize beyond episodic recall (e.g., BoT (Yang
et al., 2024b), Memp (Fang et al., 2025b), and ToolMem (Xiao et al., 2025)). Despite their adaptivity, these
methods remain fundamentally language-mediated and lack explicit credit assignment, limiting their capacity
for long-term policy optimization compared to fine-tuning and reinforcement learning–based approaches.

5.2 Fine-tuning: Parameterized Memory Policies

Beyond prompt-based adaptation, supervised fine-tuning (SFT) internalizes memory policies into model
parameters, enabling more stable and reusable memory behaviors. From a policy learning perspective, SFT-
based approaches investigate how memory policies are internalized, stabilized, and executed efficiently once
embedded into model weights.

5.2.1 Policy Internalization into Parameters

A defining characteristic of SFT-based memory control is that memory policies are internalized into model
parameters, transforming memory from an external context manipulation problem into a parametric policy
representation. Rather than relying on prompts or explicit buffers at inference time, these approaches embed
memory-related behaviors directly into the weight space, enabling stable and reusable memory usage across
tasks.
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Within this paradigm, existing work explores several closely related research questions concerning how
memory control policies can be embedded into model parameters and how such internalization should be
structured. Some approaches focus on internalizing memory content itself, distilling short-term contextual
information into long-term parametric representations (Wang et al., 2024m; 2025o)). Others emphasize inter-
nalizing memory access and retrieval behaviors by learning parameterized interfaces or lightweight modules
that mediate interaction with external or structured memory stores, rather than absorbing raw content
into weights (e.g., Memory3 (Yang et al., 2024a) and MLP Memory (Wei et al., 2025c)). A related line of
work investigates how such parameterized memory policies can be organized hierarchically, enabling scalable
invocation of large memory components while decoupling long-tail knowledge from core reasoning abilities
(Pouransari et al., 2025). Despite their differences, these approaches share the objective of shifting memory
control from prompt-level manipulation to parameterized decision rules learned through supervision.

5.2.2 Parameterized Policy Stabilization and Boundary Control

Beyond internalization, SFT enables the stabilization of memory policies by learning explicit boundaries on
what should be written, corrected, or suppressed once memory control is embedded into parameters. Rather
than merely expanding memory capacity, these approaches aim to prevent error accumulation, concept drift,
and persona inconsistency under long-term use.

A common theme across these works is the use of supervision to regularize memory updates and enforce
boundary constraints. Some approaches train models to perform reflection or self-analysis before committing
information to memory, encouraging the storage of high-level, noise-resistant representations aligned with
task intent (Liu et al., 2023b; Zhang et al., 2025p; Chen et al., 2025d)). Others emphasize identifying and
repairing erroneous or outdated memory by learning when existing knowledge should be revised or overrid-
den through correction signals, verifier feedback, or routing mechanisms (e.g., WISE (Wang et al., 2024f),
SuperIntelliAgent (Lin et al., 2025), CRMWeaver (Lai et al., 2025)). In long-horizon interactive settings,
defensive boundary control further constrains memory updates to preserve role or identity consistency by
restricting which experiences can be retained or reused, like Character-LLM (Shao et al., 2023). Collectively,
these methods treat reflection and self-correction not as isolated prompt-level techniques, but as mechanisms
for learning stable and bounded memory policies through supervision.

5.2.3 Parameterized Policy Efficiency and Retrieval Refinement

Beyond learning what to store and how to stabilize memory, SFT is also used to refine how parameterized
memory policies are executed at inference time, particularly during memory reading and retrieval. Rather
than relying on exhaustive context access, these approaches treat retrieval itself as a learning policy and
optimize how queries are formulated, iteratively refined, and applied to compressed memory representations.
Through supervised training, models learn to generate precise retrieval cues for targeted memory access (Qian
et al., 2025b), to execute multi-hop or progressive retrieval that refines queries across reasoning steps (Ko
et al., 2024), and to optimize compression-aware retrieval by internalizing or reversibly refining memory
representations (Cao et al., 2025b; Wang et al., 2025m), thereby improving reasoning robustness while
reducing inference-time overhead. Despite these gains, the resulting retrieval policies remain fixed after
training and do not incorporate explicit credit assignment over extended decision horizons.

5.3 Reinforcement Learning for Memory Policies

Reinforcement learning introduces a fundamentally different paradigm for memory control by enabling mem-
ory policies to be optimized through interaction and reward feedback. Unlike prompt-based or supervised
approaches, RL allows downstream task outcomes to influence earlier memory-related decisions, making
memory construction itself a learnable policy. Existing work can be understood as progressively extending
the temporal scope over which reinforcement signals shape memory behavior.
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5.3.1 Step-Level Memory Decisions

At the shortest temporal scope, reinforcement learning is applied to memory control by treating memory
management as a sequence of step-level decisions. In this setting, memory operations are modeled as actions
selected by a learning policy and optimized based on their immediate or short-horizon impact on task reward.

One line of work studies how memory editing can be formalized as an explicit action space. Memory-R1 (Yan
et al., 2025b) defines atomic memory operations such as adding, updating, deleting, or skipping entries,
and learns a memory policy that selects among these actions based on task-level rewards. MemAct (Zhang
et al., 2025n) extends this formulation by incorporating finer-grained editing actions, including trimming and
summarization, directly into the agent’s unified policy space. A closely related problem concerns step-level
memory decisions under explicit capacity constraints. MemAgent (Yu et al., 2025b) and RMM (Tan et al.,
2025c) address this setting by learning, through interaction-driven feedback, which information should be
written into a fixed-size memory buffer when processing extremely long contexts. Mem-α (Wang et al., 2025p)
generalizes this paradigm by framing memory construction itself as a sequential decision-making problem,
where agents learn, via reinforcement learning, how to populate and update structured multi-component
memories (e.g., core, semantic, and episodic memory) to maximize long-horizon task performance. Together,
these approaches frame step-level memory control as the optimization of local memory actions through
reinforcement signals, without explicitly modeling the long-term effects of memory state construction.

5.3.2 Trajectory-Level Memory Representation

As tasks extend over longer horizons, the value of memory decisions often emerges only through their
cumulative influence on future reasoning and action selection. Reinforcement learning enables this setting
by allowing delayed task outcomes to shape how trajectory-level memory states are constructed, updated,
and maintained by a learning policy.

Within this scope, existing work studies how compact, decision-sufficient memory representations can be
learned when interaction histories can no longer be evaluated step by step. Rather than treating memory
as a transient buffer, these approaches view trajectory-level memory as part of the agent’s Markov state,
whose quality is assessed through downstream decision performance (Chen et al., 2025c; Wu et al., 2025d). A
closely related question concerns how long interaction histories should be abstracted into such representations.
Several studies treat summarization, folding, or compression as policy decisions whose effectiveness can only
be evaluated through reinforcement signals propagated from future outcomes (Lu et al., 2025b; Sun et al.,
2025b; Li et al., 2025g). Trajectory-level memory also raises the issue of how memory states should evolve over
time as new interactions unfold. MemSearcher (Yuan et al., 2025a) addresses this problem by maintaining
an iteratively updated compact memory state and propagating advantages across contexts to refine memory
representations. Together, these works characterize trajectory-level memory as a learned state representation
whose utility is defined by its long-term contribution to decision making under reinforcement learning.

5.3.3 Cross-Episode and Multi-Agent Memory

When memory extends beyond individual trajectories, it no longer serves only immediate reasoning but
accumulates experience whose value emerges across repeated episodes or interactions. At this scope, re-
inforcement learning is essential, as only long-term and cross-episode reward signals can determine which
memories should persist, adapt, or be revised by the memory policy.

Research at this level focuses on how experience should be represented, reused, and coordinated once memory
spans multiple episodes or agents. Rather than preserving raw interaction histories, cross-episode memory
aims to distill higher-level decision-relevant knowledge, such as reusable strategies, self-correction rules, or
abstracted behavioral patterns, whose utility is evaluated through repeated reinforcement signals. This per-
spective underlies approaches such as MCTR (Li et al., 2025h) and graph-based experience abstraction (Xia
et al., 2025), which encode experience as transferable decision knowledge learned through interaction. Cru-
cially, such experience is retrieved and applied in a context-dependent manner governed by reinforcement
learning, as exemplified by reflective retrieval policies in Retroformer (Yao et al., 2024) and Memento (Zhou
et al., 2025a). As memory further extends across agents or representation spaces, reinforcement learning
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enables feedback to propagate beyond individual trajectories. This includes latent or non-textual memory
representations such as MemGen (Zhang et al., 2025d), retrieval-path optimization and callback mechanisms
in SUMER (Sumers et al., 2023) and ReMemR1 (Shi et al., 2025a), as well as shared or decentralized memory
policies in multi-agent systems such as MAICC (Jiang et al., 2025d) and SRMT (Sagirova et al., 2025). These
studies frame cross-episode and multi-agent memory as the broadest scope of reinforcement-learning-based
memory control, where memory policies evolve through accumulated interaction and reward feedback rather
than predefined rules or one-shot supervision.

6 Scaling: Memory, Contexts, and Environments

As LLMs and agents are deployed in increasingly realistic settings, their contexts grow rapidly and can
explode along three scaling axes during interactions with the open-world environments: interaction horizon,
environmental complexity, and system quantity. While traditional evaluations often rely on static, context-
limited settings that overlook environmental dynamics, real-world utility requires the ability to accumulate,
retain, and update knowledge across extended timeframes and heterogeneous data structures. This section
explores how memory emerges as the essential architectural solution to this scaling challenge, transforming
from a simple interaction log into a sophisticated context-management system that enables robust skill
learning, long-term personalization, and collective coordination in multi-agent ecosystems.

6.1 Context-Limited Simple Environment

The majority of LLM and agent benchmarks today are still configured in context-limited simple environ-
ments, where an agent is placed in a compact and closed world, interacts for only a short horizon task
instance (Hendrycks et al., 2021b) or synthetic non-real users (Maharana et al., 2024). While such set-
tings facilitate reproducibility and experimental comparison, they substantially under-specify the memory
demands faced by real-world agents. Therefore, strong benchmark performance often reflects proficiency
in in-context pattern matching or short-term reasoning, rather than the ability to accumulate, retain, and
reuse knowledge across extended interactions and evolving preferences of user contexts. This mismatch leads
to a notable utility gap: agents that achieve high scores on existing benchmarks frequently fail to exhibit
long-term adaptation, user personalization, or task-specific skill reuse in open-ended, dynamic environments.

A substantial portion of existing LLM and agent evaluations remains confined to static, context-limited
environments. Classic general question answering benchmarks, including SQuAD (Rajpurkar et al., 2018),
HotpotQA (Yang et al., 2018), and KILT (Petroni et al., 2021), operate over frozen Wikipedia snapshots,
while MS MARCO (Craswell et al., 2021), Natural Questions (Kwiatkowski et al., 2019), SearchQA (Dunn
et al., 2017), and TriviaQA (Joshi et al., 2017) replace live information access with pre-collected queries and
passages. These designs yield stable, bounded, and well-controlled information sources under which mod-
ern systems achieve near-saturating performance. However, retrieval and reasoning are strictly episodic and
instance-isolated: agents neither maintain cross-query state nor confront temporal drift, source inconsistency,
or evolving knowledge. As a result, such benchmarks impose minimal requirements on persistent memory, pri-
marily testing short-term retrieval and in-context reasoning rather than long-term knowledge accumulation
or adaptive context management. Similar limitations extend to tool-use and web interaction benchmarks.
Frameworks such as ToolBench (Qin et al., 2024), WebShop (Yao et al., 2022), and WorkArena (Drouin et al.,
2024) rely on fixed APIs or self-hosted environments that abstract away authentication, failure recovery, and
long-term user or task state. Even systems that interact with the live web, including WebGPT (Nakano et al.,
2021) and WebVoyager (He et al., 2024a), remain constrained by curated site lists and strict interaction bud-
gets. Sequential and interactive environments such as ScienceWorld (Wang et al., 2022), ALFWorld (Shridhar
et al., 2021), TextWorld (Côté et al., 2018), and Jericho (Hausknecht et al., 2020), along with programming
benchmarks like APPS (Hendrycks et al., 2021a), SWE-bench (Jimenez et al., 2025), SWE-Bench Pro (Deng
et al., 2025), and SWE-Lancer (Miserendino et al., 2025), increase task complexity but remain episodic,
reset-centric, and evaluation-driven. Consequently, these benchmarks systematically fail to assess knowledge
accumulation across episodes and long-horizon consistency, thereby obscuring the critical role of memory for
robust real-world agent deployment.
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6.2 Context-Exploded Real-World Environments

Unlike context-limited benchmark evaluations in research works, real-world deployments expose agents to en-
vironments where context scales along multiple axes. It accumulates over long interaction horizons, becomes
increasingly complex due to structured and heterogeneous system state, and spans multiple environments,
agents, and tools.

6.2.1 Scaling with Interactions

User–Agent Interactions Memory over Extended Horizons. In persistent user–agent interactions,
agents are required to maintain coherent behavior and decision consistency aligned with the user across
extended dialogue horizons. Unlike short, self-contained dialogues, information introduced in early rounds,
such as user preferences, identity attributes, or implicit task constraints, may not immediately influence
responses but often becomes decisive in later stages of interaction. Therefore, interaction history functions
less as static input and more as a latent internal state that evolves over time. This requirement for information
persistence arises from the stability of user personas and preferences across different turns (Li et al., 2016),
the long-term structure of dialogue tasks involving planning or sustained goals, and the importance of identity
and goal consistency for user trust and usability (Zhang et al., 2018). However, under fixed context window
constraints, long-horizon dialogue systems frequently exhibit failure modes such as early-context forgetting
and progressive context drift as interaction length increases (Liang et al., 2020). These failures are not isolated
reasoning errors but the cumulative consequence of long-term context mismanagement. Existing mitigation
strategies, such as sliding context windows, heuristic truncation, and summary-based memory mechanisms
(Park et al., 2023), as well as explicit long-term structures like user profiles or persona memories (Xu et al.,
2022a), improve scalability but often degrade recall reliability. In practice, seemingly peripheral information
may be irreversibly discarded despite its potential future relevance, exposing a fundamental trade-off between
context budget control and long-term information accessibility (Liu et al., 2024b).

Accumulated Memory for Multi-Turn Tool Use. Context explosion can be exacerbated in agents
that rely on multi-turn tool use and reasoning architectures. Beyond conversational history, tool-based
agents must retain tool inputs, execution outputs, and intermediate states, many of which are repeatedly
referenced in subsequent reasoning steps (Schick et al., 2023). In frameworks such as ReAct (Yao et al.,
2023) and Planner–Executor architectures (Wang et al., 2023b), this accumulation is particularly severe:
planning traces, tool feedback, and reflective reasoning are explicitly preserved to maintain coherence and
decision consistency (Shinn et al., 2023). Consequently, context size grows linearly or even exponentially with
interaction length. In ReAct-style agents, explicit reasoning traces themselves become part of the context,
enabling interpretability and complex reasoning but simultaneously introducing a substantial and persistent
contextual burden. Additionally, for many real applications, the contexts of tool outputs like the web
search (Wei et al., 2025e) and database query (Jing et al., 2025) can also accumulate dramatically. Naively
removing or compressing these traces risks breaking causal dependencies between reasoning and action steps
and undermining subsequent decisions (Yao et al., 2023). Thus, while multi-turn tool use substantially
enhances agent capability, it also exposes scalability limits on finite context windows, underscoring a core
challenge for long-horizon agent design (Liu et al., 2024b).

6.2.2 Scaling with Environment Complexity

As environments scale in complexity, an agent’s context must accommodate heterogeneous data modalities,
asynchronous tool interactions, and protocol- or permission-constrained external state. In such settings, con-
text can no longer be treated as a linear interaction trace appended to a prompt. Real-world deployments
require reasoning over structured artifacts such as API responses, files, databases, logs, and configuration
states, whose semantics depend on schemas, provenance, update rules, and temporal validity. Naively flatten-
ing these artifacts into token sequences is both inefficient and structurally lossy, undermining interpretability,
precise retrieval, and targeted updates (Modarressi et al., 2024). Consequently, increasing environmental
complexity shifts memory from an implicit byproduct of prompt accumulation to an explicit, system-level
component responsible for structured context management. The memory challenge thus transitions from
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merely retaining past information to maintaining coherent, queryable, and updatable representations of
environment state across diverse sources and lifetimes.

Recent agent systems address this challenge by externalizing memory beyond the prompt and exposing ex-
plicit read–write interfaces that decouple storage from reasoning (cauri, 2025). Externalized memory enables
schema-aware retrieval, versioning, targeted edits, and access control—operations that are difficult or infeasi-
ble within prompt-based context alone (Yakobi & Sadon, 2025). Protocol-based interfaces such as the Model
Context Protocol (Anthropic, 2024) and skill-oriented abstractions like Claude Agent Skills (Anthropic,
2025) further formalize how agents interact with external state by defining query semantics, update policies,
and scope boundaries, thereby improving modularity, auditability, and behavioral safety (Keen, 2025). As
environmental complexity increases, persistence becomes unavoidable: user models, system configurations,
and task artifacts represent durable state that must remain consistent across sessions while respecting gov-
ernance constraints such as privacy, permissions, and rollback (Sarin et al., 2025; Wu & Shu, 2025). These
demands introduce additional challenges, including schema drift, concurrent updates, and path-dependent
evaluation, underscoring the need for principled abstractions that treat memory as a first-class infrastructure
for context management in complex, open-world environments.

6.2.3 Scaling with Environment Quantity

Memory as Interfaces of Tool Environments. In open-world settings, context complexity does not
only from prolonged interaction within a single environment, but also from the need to operate across
multiple heterogeneous tool environments, each defined by distinct state records and access protocols. For
example, a personal embodied assistant may alternate between a physical household environment, where it
performs long-horizon behaviors grounded in perceptual feedback, and a digital web environment, where it
retrieves information such as weather forecasts through browser-based interactions. Supporting such behavior
requires memory mechanisms that can preserve, differentiate, and reconcile environment-specific states across
diverse action and observation modalities (Glocker et al., 2025; Hong et al., 2025). In OSWorld (Xie et al.,
2024), a GUI agent may issue search queries in a browser, retrieve results from a news application, and
consult documents in a file viewer, with each interaction producing environment-specific observations and
state transitions. While tools enable localized interaction within each environment, memory provides the
interface function that persists, organizes, and contextualizes information across environment boundaries.
As a result, memory systems are required not merely to log past tool calls, but to maintain structured and
separated representations of environment state that support long-horizon reasoning without breaking the
context window (Burtsev et al., 2020; Rae et al., 2019).

Memory in Multi-Human-Agent Systems. As agent systems scale to include multiple agents and
human participants, effective coordination increasingly depends on structured communication and shared
memory mechanisms rather than naïve context sharing, which quickly fragments under limited context
windows (Chen et al., 2025f). Recent approaches introduce agent-aligned or semi-shared memory abstractions
that encode relational histories, inter-agent dependencies, and task-relevant state across long interaction
horizons. For example, Intrinsic Memory Agents equip agents with role-specific memory templates that
preserve specialized perspectives while enabling integration into a shared contextual substrate, substantially
improving long-horizon planning stability (Yuen et al., 2025). Beyond memory, structured communication
protocols play a central role in coordination: hierarchical and role-aware dialogue schemes reduce noise
and bias in inter-agent exchanges (Wang et al., 2025r), while cognitively adaptive orchestration frameworks
dynamically adjust communication patterns based on inferred collaborator states (Zhang et al., 2025h). In
open-world deployments involving multiple humans and agents, coordination further extends to alignment,
conflict resolution, and collective decision-making under disagreement. Empirical studies show that debate-
based protocols and decision rules such as consensus or majority voting significantly influence performance
across reasoning and knowledge tasks (Kaesberg et al., 2025; Samanta et al., 2025), while adaptive and
consensus-free debate mechanisms balance computational cost, robustness, and conformity effects (Fan et al.,
2025a; Cui et al., 2025b). As these systems scale, implicit graph-structured representations increasingly
underpin orchestration and communication, organizing relational dependencies without explicit symbolic
graphs and reframing context management as a problem of distributed memory, coordination, and alignment
in open-world systems (Qian et al., 2025a; Zhang et al., 2025f;e).
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7 Evaluation

Evaluating foundation agent memory is fundamentally about measuring whether stored information and
experience are accurate, useful, reliable, and efficiently accessible under long-horizon interactions. In the
following, we summarize commonly used metrics in three different basic categories, including accuracy-based,
similarity-based, and LLM-as-a-judge, in Section 7.1. In addition, we collect the commonly used benchmark
to assess the foundation agent’s performance, as shown in Section 7.2.

7.1 Metrics

Table 2 summarizes metrics most commonly used in foundation agent memory evaluations. There are
multiple dimensions to evaluate foundation agents and their memory module performance. Some tasks have
clear ground truth answers and can be scored with exact correctness (Du et al., 2024; Dunn et al., 2017),
while others are open-ended (dialogue (Budzianowski et al., 2018), summarization (Maharana et al., 2024),
preference following (Zhao et al., 2025c)) where multiple outputs are acceptable and reference-based scoring
is not reliable. As a result, existing work typically combines outcome-level correctness with retrieval-oriented
assessment and judge-based rubrics, depending on whether the benchmark exposes memory module, uses
long-context prompting, or evaluates agents acting in an specific environment, scenario, or task (Patlan
et al., 2025; Yadav et al., 2025).

Accuracy-based Metrics. When tasks have a clear objective outcome, accuracy-based metrics are used.
For answering questions about long histories, accuracy or memory accuracy directly assesses the alignment
of the final response with the ground truth answer (Yang et al., 2018; Zhong et al., 2024; Du et al., 2024).
F1 eases exact matching by giving credit for partial overlap at the token level. This is especially prevalent
when responses do not match exactly but have some variance (Trivedi et al., 2022; Deng et al., 2023).
When the benchmark evaluates an explicit memory module, Recall@K, Mean Average Precision (MAP), and
Normalized Discounted Cumulative Gain (NDCG)@K become central because they separate “did the system
retrieve the right evidence” from “did the generator phrase the answer well.” Recall@K checks to see if at
least one relevant item is in the top-k retrieved results (Wu et al., 2025b). MAP and NDCG@K, on the other
hand, also take into account the quality of the ranking and give systems that put relevant memories first a
higher score (Kohar & Krishnan, 2025). For interactive agents, correctness is instead defined by environment
evaluators, so Success Rate (SR) or Goal Completion (GC) represents whether the agent finishes tasks end-
to-end (Zhou et al., 2024; Zheng et al., 2025a). For code and tool-use settings, Pass@K and Resolved Rate
(RR) measure whether at least one of the top-k attempts solves the task or resolves an issue (Yao et al., 2025;
Jimenez et al., 2025). In addition, memory-centric benchmarks increasingly add failure-mode assessment that
are hard to capture with end-task accuracy alone. Memory Integrity quantifies whether extracted memories
cover the required memory points, and False Memory Rate measures how often systems introduce fabricated
or incorrect memories during storage, update, or use (Chen et al., 2025a).

Similarity-based Metrics. Similarity-based metrics are most prevalent in dialogue generation and sum-
marization, where the output is free-form, and correctness cannot be fully checked by the accuracy or F1
score (Chen et al., 2024d). BLEU, ROUGE, and ROUGE-L measure lexical overlap with a reference, which
is useful for tracking surface similarity but can underestimate valid paraphrases and overestimate fluent yet
ungrounded responses (Gehrmann et al., 2023; Ai et al., 2025). Distinct-n complements overlap metrics
by measuring lexical diversity, discouraging repetitive generations that can inflate similarity scores with-
out improving faithfulness (He et al., 2025a). When lexical overlap is too strict, BERTScore provides an
embedding-based approximation of semantic similarity (Maharana et al., 2024), and FactScore evaluates
memory faithfulness by checking agreement at the level of atomic factual claims (Xu et al., 2024b), which
is particularly relevant when summarization is used as a compression mechanism for long histories (Saxena
et al., 2025). Perplexity is also used in some long dialogue benchmarks as a likelihood-based metric for
generation quality over sessions (Xu et al., 2022a), but it remains an indirect indicator for memory perfor-
mance, because it does not verify whether the model’s content is grounded in the correct historical evidence
(Durmus et al., 2022).
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Table 2: Metrics used in Foundation Agent Memory Evaluations.
Metric Short Description Representative Benchmark(s)

Accuracy-Based Metrics

Accuracy / Memory
Accuracy

Proportion of instances answered correctly, computed
at the benchmark granularity (e.g., question-, turn-,
session-, or task-level).

HotpotQA (Yang et al., 2018),
PerLTQA (Du et al., 2024),
MemoryBank (Zhong et al., 2024)

F1 Score Harmonic mean of precision and recall, computed at
token level and optionally aggregated to question,
turn, or session level.

MuSiQue (Trivedi et al., 2022),
MSC (Xu et al., 2022a),
PerLTQA (Du et al., 2024)

Recall@K Evaluates retrieval success by checking if relevant
evidence appears within the top-k results.

LongMemEval (Wu et al., 2025b),
PerLTQA (Du et al., 2024)

Mean Average Precision
(MAP)

Averages precision at ranks of relevant items, then
averages across queries.

PerLTQA (Du et al., 2024),
PMR (Kohar & Krishnan, 2025)

NDCG@K Measures ranked relevance at cutoff K by prioritizing
top positions.

LongMemEval (Wu et al., 2025b),
PMR (Kohar & Krishnan, 2025)

Success Rate (SR) / Goal
Completion (GC)

Fraction of interactive tasks completed under
environment-defined success checkers, typically
measured at the task or episode level.

WebArena (Zhou et al., 2024),
OSWorld (Xie et al., 2024),
MineDojo (Fan et al., 2022)

Pass@K / Resolved Rate
(RR)

Probability a correct solution appears among top-k
samples (Pass@K), or issues resolved end-to-end (RR).

HumanEval (Chen et al., 2021),
SWE-Bench (Jimenez et al., 2025)

Memory Integrity (MI) Completeness of memory extraction, measured by
coverage or recall over memory points.

HaluMem (Chen et al., 2025a)

False Memory Rate (FMR) Rate of introducing hallucinated memories, including
fabricated or incorrect updates.

HaluMem (Chen et al., 2025a)

Similarity-Based Metrics

ROUGE Measures overlap between generated and reference text
using ROUGE. It is widely used for summarization.

LoCoMo (Maharana et al., 2024),
MemoryBench (Ai et al., 2025)

BLEU n-gram precision overlap with reference. It is
commonly used for dialogue generation.

DuLeMon (Xu et al., 2022b),
LoCoMo (Maharana et al., 2024)

Distinct-n Calculates the ratio of unique n-grams to measure
lexical diversity and discourage repetition.

DuLeMon (Xu et al., 2022b),
MADial-Bench (He et al., 2025a)

BERTScore Embedding-based semantic similarity between
candidate and reference.

LoCoMo (Maharana et al., 2024),
MADial-Bench (He et al., 2025a)

FactScore Fact-level faithfulness: extracts atomic claims and
measures the fraction supported by retrieved evidence.

LoCoMo (Maharana et al., 2024),
Face4Rag (Xu et al., 2024b)

Perplexity Likelihood-based metric of predicting reference text,
typically token-level and aggregated over sessions.

MSC (Xu et al., 2022a),
DuLeMon (Xu et al., 2022b)

LLM-as-a-Judge Metrics (JUDGE)

Response Correctness A strong LLM judges whether the response answers
the query or satisfies constraints.

LongMemEval (Wu et al., 2025b),
MemTrack (Deshpande et al., 2025)

Faithfulness /
Groundedness

Judge checks that response claims are grounded in
retrieved context or memory, or check whether the
citations support the claims.

SeekBench (Shao et al., 2025),
LiveResearchBench (Wang et al.,
2025f)

Preference Following Judge evaluates preference following by checking
whether the output satisfies user-stated preferences or
constraints.

PrefEval (Zhao et al., 2025c),
BEAM (Tavakoli et al., 2025),
ConvoMem (Pakhomov et al., 2025)

LLM-as-a-judge Metrics. LLM-as-a-judge metrics are used when ground truth answers, or references,
are incomplete, when multiple responses are acceptable, or when evaluation requires a rubric that is hard to
encode as string matching (Yu et al., 2025a). Response Correctness asks a strong model to decide whether
the answer satisfies the user query (Deshpande et al., 2025), which is convenient for open-ended responses
but introduces judge dependence and sensitivity to prompting. Faithfulness or Groundedness uses a judge
to verify that claims are supported by retrieved context or memory (and in some settings, whether provided
citations support the response) (Shao et al., 2025; Wang et al., 2025f), which helps distinguish helpful but
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hallucinated answers from evidence-supported ones. Preference Following uses a judge to determine whether
the output respects explicit user constraints or stated preferences (Zhao et al., 2025c; Tavakoli et al., 2025;
Pakhomov et al., 2025), which is essential for personalization benchmarks where correctness is defined by
user alignment rather than a single factual label (Wang et al., 2024b).

Across these metrics, a practical implication is that evaluation becomes more attributable to memory mecha-
nisms when the benchmark can separate retrieval or selection from generation (Chen et al., 2025a). Retrieval
and ranking metrics (Recall@K/MAP/NDCG@K) assess whether the memory interface surfaces the right
items, while integrity and hallucination-oriented metrics (MI/FMR) expose failure modes that may not
change end-task accuracy until they accumulate (Zhang et al., 2025a). In contrast, similarity-based metrics
remain useful for tracking fluency and summarization quality, but they should be paired with grounding
checks (FactScore or judge-based faithfulness) to avoid rewarding ungrounded paraphrases (Aralikatte et al.,
2021). In addition, some benchmarks also emphasize cost and feasibility (e.g., capacity and efficiency) (Tan
et al., 2025a), motivating reporting not only what the agent remembers, but also the computational and
storage trade-offs required to achieve that performance.

7.2 Benchmarks

To assess the memory improvement on the foundation agent task in diverse scenarios, we categorize existing
benchmarks into two primary domains: user-centric benchmarks and agent-centric benchmarks. User-
centric benchmarks, such as MSC (Xu et al., 2022a) and MemoryBank (Zhong et al., 2024), primarily
evaluate conversational consistency, evaluating an agent’s ability to retain persona information, recall user
preferences, and sustain coherent interactions across multi-session or multi-turn dialog. On the other hand,
agent-centric benchmarks, including OSWorld (Xie et al., 2024) and Webarena (Zhou et al., 2024), focus
on the functional application of memory for complex problem-solving, measuring success rates in tasks that
require multi-hop reasoning and tool usage. We present the commonly used user-centric and agent-centric
benchmarks in Section 7.2.1 and Section 7.2.2, respectively.

7.2.1 User-centric Evaluation Benchmark

User-centric benchmarks evaluate a foundation agent in personalized dialogue, where the goal is to maintain
uniformity with a specific user’s evolving profile and the shared interaction history over long horizons.
Compared to agent-centric tasks, whose evaluation metrics are largely user-invariant (Mo et al., 2025), user-
centric settings are inherently user-dependent (Zhao et al., 2025d). The agent must decide what to store from
the conversation, retrieve relevant information when needed, revise it when the user changes their preference,
and stay calibrated when evidence is missing (Terranova et al., 2025). Table 3 summarizes representative
benchmarks with the interaction scale (#sessions, #questions, maximum context length), data resource
(Real/SIM/MIX), and memory ability and evaluation coverage using ✓/✓/✗.

We define ten user-centric memory abilities to characterize what an agent must remember and use over
long-horizon interactions (Wu et al., 2025b; Pakhomov et al., 2025): Fact Extraction (FE) is the ability to
identify and store reusable facts from dialogue (e.g., user attributes, constraints, key events) so they can be
recalled later; Multi-Session Reasoning (MR) requires integrating evidence that is distributed across multiple
sessions and turns rather than contained in a single section; Temporal Reasoning (TR) covers reasoning over
time series (ordering, timestamps, recency) and selecting the correct state when information changes; Update
& Refresh (UR) captures explicitly revising memory when new evidence contradicts old content (overwriting
outdated facts and following the latest state under conflicts); Compression & Summarization (CS) is the
ability to condense long interaction histories into compact memory representations that remain faithful and
usable; Forgetting & Retention (FR) reflects maintaining long-range information while selectively forgetting
obsolete or irrelevant content to reduce interference; User Facts & Preferences (UP) focuses on user-centric
memory subjects (persona, preferences, relationships, recurring habits or events) and their evolution; Assis-
tant Facts (AS) tracks the assistant’s own prior statements, recommendations, or commitments so the agent
maintains coherence with what it previously said; Implicit Inference and Connection (IC) measures whether
the agent can link scattered clues and perform multi-hop or implicit inference (e.g., applying a previously
mentioned limitation to a new recommendation without being reminded); and Abstain & Boundary Han-
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Table 3: Overview of user-centric memory benchmarks. Memory Abilities— FE: Fact Extraction
; MR: Multi-Session Reasoning ; TR: Temporal Reasoning ; UR: Update & Refresh ; CS: Compression &
Summarization ; FR: Forgetting & Retention ; UP: User Facts & Preferences ; AS: Assistant Facts ; IC:
Implicit Inference ; AB: Abstain & Boundary Handling. Marks— ✓: explicitly covered. The benchmark
defines this ability as a target with dedicated task types or annotations and evaluates it directly; ✓: partially
or indirectly covered. The ability may be required in some instances or implied by the setup, but lacks
dedicated labeling or ability specific evaluation, so coverage is weak or not cleanly attributable; ✗: not covered.
No corresponding task, annotation, rubric, and the evaluation does not require or measure this ability.
Data source— Real (human-authored or real-world conversations), SIM (fully synthetic or simulated),
MIX (mixture of real and synthetic). Evaluation metrics— AR: Accurate Retrieval; TTL: Test-Time
Learning; LRU: Long-Range Understanding; SF: Selective Forgetting; MM-R: Multi-Message Relevance;
RC: Response Correctness; CC: Contextual Coherence; MA: Memory Accuracy; MI: Memory Integrity;
FMR: False Memory Rate; MRS: Memory Retention Score; JUDGE: LLM-as-a-judge.

Name #Sess. #Q Max Tok. FE MR TR UR CS FR UP AS IC AB Res. Link Evaluation

MSC 5K – 1K ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ Real Perplexity
DuLeMon 27,501 – 1K ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ Real F1, Recall@k, BLEU, Distinct-n
MemoryBank 300 194 5K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ SIM Retrieval Accuracy, RC, CC
PerLTQA 3,409 8,593 1M ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ SIM Accuracy, F1, Recall@k, MAP
LoCoMo 1K 7,512 10K ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ MIX F1, ROUGE, BLEU, MM-R
DialSim ∼1,300 1M 367K ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ MIX Accuracy
LOCCO 3,080 2,981 – ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ SIM Accuracy, MRS
MemoryAgentBench 130 207 1.44M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ SIM Accuracy, F1, AR, TTL, LRU, SF
LongMemEval 50K 500 1.5M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ MIX JUDGE, Recall@K, NDCG@K
HaluMem 1,387 3,467 1M ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ MIX MA, MI, FMR
PersonaMem 60 ∼6K 1M ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ SIM Accuracy
PrefEval – 3,000 100K ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ MIX JUDGE, Accuracy
MemBench 65K 53K 100K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ MIX Accuracy, Capacity, Efficiency
MemoryBench 20K – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ MIX Accuracy, F1
ConvoMem 300 75,335 3M ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ SIM Accuracy

dling (AB) measures recognizing unknown or unanswerable cases, conflicts, or false premises and avoiding
fabrication. For example, explicitly saying “I don’t know” when the needed information was never stated.

A key pattern in Table 3 is that MR and UP are the most consistently covered abilities, reflecting the dom-
inant framing of user memory as retrieving user-related facts from long dialogue and using them later. In
contrast, operational abilities are much less uniformly defined. Early long dialogue benchmarks such as MSC
(Xu et al., 2022a) and DuLeMon (Xu et al., 2022b) emphasize multi-session coherence and persona usage,
but their evaluation relies heavily on similarity-based or generated-based metrics (e.g., BLEU, Distinct-n,
Perplexity, ROUGE), which weakly isolates memory. Fluency and generic helpfulness can mask incorrect
recall, making FE, UR, and FR difficult to attribute. Newer benchmarks increasingly move toward mech-
anism attributable evaluation by defining specific task types or assessments. MemoryBank (Zhong et al.,
2024) and HaluMem (Chen et al., 2025a) introduce explicit memory records and operation-level searching,
turning extraction, updating, and memory integrity failures into measurable targets. LongMemEval (Wu
et al., 2025b) further strengthens attribution by explicitly categorizing question types according to memory
abilities, enabling cleaner localization of failures to temporal reasoning, updating, or abstention behaviors.
However, CS and FR remain comparatively under systematically evaluated in the current benchmark designs.
Compression is explicit in only a few benchmarks (Hu et al., 2025c), and selective forgetting or retention
(Jia et al., 2025b) is frequently partial or absent, despite being essential for long-horizon assistants operating
under finite memory budgets and evolving user states. AB is also inconsistently required (Ai et al., 2025;
Jiang et al., 2025a). Only a few benchmarks explicitly reward abstention under missing evidence, leaving a
gap for evaluating safe memory behavior that prevents confident hallucinations.

Evaluation in Table 3 follows several main aspects that reflect how much evaluation the benchmark provides.
First, many benchmarks reduce evaluation to answer-level correctness on ground truth questions, reporting
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accuracy and F1 (e.g., PerLTQA (Du et al., 2024), LoCoMo (Maharana et al., 2024), DialSim (Kim et al.,
2024a), PersonaMem (Jiang et al., 2025a), MemoryAgentBench (Hu et al., 2025c)), and in some cases, using
retrieval-style scoring such as Recall@K or ranked relevance metrics (MAP/NDCG@K) when the task is
explicitly formed as selecting supporting memories rather than generating free-form text (e.g., PerLTQA
(Du et al., 2024), LongMemEval (Wu et al., 2025b)). Second, several user-centric benchmarks introduce
memory-specific assessment that goes beyond final answers and directly evaluates memory system behavior.
HaluMem reports memory accuracy and integrity as well as false memory rate to quantify hallucinated
or incorrect memory operations (Chen et al., 2025a), LOCCO (Jia et al., 2025b) reports memory retention
(MRS), and MemBench (Tan et al., 2025a) explicitly measures capacity and efficiency to capture performance
and cost trade-offs under fixed memory budgets. Third, when outputs are open-ended or reference answers
are insufficient, benchmarks increasingly rely on LLM-as-a-judge to score response correctness or preference
adherence (e.g., LongMemEval (Wu et al., 2025b), PrefEval (Zhao et al., 2025c), and MemoryBench (Ai et al.,
2025)). Compared to exact-match scoring, judge-based evaluation expands coverage to realistic assistant
behavior, but it is more sensitive to the evaluator model and rubric.

7.2.2 Agent-centric Evaluation Benchmark

Agent-centric benchmarks evaluate a foundation model as a semi-autonomous agent that must execute multi-
step actions in an environment to reach a clearly specified goal, rather than only producing a response to a
static prompt. These benchmarks typically provide a task specification (e.g., an initial state with constraints)
together with an objective success checker, and summarize performance with end-to-end metrics such as
Accuracy/F1 for text QA tasks or Success Rate (SR) for interactive environments. Because correctness
is defined by the environment’s state, the target outcome is largely user-invariant: under the same task
setting, different users issuing the same request should obtain the same completion signal, even if the agent
follows different trajectories (Trivedi et al., 2024; Zhou et al., 2024).

We summarize commonly used agent-centric benchmarks in Table 4. Beyond tagging each benchmark by task
environment (Env) and interface (Interact), we further annotate (i) resource type, indicating whether the
task world and evidence are constructed with real-world or simulated data , or a hybrid of both, and (ii) core
agent abilities (Abilities) most directly exercised by the benchmark. We define a set of core ability tags
commonly used to characterize agent and memory benchmarks: TEMP (temporal/sequence reasoning over
event order and time dependencies), STATE (tracking and updating environment/task state across multi-step
interaction), GROUND (grounding natural-language instructions into concrete environment targets/actions),
PLAN (planning and re-planning multi-step actions toward a goal), TOOL (selecting and correctly invoking
tools/APIs to solve subtasks), MHOP (multi-hop reasoning that composes multiple pieces of evidence), DIAL
(goal-directed dialogue management such as clarification and consistency across turns), and ACT (executing
correct environment actions such as click/type/select and producing a successful trajectory); optionally, TTL
denotes test-time learning, where agents improve later performance by accumulating experience in memory
without parameter updates. In these works, memory is treated as a tool and module for cross-session
knowledge transfer and experiment sharing, enabling agents to preserve intermediate findings, tool
outputs, and state updates across long horizons and limited context windows to improve downstream task
completion ability.

Across environments, agent-centric evaluation covers TEXT/WEB information seeking (Yang et al., 2018; Trivedi
et al., 2022; Deng et al., 2023; Yao et al., 2022; Mialon et al., 2024), OS/APP computer use (Xie et al., 2024;
Trivedi et al., 2024; Yao et al., 2025; Barres et al., 2025), CODE software engineering (Chen et al., 2021; Qiu
et al., 2025b), embodied ROBOT/GAME control (Shridhar et al., 2020; 2021; Fan et al., 2022), and long-form
VIDEO/PAPER workflows (Wei et al., 2025a; Mangalam et al., 2023; Fu et al., 2025; Wu et al., 2024a; Starace
et al., 2025). These environments induce distinct memory pressures. Text and multi-hop QA emphasize
evidence tracking and state bookkeeping over intermediate facts (Ho et al., 2020; Trivedi et al., 2022).
Web, desktop, and app settings stress episodic action memory. Foundation agents must remember visited
pages, filled fields, downloaded files, prior tool outputs, constraints discovered during interaction and avoid
redundant exploration (Deng et al., 2023; Zhou et al., 2024; Yao et al., 2022). Code and paper workflows
require working memory, such as files, patches, hypotheses, and experiment logs, to support cross-stage
continuity (Starace et al., 2025; Miao et al., 2025). These requirements make compression, selection, and
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Table 4: Overview of agent-centric task benchmarks. Env—TEXT: Text/Document; WEB: Web; OS:
Operating System/Desktop; APP: Application/API-centric; CODE: Code/Software Engineering; ROBOT:
Embodied Robotics; GAME: Game/Simulation; VIDEO: Video (long-form); PAPER: Scientific Paper/Re-
search. Interact—QA: Question Answering; MT: Multi-turn; GUI: Graphical UI; API: Tool/API Invo-
cation; EXEC: Execution-based; MM: Multimodal; ACT: Action/Control. Data—REAL: real-world;
SIM: simulated/synthetic; MIX: mixed real+sim. Abilities—MHOP: Multi-hop Reasoning; PLAN:
Planning/Acting; STATE: State Tracking; GROUND: Grounding; TOOL: Tool Use; DEBUG: Debugging;
CODEGEN: Code Generation; PATCH: Patch/Repair; TEMP: Temporal Reasoning; DIAL: Dialogue Man-
agement; TTL: Test-Time Learning. Evaluation—SR: Success Rate / Solve Rate; PR: Pass Rate; GC:
Goal Success; RR: Resolved Rate; LCRR: Longest Consecutive Correct Sequence.
Name #Data Env Interact Resource Core Abilities Link Evaluation

HotpotQA 113K TEXT QA REAL MHOP, STATE Github Accuracy, F1
2WikiMultiHopQA 193K TEXT QA REAL MHOP, STATE Github Accuracy, F1
MuSiQue 25K TEXT QA REAL MHOP, STATE Github F1
HLE 2.5K TEXT QA REAL MHOP, STATE Website Accuracy, RMSE
BrowseComp 1,266 WEB QA, GUI REAL PLAN, TOOL, MHOP, STATE Website Accuracy, PR
Mind2Web 2.35K WEB GUI REAL GROUND, PLAN, STATE Website Accuracy, F1, SR
WebArena 812 WEB GUI SIM GROUND, PLAN, STATE Website SR
WebShop 12.1K WEB GUI MIX GROUND, PLAN, STATE Github Task Score, SR
GAIA 466 WEB QA, GUI REAL TOOL, MHOP, PLAN, STATE Website Accuracy, SR
OSWorld 369 OS GUI, MM REAL GROUND, PLAN, STATE Website SR
AppWorld 750 APP API, MT SIM TOOL, CODEGEN, PLAN,

STATE
Website SR

τ -Bench 165 APP API, MT SIM TOOL, PLAN, STATE, DIAL Github Pass^1, Pass^k
τ -Bench2 2.3K APP API, MT SIM TOOL, PLAN, STATE, DIAL Github Pass^1, Pass^k
HumanEval 164 CODE EXEC REAL CODEGEN, DEBUG Github Pass@1
SWE-Bench 2.3K CODE EXEC REAL PATCH, DEBUG, STATE Website RR
LoCoBench 8K CODE EXEC SIM CODEGEN, PATCH, DEBUG,

STATE
Github Multi-metric

LoCoBench-Agent 8K CODE EXEC SIM TOOL, PLAN, CODEGEN,
PATCH, DEBUG, STATE

Github Multi-metric

PaperBench 20 PAPER EXEC, MT REAL TOOL, PLAN, CODEGEN,
DEBUG, STATE

Website Replication Score

RECODE-H 102 PAPER EXEC, MT REAL CODEGEN, PATCH, DEBUG,
DIAL, STATE

Github Recall, PR

ALFRED 25.7K ROBOT ACT, MM SIM GROUND, PLAN, STATE Website SR, GC
ALFWorld 3.8K ROBOT ACT, MT SIM PLAN, STATE, GROUND Website SR
MineDojo 3.1K GAME ACT, MM MIX PLAN, STATE, GROUND Website SR
EgoSchema 5,031 VIDEO QA, MM REAL TEMP Website Accuracy
Video-MME 2,700 VIDEO QA, MM REAL TEMP Website Accuracy
LongVideoBench 6.7K VIDEO QA, MM REAL TEMP Website Accuracy
MT-Mind2Web 720 WEB GUI, MT REAL GROUND, PLAN, STATE,

DIAL
Github Accuracy, F1, SR

MPR 10.8k TEXT QA SIM MHOP, STATE Github Accuracy
StoryBench 397 GAME MT, ACT SIM PLAN, STATE, TEMP – Accuracy, LCRR
Evo-Memory ∼3,700 TEXT QA, MT MIX TTL, PLAN, STATE – Accuracy, SR
LifelongAgentBench 1,396 APP, OS API, MT SIM TTL, TOOL, PLAN, STATE Website SR
OdysseyBench 602 APP GUI, MT MIX PLAN, TOOL, STATE, TEMP Github PR

retrieval fidelity critical to complete tasks (Jimenez et al., 2025; Qiu et al., 2025a). Video benchmarks
additionally test sensory memory over long clips, where critical cues may appear far before the question is
asked (Fu et al., 2025; Wu et al., 2024a). As benchmarks become more realistic and long-horizon, foundation
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agents cannot retain all task relevant context in the prompt, and must instead externalize state via explicit
memory operations to preserve and retrieve critical information over time.

Evaluation method for benchmarks in Table 4 mainly fall into a few categories. Answer-level Accuracy/F1 for
TEXT (Trivedi et al., 2022; Phan et al., 2025), goal-based SR, GC for interactive WEB/OS/APP/ROBOT/GAME (Xie
et al., 2024; Trivedi et al., 2024; Shridhar et al., 2020; 2021; Fan et al., 2022), and execution-centric met-
rics (e.g., Pass@1, RR) for CODE (Jimenez et al., 2025; Qiu et al., 2025a). For memory-centric analysis, two
additional dimensions are crucial: (1) dependency distance—how far apart the required information and
its later use occur, such as within-turn, cross-turn, or cross-session), and (2) memory correctness under
interaction—whether stored items remain faithful, non-contradictory, and policy-consistent as the environ-
ment evolves. This motivates complementing end-to-end success with memory-sensitive measurements such
as: (i) retrieval faithfulness and coverage for required facts or tool outputs, (ii) error modes in state track-
ing (drift, omission, contradiction), (iii) persistence under interruptions (resume after long gaps), and (iv)
efficiency trade-offs (memory size, update frequency, and retrieval cost). We expect next-generation bench-
marks to go beyond a single end-to-end accuracy or success rate and instead incorporate memory-related
metrics. so that evaluation can also be attributed to the memory mechanism rather than to short-horizon
prompting or incidental heuristics.

8 Applications

Memory transforms LLMs into dynamic, persistent agents, representing a fundamental shift in recent re-
search. When implemented in complex real-world scenarios, agentic memory has emerged not merely as a
storage utility, but as the cognitive substrate that enables continuity, learning, and personalization, bridging
an agent’s past experiences with its future actions. Recent work has broadly investigated memory-enabled
capabilities in LLM agents where the ways of storing, operating, and managing memory vary significantly.
To provide insights into how improvements in memory design boost further abilities, this section discusses
and summarizes recent representative works across education, scientific research, gaming and simulation,
robotics, healthcare, dialogue systems, software engineering, and workflow automation. The summarization
is shown in Table 5.

Education. Educational agents require sustained, personalized interactions spanning a long period of time,
making memory essential for tracking learner progress, adapting instruction, and maintaining pedagogical
coherence (Chu et al., 2025). Without memory, agents treat every interaction as an isolated event, unable
to build on a student’s prior knowledge or maintain pedagogical consistency. Recent models illustrate
this shift toward more sophisticated memory modules. For instance, LOOM (Cui et al., 2025a) utilizes a
learner memory graph mapping educational concepts with prerequisite dependencies to facilitate personalized
curriculum generation. Agent4Edu (Gao et al., 2025b) explicitly replicates the Ebbinghaus Forgetting Curve
to simulate knowledge decay for teacher training. WebCoach (Liu et al., 2025b) uses persistent cross-
session memory to enable self-evolving instructional guidance. These systems reveals that in the educational
domain, memory functions less as a historical log and more as a cognitive digital twin (Zheng et al., 2022)
of the student. Future works should move toward interoperable memory protocols that allow a learner’s
cognitive profile to persist across different educational platforms, effectively creating an evolving record of
their intellectual development.

Scientific Research. Scientific research represents a frontier where the process has been lengthy and
costly, requiring agents to synthesize vast literature, manage provenance, and maintain reasoning continuity
across multi-stage endeavors. In recent studies, General Agentic Memory (GAM) (Yan et al., 2025a) em-
ploys a specialized researcher agent for deep research over a universal page-store, enabling dynamic context
reconstruction for complex multi-hop reasoning. IterResearch (Chen et al., 2025c) maintains a workspace
preserving only the evolving report and immediate results to prevent context suffocation. MirrorMind (Zeng
et al., 2025) simulates collective intelligence through hierarchical architecture retrieving specific cognitive
styles and knowledge bases. AISAC (Bhattacharya & Som, 2025) implements hybrid memory combining se-
mantic retrieval with structured SQLite logs for reproducibility. These research agents exemplify a paradigm
shift where memory serves as a verification layer for the research process, maintaining a transparent lineage
of how a conclusion was reached. Future systems will evolve from solitary research assistants into lab-scale
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Table 5: Summarization of representative agentic memory applications.
Application Memory Utilization Works
Education Tracks learner progress and simulates

knowledge decay to provide personal-
ized pedagogical guidance.

LOOM (Cui et al., 2025a), Agent4Edu (Gao et al., 2025b), Web-
Coach (Liu et al., 2025b), CAM (Li et al., 2025d), Classroom Sim-
ulacra (Xu et al., 2025b), TeachTune (Jin et al., 2025a), EduAgent
(Xu et al., 2024a), EvaAI (Lagakis & Demetriadis, 2024), OATutor
(Pardos et al., 2023), MEDCO (Wei et al., 2024)

Scientific Research Synthesizes vast literature and main-
tains reasoning provenance across
multi-stage discovery processes.

IterResearch (Chen et al., 2025c), GAM (Yan et al., 2025a), Mirror-
Mind (Zeng et al., 2025), AISAC (Bhattacharya & Som, 2025), Lee
et al. (2024), ChemDFM (Zhao et al., 2025e), AI-coscientist (Got-
tweis et al., 2025), SciAgents (Ghafarollahi & Buehler, 2025), Agent
Laboratory (Schmidgall et al., 2025), NovelSeek (Team et al., 2025)

Gaming & Simulation Enables bottom-up skill acquisition and
the emergence of complex social dy-
namics through episodic memories.

Voyager (Wang et al., 2025c), GITM (Zhu et al., 2023), Generative
Agents (Park et al., 2023), GameGPT (Chen et al., 2023), M2PA
(Zhou et al., 2025b), Jiang et al. (2025d), WarAgent (Hua et al.,
2023), S3 (Gao et al., 2023), AvalonBench (Light et al., 2023), Mosaic
(Liu et al., 2025c)

Robotics Bridges high-level reasoning with low-
level control by maintaining spatial
graphs and trajectory summaries.

Memo (Gupta et al., 2025), MG-Nav (Wang et al., 2025b), JARVIS-1
(Wang et al., 2024q), KARMA (Wang et al., 2025s), VIPeR (Ming
et al., 2025), SAM 2 (Liu et al., 2025d), LRLL (Tziafas & Kasaei,
2024), VideoAgent (Fan et al., 2024), Kim et al. (2023a), RAP (Ka-
gaya et al., 2024), GridMM (Wang et al., 2023d)

Healthcare Maintains longitudinal records of phys-
iological trends and emotional states to
build user trust and adherence.

TheraMind (Hu et al., 2025a), DAM (Lu & Li, 2025), Mem-PAL
(Huang et al., 2025d), ReSurgSAM2 (Liu et al., 2025d), CAR-AD
(Li et al., 2025e), AgentMD (Jin et al., 2025b), MedConMA (Wang
et al., 2025k), MDAgents (Kim et al., 2024b), MedAgents (Tang et al.,
2024), ChatCAD (Tang et al., 2025a)

Dialogue Systems Manages context window constraints
and persona consistency to simulate
persistent human-like relationships.

A-Mem (Xu et al., 2025e), MemGPT (Packer et al., 2023), O-Mem
(Wang et al., 2025i), MemoChat (Lu et al., 2023), Mem0 (Chhikara
et al., 2025), SEAL (Wang et al., 2025d), LiCoMemory (Huang et al.,
2025e), Lu & Li (2025), Terranova et al. (2025), LightMem (Fang
et al., 2025a), RGMem (Tian et al., 2025)

Workflow Automation Induces reusable workflow templates
and learns tool-usage patterns from
successful execution histories.

AWM (Wang et al., 2025u), ToolMem (Xiao et al., 2025), Synapse
(Zheng et al., 2024), WebArena (Zhou et al., 2024), Wheeler & Jeunen
(2025), Wang et al. (2025t), WALT (Prabhu et al., 2025), Mobile-
agent-v2 (Wang et al., 2024c), AutoAgents (Chen et al., 2024a), SIT-
Graph (Li et al., 2025f)

Software Engineering Maintains global code context and re-
calls failure trajectories to improve
multi-file debugging and development.

MetaGPT (Hong et al., 2023), ChatDev (Qian et al., 2024a), SWE-
bench (Jimenez et al., 2025), SWE-Effi (Fan et al., 2025c), TroVE
(Wang et al., 2024p), Self-organized agents (Ishibashi & Nishimura,
2024), Openhands (Wang et al., 2024j), Masai (Arora et al., 2024),
DeepCode (Li et al., 2025m)

Online Streaming &
Recommendation

Distills high-throughput multimodal
feeds into persistent representations to
recognize long-range temporal patterns.

WorldMM (Yeo et al., 2025b), GCAgent (Yeo et al., 2025a), (Xiong
et al., 2025b), XMem++ (Bekuzarov et al., 2023), VideoScan (Li
et al., 2025c), Xiong et al. (2025b), Qian et al. (2024b), VideoLLM-
Online (Chen et al., 2024c), VideoLLM-MoD (Wu et al., 2024c), Di
et al. (2025)

Information Search Transforms static retrieval into active
workspaces for synthesizing conflicting
reports and tracking search provenance.

AgentFold (Ye et al., 2025b), MemSearcher (Yuan et al., 2025a),
MoM (Zhao et al., 2025a), ReSum (Wu et al., 2025d), Memento (Zhou
et al., 2025a), MLP Memory (Wei et al., 2025c), MemAgent (Yu et al.,
2025b), Wang et al. (2025o), MemoryLLM (Wang et al., 2024m)

Finance & Accounting Maintains strategic consistency across
volatile market cycles and balances
quantitative signals with qualitative
historical precedents.

FinCon (Yu et al., 2024a), FinMem (Yu et al., 2025e), QuantAgent
(Wang et al., 2024g), FLAG-Trader (Xiong et al., 2025a), Investor-
Bench (Li et al., 2025b), TradingAgents (Xiao et al., 2024), Trading-
GPT (Li et al., 2023b), Open-FinLLMs(Huang et al., 2024a)

Legal & Consulting Manages multi-document provenance
and synthesizes conflicting statutes into
coherent advice across long-term case
histories.

MALR (Yuan et al., 2024b), StaffPro (Maritan, 2025), Blair-Stanek
et al. (2025), LegalMind (Vara et al., 2025), CaseGPT (Yang, 2024),
Dallma (Westermann, 2024), Agentcourt (Chen et al., 2025b), Legal-
GPT (Shi et al., 2024), Feat (Shen et al., 2025)
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Figure 8: Applications of the Foundation Agent Memory System. The diagram introduce the general
application domain of the foundation agent memory system, including eduction, scientific research, gaming
and simulation, robotics, dialog system, healthcare, workflow automation, software engineering, online stream
and recommendation, information search, finance and accounting, legal and consulting.

collective intelligences, where multiple agents share a unified, evolving knowledge graph of a specific scientific
field, updating it in real-time as new papers are published and synthesized.

Gaming and Simulation. In open-ended gaming environments and simulations, memory enables skill ac-
quisition, spatial exploration, and the emergence of complex social dynamics. Agents must utilize procedural
memory to retain learned skills and episodic memory to maintain believable social histories. For example,
Voyager (Wang et al., 2025c) stores successful actions as executable code in a skill library for compounding
abilities. GITM (Zhu et al., 2023) employs hierarchical text-based memory where a planner records struc-
tured sub-goal summaries. Generative Agents (Park et al., 2023) uses a memory stream where agents reflect
to synthesize high-level insights into relationships and plans. GameGPT (Chen et al., 2023) applies memory
as shared state for multi-agent game development, managing versioning and conflict resolution. In these
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works, memory modules allow behavior to emerge bottom-up from the accumulation of experiences rather
than top-down programming. The next frontier in this domain could be the development of socially align-
ment and forgetting mechanisms. As simulations run for extended periods, agents should mimic human-like
memory decay, ensuring personalities evolve organically without being paralyzed by the noise of infinite,
trivial historical data.

Robotics. Embodied agents operating in physical worlds face the challenge of partial observability (Fung
et al., 2025), requiring memory to link visual inputs to semantic concepts and maintain spatial representations
over time. Memory must be compressed yet sufficiently detailed to support navigation and manipulation in
non-static environments. Memo (Gupta et al., 2025) introduces periodic summarization tokens compressing
trajectories for long-horizon navigation. MG-Nav (Wang et al., 2025b) constructs spatial memory graphs
with landmark regions rather than dense point clouds, mimicking human navigation. JARVIS-1 (Wang
et al., 2024q) extends embodied agency with multimodal memory retrieving experiences based on visual and
semantic similarity. These applications demonstrate that memory is the bridge between high-level reasoning
and low-level control. Future research should focus on multimodal memory integration, enabling agents to
simulate the physical affordances based on past successes and failures stored in their procedural memory.

Healthcare. In the domain of healthcare, memory enables agents to track longitudinal health trends,
emotional trajectories, and the efficacy of interventions. TheraMind (Hu et al., 2025a) introduces a dual-loop
architecture separating immediate responses from strategic cross-session memory updates for therapeutic
strategy adjustment. DAM (Lu & Li, 2025) treats memory units as confidence distributions over sentiment
polarities for stable probabilistic emotion modeling. Mem-PAL (Huang et al., 2025d) employs H2Memory
architecture distinguishing between objective physiological logs and subjective dialogue to infer health metric
correlations. The deployment of agentic memory reveals that affective continuity is as critical as clinical
accuracy, lead to a measurable increase in user trust and adherence. However, this domain faces challenges
regarding privacy and ethics. Future architectures should implement privacy-preserving memory by design
mechanisms that balance the utility of long-term memory with the imperative of patient confidentiality.

Dialogue Systems. For general-purpose assistants, memory creates the illusion of a continuous personalized
relationship, managing context window while providing conversation history. This domain focuses on actively
managing the trade-off between retention and context window constraints. MemGPT (Packer et al., 2023)
introduces a context management system explicitly moving data between main and external context for longer
conversations. O-Mem (Wang et al., 2025i) uses tri-component memory to extract and update holistic user
personas for aligned responses. MemoChat (Lu et al., 2023) employs instructional tuning to train models on
writing structured memos for improved long-range consistency. These dialogue architectures demonstrate a
shift toward OS-level memory management, where the agent acts as a kernel managing its own resources.
The future of dialogue systems lies in self-optimizing memory. Rather than relying on fixed heuristic rules
for what to remember, next-generation agents will likely learn personalized memory policies.

Workflow Automation. LLM agents also work as assistants to boost productivity through workflow
automation. Automation agents mainly orchestrate multi-step processes, coordinate tool usage, and adapt
procedures based on execution feedback. Memory mechanisms enable agents to accumulate procedural
knowledge, optimize workflow, and maintain task context across complex automation pipelines. AWM (Wang
et al., 2025u) induces reusable workflow templates from successful trajectories as parameterized procedural
memory. ToolMem (Xiao et al., 2025) implements semantic memory of tool usage patterns, learning effective
tools for specific task types. WebArena (Zhou et al., 2024) benchmarking demonstrates that episodic memory
of web interaction sequences substantially outperforms baselines. Synapse (Zheng et al., 2024) introduces
trajectory-as-exemplar prompting, storing successful control sequences as episodic memory for analogical
reasoning. In these works, the integration of memory facilitates the transition from rigid script execution
to adaptive procedural learning which dramatic increase robustness and efficiency. Future systems will not
just follow human-defined operation procedures but should actively rewrite their own instructions based on
long-term execution logs, evolving from simple task executors into process architects that autonomously
refine enterprise workflows for maximum efficiency.

Software Engineering. For software engineering, agents operate in complex codebases requiring long-
horizon reasoning, multi-file coordination, and accumulated debugging experience. Memory enables these
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agents to maintain code context, learn from implementation attempts, and navigate large-scale repositories.
MetaGPT (Hong et al., 2023) implements procedural memory for development workflows while maintaining
shared semantic memory of project specifications. ChatDev (Qian et al., 2024a) extends this with episodic
memory of development iterations for learning from debugging sessions. SWE-bench (Jimenez et al., 2025)
evaluation reveals that memory mechanisms significantly improve issue resolution by maintaining context
across multi-file edits and leveraging prior debugging experience. Critically, effective coding agents do not
merely generate code, they recall the trajectory of previous failures and fixes to achieve higher success rates
in passing unit tests. Future applications in this domain will likely move beyond local project memory
toward shared, anonymized knowledge repositories where distributed coding agents contribute to and query
a universal pool of algorithmic solutions and error patches, accelerating the global pace of automated software
development.

Online Streaming and Recommendation. In the era of online streaming and recommendation systems,
agents process high-throughput multimodal inputs where the relevance of information shifts dynamically
over time. Memory allows agents to maintain temporal consistency and recognize long-range patterns across
video frames and user interactions. For instance, WorldMM (Yeo et al., 2025b) utilizes dynamic multimodal
memory storing visual-linguistic features for complex reasoning over long-duration video streams. GCA-
gent (Yeo et al., 2025a) introduces dual-structured episodic memory separating schematic knowledge from
narrative sequences for structured video understanding. Similarly, Xiong et al. (2025b) implements memory-
enhanced knowledge buffers supporting multi-round interactions with retained context. These applications
suggest that in streaming contexts, memory acts as a temporal filter that distillations transient data into
persistent representations. Future research should focus on forgetting-aware recommendation memories that
can distinguish between a user’s fleeting interests and their long-term preferences, optimizing the balance
between novelty and relevance in real-time feeds.

Information Search. Beyond simple retrieval, agents for information search must synthesize conflicting
reports, track evolving stories, and manage vast document spaces without losing reasoning depth. Memory
serves as the organizational framework that transforms static search results into an active workspace for
knowledge synthesis. AgentFold (Ye et al., 2025b) addresses long-horizon web navigation through proactive
context management, folding irrelevant trajectories to prevent overflow while preserving critical findings.
MemSearcher (Yuan et al., 2025a) employs reinforcement learning for joint searching and memory manage-
ment. MoM (Zhao et al., 2025a) utilizes scenario-aware memories, dynamically routing queries to specialized
memory banks. Furthermore, Rajesh et al. (2025) bridges RAG with episodic memory, maintaining a repos-
itory of the search process itself. These systems demonstrate that effective search is not just about finding
data, but about managing the cognitive load of the search trajectory. The next generation of information
search agents will likely evolve toward collaborative memory structures, where multiple agents verify facts
and update a shared belief graph among agents in response to breaking information cycles.

Finance and Accounting. The financial domain is characterized by high-frequency volatility, a mixture of
quantitative data and qualitative news, and the critical need for long-term strategic consistency. Memory is
crucial here because trading and accounting require agents to process real-time signals and recall historical
market regimes and maintain a persistent trading character to avoid erratic decision-making. Recent works
have introduced specialized architectures for this purpose. FinMem (Yu et al., 2025e) implements a lay-
ered memory system that separates immediate market observations from long-term investment experience,
allowing the agent to refine its personality and risk profile over time. FinCon (Yu et al., 2024a) utilizes a
multi-agent setup where memory serves as a repository for conceptual verbal reinforcement, enabling the
system to learn from past financial decisions through reflective feedback loops. QuantAgent (Wang et al.,
2024g) further pushes this by seeking investment grails through a self-improving mechanism where success
trajectories are stored as procedural memory for future strategy refinement. Despite these gains, the primary
challenge remains the signal-to-noise ratio in financial memory. Agents must learn to distinguish between
transient market fluctuations and fundamental shifts. Future research should explore forgetting-aware finan-
cial agents that can prune outdated economic assumptions while retaining core risk management principles.

Legal and Consulting. In legal and consulting services, agents must navigate massive volumes of het-
erogeneous documents, where the precise provenance of every claim is mandatory. Memory is the cognitive
substrate that allows these agents to perform multi-step reasoning over long-duration cases, ensuring that
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advice remains consistent with previously cited statutes or client history. For instance, MALR (Yuan et al.,
2024b) utilizes a multi-agent framework to improve complex legal reasoning by maintaining an interaction
history that simulates collaborative debate between legal experts. StaffPro (Maritan, 2025) focuses on the
consulting side by using memory to profile workers and project requirements over time, enabling dynamic
staffing through a feedback loop of past performance data. Blair-Stanek et al. (2025) demonstrates the power
of memory in discovering novel tax-minimization strategies by synthesizing thousands of pages of evolving
statutes and case law into a persistent reasoning graph. The core challenge in this domain is the high stakes
of hallucinated memory. A single misremembered clause can lead to legal liability. Future directions will
likely focus on verifiable memory architectures that link every retrieved insight back to a cryptographically
signed source document, ensuring the highest levels of professional integrity and accountability.

Prevent drift and forgetting by combining structured 
memory with consolidation or control and continual 
learning that preserves knowledge while improving over 
time.

Life-Long Personalization
andTruthworthy Memory

Personalization should replace static profiles 
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Figure 9: Future Directions and Challenges in Foundation Agent Memory. The diagram highlights
key opportunities for the future argentic memory works, including memory for self-evolving agent, multi-
agent memory organization, human-agent collaborative memory, memory efficiency, memory for multi-modal
and embodied agent, memory for continuous learning, life-long personalization, real-world benchmarking and
evaluation

9 Future Directions

9.1 Memory for Continual Learning and Self-Evolving Agents

A fundamental challenge in memory-enabled self-evolving agents lies in managing memory dynamics across
both intra-task and cross-task timescales. At the intra-task level, agents must continuously decide what
information to retain, compress, or discard from heterogeneous streams such as tool outputs, search results,
feedback signals, and intermediate reasoning traces, all under strict context-window constraints (Gao et al.,
2025a). Existing systems largely rely on heuristic memory controllers, leaving the internal coupling between
memory evolution and reasoning behavior poorly understood. At the cross-task level, agents are expected
to accumulate experience across episodes and task distributions (Wei et al., 2025d), yet current approaches
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primarily emphasize inference-time reuse rather than principled consolidation and generalization. In com-
parison, classical continual learning methods focus on preventing catastrophic forgetting through replay,
regularization, or parameter isolation (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Shin et al., 2017;
Kemker & Kanan, 2018), but they typically treat memory as a static mechanism for knowledge retention.
This framing is insufficient for agent-based systems, where memory must also track evolving interaction
states, user-specific information, and procedural behaviors. Moreover, stable post-training adaptation from
accumulated experience remains underexplored, with unresolved risks of negative transfer, uncontrolled drift,
and semantic inconsistency (Ke et al., 2025b).

Future research should therefore reframe continual learning around a richer, agent-centric notion of memory
that integrates semantic, episodic, and procedural components (Ke et al., 2025a; Lou, 2025). Beyond explicit
textual logs, latent and structured memory representations offer a promising direction for scalable and
efficient adaptation, enabling compact storage while preserving causal and behavioral abstractions. Progress
will likely require moving beyond inference-time heuristics toward principled post-training paradigms that
leverage accumulated agent experience for continual improvement. This includes designing consolidation
mechanisms that selectively distill long-term knowledge, align evolving memory with model parameters,
and mitigate forgetting without sacrificing plasticity. Correspondingly, new benchmarks are needed that
evaluate not only task-level retention, but also sustained adaptation, relevance-aware memory management,
and behavioral stability under non-stationary objectives and environments (Ke et al., 2024). Establishing
a unified framework that connects classical continual learning objectives with structured memory design
remains a key open direction for self-evolving foundation agents.

9.2 Multi-Human-Agent Memory Organization

Recent multi-agent LLM frameworks, such as AutoGen (Wu et al., 2024b) and AgentLite (Liu et al., 2024c),
enable task decomposition and role-based coordination through structured message passing and prompt-
driven control. In practice, such systems increasingly operate in human-agent collaborative settings, where
artificial agents interact not only with other agents but also with human users or supervisors through iterative
feedback, correction, and delegation (Lu et al., 2025c; Zou et al., 2025b;c). However, despite this growing
complexity, coordination remains largely episodic and transient: interactions are scoped to a single task
instance, and little experience is retained once the task is completed Suzgun et al. (2025). As a result,
both agent–agent and human–agent collaborations are repeatedly re-established from scratch, limiting the
system’s ability to adapt interaction strategies, personalize behavior, or improve collaboration quality across
repeated tasks or deployments.

Enabling persistent and adaptive collaboration among interacting entities (including both foundation agents
and humans) would inspire long-term research questions (Han et al., 2024; Li et al., 2024c). One important
direction is collaborative (social) memory, where agents retain experience about their collaborators, such as
communication preferences, domain expertise, feedback patterns, or historical interaction outcomes, allowing
them to adapt signaling strategies, calibrate trust, and reduce coordination overhead over time. At the
same time, agents may benefit from role-specific flow and procedural memory, accumulating experience
about their own recurring workflows (Wang et al., 2025u), including task decomposition patterns, execution
strategies, and common failure modes, so that agents assuming stable functional roles can gradually refine
their behavior through experience-driven specialization. Introducing persistent memory in such multi-entity
settings also raises memory governance and coordination challenges, including questions of ownership, access,
responsibility, and how divergent perspectives or human corrections should be handled. Addressing these
issues is essential for preventing uncontrolled error propagation and for sustaining reliable collaboration as
multi-agent systems scale in size, heterogeneity, and task complexity.

9.3 Memory Infrastructure and Efficiency

As foundation agents are increasingly deployed in long-horizon, interactive, and open-ended environments,
memory infrastructure has emerged as a central efficiency bottleneck (Chhikara et al., 2025; Qiu et al., 2025b).
Most existing agent memory designs remain text-centric, treating memory as an ever-growing collection of
past interactions, summaries, or episodic logs that are retrieved and injected into the prompt (Xu et al.,
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2025e; Zhong et al., 2024). While this strategy can improve task performance, it induces substantial token
overhead, with memory contexts routinely expanding to thousands of tokens and exhibiting diminishing
marginal returns (Chhikara et al., 2025). This linear growth in memory cost (Kwon et al., 2023) directly
translates into higher inference latency and reduced scalability, particularly in multi-turn or lifelong settings.
More fundamentally, current approaches conflate memory capacity with prompt length, implicitly assuming
that more context implies better reasoning. This assumption overlooks the need for selective retention,
structured access, and consolidation of experience. Moreover, memory is often managed externally through
heuristics such as summarization or truncation, rather than being integrated into the agent’s reasoning and
learning process. These limitations highlight a core challenge: how to design memory systems that enable
agents to retain, abstract, and reuse experience efficiently under strict resource constraints, without relying
on unbounded context expansion.

Future research on memory infrastructure and efficiency can be viewed as a progression toward increasingly
abstract and integrated representations of experience. In the near term, a promising direction lies in organized
text-based memory, where textual memories are explicitly structured for efficient access rather than maximal
coverage. Recent work has explored schema-based or graph-structured memory representations (Edge et al.,
2024; Chhikara et al., 2025), but these efforts primarily target reasoning accuracy rather than efficiency.
An open opportunity is to design structure-aware storage and precision-oriented retrieval mechanisms that
expose only reasoning-critical spans, minimizing unnecessary context injection. Beyond textual organization,
efficiency gains may be achieved through compressed latent memory, where episodic, semantic, or procedural
experiences are encoded into compact vector representations that function as persistent memory units rather
than mere similarity indices. At a deeper level of integration, internalized or parametric memory offers a
path toward constant-sized memory, where long-term experience is absorbed into internal states or model
parameters. Frameworks such as MEM1 (Zhou et al., 2025c) and Mem-α (Wang et al., 2025p) exemplify this
shift by training agents, via reinforcement learning, to consolidate, update, and discard memory as part of
the reasoning process itself, enabling bounded memory even in long-horizon tasks. Realizing these directions
will also require robust environment infrastructure capable of supporting controlled, multi-step interactions
and scalable evaluation. Platforms such as NeMo Gym (NVIDIA, 2025), which decouple environment logic
from training and provide modular reward and verification services, represent an essential component of this
ecosystem. Together, these advances suggest a future in which memory is no longer an external prompt-
management artifact but a core, learned subsystem co-evolving with agent reasoning and decision-making,
realized through integrated memory architectures that combine structured latent representations (e.g., hi-
erarchical vector tables with differentiable read/write interfaces), joint optimization of memory and policy
via end-to-end reinforcement learning or meta-learning objectives, and adaptive memory controllers that
dynamically allocate, compress, and retire memory units based on task relevance, uncertainty estimates, and
long-term utility.

9.4 Life-Long Personalization and Trustworthy Memory

Life-long personalization seeks to equip foundation agents with the ability to continuously adapt to individual
users across sessions, tasks, and extended time horizons (Wang et al., 2024i). Unlike conventional person-
alization approaches that rely on static user profiles or transient contextual signals, this setting requires
agents to maintain evolving user representations that capture gradual preference shifts, long-term goals,
and behavioral regularities. While recent efforts on persistent memory and dynamic user modeling have
made initial progress (Zhong et al., 2024; Tan et al., 2025c; Zhang et al., 2025m), existing systems largely
depend on heuristic aggregation of interaction histories or unstructured memory retrieval, which limits their
ability to distill reliable, interpretable, and causally grounded user knowledge (Pink et al., 2025). Moreover,
long-horizon personalization introduces non-trivial challenges in memory staleness, concept drift, and credit
assignment: agents must decide which past interactions remain relevant, how to reconcile conflicting signals
over time, and how to prevent outdated preferences from dominating current behavior. These issues are
further exacerbated by scalability constraints, as naively retaining or replaying long interaction histories
leads to prohibitive storage, retrieval, and inference costs, especially when deployed in real-world, always-on
assistant settings.
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A key research direction is the design of scalable and dynamic memory systems that can incrementally update
user modeling while bridging fine-grained episodic traces with higher-level abstractions such as preferences,
habits, or long-term intents. Promising approaches include hierarchical memory architectures that separate
short-term episodic buffers from distilled semantic user profiles (Tan et al., 2025c), learned memory controllers
that regulate when to write, compress, or overwrite user information (Zhang et al., 2025m), and continual
representation learning techniques that mitigate forgetting under distribution shift (De Lange et al., 2021;
Parisi et al., 2019). In parallel, the field requires new evaluation benchmarks tailored to life-long personal-
ization, moving beyond single-turn accuracy toward metrics that assess long-term consistency, adaptability
to preference changes, and robustness under extended interactions (Xu et al., 2025e). Equally important
is the development of trustworthy memory infrastructures. Persistent user memory raises substantial risks,
including privacy leakage (Wang et al., 2025a), memory poisoning (Tan et al., 2024b), and adversarial ma-
nipulation (Dong et al., 2025), which can accumulate silently over time. Recent work on secure and auditable
memory modules (Wei et al., 2025b; Wang et al., 2025a) highlights the need for user-controllable mechanisms
that support inspection, editing, and revocation of stored memories, alongside defenses against unauthorized
access and malicious writes. Ultimately, robustness, transparency, and security should be treated as first-
class objectives, on par with adaptability, when designing and evaluating life-long personalized foundation
agents (Yu et al., 2025c).

9.5 Memory for Multimodal, Embodied, and World-Model Agents

A central challenge for next-generation foundation agents lies in designing memory systems that can faith-
fully represent, align, and abstract heterogeneous sensory streams, including vision, audio, language, tactile
feedback, and proprioceptive signals, into coherent internal states (Bei et al., 2026). While textual memory
mechanisms have achieved notable success in long-horizon reasoning and personalization (Xu et al., 2025e),
existing approaches largely assume unimodal or language-dominant representations. Early efforts in mul-
timodal agent memory (Long et al., 2025; Bo et al., 2025; Liu et al., 2025g) reveal that naively extending
text-based memory to high-dimensional perceptual inputs leads to severe inefficiencies, semantic misalign-
ment across modalities, and brittle retrieval behaviors. These challenges are further amplified in embodied
settings, where agents operate in closed-loop environments and must reason over temporally extended percep-
tion–action–outcome trajectories. In such scenarios, memory must go beyond storing episodic observations
and instead encode grounded knowledge about dynamics, affordances, and physical constraints (Wang et al.,
2025s). However, current systems lack principled mechanisms for action-conditioned memory updates, cross-
modal abstraction, and consistency maintenance across episodic, semantic, and procedural memory layers.
As a result, embodied agents often struggle with skill fragmentation, long-horizon planning failures, and
compounding errors caused by misaligned or stale memories.

Looking forward, a promising research direction is to elevate agent memory into an explicit, predictive world
model that treats memory not as a passive log, but as a controllable internal state evolving over time. World-
model-based formulations (Hafner et al., 2023; Ha & Schmidhuber, 2018) provide a unifying perspective in
which memory updates can be modeled as latent state transitions conditioned on perception and action.
This opens the door to proactive memory planning, where agents simulate the long-term consequences of
storing, compressing, or forgetting information before committing updates (Schrittwieser et al., 2020; Silver
et al., 2017). Within this framework, memory operations become internal actions optimized jointly with
external decision-making, enabling agents to balance immediate utility with long-term consistency and task
performance. Moreover, integrating multimodal memory with structured world representations, such as
spatial maps, object-centric graphs (Singh et al., 2023), or skill graphs (Wang et al., 2025c; Feng et al.,
2025a), can support abstraction across time and modality while improving retrieval efficiency. Finally,
memory and world models should be co-trained in a mutually reinforcing loop: stable, structured memory
can provide long-term state cues that improve world-model prediction, while world models can regularize
memory evolution to prevent identity drift, goal inconsistency, and behavioral instability (Savinov et al.,
2019). Advancing this synergy is key to building scalable, reliable multimodal and embodied agents capable
of long-horizon autonomy in complex real-world environments.
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9.6 Real-World Benchmarking and Evaluations

A central challenge in real-world benchmarking for memory-enabled foundation agents lies in the persistent
mismatch between research-level benchmark abstractions and real-world deployment complexities, for both
user-centric and agent-centric memory. On the user side, most existing benchmarks reduce long-term person-
alization to synthetic factual recall, where agents retrieve static user attributes embedded in long contexts
or scripted interaction histories (e.g., persona facts, preferences, or conversations). While such settings fa-
cilitate controlled evaluation, they fail to capture real user satisfaction, which depends on preference drift,
conflicting signals, partial observability, and delayed feedback over weeks or months. Benchmarks such as
LoCoMo (Maharana et al., 2024) and PersonaMem (Jiang et al., 2025a) emphasize long-context retrieval
accuracy, yet implicitly assume stationary user intent and unambiguous ground truth, overlooking critical
failure modes such as stale preference reuse, incorrect overwriting of long-term user state, or unsafe reten-
tion of sensitive information. On the agent-centric side, interactive benchmarks including WebArena (Zhou
et al., 2024) and OSWorld (Xie et al., 2024) improve realism through execution-based evaluation, but remain
bounded by curated environments, reset-centric task design, and short evaluation horizons. These constraints
obscure whether agents can accumulate, revise, and safely exploit experience across episodes, especially under
non-stationary tools, policies, or environments. As a result, agents may optimize for short-horizon success
while silently failing at memory-critical competencies such as provenance tracking, contradiction resolution,
and long-term policy consistency. This gap mirrors observations in general assistant benchmarks such as
GAIA (Mialon et al., 2024), where failures often arise not from isolated reasoning errors but from brittle
state transitions and incorrect memory updates across multimodal and tool-mediated interactions.

Future research should move toward closed-loop, longitudinal, and execution-grounded evaluation paradigms
that explicitly stress persistent memory under realistic constraints, for both users and agents. For user-centric
memory, benchmarks should incorporate recurring interactions with controlled preference drift, ambiguous
feedback, and real-user rewards, enabling direct measurement of satisfaction-aligned memory behaviors such
as compression, selective forgetting, and safe overwriting, rather than static recall accuracy (e.g., extending
user history with multi-month preference evolution or counterfactual feedback). For agent-centric memory,
evaluation should go beyond simulated resets toward partially open or continuously evolving environments,
where experience accumulation has real consequences, such as financial trading sandboxes, long-running
web services, or competitive control tasks with delayed payoffs, enabling comparison between memory-
augmented agents and memory-free baselines under identical conditions. Execution-based frameworks like
OSWorld (Xie et al., 2024) can be extended with memory-sensitive invariants, requiring agents to version,
audit, and roll back persistent state, and to attach provenance metadata to stored knowledge. In parallel,
standardized tool-mediation layers (e.g., MCP-style interfaces) can enable reproducible logging, permission
enforcement, and replay, supporting fine-grained evaluation of memory–policy interactions under realistic
constraints. Finally, benchmarks should explicitly quantify resource–utility trade-offs, measuring memory
quality as a function of token budget, storage cost, and latency, reflecting the bounded-memory conditions of
real deployments. Collectively, these directions reframe benchmarking from episodic task completion toward
systems-level evaluation of memory as a first-class capability, jointly shaping user trust, agent autonomy,
and long-term utility across evolving environments.

10 Conclusions

Memory is becoming the key component for foundation agents operating in long-horizon, context-exploded,
and user-dependent environments. In this survey, we unify the design along three dimensions, including
memory substrates (internal and external), cognitive mechanisms (sensory, working, episodic, semantic, and
procedural), and memory subjects (user- and agent-centric), and analyze how memory is operated under
single- and multi-agent systems, as well as how it is increasingly shaped by prompting-, fine-tuning-, and
RL-based learning policies. In addition, we also summarize the metrics and benchmarks used to assess
foundation agent performance, and categorize current works into representative application domains. To
foster future memory research, we list out six key challenges to collectively point to a reliable, scalable,
self-evolving, and trustworthy memory infrastructures for real-world human-agent memory system design.
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