MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

Anonymous Authors'

Abstract

In Bayesian optimisation, we often seek to min-
imise the black-box objective functions that arise
in real-world physical systems. A primary con-
tributor to the cost of evaluating such black-box
objective functions is often the effort required to
prepare the system for measurement. We con-
sider a common scenario where preparation costs
grow as the distance between successive evalua-
tions increases. In this setting, smooth optimisa-
tion trajectories are preferred and the jumpy paths
produced by the standard myopic (i.e. one-step-
optimal) Bayesian optimisation methods are sub-
optimal. Our algorithm, MONGOOSE, uses a
meta-learnt parametric policy to generate smooth
optimisation trajectories, achieving performance
gains over existing methods when optimising
functions with large movement costs.

1. Introduction

The task of optimising high-cost black-box functions is in-
escapable across science and industry. For many of these
problems, evaluating the black-box is expensive, not due
to the resources expended to take the measurement itself,
but instead due to the substantial movement cost required to
transition the system to be ready for the next high-quality
measurement — a cost that increases with the distance (in
the input space) between successive measurements. Exam-
ple movement costs include: the financial outlay of mov-
ing mining machinery between drill sites when seeking
areas dense in valuable ores (Jafrasteh & Sudrez, 2021); the
time taken for mixtures of chemicals to reach steady state
when trying to identify optimal mixtures (Teh et al., 2008;
Rankovi€ et al., 2022); or the effort required to reconfigure
mechanical systems like particle accelerators (Roussel et al.,
2021) or heat exchangers (Paleyes et al., 2022).

Bayesian Optimisation (Shahriari et al., 2015, BO) is a pop-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the SPIGM workshop at ICML
2024. Do not distribute.

X2

(a) EI
Figure 1: 50 minisation steps (orange dots to yellow dots)
on a toy function (background). Standard BO with EI (a)
incurs large movement costs, whereas EI per unit cost (b)
fails to reach the global minima (star). Our non-myopic
approach (c) finds the minima whilst following a smooth
trajectory.

(b) EI per unit cost (c) MONGOOSE

ular approach for black-box optimisation under constrained
budgets. At first glance, BO appears to be a promising
method for the problems above. However, standard BO is
not designed for settings with movement cost constraints.
As such, most methods, including those driven by acquisi-
tion functions such as Expected Improvement, favour reduc-
ing uncertainty in previously unexplored areas, a strategy
that results in large jumps between successive evaluations.
Therefore, while efficient in terms of the number of evalu-
ations, standard BO is not efficient in terms of movement
costs (see Figure 1a).

At the same time, encouraging smooth optimisation paths by
simply penalising large movements, e.g. considering the EI
per unit movement cost (discussed in (Folch et al., 2022)),
can lead to a failure to escape local optima (see Figure 1b).
This is due to the myopic nature of such an approach: it
takes into account only the immediate benefit provided by
making an evaluation. However, in order to acheive a global
optimum by following a smooth evaluation path, we must
accept the immediate sub-optimality of steadily traversing a
low-quality region in order to access new promising areas,
instead of jumping to the greedy solution — a trade-off that
will never be made under myopia.

Successful movement-cost constrained BO thus requires
non-myopic decision making. Unfortunately, there has been
limited success in developing non-myopic BO methods.
Solving the multi-step look-ahead problem (Osborne et al.,
2009) is challenging since calculating non-myopic acqui-

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

sition functions requires nested maximisations and expec-
tations when conditioning the surrogate model over each
future time step (see (Gonzélez et al., 2016) for a discussion).
Therefore the computational cost of existing non-myopic
BO methods like (Jiang et al., 2020b) and (Lee et al., 2021)
scales prohibitively for the longer time horizons (> 10)
required for smooth global optimisation.

In this work, we propose a new algorithm, Meta-learning
Of Non-myopic Global Optimisation fOr Smooth Explo-
ration (MONGOOSE), for the optimisation of black-box
functions under high movement costs (See Figure 1c). We
sidestep the need to calculate non-myopic acquisition func-
tions by leveraging recent developments in memory-based
optimisation to instead learn a non-myopic policy directly.
In particular, we train a recurrent neural network to provide
efficient cost-efficient optimisation over carefully crafted
test functions based on samples from a Gaussian Process
(Rasmussen et al., 2006, GP). Our chosen network archi-
tecture enjoys an inductive bias for smooth paths and our
proposed loss function allows the degree of smoothness to
be customised to the task at hand. Finally, we show that
MONGOOSE improves over baselines for a variety of test
functions.

2. Background

In this work, we seek to find the minimum of a smooth black-
box function f : X — R over a compact search space X' =
[0, 1]¢ under a total evaluation budget of 7" steps. Critically,
we wish to perform this optimisation whilst incurring min-
imal cumulative moving cost C(7) = ZtT:Bl C(x¢, Xg41)-
The cost function C : X x X — R denotes the resources
required to move between evaluations at x; and X;4;. Our
framework is agnostic to the exact form of the cost function,
as long as it is differentiable, with the L1 and Lo distances
being common examples. The remainder of this Section
details existing methods that are relevant for optimisation
under movement costs, laying out important groundwork
for our proposed MONGOOSE algorithm.

2.1. Bayesian Optimisation

In standard Bayesian Optimisation (BO) the goal is typically
to minimise f in as few evaluations as possible. Although
this goal is not guaranteed to correspond to efficient optimi-
sation under movement costs, we introduce it here as BO
forms the basis for most existing methods for optimisation
under movement costs.

BO achieves high data efficiency by using previously col-
lected function evaluations to build a probabilistic surro-
gate model of the objective function. Typically GPs are
used for these surrogates, however neural networks (Snoek
et al., 2015) and sparse GPs (Chang et al., 2022; Moss

et al., 2023) have also been considered. This surrogate
model is then used, through a search strategy known as
an acquisition function o : X — R, to carefully select
the next value of x at which to evaluate f, aiming to fo-
cus future resources promising areas of the space. Popular
acquisition functions include those based on expected im-
provement (Jones et al., 1998), knowledge gradient (Frazier
et al., 2008), and Thompson sampling (Kandasamy et al.,
2018), as well a range of entropy-based methods (Hennig
& Schuler, 2012; Hernandez-Lobato et al., 2014; Wang &
Jegelka, 2017; Moss et al., 2021).

2.2. BO under movement costs

A simple way to adapt BO to provide efficient optimisation
with respect to movement costs is to incorporate these move-
ment costs into its acquisition function. For instance the
Expected Improvement per unit cost (Elpu) is defined as

g (Xe, Xe1) = apr(Xer1) /(v + C(xe, X¢41)), (1)

where agy the standard EI acqusition function and v is a
small tuneable parameter (set as v = 1 by (Folch et al.,
2022)). Unfortunately, EIpu heavily penalises the acquisi-
tion function away from the current location and often strug-
gles to achieve global optimisation due to over-exploitation
(recall Figure 1).

The current state-of-the-art BO method for optimisation un-
der movement costs is the Sequential Bayesian Optimisation
via Adaptive Connecting Samples (SnAKe) of (Folch et al.,
2022). SnaKe follows the shortest path that connects a large
number of promising regions, as identified through an ap-
proximate Thompson sampling scheme (Wilson et al., 2020;
Vakili et al., 2021). However, as demonstrated empirically
by (Folch et al., 2022), SnAKe has several shortcomings
including the requirement of an additional heuristic to en-
sure that it avoids getting stuck in local modes and a drop
in performance when considering higher dimensions and/or
shorter time horizons.

2.3. Memory-Based Optimisation

There is a growing trend of training neural networks as
black-box optimisers (Volpp et al., 2019; Lange et al., 2022;
Metz et al., 2022; Chen et al., 2022b); that is, teaching a
network My to take in ¢ previous evaluations and output a
new promising location, i.e. My : (X,)" — X where 0
denotes learnable weights. One immediate advantage over
BO-based methods is that generating the next query point
requires only a single forward pass of the network rather
than the significant expense of fitting a GP and maximising
an acquisition function. In particular, as the dimensionality
of the problem increases, learning a decision policy directly
side-steps the need to optimise an acquisition function in a
high dimensional space.

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

Network Architecture A common choice for meta-
optimisers is a memory-based network (e.g. recurrent neural
networks) (Chen et al., 2022a), which typically stores an
internal memory state that summarises the history of ob-
servations {(x, f(x¢)}%_, and merges it with a current
observation (x;, f(x;) to produce a new location at which
to evaluate x;1. Such meta-trained meomory-based opti-
misers can memorise an effective adaptive search strategy
based on the information learnt during meta-training, and
reassuringly, they are known to achieve close to (Bayes) op-
timal performance (Ortega et al., 2019; Mikulik et al., 2020).
Consequently, a widely used architecture for memory-based
optimisers is the Long Short-Term Memory (LSTM) of
(Hochreiter & Schmidhuber, 1997) (see for example (Chen
et al., 2017; Mikulik et al., 2020; Chen et al., 2022a; Ni
etal., 2021) or (Metz et al., 2022)).

Training Objective To train a memory-based optimiser it is
common to use a meta-learning approach. More precisely,
the network is trained to optimise a large set of objectives
drawn from a distribution over functions which hopefully
captures the true target objective, e.g. (Chen et al., 2017)
use functions sampled from a Gaussian process prior.

When measuring the performance of a particular optimiser
over a fixed optimisation budget 7', a natural non-myopic
metric is to consider the overall improvement found by
the optimiser. More precisely, we can write this training
objective as

L) =By |flx) — min fGx)|, @

.....

where the expectation is taken with respect to a chosen prior
over training functions p(f). x; denotes the location of the
t*" evaluation chosen by our optimiser when applied to the
function f, so x; is a function of both 6§ and the previous
function evaluations, f(x1),..., f(x:-1).

Although this training objective (2) appears equivalent to the
one discussed by (Chen et al., 2017), due to a subtle imple-
mentation detail regarding the “detaching” of gradient terms
related to non-myopia, the objective they actually optimise
ends up being myopic. In contrast, we do not detach any
gradients and instead use the full non-myopic objective for
meta-training. Additional discussions and empirical results
demonstrating a significant difference in performance be-
tween these two approaches are included in Appendix A.2.

Meta-training The objective in Equation 2 is intractable,
and therefore we use Monte-Carlo approximations during
meta-training. At each optimisation step, we sample a set
of B functions {f1, .., fp} from our prior distribution for f,
and roll out our LSTM optimiser for each function, i.e we

use the approximate objective
B
1

Luc(0) = B > (folxa) - ,min fi(xe)). 3)
b=1

During meta-training, we maximise the objective with re-
spect to the LSTM weights 8 using a stochastic optimiser.

If the memory-based optimiser is to be deployed on noisy
objective functions, then we can simply add noise to the
training functions to account for this, i.e. f(x) + 7(x),
where 7 is an arbitrary but known noise distribution. Note
that standard BO methods are typically limited to Gaussian
noise to ensure computational tractability.

3. MONGOOSE

We now present our proposed algorithm, Meta-learning
Of Non-myopic Global Optimisation fOr Smooth Explo-
ration (MONGOOSE), which builds upon recent advances
in memory-based meta learning and Bayesian optimisation
to provide a black-box function minimiser that is efficient
under large movement costs. At a high-level, MONGOOSE
follows the ideas of (Chen et al., 2017) and meta-trains an
LSTM, My, to optimise black-box functions. However, we
introduce a number of key differences, including the use of
a full non-myopic objective that incorporates moving cost,
a better designed meta-training distribution, and a more
efficient sampling and training scheme.

Our proposed MONGOOSE algorithm introduces three ex-
tensions to the work of (Chen et al., 2017) which improve
the efficiency and applicability of memory-based optimisa-
tion. These are

1. A training objective that encourages smooth optimisa-
tion paths.

2. A new prior that generates more realistic training ob-
jective functions.

3. A light-weight training scheme built upon efficient
sampling methods.

We expand on all three of these in the subsequent sections.

3.1. Training Objective for Smooth Paths

We already have a non-myopic training objective for meta-
training (2), however, it does not yet favour optimisation
paths that incur minimal movement costs. Fortunately, we
can easily incorporate a moving cost into our training objec-
tive as follows

_ Lyic(0)
L+ ad] e(xe, Xet1)

Laiv(6) 4)

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

(We also consider an additive moving cost in Appendix A.1.)
Here, « is a hyperparameter controlling the weight of mov-
ing cost, and c(+, -) is a distance function. Any differentiable
function, ¢(x¢, X¢.+1) is admissible.

One of the key advantages of this training objective is that
we can control the relative importance of moving costs using
«, an important degree of freedom that allows MONGOOSE
to be customised to specific problem settings. In contrast,
the current state-of-the-art SnAKe (Folch et al., 2022) lacks
this flexibility. Figure 2 demonstrates that increasing «
trades off cost for exploration, a trade that would be ap-
propriate for problems where movement costs significantly
dominate the cost of each function evaluation.

Interestingly, even without any moving penalty (i.e. set-
ting a = 0) MONGOOSE still generates relatively smooth
trajectories. We suspect this is an inductive-bias of memory-
based models, where the memory-state may retain more
information from the closest previous evaluation x; (see
Appendix C for a discussion).

3.2. Injecting Global Structure

To guarantee performance at test time, it is of critical impor-
tance that the surrogate objective functions that we minimise
at training-time are representative of the true test-time ob-
jective function. However, there is an emerging consensus
that GP samples may not be representative of real-world
objective functions. First, Le Riche & Picheny (2021) and
Picheny et al. (2022) emphasise that real-world objectives
often have a single global optimum, and “global” structure
around that optimum. In contrast, functions sampled from
GP priors with e.g. Matérn or squared exponential kernels,
have no global structure that extends beyond the GP length-
scale, and hence may have many comparably performing
minima. Second, (Hvarfner et al., 2022) argue that global
minima are likely to lie centrally in the search space (as
the search space has been designed by experts to cover the
likely value of the global optimum), while, due to the curse
of dimensionality, GP samples have their minima focused
along the edges of the search domains.

Therefore, to alleviate the shortcomings described above, we
deviate from standard training function priors when training
MONGOOSE. We sample a quadratic bowl and add this
to the training functions sampled from GPs. This addition
adds global structure to the training functions and increases
the likelihood of having a single central global optima. In
particular, to generate a single training objective function,
we first generate a sample f from a GP prior, then add a
randomly generated convex quadratic,

faaa(x) = f(x) + S(x—a) W(x—a)+c. (5

Here, W is sampled from a Wishart distribution W(%1, d) to
ensure convexity, a ~ U(0.2,0.8)% to encourage a central

minima, and ¢ = g5 >_i;IW]i; (half the expected maxi-
mum value of the quadratic) to ensure that the inclusion of
the quadratic doesn’t dramatically change the output range
of the sampled functions. We found that including this
global structure gives an improvement in optimisation per-
formance downstream, especially in higher dimensions (see
Appendix B).

3.3. Meta-training By Fourier Features

Recall that calculating our training objective (3) requires
the evaluation of K samples from a GP prior, each across
T locations. Previous meta-training approaches sample the
GP exactly (Chen et al., 2017), however, due to a Cholesky
decomposition step (Diggle et al., 1998), this incurs a O(T"3)
cost which becomes prohibitively expensive for longer time-
horizons.

A natural answer to these scalability issues is to rely instead
on an approximate sampling schemes already commonly
used throughout BO literature known as Random Fourier
Features (RFF). In particular, it is well-known that for many
common choices of kernels, GP samples can be expressed as
a weighted sum of the kernel’s Fourier features (Rahimi &
Recht, 2007). This sum can then be truncated to only its M
largest contributors, leaving approximate but analytically
tractable samples that can be queried with only O(MT)
cost. See Appendix A of (Hernandez-Lobato et al., 2014)
for full details. In our experiments, we found that using
these approximate samples for training allowed a dramatic
reduction in training costs without a loss in training stability
or in the performance of the trained optimisers.

We can now summarise the full algorithm for MONGOOSE
in Algorithm 1. Note that the roll-out of MONGOOSE
over the B training functions (i.e. line 5 of Algorithm 1) is
entirely parallelisable.

Algorithm 1 Training MONGOOSE

Choose Horizon H, # training steps /N, Batch size B
n € {1,.., N} Training loop Generate B approximate
GP samples { f1, .., fg} Add random quadratic effects
fo < fo + fquaa b € {1,.., B} Can be parallelised
hef{l,.,H} Rollout
xn = My({(xi, fo(x;))}"=}) Use the B roll-outs to
calculate Lgy(0) Eq. 4 Backpropogate through Ly (6)
and update 6 A trained MONGOOSE My

4. Related Work

Cost-constrained BO There are many examples of BO
where the cost of evaluations depends on their location
(rather than the relative distance from previous evaluations
we consider). In this popular setting, building a simple cost-
weighted acquisition function like the EI per unit evaluation

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

MONGOOSE a=0.0 MONGOOSE a =0.001

MONGOOSE a =0.01 MONGOOSE a =0.05

1 4.2
=
0 - -1.2
0 1
X1 X1 X1
15
+~ 10 A -1 1 -1
w0
o
1) 5 - . - .
0 T T T T
0 25 50 0 25 50 0 25 50 0 25 50
steps steps steps steps

Figure 2: Top: trajectories MONGOOSE with different cost scalings on a single function sample from the meta-training
distribution (background colour). Cost scalings o = 0.00, 0.01, 0.05 from left to right as labelled on titles. Background
with colour scale represent the function sample. Orange/yellow dots denote the evaluations chosen by each method, where
darker colours (more orange) denote points earlier in the optimisation, and lighter colors (more yellow) denote points later
in the optimisation. Consecutive evaluations are joined by lines. Bottom: L» distance (i.e. moving cost) to traverse each

optimisation trajectory.

cost, can sometimes be an effective heuristic, e.g. when tun-
ing the architecture of neural networks where certain design
choices increase training times (Snoek et al., 2012) or when
multiple evaluation methods are available but each with dif-
fering costs, as arise in multi-task (Swersky et al., 2013),
multi-source (Poloczek et al., 2017) or multi-fidelity (Moss
et al., 2020b) optimisation. Unfortunately, as discussed
above and demonstrated in our experiments, applying a sim-
ple cost-weighting idea (similar to that proposed by (Roussel
et al., 2021)) for the movement cost setting can lead to arbi-
trarily poor optimisation. Recently, (Lee et al., 2020; 2021)
reformulated BO under location dependent costs as a con-
strained Markov decision process, trading a performance
improvement over cost-weighted baselines for significant
additional computational complexity. In other related work,
Ramesh et al. (2022) considers a similar movement penalty
but in a specific contextual BO setting inspired by wind
energy systems.

Non-myopic BO When performing global optimisation un-
der a fixed evaluation budget, it should be advantageous
to think non-myopically. Consequently, many non-myopic
BO approaches have been proposed outside of the cost-
constrained setting, ranging from cheap heuristics like
GLASSES (Gonziélez et al., 2016) and BINOCULARS
(Jiang et al., 2020a), which approximate multi-step look-
ahead as batch experimental design problem, to expensive
approximations of optimal non-myopic policies (Jiang et al.,

2020b; Yue & Kontar, 2020; Lee et al., 2021) suitable for
shorter time-horizons (j 10 steps). Note that SnAKE can be
interpreted as an extension of GLASSES (Gonzélez et al.,
2016) to the movement constrained setting, achieving a
degree of non-myopic decision making via constructing
batches.

Meta-learnt optimisers Chen et al. (2017) meta-trained
a long short-term memory (LSTM) network (Hochreiter
& Schmidhuber, 1997) over samples from a GP. However,
their training framework involves conditional sampling of
GPs which is both computational and memory intensive.
Similarly, (Lange et al., 2022) meta-learned an evolution-
ary strategy for BO rollout through an attention network,
which itself is learned by another outer-loop evolutionary
strategy. Volpp et al. (2019) amortised the acquisition func-
tion by a meta-learned neural acquisition function over GP
a posterior, and subsequently learned a categorical policy
on a grid of points through proximal policy optimisation
(Schulman et al., 2017). Meta-learning with memory-based
agents also achieves state-of-the-art performance in many
sequential decision making tasks (Ni et al., 2021). However,
none of these existing methods support optimisation under
large movement costs.

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

5. Experiments

We now investigate the performance of MONGOOSE across
three different settings: standard BO benchmark functions,
across the extensive COCO testing suite(Finck et al., 2010;
Hansen et al., 2021), and on a real world example from
(Folch et al., 2022). For clarity, all our results follow a sim-
ilar format, presenting regret against the movement costs
incurred over 50 (main text) and 100 (Appendix E) eval-
uations. All results are based on 50 runs across different
random seeds except for MONGOOSE which, due to com-
putational considerations, was ran 10 times for each exper-
iment. Results on noiseless functions are included in the
main text. See Appendix D for the corresponding results on
noisy objective functions.

5.1. Implementation Details

MONGOOSE Our architecture comprises an LSTM with
a hidden cell state dimension of 128, and a decoder with a
sigmoid activation that maps hidden states to locations in the
search space, with some additional design choices that were
helpful in improving training stability. Firstly, we initialised
MONGOOSE with a single evaluation at the origin xg =
0 (i.e a corner of the search space), with all subsequent
evaluations chosen by the model. We found that starting
with a randomly located evaluation could lead to less stable
model fitting. Secondly, we also found curriculum learning
(Bengio et al., 2009) to be important for stability, i.e. we
began the optimisation process with shorter horizon lengths
and gradually increased it to the desired longer horizons.
Each curriculum phase comprised 5, 000 optimisation steps,
with each training loss evaluation calculated using a new
random batch of 128 training functions. Back propagation
through time is used to collect gradients (Werbos, 1990).
Finally, we decayed the learning rate from le—3 to le—4
when the curriculum’s horizon length reaches 40.

To generate each function used to train MONGOOSE, we
first sample a per-dimension lengthscale vector £ € R¢ from
an inverse Gamma distribution with 99% confidence inter-
val at [0.1,0.4], and then use this length-scale to build a GP
with a Matern 5/2 kernel with unit variance from which we
approximately sample using 100 RFFs. Our choice of ran-
domly sampled lengthscale gives the GP sample variability
across input dimensions while being realistic and covers a
wide range of possible test functions. The source code for
our experiments has been made publicly available'.

Competitors We use the implementation for EI, EIpu and
SnAKe provided by Folch et al. (2022)? based on the
BOTorch BO library (Balandat et al., 2020). We follow the

"https://anonymous. 4open.science/r/
mongoose_submission-5131/
https://github.com/cog-imperial/SnAKe

recommendations of (Folch et al., 2022), setting SnAKe’s
e-Point deletion scale to e = 0.1 (a tune-able parameter that
helps encourage global exploration) and Elpu’s cost-scale
coefficient to v = 1 (for other choices of -, see Appendix F).

Critical to the performance of BO methods, is access to
an initial set of evaluations, from which reliable estimates
of model parameters (e.g. lengthscales) can be calculated.
Under movement costs, standard space-filling designs incur
significant costs and so are likely sub-optimal, however,
reliable estimates of model parameters are still required to
ensure effective optimisation. We follow the setup of (Folch
et al., 2022) and “warm-start” the BO methods (SnAKE, EI
and Elpu) by providing them with a reasonable initialisation
of GP model parameters (as calculated over an initial design
of 10d points). As these evaluations are not used directly
to fit surrogate models (only indirectly to provide an initial
lengthscale), (Folch et al., 2022) chose not to include the
cost of this design in the reported cost of their algorithm, a
convention we also follow. In contrast, MONGOOSE starts
from scratch from a single evaluation at the origin, i.e. with
no warm-starting. Despite this substantial advantage given
to the baseline methods, we will see that MONGOOSE still
achieves superior performance.

5.2. Bayesian optimisation benchmarks

Firstly, we investigate the performance of MONGOOSE on
standard BO benchmark functions as presented in Fig. 3. In
lower dimensions all algorithms perform similarly, however,
when considering higher dimensions (> 3), MONGOOSE
consistently achieves lower regret with lower cost, a dif-
ference especially pronounced on the challenging highly
multi-modal Ackley function. Note that these results match
those claimed for EI, Elpu and SnAKe in Figure 11(b), Fig-
ure 12(b), Figure 13(b), Figure 14(b), and Figure 15(b) of
Folch et al. (2022).

5.3. COCO test suite

For a more thorough evaluation across different types of
functions and across dimensions, we now consider the chal-
lenging COCO (COmparing Continuous Optimisers) test
suite (Finck et al., 2010; Hansen et al., 2021), a suite of
23 functions designed to benchmark black-box optimis-
ers. Each function designed specifically to exhibit differ-
ent attributes (e.g. multi-modality, low/high conditioning,
weak/adequate global structure) and can be defined for arbi-
trary dimensions. We standardised these functions to make
their values lie in a reasonable range (see Appendix G for
more details). The amortised results for dimensions two
to six are included in Figure 4 (see Appendix H for a per-
function breakdown). MONGOQOSE reliably achieves the
best tradeoff between movement costs and regret across
across all dimensions. We believe that the poor performance

https://anonymous.4open.science/r/mongoose_submission-5131/
https://anonymous.4open.science/r/mongoose_submission-5131/
https://github.com/cog-imperial/SnAKe

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

m— El Elpu = SnAKe = MONGOOSE a = 0.05 MONGOOSE a =0.01
Branin (2D) Michalewicz (2D) Kim1 (2D) Hartmann (3D)
6 -
0.6 ‘\ 10 4 \,
‘é] 0.4 “ 2 4
| 5
=2 —\ 0.2 “
0 || 0.0 4% 0 k, — 04 =
T T T T
Ackley (4D) Shekel (4D) Ackley (5D) Hartmann (6D)
| \\, Y -
\ 10 —N 20 - \ 3
- 6 7 \
(0]
g \ 7 15 1 \ 27 \
pust 4
= 6 11
T T T T
0 10 20 0 10 20 0 10 20 0 10 20
cost cost cost cost

Figure 3: Regret versus cost on standard benchmark objective functions for two versions of MONGOOSE and BO baselines.
We plot the mean and a 90% confidence interval of regret for each method.

— El Elpu == SnAKe =—— MONGOOSE a=0.05 MONGOOSE a =0.01
2D 3D 4D 5D 6D
2 2 29|
° 2 2
3 \
- \
14 14 14
1 4 1+
T T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
cost cost cost cost cost

Figure 4: Regret against cost averaged across 24 Coco functions for a range of dimensions.

of SnAKe in five and size dimensions is due to the require-
ment for a batch of points to achieve good coverage of the
space, which becomes increasingly difficult in higher dimen-
sions and under time horizons of only 50. In Appendix E,
we show similar results for time horizons of 100 evaluations.

The computational overhead incurred by MONGOOSE
when optimising the COCO functions is around three or-
ders of magnitude faster than achieved by the BO baseline
methods (see Table 1). Of course, MONGOOSE has the
additional cost of requiring meta-training, however, as this
takes less than 30 minutes on one RTX2080Ti (when consid-
ering a 50 step time horizon) and only needs to be performed
once for each considered input dimensionality (i.e. not for
each objective function), we do not consider meta-training

Table 1: Averaged time for 50 optimisation steps (in sec-
onds) over the COCO test suite.

methods 2D 3D 4D 5D 6D
EI 33 33 35 36 36
Elpu 33 34 36 36 37
SnAKe 23 33 46 70 92

MONGOOSE 0.02 0.02 0.02 0.02 0.02

a serious computational bottleneck.

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

El Elpu

SnAKe MONGOOSE a=0.01

X2

1.2

X1 X1

0.0

X1 X1

Figure 5: Optimisation trajectories generated when searching for contaminates across the Ypacarai Lake.

5.4. Real world example

For our final example, we turn to the Ypacarai Lake prob-
lem (Samaniego et al., 2021; Folch et al., 2022) — a real
world black-box optimisation problem that suffers from
substantial movement costs. Here, the task is to direct an
autonomous surface vehicle to locate contamination sources
in the lake, thus travelling a minimal distance is preferred
to minimise time and energy consumption. The ground-
truth contamination levels over the lake are given over a
fine grid. For the BO baselines of EI, Elpu and SnAKe, we
use this pre-specified grid as their search space, whereas
for MONGOOSE, we project the locations to closest grid
point and evaluate the objective at the projected location.
Figure 5 compares the trajectories from a single run of
El, Elpu, SnAKe and MONGOOSE, demonstrating that
MONGOOSE with o« = 0.01 is able to generate an en-
tirely smooth trajectory that explores both modes. Figure 6
shows the maximum contamination found against distance
travelled by different methods.

6. Discussion

In this work, we developed a memory-based meta-learning
approach for the optimisation of black box functions where
inputs incur large costs. and our results showed MON-
GOOSE performs better than competing methods (EL, EIpu
and SnAKe) over horizons of 50-100 steps, especially in
higher dimensions.

In future work we will investigate the use of dimensional
agnostic architectures to avoid the need to train separate net-
work for objective functions with different input dimensions.
Attention-based architectures (Lee et al., 2019; Simpson
et al., 2021) may provide a solution, with the additional
benefit of being invariant to the ordering of query points
(a property that should hold for Bayes optimal agents, see
(Ortega et al., 2019) or (Mikulik et al., 2020)). Another
open question is how to extend memory-based optimisers to
non-Euclidean search spaces, a jump recently made by BO

= El
= MONGOOSE a=0.01

= SnAKe
MONGOOSE a = 0.001

Elpu

1.3

1.2 1
1.1+
1.0 1

094y

negative contamination

0.8

0 5 10 15 20 25 30
distance travelled

Figure 6: The maximum contamination found against dis-
tance travelled by EI, Elpu, SnAKe and MONGOOSE.

in the context of gene design (Moss et al., 2020a), molecular
search (Griffiths et al., 2022a;b) and combinatorial optimi-
sation (Deshwal et al., 2021).

References

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B.,
Wilson, A. G., and Bakshy, E. Botorch: A framework
for efficient monte-carlo bayesian optimization. NeurIPS,
2020.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In ICML, 2009.

Chang, P. E., Verma, P, John, S., Picheny, V., Moss, H.,
and Solin, A. Fantasizing with dual gps in bayesian
optimization and active learning. arXiv, 2022.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang,
Z., and Yin, W. Learning to optimize: A primer and a
benchmark. JMLR, 2022a.

Chen, X., Chen, T., Cheng, Y., Chen, W., Awadallah, A. H.,
and Wang, Z. Scalable learning to optimize: A learned

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

optimizer can train big models. In European Conference
on Computer Vision (ECCV 2022), 2022b.

Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M.,
Lillicrap, T. P, Botvinick, M., and Freitas, N. Learning
to learn without gradient descent by gradient descent. In
ICML, 2017.

Deshwal, A., Belakaria, S., and Doppa, J. R. Mercer fea-
tures for efficient combinatorial bayesian optimization.
In AAAI 2021.

Diggle, P. J., Tawn, J. A., and Moyeed, R. A. Model-based
geostatistics. Journal of the Royal Statistical Society
Series C: Applied Statistics, 1998.

Finck, S., Hansen, N., Ros, R., and Auger, A. Real-
parameter black-box optimization benchmarking 2009:
Presentation of the noiseless functions. Technical report,
Citeseer, 2010.

Folch, J. P, Zhang, S., Lee, R. M., Shafei, B., Walz, D.,
Tsay, C., van der Wilk, M., and Misener, R. Snake:
Bayesian optimization with pathwise exploration. In
NeurlIPS, 2022.

Frazier, P. 1., Powell, W. B., and Dayanik, S. A knowledge-
gradient policy for sequential information collection.
SICON, 2008.

Gonzalez, J., Osborne, M., and Lawrence, N. Glasses: Re-
lieving the myopia of bayesian optimisation. In AISTATS,
2016.

Griffiths, R.-R., Greenfield, J. L., Thawani, A. R., Jamasb,
A. R., Moss, H. B., Bourached, A., Jones, P., McCorkin-
dale, W., Aldrick, A. A., Fuchter, M. J., et al. Data-driven
discovery of molecular photoswitches with multioutput
gaussian processes. Chemical Science, 2022a.

Griffiths, R.-R., Klarner, L., Moss, H. B., Ravuri, A.,
Truong, S., Rankovic, B., Du, Y., Jamasb, A., Schwartz,
J., Tripp, A., et al. Gauche: A library for gaussian pro-
cesses in chemistry. arXiv, 2022b.

Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T.,
and Brockhoff, D. Coco: A platform for comparing con-
tinuous optimizers in a black-box setting. Optimization
Methods and Software, 2021.

Hennig, P. and Schuler, C. J. Entropy search for information-
efficient global optimization. JMLR, 2012.

Hernandez-Lobato, J. M., Hoffman, M. W., and Ghahra-
mani, Z. Predictive entropy search for efficient global
optimization of black-box functions. arXiv, 2014.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 1997.

Hvarfner, C., Stoll, D., Souza, A., Lindauer, M., Hutter, F.,
and Nardi, L. 7 bo: Augmenting acquisition functions
with user beliefs for bayesian optimization. arXiv, 2022.

Jafrasteh, B. and Sudrez, A. Objective functions from
bayesian optimization to locate additional drillholes.
Computers & Geosciences, 2021.

Jiang, S., Chai, H., Gonzalez, J., and Garnett, R. Binoculars
for efficient, nonmyopic sequential experimental design.
In ICML, 2020a.

Jiang, S., Jiang, D., Balandat, M., Karrer, B., Gardner, J.,
and Garnett, R. Efficient nonmyopic bayesian optimiza-
tion via one-shot multi-step trees. NeurlPS, 2020b.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization, 1998.

Kandasamy, K., Krishnamurthy, A., Schneider, J., and
P6czos, B. Parallelised Bayesian optimisation via Thomp-
son sampling. In AISTATS, 2018.

Lange, R. T., Schaul, T., Chen, Y., Zahavy, T., Dallibard, V.,
Lu, C., Singh, S., and Flennerhag, S. Discovering evolu-
tion strategies via meta-black-box optimization. arXiv,
2022.

Le Riche, R. and Picheny, V. Revisiting bayesian optimiza-
tion in the light of the coco benchmark. Structural and
Multidisciplinary Optimization, 2021.

Lee, E., Eriksson, D., Bindel, D., Cheng, B., and Mccourt,
M. Efficient rollout strategies for bayesian optimization.
In UAI 2020.

Lee, E. H., Eriksson, D., Perrone, V., and Seeger, M. A
nonmyopic approach to cost-constrained bayesian opti-
mization. In UAI 2021.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In ICML, 2019.

Metz, L., Harrison, J., Freeman, C. D., Merchant, A., Beyer,
L., Bradbury, J., Agrawal, N., Poole, B., Mordatch, I.,
Roberts, A., et al. Velo: Training versatile learned opti-
mizers by scaling up. arXiv, 2022.

Mikulik, V., Delétang, G., McGrath, T., Genewein, T., Mar-
tic, M., Legg, S., and Ortega, P. Meta-trained agents
implement bayes-optimal agents. NeurIPS, 2020.

Moss, H., Leslie, D., Beck, D., Gonzalez, J., and Rayson, P.
Boss: Bayesian optimization over string spaces. NeurIPS,
2020a.

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

Moss, H. B., Leslie, D. S., and Rayson, P. Mumbo: Multi-
task max-value bayesian optimization. In Machine Learn-
ing and Knowledge Discovery in Databases, 2020b.

Moss, H. B., Leslie, D. S., Gonzalez, J., and Rayson, P.
Gibbon: General-purpose information-based bayesian
optimisation. JMLR, 2021.

Moss, H. B., Ober, S. W., and Picheny, V. Inducing point al-
location for sparse gaussian processes in high-throughput
bayesian optimisation. arXiv, 2023.

Ni, T., Eysenbach, B., and Salakhutdinov, R. Recurrent
model-free rlis a strong baseline for many pomdps. arXiv,
2021.

Ortega, P. A., Wang, J. X., Rowland, M., Genewein, T.,
Kurth-Nelson, Z., Pascanu, R., Heess, N., Veness, J.,
Pritzel, A., Sprechmann, P, et al. Meta-learning of se-
quential strategies. arXiv, 2019.

Osborne, M. A., Garnett, R., and Roberts, S. J. Gaussian
processes for global optimization. In LION, 2009.

Paleyes, A., Moss, H. B., Picheny, V., Zulawski, P., and New-
man, F. A penalisation method for batch multi-objective
bayesian optimisation with application in heat exchanger
design. arXiv, 2022.

Picheny, V., Moss, H., Torossian, L., and Durrande, N.
Bayesian quantile and expectile optimisation. In UAI,
2022.

Poloczek, M., Wang, J., and Frazier, P. Multi-information
source optimization. NeurlPS, 2017.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. NeurIPS, 2007.

Ramesh, S. S., Sessa, P. G., Krause, A., and Bogunovic, 1.
Movement penalized bayesian optimization with applica-
tion to wind energy systems. NeurIPS, 2022.

Rankovié, B., Griffiths, R.-R., Moss, H. B., and Schwaller,
P. Bayesian optimisation for additive screening and yield
improvements in chemical reactions—beyond one-hot en-
codings. arXiv, 2022.

Rasmussen, C. E., Williams, C. K., et al. Gaussian processes
for machine learning. Springer, 2006.

Roussel, R., Hanuka, A., and Edelen, A. Multiobjective
bayesian optimization for online accelerator tuning. Phys-
ical Review Accelerators and Beams, 2021.

Samaniego, F. P, Reina, D. G., Marin, S. L. T., Arzamendia,
M., and Gregor, D. O. A bayesian optimization approach
for water resources monitoring through an autonomous
surface vehicle: The ypacarai lake case study. IEEE
Access, 2021.

10

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv, 2017.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A
review of Bayesian optimization. /EEE, 2015.

Simpson, F., Davies, 1., Lalchand, V., Vullo, A., Durrande,
N., and Rasmussen, C. E. Kernel identification through
transformers. NeurIPS, 2021.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
NeurlPS, 2012.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,
Sundaram, N., Patwary, M., Prabhat, M., and Adams,
R. Scalable bayesian optimization using deep neural
networks. In ICML, 2015.

Swersky, K., Snoek, J., and Adams, R. P. Multi-task
bayesian optimization. NeurIPS, 2013.

Teh, S.-Y,, Lin, R., Hung, L.-H., and Lee, A. P. Droplet
microfluidics. Lab on a Chip, 2008.

Vakili, S., Moss, H., Artemev, A., Dutordoir, V., and
Picheny, V. Scalable thompson sampling using sparse
gaussian process models. NeurIPS, 2021.

Volpp, M., Frohlich, L. P., Fischer, K., Doerr, A., Falkner,
S., Hutter, F., and Daniel, C. Meta-learning acquisition
functions for transfer learning in bayesian optimization.
arXiv, 2019.

Wang, Z. and Jegelka, S. Max-value entropy search for
efficient Bayesian optimization. In ICML, 2017.

Werbos, P. J. Backpropagation through time: what it does
and how to do it. /[EEE, 1990.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P.,
and Deisenroth, M. Efficiently sampling functions from
gaussian process posteriors. In ICML, 2020.

Yue, X. and Kontar, R. A. Why non-myopic bayesian opti-
mization is promising and how far should we look-ahead?
a study via rollout. In AISTATS, 2020.

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

A. Alternative objectives
A.1. Additive moving cost

In the main text, we considered incorporating moving cost through division,

L(9)

Laiv(0) = . 6
di () 1+aztc(xtyxt+1) ()
Here, we consider the alternative option to add the cost
H-1
Laaa(0) =)+ Z c(X¢,Xe41), @)
t=1

however, this is not the ideal choice for black-box functions since the choice of cost scaling « in the additive case needs
to be proportional to the scaling of the function and so is difficult to predetermine. Figure 7 compares their performance
on normalised COCO functions, notice that they perform similarly under slightly different choices of cost scaling .. In
particular, Lg;, with o = 0.001 gives very similar performance as L,q9 with « = 0.01, and Lg;, with a = 0.01 is similar to
L.qa with e = 0.05.

m—= MONGOOSE div a = 0.05 MONGOOSE div @ =0.01 === MONGOOSE add a =0.05 MONGOOSE add a=0.01
2D 3D 4D 5D 6D
2 A 2 2 4 \
o 2 - 2
<
o
: \
14 k 14 1
1 1 -
T T T T T T T T T T
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
cost cost cost cost cost

Figure 7: Comparison of L4y (6) versus L,qq(0) averaged across the COCO benchmark. Individual plots for each COCO
function are shown in Figure 25,26,27,28.

A.2. The myopic objective
The objective we use in our meta-training, as defined in Equation 2, is given by

£06) =By | 16xr) — pin, fx)].

FRRES}

This is the expected improvement over our prior with respect to the minimum function value reached during a trajectory of
T steps. It is worth noting that this loss can be expressed as a cumulative sum of improvement, which has the same form as
the ‘observed improvement’ proposed by Chen et al. (2017),

=Ey

Zmax min_ f(xv) - f(xt>7o>] .

However, when optimising this loss, Chen et al. (2017) detached the previous best function value miny —; . ; fr(xs) during
back-propagation, effectively making the objective myopic. In contrast, we do not detach gradients and calculate the loss
exactly as it is written. To aid intuition, consider a horizon length of 2 with a single training function and xy = 0. Under
these assumption, our objective becomes

Loi(0) = max(f(xo) = f(x1),0) + max(min{ f (xo), f (x1)} —f(x2),0)-

detach

11

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

Now consider detaching the gradient of f(x;) from the second term. This leads to myopia because, when updating x, its
only contribution now comes from the first term which is only a one-step (i.e. myopic) improvement max(f(xo) — f(x1),0).
In contrast, a truly non-myopic approach should consider the effect of changing x; on all subsequent improvements.

From a more practical perspective, we saw a significant performance degradation when mimicking the gradient detaching of
(Chen et al., 2017), as shown in Figure 8.

e MONGOOSE a = 0.05 MONGOOSE a =0.01 = MONGOOSE detach a =0.05 MONGOOSE detach a=0.01
2D 3D 4D 5D 6D
2 A 2 —\ 2 A
= \ 2 A 2 A
g A\ > \\ N
1 - 1 - 14
14 14
0 5 0 5 0 5 0 5 0 5
cost cost cost cost cost

Figure 8: Comparing the non-myopic (red/orange) versus myopic (blues) meta-training objectives averaged across the
COCO benchmark, with o = 0.01, 0.05. Individual plots for each COCO function are shown in Figure 29,30,31,32.

12

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

B. Effect of injecting global structure

We now illustrate the effect of injecting the global structure we described in the main text into GP samples as Figure 9. The
major effects of adding global structure include (1) moving global optimum from corners and edges towards the centre and
(2) eliminating some modes at corners. Adding this global structure boosts the performance on standard BO benchmarks
especially in 4D-6D functions (see Figure 10). When averaged across the COCO benchmark, MONGOOSE trained without
global structure consistently achieves lower regret with a lower moving cost, and the advantage grows as dimensionality
increases.

GP sample GP sample GP sample GP sample
1 2.6 2.3 : 1.4
<
0 2.4 -1.3 2.2
0 1 0 1
GP sample + glob GP sample + glob GP sample + glob GP sample + glob
1 5.4 2.3 . 2.3
<
0 -5.2 2.6 3.4

Figure 9: Top: original GP samples obtained from a Matern 5/2 kernel. Bottom: The same samples injected with randomly
sampled global structure.

13

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

== MONGOOSE glob 0.05 MONGOOSE glob 0.01 == MONGOOSE 0.05 MONGOOSE 0.01
Branin (2D) Michalewicz (2D) Kim1 (2D) Hartmann (3D)
6 -]
0.6 —‘_ 10 A 3 ..
4 -

044

regret
o N
1
e ©
o N
1 1
w
1
(-
- N
1 1

T T 0 T 0 T
Ackley (4D) Shekel (4D) Ackley (5D) Hartmann (6D)
10 7Y J 20.0 X ’ _\x\
6 -
° \ 17.5 1
g 9 1] 27
g, y 15.0 \
\ . 12.5 A 1
T T T T
0 5 10 0 5 10 0 5 10 0 5 10
cost cost cost cost

Figure 10: Investigating the effect of adding global structure during meta-training on standard BO benchmarks.

= MONGOOSE glob a =0.05 MONGOOSE glob a = 0.01 e MONGOOSE a = 0.05 MONGOOSE a=0.01
2D 3D 4D 5D 6D
\ | \
2 A 2 2
; \ 2 2
<
o
o \ \
14 1 1
1 - 1 -
T T I T T T T T T T T
0 5 10 15 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
cost cost cost cost cost

Figure 11: Investigating the effect of adding global structure (red/orange) against standard GP sample (blue) during meta-
training averaged across the COCO benchmark, with o = 0.01, 0.05. Individual plots for each COCO function are shown in
Figure 21,22,23,24.

14

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

C. Inductive bias of memory-based meta-optimisers

We found that meta-trained memory-based optimisers using the non-myopic objective (Eq. 2 and Eq. 4) have an inductive
bias of generating smooth trajectories with low cost. As illustrated in Figure 12, even with o = 0, the trajectory of
MONGOOSE is than the jumpy trajectory of EI (Figure 12a). Further evidence is provided in Figure 14, which shows
MONGOOSE « = 0 outperforming EI, Elpu and SnAKe in terms of averaged regret versus cost on the COCO benchmark
(for dimensions higher than 2D). We suspect that MONGOOSE’s inducitve bias for smooth paths is due to hidden states
in memory-based learners containing more information from closest previous steps, thus biasing the output to lie close to
previous outputs.

Elpu SnAKe
4.2

X2

-1.2

+~ 10 1 - -
wn
o
o 5 - . -
0 T T T T T T
0 20 40 0 20 40 0 20 40
steps steps steps

(a) Top: trajectories of EI, Elpu, SnAKe, colour scale same as in Figure 1. Bottom: cumulative L> cost along the trajectory.

MONGOOSE a =0.0 MONGOOSE a = 0.001 MONGOOSE a = 0.01 MONGOOSE a = 0.05
4.2

-1.2

15
o 10 - - . -
wn
o
1) 5 - . - .

0 T T T T

0 25 50 0 25 50 0 25 50 0 25 50
steps steps steps steps

(b) Top: trajectories of MONGOOSE with o« = 0,0.001, 0.01, 0.05, colour scale same as in Figure 2. Bottom: cumulative L2 cost along
the optimisation trajectory.

Figure 12: Comparing trajectories and costs from a single run of EI, Elpu, SnAKe, and MONGOOSE with o =
0,0.001,0.01, 0.05.

15

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

m— E| Elpu = SnAKe = MONGOOSE a =0.01 MONGOOSE a =0.001
Branin (2D) Michalewicz (2D) Kim1 (2D) Hartmann (3D)
6
| 10
w4 0.50 -
o
g, 0.25 - \ 5
— S 0.00 + —
0 I T T 0 T
Ackley (4D) Shekel (4D) Ackley (5D) Hartmann (6D)
\ — -
10 e 3

- \\~\‘~ .
= o 27
[

4 18 1 \

8 -
T T 16 T T
0 10 20 0 10 20 0 10 20 0 10 20
cost cost cost cost

Figure 13: Comparison of EI, Elpu, SnAKe, MONGOOSE with & = 0.001 and = 0 on standard BO benchmarks.

— El Elpu —— SnAKe —— MONGOOSE a=0.01 MONGOOSE a = 0.001
2D 3D 4D 5D 6D
2 2 2
= N 2 2
5 N
<
1 \\ 1 ~ 1 =
\ 1 1
T T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
cost cost cost cost cost

Figure 14: Comparison of EI, Elpu, SnAKe, MONGOOSE with o = 0.01 and o« = 0.001 averaged across the COCO
benchmark. Individual plots for each COCO function are shown in Figure 33,34,35,36.

16

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

D. Experiments on noisy functions

In the main text, we presented results on noiseless functions. Here, we consider adding Gaussian observation noise to
function evaluations. Specifically, we sample noise 7 ~ A (0, 02), and let the model (GP for EI, Elpu and SnAKe; LSTM for
MONGOOSE) observe new evaluation pair (x;, f(x:)+n), and choose next evaluation location based on noisy observations.
when computing the final regret for all methods at test time, we still use the true function value without observation noise.
The results for 02 = 0.1 on standard BO benchmarks are shown in Figure 15 and on the COCO benchmark are shown in

Figure 16
— El Elpu = SnAKe === MONGOOSE a = 0.05 MONGOOSE a =0.01
Branin (2D) Michalewicz (2D) Kim1 (2D) Hartmann (3D)
6 -
10
e 4 0.50 —R ‘
Q
& 0.25 4" 5 -
254 . \ ———————]
0 _Kk\g_ 0.00 - V—
T T 0 T
Ackley (4D) Shekel (4D) Ackley (5D) Hartmann (6D)
‘\ 10 N mm——— 20 N 3 1
w 67 \
Q
> \ 15 - 27
— 4 . 9 -
| 1
T T 10 T T T
0 10 20 0 10 20 0 10 20 0 10 20
cost cost cost cost

Figure 15: Comparison of EI, Elpu, SnAKe, MONGOOSE with o = 0.01 and o = 0.05 on standard BO benchmarks with

observation noise n ~ A (0,0.1).

= El Elpu == SnAKe === MONGOOSE a =0.05 MONGOOSE a =0.01
2D 3D 5D 6D
2 2 2 A
8 27
o
I
14 1A 14
14 14
T T T T T
0 10 20 O 10 20 O 10 20 O 10 20 O 10 20
cost cost cost cost cost

Figure 16: Comparison of EI, EIpu, SnAKe, MONGOOSE with o = 0.01 and @« = 0.05 averaged across the COCO bench-
marks with observation noise ~ A (0,0.1). Individual plots for each COCO function are shown in Figure 37,38,39,40.

17

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

E. Experiments for 100 steps horizon

In the main text, we showed results for a horizon of 50 steps. Here, we show the results for a horizon of 100 steps on
standard benchmarks in Figure 17 and on COCO benchmarks Figure 18. Our conclusions from the main paper still hold,
although SnAKe does perform noticeable better on Hartmann 6D as well as all COCO functions, which is its expected
behaviour as the number of steps in a BO loop grows (Folch et al., 2022).

regret

regret

— El Elpu = SnAKe = MONGOOSE a = 0.05 MONGOOSE a =0.01
Branin (2D) Michalewicz (2D) Kim1 (2D) Hartmann (3D)
6 -]
0.6 10 4 \.
4 |
0.4 2 -
27 0.2 - > _\
h\ \
0 4 == I 0.0 - - I 0 Kﬁi — 0 I
Ackley (4D) Shekel (4D) Ackley (5D) Hartmann (6D)
‘ 10 T _T 34
6.
) |
4 _\ g - 15 - !
| - 11
T T T T
0 10 20 0 10 20 0 10 20 0 10 20
cost cost cost cost

Figure 17: Comparison of EI, Elpu, SnAKe, MONGOOSE with oo = 0.01 and « = 0.05 on standard BO benchmarks for a
horizon of 100 steps.

regret

— El Elpu —— SnAKe —— MONGOOSE a =0.05 MONGOOSE a =0.01
2D 3D 4D 5D 6D
1|
2 2
2 -
1 | 14
1 -
T T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
cost cost cost cost cost

Figure 18: Comparison of EI, Elpu, SnAKe, MONGOOSE with a = 0.01 and @ = 0.05 averaged across the COCO
benchmarks for a horizon of 100 steps. Individual plots for each COCO function are shown in Figure 41,42,43,44.

18

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

F. EI per unit cost

In this section we investigate the effect of the hyperparameter v in EI per unit cost (EIpu). Recall Elpu is defined as

In the main text, we chose v = 1 following (Folch et al., 2022). As demonstrated in Figure 19, Elpu with v = 1,0.1,0.01
are all outperfomed by MONGOOSE

Elpuy=1 Elpuy=0.1 = Elpu y=10.01 e MONGOOSE a = 0.05 MONGOOSE a =0.01
2D 3D 4D 5D 6D
r -
2 2 24
® 2 2
3 \
= N \
14 11 14
14 11
T T T T T
0 10 20 O 10 20 O 10 20 O 10 20 O 10 20
cost cost cost cost cost

Figure 19: Comparison of Elpu with v = 0.01, 0.1, 1, and MONGOOSE with o = 0.01, 0.05, averaged across the COCO
benchmarks for a horizon of 100 steps. Individual plots for each COCO function are shown in Figure 45,46,47,48.

G. COCO functions

There are a total of 24 functions in the COCO benchmark Finck et al. (2010); Hansen et al. (2021), all of them are positive
and have a known global minima with a corresponding minimum function value. Many have random parameters that we can
sample to generate slightly different but similar functions. Since not all functions have this randomness and the random
parameters are usually just rotations in the input space, we fixed all random parameters for our tests. One potential issue
with functions in this benchmark is their outputs have vastly different ranges, for example, the ellipsoidal function (2D)
ranges from 0 to 3e7 (Finck et al. (2010, p. 10)), the Rastrigin function (2D) ranges from 0 to 800 (Finck et al. (2010, p. 15)),
the (log) Rosenbrock function (2D) ranges from 0 to 4 (Finck et al. (2010, p. 40)), etc. Therefore, we chose to standardise
these functions

7 fx)

f(X) = max, f(X) x6—3+ fopn

where max, f(x) is obtained through random search. Following, (Finck et al., 2010) we add fop ~ U[0, 1] for additional
randomness of the optimum value. Figure 20 shows plots for all functions after normalisation in the COCO benchmark.
Note that since we are plotting with a grid of points, they might not cover the exact minimas/maximas especially when
they are in a thin valley, so the minimums/maximums on the colourscales do not represent the exact minimum/maximum
values of functions. As described in the main text, for all experiments on the COCO benchmark, we meta-train 10 different
MONGOOSE with 10 seeds, and we run EI, Elpu and SnAKe with 50 seeds each.

19

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

ellipsoidal
2.5

X2

-3.5

sharp ridge

Schaffers (ill)

Rastrigin Buche Rastrigin

attractive sector

2.5
-3.5
discus
2.5
-3.5
2.5
-3.5
Griewank Rosenbrock
2.4 2.5
2.1 -3.5
Lunacek bi-Rastrigin
2.5 2.5 - 2.4
| ‘N' MN W N\w““
-3.5 [\ \|\‘H“\ \ AN 35 3.5
0 1
X1

Figure 20: Plots of all 24 functions (noramlised) in the COCO benchmark.

20

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

H. COCO individual regret plots

In this final section, we present individual regret plots for each of the 24 COCO functions (Finck et al., 2010; Hansen et al.,
2021), which are split into four plots of 6 functions for each setting above with an averaged COCO benchmark plot. We set
the same y-axis scale across all regret plot to more easily see the results on which functions contribute more to the averaged
differences in regret versus cost.

21

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

2D 3D 4D 5D 6D
8
6_ - - = =
3 N g
5,] N = 1N 8
N Y S N ¥
2 _ _\ \ 41 P AN -
\ \ \
0 T T T T T T T T
8
c
6 . . - - 5
- =]
[} wn
g4 - 1 i i g
o \ o
| <
2—\ . . . - 5
= N B
0 T T T T = T T = T T
8
6_ - - - -
% ©
247 T T]] £
2—\ E E E E
|
0 T T T T T T T T
8
6 -]] - - 3
o
k] a
g4 - - - - £
e [9)
" o
2—\ - - . . 3
wn
0 T T T T T T T T
8
- - - - ~
1%
5 8
S S
o = = = = [=
Q Q
o ~ 3
- _\ - - s o
T — T T T T T T T
8
8
;q_l) X
o 4 E E E E 8
o \ a
]
2 . -0 - - 2
\ o [}
\ \, - \ 2
0 T T T T T T T T
0 5 10 15 0 10 15 0 5 10 0 5 10 15 0 5 10 15

= MONGOOSE glob a=0.05

MONGOOSE glob a=0.01

== MONGOOSE a=0.05

MONGOOSE a=0.01

Figure 21: Individual COCO plots for Figure 11. COCO functions 1-6: sphere function, ellipsoidal function, Rastrigin
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

22

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE glob a = 0.05 MONGOOSE glob a=0.01 = MONGOOSE a = 0.05 MONGOOSE a =0.01
2D 3D 4D 5D 6D

8
6 - e . - - -
= 3
) °
o 4 - . 4 i)
] £
T

0 T T T T T T T T T T
8
6 . . T . <v
Re— y o
- - = < — !
5 4 = g g - - N
[0} fen
fusl ©
> 4 i i]] 5
0 T T T T T T T T T T
8
o
6 1 T]] E
8 e Ne < o A g
AR ' ' : :
©
0 T T T T T T T T T T
8
6 1 1 N N _
3 2
5 4 3
Q K
fusl O
w0

0 T T T T T T T T —T T

8

6_ - - - -
e~ 1®)
@ £
5 4 - . . - - s
B 3

2—\\ . . - —\

0 T T T T = T T - T T T T

8

6_ - - =
5 5
“ fu
& 4 - . . . =
] 3

&
2_ - - =
0 1= T T = T T T T T T T T T

Figure 22: Individual COCO plots for Figure 11. COCO functions 7-12: attractive sector function, Rosenbrock (original)
function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

23

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE glob a =0.05

MONGOOSE glob a=0.01

== MONGOOSE a=0.05

MONGOOSE a=0.01

2D 3D 4D 5D 6D
8
6_ - - = =
fd
' N | N | N
= A
2] TN i1\]
0 (A =
T T T T T T T T T
8
6_ - - -
‘gbk = = [— o
Q
2_ - - -
0 T T T T T T T T T
8
6_ - - -
¢
5 4 - . . .
o
. \ -] i
\ A N \
0 T T T T T T T T T
8
6_ - = =
2
& 4 . - -
o
2_ - = =
6 = S N I
T T T T T T T T T
8
6_ - - -
2 \
2 4 I — 4 "
0 T T T T T T T T T
8
6_ - = =
K] \
o 4 7 -k 1 N
i - \& = — 3
2_ - = =
0 T T T T T T T T T
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 23: Individual COCO plots for Figure 11. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)

function.

24

weierstrass rastrigin bent cigar discuss attractive sector

schaffers

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

2D 3D 4D 5D 6D
8
6_ - = =
o
© [
5 4 - 1 7] 7] 5
9_.) <
k 5
2_ - = =
\ \
0 4= T T T T T - T = T T
8 ¥4
(%)
<
6 1 . . . 2
- - Q
1) wn
5 44| ! \ E E E 2
0 T T T T T T T T ©
8
6 - . - - N
. \ g
Q
= ks ‘\ E
2 \ {1 1% N ©
R Y
0 = T T T T T T T T
8
6 Y T . .
g *\‘ \“ﬁ g
S 44 i _ 1 N\ [}
o ©
£ —) 1 =
]
B N\
0 T T T T T T T T
8
6_ - - -
©
g 3
‘ N
24\ \ 4| 1 i
1\ L\ = N
0 T T T T T T T T T
8
6_ - = =
Y4
g4 T 1 1. g
- \ X \\ 3
2 N . - = -
_ \) -
0 T T T T T T T T
0 5 10 15 0 5 10 15 0 5 15 0 5 10 15 0 5 10 15

= MONGOOSE glob a =0.05

MONGOOSE glob a=0.01

== MONGOOSE a=0.05

MONGOOSE a=0.01

Figure 24: Individual COCO plots for Figure 11. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

25

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE div a =0.05 MONGOOSE div a=0.01 = MONGOOSE add a = 0.05 MONGOOSE add a =0.01

2D 3D 4D 5D 6D

regret
N »
1 1
—
/
—
1 1
':
1 1
F
/
sphere

0 T T T T T T T T T T
8
c
6 . . - - 5
5 | 7
o 4 - B B E E &
GL.) Q
<
2 1 . . b - 5
k o
0 T T T T T T T T — T
8
6_ - - - -
e | 5
247 T T]] g

0 T T T T T T T T T T
8
6 -]] - - 3
o
o
19 wn
g . - - - - £
e [9)
o
2 —\ - - . . 3
wn
0 T T T T T T T T T T
8
6 - g g . . -
o | 3
o <
24 - 1]] 5
2 &
) | J 1 I ¢
\
0 — T T T T T T T T T T
8
8
- o
[X
o 4 E E - - 8
o 5
i \ c
2 — —\ B - g
[}
| _ :
0 T T T T T T T T T T
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 25: Individual COCO plots for Figure 7. COCO functions 1-6: sphere function, ellipsoidal function, Rastrigin
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

26

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE div a = 0.05 MONGOOSE div a =0.01 me. MONGOOSE add a =0.05 MONGOOSE add a=0.01
2D 3D 4D 5D 6D
8
6 _
5 3
o 4 - B Bl E E 3
[| k=3
\ \ =
] I\ \ | | :
0 — ~— N
T T T T T T T T T T
8
- ®7 _k _\\ _\\;' ___\ g‘
< - =
g4 _\ 7 7 T 7] e
- ©
<
2 = - - = = wn
0 T T T T T T T T T T
8
o
° i ™ N N z
- N s}
[0}) o
W I N | — | P~
g g
- 1 1 1 1 g
©
0 T T T T T T T T T T
8
6 1 1 N N _
3 2
o 4 - B B Bl - S
Q | e
fusl | O
\ %)
3 | | A i\
A \ No \~
0 T T T T T T T T T T
8
6 - - - - -
o =4
& 4 s
L 3
2\ g g - -
\ \
\\ —— \
0 T T \‘ T T T T — T T T T
8
6 = - - = =
= <
@ >
o 4 — — — - ‘3
9_) @
&
2 = - - = -
0= T T T T T T T T T T
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 26: Individual COCO plots for Figure 7. COCO functions 7-12: attractive sector function, Rosenbrock (original)
function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

27

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE div a = 0.05 MONGOOSE div a =0.01 me. MONGOOSE add a =0.05 MONGOOSE add a=0.01
2D 3D 4D 5D 6D
8
S
6 . - - - &
@ &
Q
o 4 . . . —\ $
2 k]
< ©
0 ‘IL T T T T T T T T T T
8
6 - - - - -
g 4 \\—— —— & — e 4
(o)) =1 -1 -1 =1 =1 Q
g :
2 - - - - -
0 T T T T T T T T T T
8
6 . . - - N
©
@ o
8
N - ' | N\
0 T T T T “l T T T T T
8
6 = - - = =
g <
5 4 - E E E E 5
:
2 = - - = =
0 T T T T — T T K T T T T
8
6 - g g - . "
w
® \ o
o 5
S 4 - \ o
Q [
S \ e \ N g
2 - 4 4 1 - E
0 T T T T T T T T T T
8
6 T T T T T w
2 o
9_.) <
Y N — 3
2 1 . 1 M= . .
0 T T T T T T T T T T
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 27: Individual COCO plots for Figure 7. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)
function.

28

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE div a = 0.05 MONGOOSE div a =0.01 me. MONGOOSE add a =0.05 MONGOOSE add a=0.01
2D 3D 4D 5D 6D
8
6 = - - = =
o
k) [
o 4 e - - - =
9_.) <
&
2 - - - = =
|8
0 T T T T T T T T = T T
8 ¥4
(%)
<
® 1 1 1 1 g
o _\ \ \ \ 2
o 4 L —° - - - 2
Q Y4
@ \ £
2 1 — 1N -1 -1 z
G
0 T T T T T T T T T T
8
6 1 . . =
= 2
Q
o 4 E E —\ &
e =
0 e
T T T T T T T T T
8
6 . . - - .
» \ \ \ Ei
o \ =)
g,]]] 1\ g
g \ £
’ _\ 1 185 1 i \ .
N N
0 T T T T T T T T T T
8
6 - - - - -
e
8 =
> 4 - . . - - z
o \]
i _L _‘\\ﬁ _¥ | S |)
8 = ~ \\‘.
0 T T T T T T T T T T T
8
6 = - - = =
Y4
8, | :
5 4 - . 4 - -\ @
9] \ \ =
e i - A
- | :
0 T T T T T T T T T T
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 28: Individual COCO plots for Figure 7. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

29

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE detach a = 0.05 MONGOOSE detach a =0.01
2D 3D 4D 5D 6D
8
6 = - - = =
3 o
o 4 - E 1 - - 2
Q o
= "N 0
2 1% 1% 4 & -
A
0 T T T T T
8
c
6 . . - - 5
- =]
[} wn
o 4 . . i i o
o \ o
| <
2 1 L . . b - 5
o
_ | -
0 T T T T T
8
6 - - - - -
% ©
247 T T]] g

0 T T T T T
8
6 -]] - - 3
o
o
19 wn
g . - - - - £
8 [9)
“‘ o
241 - - - - 3
1 wn
~—
0 T T T T T
8
6 - g g . . -
1%
8 |\ 5
24 - 1]] 5
Q Q
= 3
2 . I 1 1™ =
0 T T T T T
8
]
- e
[X
o 4 E E - - 8
o 8
c
2 - - b b &
[}
~ — _— N— o
0 T T T T T
0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

Figure 29: Individual COCO plots for Figure 7. COCO functions 1-6: sphere function, ellipsoidal function, Rastrigin
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

30

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= MONGOOSE detach a=0.05 MONGOOSE detach a=0.01

2D 3D 4D 5D 6D

regret
N
1
1
1
1
1
ellipsoidal

regret
D
1
1
1
1
1
sharp ridge

regret
N
|{
1
1
1
1
different powers

regret
»
I
1
1
1
1
Schwefel

regret
S

1

1

1

1

1
elliptic

regret
N
1
1
1
1
1
Rastrigin

Figure 30: Individual COCO plots for Figure 7. COCO functions 7-12: attractive sector function, Rosenbrock (original)
function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

31

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

== MONGOOSE detach a =0.05 MONGOOSE detach a=0.01
2D 3D 4D 5D 6D
8
g
6 - - 1 1 o]
@ &
Q
o 4 E E - - <
£ 8
2 — 1\ 4 S 4 £
©
0 T T T T T
8
6 - - - - -
g, 1N\ - — — —
541 - - 1 1 g
= °
2 - - - - -
0 T T T T T
8
6 - - - - N
©
] =
8
2 - - - - -
. — — N
0 T T T T T
8
6 = - - = =
g 3
o 4 E E E E =
g
2 = - - = =
N
~ ~— \, = ~
0 T T T T T
8
6 - . . - - "
w
4 ©
g \ 7
@1 4 T N ~ \ o
| - = o
2 - - - - 2
0 T T T T T
8
6 = - - = =
o
k) [
74 1™ N 1\ A
&
2 = - - = =
0 T T T T T
0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

Figure 31: Individual COCO plots for Figure 7. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)
function.

32

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

== MONGOOSE detach a =0.05 MONGOOSE detach a=0.01
2D 3D 4D 5D 6D
8
6 = - - = =
4
k) [
o 4 e - - - =
9_) <
&

regret
D

&
7
v
1
1
1

Griewank rosenbrock

regret
FNED
1 1
1 1
1 1
1 1
1 1
[
Gallagher

regret
I
1 1
1 1
1 1
1 1
7
{
1 1
Gallagher

6_ - - - -
©
8 5
g
& 4 - - . . B
g 5
¥

regret
N
1
1
1
1
1
Lunacek

Figure 32: Individual COCO plots for Figure 8. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

33

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu e E| e MONGOOSE a =0.01 MONGOOSE a =0.001
2D 3D 4D 5D 6D
8
6 - - - - -
2 et
o 4 E R e 4 2
@ | S
) M \X k)
2 4 \ | iy |
\\ S — \ T —
0 - T T T T T
8
- 1 1 T 7 s
9] o
= i i | | o)
g 4 g
2 1 - . - - T
T I I T I I T I
8
6 7] 7] 7 T c
% 5
2 . i _ _ o
0 T S T !L T FL T ; T
8
C
6 - - - 4 =
© @
o 4 . . . - &
o)
2 - - - - S
=}
0 - \| ‘k T L T L T T “
8
6 - - - -
= ‘ ©
g 4 1 I 1 1 2
2 —\ -k -\ L B
0 - T —— T T T —T
8
6 . . . - ke
3 2
(U]
o 4 - : - - £
[‘]
2 1 . 1 T il g
0 \ \\ & k @
I I I I I
0 10 20 O 10 20 0 10 20 0 10 20 O 10 20

Figure 33: Individual COCO plots for Figure 14. COCO functions 1-6: sphere function, ellipsoidal function, Rastrigin
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

34

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == El === MONGOOSE a=0.01 MONGOOSE a =0.001

2D 3D 4D 5D 6D

regret
N
1
1
1
1
1
attractive sector

7
{

Rosenbrock

Rosenbrock rotate

regret
S
1
1
ellipsoidal (non-sep)

regret
N
1
1
1
1
1
discus

-
|
|
cnieml r[1
f
f

regret
N
1
1
1
1
1
bent cigar

Figure 34: Individual COCO plots for Figure 14. COCO functions 7-12: attractive sector function, Rosenbrock (original)
function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

35

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu e E| == MONGOOSE a =0.01 MONGOOSE a =0.001
2D 3D 4D
8
6 T T 7 7 &
= 2
é 4] al T T e
et \ ©
<
%]

8
5
61 1 1 1 1 z
- [
94&\ = = — e
S 44 4 4 i i
g o
2 T T 7 7 &
£
0 T T T
8 3
[
wn
6 &
© 2
5 4 - . . - - =
o £
= [=)
-
=
[%)
©
o

8

6 R B E E 7
‘-" ©
[-
5 4 g
[Q

. - - - - :

0 S T S T T A== T T

8

6 7 T T 7] 7] [
4§ “qﬁ
o 4 -\ 1 - — ©
o \ = m— = S <

) gy S S S I —

O T T T T T

8

‘! - - - - =
8 \
e | T N T |t
= r— w— o

2 - 1 1 - - g

0 T T T T T

o
[y
o
N
o
o
Jury
o
N
o
o
=
o
N
o
o
[y
o
N
o
o
Jury
o
N
o

Figure 35: Individual COCO plots for Figure 14. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)
function.

36

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == EI === MONGOOSE a=0.01 MONGOOSE a =0.001

2D 3D 4D 5D

regret
n
1
1
1
1

Griewank Rosenbrock

|
i
ﬂ
1
T

|

Gallagher 101

’(|
rf

1 =

Gallagher 21

,/7’
'/
[

regret
N
1
1
1
1
1
Katsuura

3 S I SR I NS I NS S

;
|

regret
N
1
1
1
1
1
Lunacek bi-Rastrigin

2 —¥_ -K S
0 — T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10

N
o

Figure 36: Individual COCO plots for Figure 14. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

37

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu e E| e MONGOOSE a =0.01 MONGOOSE a =0.001
2D 3D 4D 5D 6D
8
6 - - - - -
2 et
o 4 E R e 4 2
@ | S
) M \X k)
2 4 \ | iy |
\\ S — \ T —
0 - T T T T T
8
- 1 1 T 7 s
9] o
= i i | | o)
g 4 g
2 1 - . - - T
T I I T I I T I
8
6 7] 7] 7 T c
% 5
2 . i _ _ o
0 T S T !L T FL T ; T
8
C
6 - - - 4 =
© @
o 4 . . . - &
o)
2 - - - - S
=}
0 - \| ‘k T L T L T T “
8
6 - - - -
= ‘ ©
g 4 1 I 1 1 2
2 —\ -k -\ L B
0 - T —— T T T —T
8
6 . . . - ke
3 2
(U]
o 4 - : - - £
[‘]
2 1 . 1 T il g
0 \ \\ & k @
I I I I I
0 10 20 O 10 20 0 10 20 0 10 20 O 10 20

Figure 37: Individual COCO plots for Figure 37. COCO functions 1-6: sphere function, ellipsoidal function, Rastrigin
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

38

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == El === MONGOOSE a=0.01 MONGOOSE a =0.001

2D 3D 4D 5D 6D

regret
N
1
1
1
1
1
attractive sector

7
{

Rosenbrock

Rosenbrock rotate

regret
S
1
1
ellipsoidal (non-sep)

regret
N
1
1
1
1
1
discus

-
|
|
cnieml r[1
f
f

regret
N
1
1
1
1
1
bent cigar

Figure 38: Individual COCO plots for Figure 37. COCO functions 7-12: attractive sector function, Rosenbrock (original)
function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

39

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu e E| == MONGOOSE a =0.01 MONGOOSE a =0.001
2D 3D 4D
8
6 T T 7 7 &
= 2
é 4] al T T e
et \ ©
<
%]

8
5
61 1 1 1 1 z
- [
94&\ = = — e
S 44 4 4 i i
g o
2 T T 7 7 &
£
0 T T T
8 3
[
wn
6 &
© 2
5 4 - . . - - =
o £
= [=)
-
=
[%)
©
o

8

6 R B E E 7
‘-" ©
[-
5 4 g
[Q

. - - - - :

0 S T S T T A== T T

8

6 7 T T 7] 7] [
4§ “qﬁ
o 4 -\ 1 - — ©
o \ = m— = S <

) gy S S S I —

O T T T T T

8

‘! - - - - =
8 \
e | T N T |t
= r— w— o

2 - 1 1 - - g

0 T T T T T

o
[y
o
N
o
o
Jury
o
N
o
o
=
o
N
o
o
[y
o
N
o
o
Jury
o
N
o

Figure 39: Individual COCO plots for Figure 37. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)
function.

40

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == EI === MONGOOSE a=0.01 MONGOOSE a =0.001

2D 3D 4D 5D

regret
n
1
1
1
1

Griewank Rosenbrock

|
i
ﬂ
1
T

|

Gallagher 101

’(|
rf

1 =

Gallagher 21

,/7’
'/
[

regret
N
1
1
1
1
1
Katsuura

3 S I SR I NS I NS S

;
|

regret
N
1
1
1
1
1
Lunacek bi-Rastrigin

2 —¥_ -K S
0 — T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10

N
o

Figure 40: Individual COCO plots for Figure 37. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

41

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == EI === MONGOOSE a=0.05 MONGOOSE a=0.01
2D 3D 4D 5D 6D

8

6 - - - - -
2 et
5 4 . - - - s
[[
= %]

0 I I T T T
8
6 T T 7 7 =
- e
2 S
54—\ 2
@ 2
‘ 3

regret
N
1
1
1
1
1
Rastrigin

8
£
6 . 1 1 1 £
kot i
5, |]] | | g
g | 2
2—\ - - . . S
0 \I— IK\ I I L I I ®
8
6 \ - - - -
5 | g

8
6 . . . - ke
© 2
(0]
5 4 : : . . 2
g \ (0]
_ a a _ _ o
2 \ x\ \ g
. N . -
T T T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Figure 41: Individual COCO plots for Figure 18. COCO functions 1-6: sphere function, ellipsoidal function, Rastrigin
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

42

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu =—— EI == MONGOOSE a=0.05 MONGOOSE a =0.01
2D 3D 4D 5D 6D
8 —
5]
©]
D g
0 L T ‘&k T k T T S T
8
6 7 1] N . g
o \ - N - g
g 4 % \“] i . ~ _k -E
@\ " S— g
2 1 . . - - g
0 T T T T T
8 2
©
© 1]] 1 1 ¢
© A N ‘Ec ——
e i | \\ 1 | | o]
g ¢ & o— s
27 T y . . @
wn
&
0 T T T T T
8 a
?
6] . - E IS
o I}
o £
| 1 1 7 1 5
2 —* - - —\ - g
0 JL - \ A B =
T T T T T v
8
6 - - - - -
© 4
o 4 E E - E 9
1) o
2 - - - - -
0 A . o8 . N . ~
8
6] T T T T 5
9] o
o 4 7 - - - - S
@ =
[}
2 - - - - Kol
0 += T — T T T T
0 10 20 O 10 20 O 10 20 O 10 20 O 10 20

Figure 42: Individual COCO plots for Figure 18. COCO functions 7-12: attractive sector function, Rosenbrock (original)
function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

43

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == EI == MONGOOSE a=0.05 MONGOOSE a =0.01

2D 3D 4D 5D 6D

regret

N

1 1

1 1
i

_
1 1
(

1 1

sharp ridge

regret
»
1
71/
1
1
{
1
/|
1
'f
different powers

2_ - - - -

0 T T T T T

8 3

b

6 7 7 1 1 <
5 2
241 . . - - c
—_ A -5

2 B . - . £

(%]
0k A . S & ke
1 T 1 1 T T

8

6 B B - - 7
- g
g -
> 4 . . - - @
@ 9]
— .G_.)

2 7 7 7 1 1 =

4/
|
|

Schaffers (ill)

7
W
|
|
ialin}

0 10 20 O 10 20 O 10 20 O 10 20 O

Figure 43: Individual COCO plots for Figure 18. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)
function.

44

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

—— SnAke Elpu —— EI —— MONGOOSE a = 0.05 MONGOOSE a = 0.01
2D 3D 4D 5D 6D
8 ¥
<
Q
[0}
> 4 &
g X
] i _ i i &
2 =
0 o - [~ S
T T T T [G)

7
//(
=7
|
T

regret
N
1
1
1
1
Gallagher 101

£ : : N
AN S i

regret
N
1
1
1
1
1
Katsuura

regret
N
(I |
1
’(
1 1
1 1
1 1
Lunacek bi-Rastrigin

0 10 20 O 10 20 O 10 20 O 10 20 O 10

N
o

Figure 44: Individual COCO plots for Figure 18. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

45

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

regret

regret

regret

regret

regret

regret

= Elpu y=0.01

2D

Elpuy=0.1

3D

Elpuy=1

4D

= MONGOOSE a =0.05

5D

MONGOOSE a=0.01

6D

0 10

20

linear Buche Rastrigin Rastrigin ellipsoidal sphere

step ellipsoidal

N
o

Figure 45: Individual COCO plots for Figure 19. COCO functions 1-6:
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

sphere function, ellipsoidal function, Rastrigin

46

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

regret

regret

regret

regret

regret

regret

Figure 46: Individual COCO plots for Figure 19. COCO functions 7-12: attractive sector function, Rosenbrock (original)

= Elpu y=0.01

2D

Elpuy=0.1

3D

Elpuy=1

4D

= MONGOOSE a =0.05

5D

MONGOOSE a=0.01

6D

=

attractive sector

o

s

Rosenbrock

Rosenbrock rotate

7

ellipsoidal (non-sep)

Ve

discus

bent cigar

10 20

10

20

20

0 10

20

function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

47

20

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

m— Elpu y=0.01 Elpu y=0.1 Elpuy=1 e MONGOOSE a =0.05 MONGOOSE a =0.01
2D 3D 4D 5D 6D
8
6 1 1 1 . . 3
© 2
o 4 — — E E a
: \ \ \ :
2 - - Y 1 2
\ ¥ .
0 \ T T T 77| T
8
4
2 ‘\\. S o~ e 3
& 4 - - - - - ”
o I
2 i i i i £
o
0 T T T T T
8 3
[
wn
6 1 1 1] <
8 g
24 1 1 1 | £
et - | | | | g
N \ \ \ ;
0 T T — T —~ T T o«
8
6 — R E E 7
4—‘ ©
g -
& 4 - - - - @
o Q
@]
2 4 1 1 1] =
0 T - T — \ T e | —
8
67 7 7 T 7] [
40—5 ‘lq!
o 4 - R - - ©
2 N~ —_— \, £
2 - - - 1 — = —_—
O T T T T T
8
‘] - -] | S
© \ o
2 4] 1 1 N 5
o 3 \ S —— S — b s
0 T T T T T
0 10 20 O 10 20 O 10 20 O 10 20 O 10 20

Figure 47: Individual COCO plots for Figure 19. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)
function.

48

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

m— Elpu y=0.01 Elpu y=0.1 Elpuy=1 e MONGOOSE a =0.05 MONGOOSE a =0.01
2D 3D 4D 5D 6D o
8 (]
o
5 3
o 4 - - B — B <
O ~
- 4 4 5
27]] 2
a - q_)
0 T T T T T 6
8
6 E — - E —
@ \ \ [9]
g \k = - \\ — — — 5
2 - 1% - - @
0 T T T T T
8
—
6 - - - - g
8] _] | A
] | IS =t
0 T T T T T
8
1 | | N 1 5
5 ~ ’ g
S 4| —\ 1 T——— 1O~)
; \ T
2 1IN i k i i ©
— (O]
\ \
0 T T T T T
8
6]]]] I
.aq_j >
5 4- : : . . 2
£ \ \ é
2 - - - .
\
\\ L - \. — \\ = A =
O T T T T T
8 5
6 - . - - 7
E~ ©
g ‘ e
5 4 . 1 . . 5
o ‘ ¥
2 -\ -1\ —\ 1\ o
\ \ . \\ = - — — 2
0 = T T T T T 3
0 10 20 O 10 20 O 10 20 O 10 20 O 10 20

Figure 48: Individual COCO plots for Figure 19. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

49

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == EI === MONGOOSE a=0.05 MONGOOSE a =0.01

2D 3D 4D 5D 6D

N

—
‘(
V

0 I I T T T
8
67 T T 7 7 =
- e
2 S
54—\ 2
@ 2
3

regret
N
L
1
1
1
1
Rastrigin

8
£
6 . 1 1 1 £
2 g
54 . . - - 8
o \ o
2 . . - - S
=}
0 \\I ‘k T T L T T “
8
6—“ - - - -
g | 5

8
6 . . . - ke
3 g
(0]
g]] i i &
1< \ o]
2 - 1 1 - - s
| N h\ A N “
O T T T T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Figure 49: Individual COCO plots for Figure 4. COCO functions 1-6: sphere function, ellipsoidal function, Rastrigin
function, Biiche-Rastrigin function, linear slope, step ellipsoidal function.

50

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == EI === MONGOOSE a=0.05 MONGOOSE a =0.01

2D 3D 4D 5D 6D

regret
N
1
1
1
1
1
attractive sector

.

regret
S
1
[
(
[
4
1
e
1
f
Rosenbrock

regret
N
1
Z
1
]/
1
[
1
1 Ly
1
Rosenbrock rotate

2_ - - - -
0 T T T T T
8 a
[
wn
6 - E E E <
" IS
o £
| 1 1 1 i 5
9 ‘ ‘ 1 i :
aQ
\ | =
01— T = T S T — T o T o
8
6_ - - - -
- wn
@ S
2] l] I I 2
2_\ - - - =
0 L n A N -
1 1 1 1 1
8
6 T T 7 7] ©
k9] 2
g4 - 1 - - S
@ c
@
2 _ _] . a
0 T — T T T T
0 10 20 O 10 20 0 10 20 0 10 20 O 10 20

Figure 50: Individual COCO plots for Figure 4. COCO functions 7-12: attractive sector function, Rosenbrock (original)
function, Rosenbrock (rotated) function, ellipsoidal (non-separable) function, discus function, bent cigar function.

51

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

= SnAKe Elpu == EI == MONGOOSE a=0.05 MONGOOSE a =0.01

2D 3D 4D 5D 6D

regret
N
1 1
1 1
_ ~
1 1
1 L
[
sharp ridge

0 T I I T
8
4
(]
G_R b 1 -1 -1 g
.aq_.; P = - o
S 4 {hm—— 1= 1= — T 1" 2
(0]
g o
2 - 2
o
0 T T T T T
8 2
b
6 1 . . - - i
2 g
241 y y 1 1 _g
—_ 2 \ '9
T T T T T T
8
6 - - . . 9
- g
[+
5 4 @
(0] ()]
— .a
2 - - - - - 2
0 g == _k \‘ ——
T T T T
8
6 T T 7 7 o
5, \ £
o 4 e - 1 - ©
[R _“\\ _\¥ _\~ m— _‘\N _kﬁ
0 T T T T T
8
N - -]] =
5, \ A\
o> 4 - . i e .
I \\& N \, — < E
21 - - - - 3
0 T T T T T
0 10 20 O 10 20 O 10 20 O 10 20 O 10 20

Figure 51: Individual COCO plots for Figure 4. COCO functions 13-18: sharp ridge function, different powers function,
Rastrigin (non-separable) function, Weierstrrass function, Schaffers F7 function, Schaffers F7 (moderately ill-conditioned)
function.

52

MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning

NS |

—— SnAKe Elpu —— EI —— MONGOOSE a = 0.05 MONGOOSE a = 0.01
2D 3D 4D 5D 6D o
8 3
8
© i i T 7 5
o I
S 4 &
g A
0 S = _L_ 'g
T T T T (G}
8
+ ®7 i i] _g u@
o | —] 2
| — - - - -
L= = 5= i
[7p]
2 . 1% - -
0 T T T T
8
—
6 . . 1 . =
© a
g° ;\ 5
T
‘\g_ ©
T

Gallagher 21

%i/
7

[
.
//
|

regret
N
1
1
1
1
Katsuura

A\\\
\ﬁ‘
\

N—

\
g N S NS N

-I

regret
/I 1
l(
(

Lunacek bi-Rastrigin

0 10 20 O 10 20 O 10 20 O 10 20 O 10

N
o

Figure 52: Individual COCO plots for Figure 4. COCO functions 19-24: composite Griewank-Rosenbrock function,
Schwefel function, Gallagher’s Gaussian 101-me peaks function, Gallagher’s Gaussian 21-hi peaks function, Kastsuura
function, Lunacek bi-Rastrigin function.

53

