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Abstract

We consider the challenging problem of predicting intrinsic object properties from a
single image by exploiting differentiable renderers. Many previous learning-based
approaches for inverse graphics adopt rasterization-based renderers and assume
naive lighting and material models, which often fail to account for non-Lambertian,
specular reflections commonly observed in the wild. In this work, we propose DIB-
R++, a hybrid differentiable renderer which supports these photorealistic effects by
combining rasterization and ray-tracing, taking the advantage of their respective
strengths—speed and realism. Our renderer incorporates environmental lighting
and spatially-varying material models to efficiently approximate light transport,
either through direct estimation or via spherical basis functions. Compared to more
advanced physics-based differentiable renderers leveraging path tracing, DIB-R++
is highly performant due to its compact and expressive shading model, which
enables easy integration with learning frameworks for geometry, reflectance and
lighting prediction from a single image without requiring any ground-truth. We ex-
perimentally demonstrate that our approach achieves superior material and lighting
disentanglement on synthetic and real data compared to existing rasterization-based
approaches and showcase several artistic applications including material editing
and relighting.

1 Introduction
Inferring intrinsic 3D properties from 2D images is a long-standing goal of computer vision [3]. In
recent years, differentiable rendering has shown great promise in estimating shape, reflectance and
illumination from real photographs. Differentiable renderers have become natural candidates for
learning-based inverse rendering applications, where image synthesis algorithms and neural networks
can be jointly optimized to model physical aspects of objects from posed images, either by leveraging
strong data priors or by directly modeling the interactions between light and surfaces.

Not all differentiable renderers are made equal. On the one hand, recent physics-based differentiable
rendering techniques [31, 45, 2, 44, 59] try to model the full light transport with proper visibility
gradients, but they tend to require careful initialization of scene parameters and typically exhibit high
computational cost which limits their usage in larger end-to-end learning pipelines. On the other hand,
performance-oriented differentiable renderers [10, 27, 36, 25] trade physical accuracy for scalability
and speed by approximating scene elements through neural representations or by employing simpler
shading models. While the latter line of work has proven to be successful in 3D scene reconstruction,
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the frequent assumptions of Lambertian-only surfaces and low-frequency lighting prevent these works
from modeling more complex specular transport commonly observed in the real world.

In this work, we consider the problem of single-view 3D object reconstruction without any 3D
supervision. To this end, we propose DIB-R++, a hybrid differentiable renderer that combines
rasterization and ray-tracing through an efficient deferred rendering framework. Our framework
builds on top of DIB-R [10] and integrates physics-based lighting and material models to capture
challenging non-Lambertian reflectance under unknown poses and illumination. Our method is
versatile and supports both single-bounce ray-tracing and a spherical Gaussian representation for a
compact approximation of direct illumination, allowing us to adapt and tune the shading model based
on the radiometric complexity of the scene.

We validate our technique on both synthetic and real images and demonstrate superior performance
on reconstructing realistic materials BRDFs and lighting configurations over prior rasterization-based
methods. We then follow the setting proposed in Zhang et al. [62] to show that DIB-R++ can
reconstruct scene intrinsics also from real images without any 3D supervision. We further apply our
framework to single-image appearance manipulation such as material editing and scene relighting.

2 Related Work
Differentiable Rendering. Research on differentiable rendering can be divided into two categories:
physics-based methods focusing on photorealistic image quality, and approximation methods aiming
at higher performance. The former differentiates the forward light transport simulation [31, 45,
2, 44, 59] with careful handling of geometric discontinuities. While capable of supporting global
illumination, these techniques tend to be relatively slow to optimize or require a detailed initial
description of the input in terms of geometry, materials, lighting and camera, which prevents their
deployment in the wild. The latter line of works leverages simpler local shading models. Along
this axis, rasterization-based differentiable renderers [10, 27, 36, 25, 16] approximate gradients
by generating derivatives from projected pixels to 3D parameters. These methods are restricted
to primary visibility and ignore indirect lighting effects by construction, but their simplicity and
efficiency offer an attractive trade-off for 3D reconstruction. We follow this line of work and build
atop DIB-R [10, 22] by augmenting its shading models with physics-based ones.

Learning-based Inverse Graphics. Recent research on inverse graphics targets the ill-posed prob-
lem of jointly estimating geometry, reflectance and illumination from image observations using
neural networks. For single image inverse rendering, one dominant approach is to employ 2D CNNs
to learn data-driven features and use synthetic data as supervision [42, 49, 35, 33, 52], but these
methods do not always generalize to complex real-world images [4]. To overcome the data issue, a
recent body of work investigates the use of self-supervised learning to recover scene intrinsics [1],
including domain adaptation from synthetic reflectance dataset [37], object symmetry [54, 53], or
multi-illumination images depicting the same scene [30, 32, 39, 58]. However, these methods either
rely on specific priors or require data sources tedious to capture in practice. Some works tackle the
subtask of lighting estimation only [18, 17, 20], but still need to carefully utilize training data that
are hard to capture. Most similar to us, DIB-R [10] tackles unsupervised inverse rendering in the
context of differentiable rendering. Zhang et al. [62] further combines DIB-R with StyleGAN [24]
generated images to extract and disentangle 3D knowledge. These works perform inverse rendering
from real image collections without supervision, but may fail to capture complex material and lighting
effects—in contrast, our method models these directly. Several techniques also try to handle more
photorealistic effects but typically require complex capturing settings, such as controllable lighting
[28, 29], a co-located camera-flashlight setup [41, 13, 34, 5, 6, 8, 48, 38], and densely captured
multi-view images [14, 55, 7, 60] with additional known lighting [19] or hand-crafted inductive labels
[43]. In our work, we propose a hybrid differentiable renderer and learn to disentangle complex
specular effects given a single image. Similar to the recent NeRD [7] and PhySG [60] which recover
non-Lambertian reflectance and illumination with a spherical Gaussian (SG) basis [51], we also
employ SGs to model the SV-BRDF and incident lighting, but apply this representation to mesh-based
differentiable rendering with direct access to the surface.

3 Differentiable Deferred Rendering
In this section, we introduce DIB-R++, our differentiable rendering framework based on deferred
shading [12]. DIB-R++ is a hybrid differentiable renderer that can efficiently approximate direct
illumination and synthesize high-quality images. Concretely, our renderer leverages the differentiable
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Figure 1: Overview. Given a 3D mesh M, we employ (a) a rasterization-based renderer to obtain diffuse albedo,
surface normals and mask maps. In the shading pass (b), we then use these buffers to compute the incident
radiance by sampling or by representing lighting and the specular BRDF using a spherical Gaussian basis.
Depending on the representation used in (c), we can recover a wide gamut of specular/glossy appearances (d).

rasterization framework of DIB-R [10] to recover shape attributes and further employs physics-based
material and lighting models to estimate appearance.

3.1 Overview
We provide an overview of our technique in Fig. 1. We first rasterize a 3D mesh to obtain diffuse
albedo and material maps, surface normals, and a silhouette mask. This information is deferred to
the shading pass, where outgoing radiance is either estimated stochastically or approximated using a
spherical Gaussian basis. The rasterizer and shader are differentiable by design, allowing gradients to
be propagated to lighting, material and shape parameters for downstream learning tasks.

3.2 Background
Our goal is to provide a differentiable formulation of the rendering process to enable fast inverse
rendering from 2D images. LetM be a 3D object in a virtual scene. We start from the (non-emissive)
rendering equation (RE) [23], which states that the outgoing radiance Lo at any surface point x ∈M
in the camera direction ωo is given by

Lo(x,ωo) =

∫
H2

fr(x,ωi,ωo)Li(x,ωi)|n · ωi|dωi, (1)

where Li is the incident radiance, fr is the (spatially-varying) bidirectional reflectance distribution
function (SV-BRDF) and n is the surface normal at x. The domain of integration is the unit
hemisphereH2 of incoming light directions ωi. The BRDF characterizes the surface’s response to
illumination from different directions and is modulated by the cosine foreshortening term |n · ω|.
Intuitively, Eq. (1) captures an energy balance and computes how much light is received and scattered
at a shading point in a particular direction.

Estimating the RE typically requires Monte Carlo (MC) integration [46], which involves tracing rays
from the camera into the scene. Albeit physically correct, this process is computationally expensive
and does not generally admit a closed-form solution. MC estimators can exhibit high variance and
may produce noisy pixel gradients at low sample count, which may significantly impact performance
and convergence. To keep the problem tractable, we thus make several approximations of Eq. (1),
which we detail in the next section.

3.3 Two-stage Deferred Rendering
We now describe our rendering framework (Fig. 1). We start by defining three families of parameters,
where π ∈ Rdπ encodes the shape attributes (e.g., vertex positions), θ ∈ Rdθ describes the material
properties, and γ ∈ Rdγ captures the illumination in the scene. In what follows, we shall only
consider a single pixel, indexed by p, within an RGB image I ∈ R3×h×w

+ for notational simplicity.

Stage 1: Rasterization Pass. We first employ a differentiable rasterizer R [10] to generate primary
rays ωo ∈ S2 from a camera and render our scene M into geometry buffers (commonly called
G-buffers) containing the surface intersection point xp ∈ R3, the surface normal np ∈ S2, and the
spatially-varying material parameters θp (e.g., diffuse albedo). This rendering pass also returns a
visibility mask vp ∈ {0, 1} indicating whether pixel p is occupied by the rendered object, separating
the foreground object If from its background environment Ib so that I = If + Ib. We have:

R(M, p,ωo) = (xp,np,θp, vp). (2)

Stage 2: Shading Pass. Given surface properties and outgoing direction ωo, we then approximate
the outgoing radiance Lo(xp,ωo) through several key assumptions. First, we restrict ourselves to
direct illumination only (i.e. single-bounce scattering) and assume that the incoming radiance is
given by a distant environment map Li : S2 → R3

+. Therefore, we do not model self-occlusion and
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Li(xp,ωi) ≡ Li(ωi;γ). Such simplification largely reduces computation and memory costs and is
trivially differentiable. Second, we assume that the material parameters θ can model both diffuse and
specular view-dependent effects. At a high level, we define our shading model S so that:

S(xp,np,ωo;θp,γ) ≈ Lo(xp,ωo). (3)

Importantly, a differentiable parameterization of S enables the computation of pixel gradients with
respect to all scene parameters Θ = (π,θ,γ) by differentiating Ip(Θ) = (S ◦R)(M, p,ωo). Given
a scalar objective function defined on the rendered output I , ∂I/∂π is computed using DIB-R [10]. In
what follows, we thus mainly focus on formulating ∂I/∂{θ,γ} so that all gradients can be computed
using the chain rule, allowing for joint optimization of geometry, material and lighting parameters.
We assume henceforth a fixed pixel p for conciseness, and remove the subscript.

3.4 Shading Models
Since our primary goal is to capture a wide range of appearances, we provide two simple techniques
to approximate Eq. (1): Monte Carlo (MC) and spherical Gaussians (SG). The former targets more
mirror-like objects and can better approximate higher frequencies in the integrand, but is more
expensive to compute. The latter is more robust to roughness variations but is limited by the number
of basis elements. To model reflectance, we choose to use a simplified version of the isotropic Disney
BRDF [9, 15] based on the Cook–Torrance model [11], which includes diffuse albedo a ∈ [0, 1]3,
specular albedo s ∈ [0, 1], surface roughness β ∈ [0, 1] and metalness m ∈ [0, 1]. Metalness allows
us to model both metals and plastics in a unified framework. We let the diffuse albedo vary spatially
(a = a(x)) and globally define all other attributes to restrict the number of learnable parameters.

Monte Carlo Shading. Given a surface point x ∈ M to shade, we importance sample the BRDF
to obtain N light directions ωki and compute the BRDF value. We represent the incident lighting
L
(MC)
i as a high-dynamic range image γ ∈ R3×hl×wl

+ using an equirectangular projection, which
can be queried for any direction via interpolation between nearby pixels. The final pixel color is then
computed as the average over all samples, divided by the probability of sampling ωki :

S(MC)(x,n,ωo;θ,γ) =
1

N

N∑
k=1

fr(x,ω
k
i ,ωo;θ)L

(MC)
i (ωki ;γ) |n · ωki |

p(ωki )
. (4)

When the surface is near-specular (e.g., a mirror), one can efficiently estimate the RE as reflected
rays are concentrated in bundles (e.g., to satisfy the law of reflection). However, this estimator can
suffer from high variance for rougher surfaces; a higher number of samples may be necessary to
produce usable gradients. While this can be partially improved with multiple importance sampling
[50], emitter sampling would add a significant overhead due to the environment map being updated
at every optimization step. This motivates the use of a more compact representation.

Spherical Gaussian Shading. To further accelerate rendering while preserving expressivity in our
shading model, we use a spherical Gaussian (SG) [51] representation. Projecting both the cosine-
weighted BRDF and incident radiance into an SG basis allows for fast, analytic integration within our
differentiable shader, at the cost of some high frequency features in the integrand. Concretely, an SG
kernel has the form G(ω; ξ, λ,µ) = µ eλ(ξ·ω−1), where ω ∈ S2 is the input spherical direction to
evaluate, ξ ∈ S2 is the axis, λ ∈ R+ is the sharpness, and µ ∈ R3

+ is the amplitude of the lobe. We
represent our environment map using a mixture of K lighting SGs Gl, so that:

L
(SG)
i (ωi;γ) ≈

K∑
k=1

Gkl
(
ωi; ξ

k
l , λ

k
l ,µ

k
l

)
, (5)

where γ := {ξkl , λkl ,µkl }k. For the BRDF, we follow Wang et al. [51] and fit a single, monochromatic
SG to the specular lobe so that f (SG)

r is a sum of diffuse and specular lobes. The full derivation can
be found in our supplementary material (Sec. A). Finally, we approximate the cosine foreshortening
term using a single SG |n · ωi| ≈ Gc(ωi;n, 2.133, 1.17) [40]. Regrouping all terms, the final pixel
color can be computed as:

S(SG)(x,n,ωo;θ,γ) =

∫
S2

f (SG)
r (x,ωki ,ωo;θ)L

(SG)
i (ωi;γ)Gc(ωi) dωi, (6)

which has an analytic form that can be automatically differentiated inside our renderer. All parameters
of the SGs, as well as the BRDF parameters, are learnable.
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Figure 2: Visual comparisons between MC and SG shading. On the left, we show an environment map and
its SG-representation (K = 128). While losing sharp details, SGs only needs 1% parameters compared to the
dense pixel HDR map. On the right, we increase roughness left-to-right, revealing that our spherical basis can
correctly approximate direct illumination at moderate-to-high roughness.
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Figure 3: Optimization. We
optimize complex lighting
and material for both MC
shading (left) and SG shad-
ing (right). In each case,
we first optimize lighting and
show the light and rendered
image in the first block. Next
we optimize the surface mate-
rial and show the surface ma-
terial value and rendered im-
age in the second block.

Comparison. To visually compare our two shading techniques and understand their limitations, we
render a unit sphere under the same lighting (represented differently) in Fig. 2. To do so, we first fit a
HDR environment map with K = 128 SGs using an equirectangular projection. As shown on the
left, SGs smooth out high frequency details and sharp corners but require much fewer parameters to
reconstruct incident lighting (896 vs. 98 304). On the right, we visualize the effect of increasing the
surface roughness β under the corresponding light representation.

Intuitively, this point of diminishing return indicates that MC is only so useful when the surface
reflects most of the incoming light (e.g., a mirror). Indeed, when β is small enough (β → 0) and we
deal with a highly non-Lambertian surface, a small number of MC samples are enough to estimate
direct illumination, which in turn implies faster render speed and low memory cost. On the other
end of the spectrum (β → 1), significantly more samples (e.g., N > 1000) are needed to accurately
integrate incident light, resulting in longer inference times. In such a case, SGs should be favored
since they offer a significant improvement. In the absence of any prior knowledge on the material
type, SG shading is preferred. This is reflected in our experiments in Sec. 5-6.

Optimization. We perform a sanity check on our renderer in Fig. 3 by optimizing for lighting
and reflectance properties from a multi-view image L1-loss with fixed geometry. We show the
ground-truth (GT) parameters and rendered images in the first row, along with initial parameters
(Init.) in the second row. Here, we optimize parameters separately using gradient-descent while the
others are kept fixed to validate each component of our shading model. DIB-R++ can successfully
estimate material and lighting parameters, including the environmental lighting, surface roughness
and specular albedo of the object. We find that the converged material parameters closely match
GT, while the optimized environment map loses some details due to gradients coming entirely from
surface reflections (foreground supervision only). In particular, surface highlights are well captured
by our technique. For more optimization results, please refer to the supplementary (Sec. C).

4 Application: Single Image 3D Reconstruction
We demonstrate the effectiveness of our hybrid framework through the learning-based problem
of single image 3D reconstruction without supervision. While previous works [10, 62] generally
focus on diffuse illumination only, our goal is to jointly infer geometry, reflectance, and lighting
from a single image Ĩ containing strong specular transport. To this end, we employ a convolutional
neural network F , parameterized by learnable weights ϑ, to predict 3D attributes of a meshM with
pre-determined topology (sphere in our case). We adopt the U-Net [47] architecture of the original
DIB-R [10, 62] and modify its output to also predict the appropriate BRDF attributes θ and light
parameters γ (pixel colors or SG coefficients) so that F (Ĩ;ϑ) = (π,θ,γ). We then render these
parameters back to an image I using our differentiable renderer and apply a loss L on the RGB output
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to compare the input image Ĩ and the rendered image I , where:

L(ϑ) = αimLim(Ĩ , I) + αmskLmsk(Ṽ , V ) + αperLper(Ĩ , I) + αlapLlap(π). (7)
Similar to DIB-R [10], we combine multiple consistency losses with regularization terms: Lim is
an image loss computing the L1-distance between the rendered image and the input image, Lmsk

is an Intersection-over-Union (IoU) loss of the rendered silhouette V and the input mask Ṽ of the
object [25], Lper is a perceptual loss [21, 61] computing the L1-distance between the pre-trained
AlexNet [26] feature maps of rendered image and input image, and Llap is a Laplacian loss [36, 25]
to penalize the change in relative positions of neighboring vertices. We set αim = 20, αmsk = 5,
αper = 0.5, αlap = 5, which we empirically found worked best.

5 Evaluation on Synthetic Datasets
We conduct extensive experiments to evaluate the performance of DIB-R++. We first quantitatively
evaluate on synthetic data where we have access to ground-truth geometry, material and lighting.
Since MC ad SG shading have individual pros and cons, we validate them under different settings.
In particular, we generate separate datasets with two different surface materials: purely metallic
surfaces with no roughness, and glossy surfaces with random positive roughness. We compare the
performance of both shading models against the baseline method [10].

Synthetic Datasets. We chose 485 different car models from TurboSquid2 to prepare data for metallic
and glossy surfaces. We also collected 438 freely available high-dynamic range (HDR) environment
maps from HDRI Haven3 to use as reference lighting, which contain a wide variety of illumination
configurations for both indoor and outdoor scenes. To render all 3D models, we use Blender’s Cycles4

path tracer with the Principled BRDF model [9]. We create two datasets, Metallic-Surfaces and
Glossy-Surfaces. For metallic surfaces, we set β = 0 and m = 1. Conversely, we set m = 0, s = 1
and randomly pick β ∈ [0, 0.4] to generate images for glossy surfaces.

Baseline. We compare our method with the rasterization-based baseline DIB-R [10], which sup-
ports spherical harmonics (SH) lighting. While the original lighting implementation in [10] is
monochromatic, we extend it to RGB for a fairer comparison. For quantitative evaluation, we first
report the common L1 pixel loss between the re-rendered image using our predictions and ground-
truth (GT) image(L = ‖Ĩ − I‖1), and 2D IoU loss between rendered silhouettes and ground-truth
masks(L = 1− Ṽ�V

Ṽ+V
). We experimentally find that these numbers are very close in different methods.

Thus, we further evaluate the quality of diffuse albedo and lighting predictions using normalized
cross correlation (NCC, L = 1−

∑
γ̃�γpred

‖γ̃‖2‖γpred‖2
, where γpred is the predicted albedo and light while γ̃

is GT). We provide more details of these metrics in the supplementary material (Sec. E).

5.1 Metallic Surfaces

Shading Metallic surfaces (↓) Glossy surfaces (↓)
Image 2D IoU Light Tex. Image 2D IoU Light Tex.

MC 0.019 0.062 0.074 0.152 0.024 0.061 0.106 0.142
SG 0.019 0.069 0.095 0.218 0.024 0.057 0.091 0.140

SH [10] 0.019 0.056 0.220 0.206 0.024 0.062 0.131 0.152

Table 1: Quantitative results of single image 3D Reconstruction
on synthetic data. While all the methods achieve comparable per-
formance on re-rendered images and 2D IoUs, both MC and SG
achieve better results on lighting and texture. MC is particularly
better for metallic surfaces, and SG works best for glossy surfaces.

Experimental Settings. We first ap-
ply all methods to the metallic car
dataset. Since this surface property is
known a priori, we relax the task for
MC shading by setting β = 0 and only
predict geometry, diffuse albedo and
lighting from the input image. This
allows us to render MC at a low sam-
ple count (N = 4), achieving higher
rendering speed and a lower memory
cost. In particular, we predict the relative offset for all |M| = 642 vertices in a mesh and a 256× 256
texture map, following the choices in [10]. We also predict a 256 × 256 RGB environment map.
For SG shading, we predict all parameters. While shape and texture are the same as MC shading,
we adopt K = 32 for SG and predict two global parameters β and s for the specular BRDF. This
keeps the number of parameters relatively low while providing enough flexibility to capture different
radiometric configurations.

2https://turbosquid.com. We obtain consent via agreement with TurboSquid, following their license at
https://blog.turbosquid.com/turbosquid-3d-model-license.

3https://hdrihaven.com. We follow the CCO license at https://hdrihaven.com/p/license.php.
4https://blender.org
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Figure 4: Prediction results on the metallic car dataset (β = 0). While the re-rendered images look similar,
the underlying components (material and lighting) are different. A SH basis [10] cannot recover the high
frequency details of the sky light maps. In this case, MC performs best due to low variance in the estimator for
mirror-like BRDFs. SGs can recover the overall form and contrast of the light map, but tend to predict incorrect
texture maps incorporating the ground dominant color (e.g., brown). Note that GT texture maps are not available
as they cannot be compared due to different uv-parameterizations / texture atlases.

Experimental Results. Quantitative and qualitative results are shown in Fig. 4 and Table 1 (Left),
respectively. Since the main loss function comes from the difference between GT and re-rendered
images, we find the re-rendered images (with light) from the predictions are all close to the GT
image for different methods, and quantitatively, the image loss and 2D IoU loss are also similar
across different models. However, we observe significant differences on the predicted albedo and
lighting. Specifically, in Fig. 4, MC shading successfully predicts cleaner diffuse albedo maps
and more accurate lighting, while Chen et al. [10] “bakes in” high specular effects into the texture.
Quantitatively, we outperform [10] with a 3× improvement in terms of NCC loss for lighting,
demonstrating the effectiveness of our DIB-R++. We further compare MC shading with SG shading.
While SG shading achieves reasonable lighting predictions, it fails to reconstruct the high frequency
details in the lighting and has circular spot effects caused by the isotropic SGs. Finally, we note that
due to the ambiguity of the learning task, the overall intensities of all predicted texture maps can
largely vary. Still, we observe that MC can better recover fine details, such as the wheels’ rims.

5.2 Glossy Surfaces

Experimental Settings. We further apply our model to synthetic images rendered with positive
roughness (glossy). To apply MC shading in such a case, we assume no prior knowledge for material
and use a high sample count (N = 1024) to account for possibly low roughness images in the dataset.
Due to high rendering time and memory cost, we subsample 4% of the pixels and apply Lim to those
pixels only in each training iteration. As such, we do not use the perceptual loss Lper as it relies on
the whole image. We predict a 32× 16 environment map for lighting and predict global β and m for
the specular BRDF. For SG shading, we use the same settings as for the metallic surfaces.

Experimental Results. We apply both MC and SG shading and compare with [10]. Results are
shown in Fig. 5 and Table 1 (Right). Qualitatively, SG shading has better lighting predictions with
correct high-luminance regions. The specular highlights in the images successfully guide SG shading,
while the bright reflection on the car window and front cover are fused with texture map in [10].
MC also has reasonable lighting predictions, but the predicted light map lacks structure due to weak
surface reflections. Without a perceptual loss term, the predicted textures also tend to be blurrier.

Quantitatively, SG shading significantly outperforms [10] on lighting prediction in terms of NCC
(0.078 vs. 0.127) and improves on texture prediction in terms of BRDF/lighting disentanglement. We
also compare with MC shading, where MC achieves slightly worse results on lighting predictions
compared to SG, but is still much better than [10].
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Figure 5: Prediction results on the glossy car dataset (β > 0). When the objects are glossy but not perfectly
specular, SGs can correctly disentangle reflectance from lighting, as evidenced by the absence of white highlights
in the predict albedos. Chen et al. [10] cannot capture these bright regions due to a diffuse-only shading model,
while MC oversmooths the predictions due to noisier pixel gradients. While all methods cannot completely
reconstruct the environment map, our method can predict the correct dominant light location and sky color.

5.3 Discussion
As shown in our previous two experiments, Monte Carlo shading works best under a metallic
assumption (β = 0), in which case the rendered images can have rich details at low sample count
(N ≤ 4). However, when the surface is more Lambertian (i.e., when β is becoming larger), we have
to compensate with a larger N to produce noise-free renderings, which impacts learning both time-
and memory-wise. As a consequence, we recommend applying MC shading to metallic surfaces only,
and default to SGs otherwise.

Our spherical Gaussian shading pipeline provides an analytic formulation for estimating the rendering
equation, which avoids the need of tracing ray samples, largely accelerating the rendering process.
While SGs can be blurry on metallic surfaces, in most case (e.g., when β ≥ 0.2) it can model similar
rendering effects at a fraction of the cost, achieving better results than MC shading and [10].

After inspecting the predicted surface material properties (β, s, m) and diffuse albedo with the
ground-truth parameters in Blender, we find the materials contain little correlation and the intensities
of diffuse albedo might change. As for SG, we are using only 32 basis elements to simulate a
complex, high definition environment map (2K). Since SGs can only represent a finite amount of
details, we find the predicted global β tends to be too small. One hypothesis for this is that the
optimizer artificially prefers more reflections (and thus lower roughness) to be able to estimate at
least some portions of the environment map. On the other hand, in MC, due to the absence of a
perceptual loss, the predicted texture is too blurry and cannot represent GT to a high detail. We find
that the predicted β and m do not have strong correlation with the GT material. Lastly, we note that
the predicted texture map has to change its overall intensity to accommodate for other parameters to
ensure the re-rendered images are correct, which leads to some differences with GT. More analysis
can be found in supplementary (Sec. C and F).

In summary, when we have no prior knowledge about the material, our re-rendered images can be
very close to the input images but the predicted material parameters are not always aligned with the
GT materials. We believe this problem can be relieved by incorporating additional local constraints,
e.g., part-based material priors, or by leveraging anisotropic SGs [56]. For instance, a car body is
metallic while its wheels are typically diffuse; predicting different parameters for each region has the
potential of improving disentanglement and interpretability. We leave this as future work.

6 Evaluation on a Real-world Dataset
We further qualitatively evaluate our method via training on StyleGAN generated data and testing on
real imagery, following the pipeline in [62] in Sec. 6.1, and use our predictions to perform artistic
manipulation in Sec. 6.2.
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Figure 6: Results on real imagery from the StyleGAN-generated dataset (cars and white female faces).
Our method can recover a meaningful decomposition as opposed to [62], as shown by cleaner texture maps and
directional highlights (e.g., car windshield). Even when using monochromatic lighting on faces, our method can
correctly predict the specular highlights on the forehead and none in the hair, while SH produces dark artifacts.

6.1 Realistic Imagery

Experimental Settings. Our DIB-R++ can also be applied to learn 3D properties from realistic
imagery. Following [62], we use StyleGAN [24] to generate multi-view images of cars and faces,
which is the data we need to train our model. The generated objects contains cars under various
lighting conditions, ranging from high specular paint to nearly diffuse. Thus, we only apply SG
shading and adopt the same setting, where we predict |M| = 642 vertex movements, a 256× 256
diffuse texture map, K = 32 SG bases and two global β and s. We also compare [62] as the baseline
on the same dataset by using the same training procedure.

Experimental Results on StyleGAN Dataset. In the absence of ground-truth on the StyleGAN
generated data, we qualitatively evaluate our results and compare with [62] in Fig. 6. Our DIB-R++
reconstructs more faithful material and lighting components, producing an interpretable decomposi-
tion. Specifically, our model can represent the dominant light direction more accurately, while naive
shading tend to merge reflectance with lighting. We also provide an example with monochromatic
lighting on a face example to reduce the degrees of freedom for the SH representation, yet it cannot
correctly model light.

Extension to Real Imagery from LSUN Dataset. Our model is trained on synthetic data [62]
generated by StyleGAN [24]. Thanks to this powerful generative model, the distribution of GAN
images is similar to the distribution of real images, allowing our model to generalize well. We show
reconstruction results on real images from LSUN [57] in Fig. 7. We provide more results in the
supplementary (Sec. E), we also provide additional turntable videos on our project webpage.

During inference, we do not need any camera pose and predict shapes in canonical view. However,
camera poses are needed to re-render the shape. Since ground-truth camera poses are not available for
real images, we manually adjust the camera poses in Fig. 7. As a result, the re-rendered images are
slightly misaligned with GT. However, DIB-R++ still accounts for specularities and predicts correct
predominant lighting directions and clean textures.

6.2 Material Editing and Relighting

Finally, we demonstrate some applications of DIB-R++ to artistic manipulation in Fig. 8. On the
left, we show examples of editing the diffuse albedo, where we can insert text, decals or modify
the base tint. Since our textures are not contaminated by lighting, clean texture maps can be easily
edited by hand and the re-rendered images look natural. On the right, we show examples of editing
lighting and surface materials, where we rotate the light (top) or increase glossiness (bottom). We
also showcase results where we change lighting orientation or modify the object’s glossiness with
consistent shading, which is not feasible with a naive, Lambertian-only shading model.
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Figure 7: Prediction on LSUN Dataset (Cars). DIB-R++, trained on StyleGAN dataset, can generalize well to
real images. Moreover, it also predicts correct high specular lighting directions and usable, clean textures.
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Figure 8: Our SG method allows for artistic manipulation of appearance, such as novel view synthesis, material
editing (both diffuse and specular components), and relighting, thanks to our effective disentanglement.

7 Conclusion
We presented DIB-R++, a hybrid differentiable renderer that can effectively disentangle material and
lighting. When embedded in a learning framework for single image 3D reconstruction, our method
produces state-of-the-art results, and enables applications such as material editing and relighting.
One limitation of our method is that the predicted base color may sometimes “bleed” into the lighting
predictions. Combining our technique with segmentation methods like DatasetGAN [63] could
alleviate this issue for a more practical, artist-friendly disentanglement. Moreover, the predicted
reflections are sometimes blurrier than ground-truth; this is mainly due to a limited number SG
components for lighting and could potentially be improved with a larger mixture. Finally, on some
occasions, the diffuse albedo in our synthetic dataset have baked-in reflections (e.g., GT red car
in Fig. 5) instead of a uniform base color, which obfuscates the learning process. This could be
mitigated by using more advanced physics-based materials such as those modeling clear coats.

Broader Impact. Our work focuses on disentangling geometry from appearance using a differen-
tiable renderer, a relatively nascent research area. We show that augmenting a rasterization-based
renderer with physics-based shading models improves reconstruction and allows for easier integration
within larger machine learning pipelines. DIB-R++ relies on simple topology and strong data prior
assumptions to produce useful decompositions; therefore it cannot generalize to the complexity and
multi-modality of real-world scenes in its current form. Nonetheless, we believe that our work takes
an important step in the joint estimation of shape, material and environmental lighting from a single
image and we hope that it can advance applications in performance-oriented settings such as AR/VR,
simulation technology and robotics. For instance, autonomous vehicles need to correctly assess
their surroundings from limited signals; directly modeling light-surface interactions (e.g., specular
highlights) may provide important cues to this end.

Like any ML model, DIB-R++ is prone to biases imparted through training data which requires an
abundance of caution when applied to sensitive applications. For example, it needs to be carefully
inspected when it is used to recover the 3D parameters of human faces and bodies as it is not tailored
for them. It is not recommended in off-the-shelf settings where privacy or erroneous recognition can
lead to potential misuse or any harmful application. For purposes of real deployment, one would
need to carefully inspect and de-bias the dataset to depict the target distribution of a wide range of
possible lighting conditions, skin tones, or at the intersection of race and gender.

Disclosure of Funding. This work was funded by NVIDIA. Wenzheng Chen, Jun Gao and Zian
Wang acknowledge additional indirect revenue in the form of student scholarships from University of
Toronto and the Vector Institute. Joey Litalien acknowledges indirect funding from McGill University
and the Natural Sciences and Engineering Research Council of Canada (NSERC).
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