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Abstract

The diversity of knowledge encoded in large001
language models (LLMs) and their ability to002
apply this knowledge zero-shot in a range of003
settings makes them a promising candidate for004
use in decision-making. However, they are cur-005
rently limited by their inability to reliably pro-006
vide outputs which are explainable and con-007
testable. In this paper, we attempt to reconcile008
these strengths and weaknesses by introducing009
a method for supplementing LLMs with argu-010
mentative reasoning. Concretely, we introduce011
argumentative LLMs, a method utilising LLMs012
to construct argumentation frameworks, which013
then serve as the basis for formal reasoning014
in decision-making. The interpretable nature015
of these argumentation frameworks and formal016
reasoning means that any decision made by the017
supplemented LLM may be naturally explained018
to, and contested by, humans. We demonstrate019
the effectiveness of argumentative LLMs exper-020
imentally in the decision-making task of claim021
verification. We obtain results that are competi-022
tive with, and in some cases surpass, compara-023
ble state-of-the-art techniques.024

1 Introduction025

Large language models (LLMs) have produced excel-026
lent results on a diverse range of reasoning tasks (Brown027
et al., 2020; Bubeck et al., 2023). This capacity has028
made them compelling candidates for supporting auto-029
mated decision systems (Zhang et al., 2023; Ouyang030
and Li, 2023; Wang et al., 2023). However, their reason-031
ing abilities currently suffer from various limitations,032
e.g. hallucinations and logical inconsistencies (Shana-033
han, 2024; Berglund et al., 2023; Fluri et al., 2023).034
Deficiencies which are particularly worrying are a lack035
of explainability and inability to provide faithful rep-036
resentations of their reasoning, which raise questions037
regarding their trustworthiness and ability to be con-038
tested (Henin and Métayer, 2021; Lyons et al., 2021).039

In this paper we explore the following question:040

Can the reasoning abilities of LLMs improve041
if they are made to argue with themselves?042

The question is inspired by argumentative interpreta-043
tions of human reasoning (Mercier and Sperber, 2011,044

2018) and by the fact that argumentation has been shown 045
to excel in supporting decision making (Amgoud and 046
Prade, 2009). We take a broader than usual view of 047
what counts as an ‘improved’ ability to reason. In ad- 048
dition to demonstrating that our argumentative LLMs 049
achieve competitive scores on various reasoning bench- 050
marks, we show how an improved ability to reason 051
necessarily leads to more explainable and contestable 052
decision-making (Liao and Vaughan, 2024). 053

Previous methods for improving the reasoning of 054
LLMs do not necessitate a direct relationship between 055
the reasoning steps and the final decision. Our argu- 056
mentative approach, on the other hand, provides this 057
as a feature of the system. This is because the sys- 058
tem prediction is directly derived from the generated 059
argumentation framework using a formally defined and 060
deterministic procedure, thus providing faithful explain- 061
ability. Further, argumentative LLMs also provide a 062
guarantee of contestability, in that if a human intervenes 063
in the reasoning process (such as by adding or removing 064
an argument, or changing the strength of an argument), 065
this will have a measurable effect on the output of the 066
decision-making system. Comparable techniques lack 067
the necessary processing stage between the LLM’s out- 068
put and the final decision to accommodate this flexibil- 069
ity. 070

Rather than prompting an LLM to produce ‘thoughts’, 071
as in Wei et al. (2022) or Yao et al. (2023), that either 072
enrich the context of the LLM, or provide disparate 073
reasoning steps to compare, our approach can be seen as 074
providing ‘thoughts’ for and against particular outputs, 075
in the spirit of Miller (2023). This makes it a natural 076
fit for highly complex decision-making tasks, wherein 077
an option, or set of options, must be chosen from a 078
number of possible alternatives. In almost all real-world 079
settings, a particular decision will have both pros and 080
cons, which is a feature that argumentative LLMs both 081
formalise and leverage. 082

In this paper, we focus on the kind of reasoning under- 083
pinning claim verification. This setting lends itself well 084
to our framework, as claims are often under-determined, 085
so they do not necessarily have straightforward truth 086
values. By intrinsically considering both arguments in 087
favour of and in conflict with the truthfulness of claims, 088
argumentative LLMs are able to ascertain the best an- 089
swer given the available evidence. For simplicity, and 090
without loss of generality1, we focus on a binary setting, 091

1The framework is easily extended to the case where there
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(a) Direct Inference

(b) Chain-of-Thought (c) Argumentative LLM

Figure 1: Comparison of our approach (Argumentative LLM) with existing alternatives. The example claim is
adapted from TruthfulQA (TruthfulClaim) and the abridged outputs are generated by Mixtral.

rather than general question-answer problems as in Wei092
et al. (2022) and Yao et al. (2023). In order to handle093
open-ended settings, it is first necessary to generate can-094
didate answers — determining the optimal number of095
answers can be thought of as a hyperparameter.096

In summary, we make the following contributions:097

• We define argumentative LLMs, a novel method098
for supplementing LLMs with formal reasoning099
for decision-making;100

• We perform an extensive evaluation of our method101
by comparing four variants thereof with three base-102
lines, on three claim verification datasets, adapted103
from existing datasets;104

• We demonstrate the explainability and contestabil-105
ity benefits of argumentative LLMs.106

2 Related Work107

A significant amount of research has been focused on108
improving the reasoning abilities of LLMs. This can be109
coarsely divided into approaches which exclusively fo-110
cus on prompt optimisation (Wei et al., 2022; Yang et al.,111
2023), and those which endow LLMs with the ability112
to utilise external tools or information, or extra struc-113
tural constraints (Schick et al., 2023; Yao et al., 2023;114

are more than two options to decide between.

Lewis et al., 2020). Our system is more closely aligned 115
to the latter, as it results in symbolic, deterministically 116
evaluable graphs as its output. 117

Du et al. (2023) also use arguments to improve the 118
reasoning ability of LLMs. However, they focus on a 119
multi-agent setting and do not formalise the arguments 120
produced by LLMs, or their corresponding strengths. 121
Also at the intersection of LLMs and argumentation is 122
work looking at the efficacy of LLMs at completing 123
arguments (Thorburn and Kruger, 2022), and the per- 124
suasiveness of LLM generated arguments (Hinton and 125
Wagemans, 2023; Durmus et al., 2024). 126

Chain-of-thought approaches (Wei et al., 2022; Zhang 127
and Parkes, 2023) attempt to induce enhanced reason- 128
ing through a specific form of prompting. The prompt 129
specifies (either using few-shot examples, or using a 130
verbal description) that the problem should be broken 131
down into discrete steps, before the final decision is 132
outputted. However, all the reasoning takes place within 133
the autoregressively generated output of the model. Due 134
to the nature of the next token prediction mechanism 135
underlying these models, this does not guarantee that 136
the steps in the reasoning, or the final output actually 137
follow from each other (Xia et al., 2024). This under- 138
mines the premise that the reasoning is faithful to the 139
process taking place in the model or that it is directly 140
related to the final output. Our method avoids this pitfall 141
by building an argumentation graph which guarantees a 142
resolution based on the constituent entities. 143
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Figure 2: Pipeline for Argumentative LLMs (in comparison with baselines).

Other related approaches are tree-of-thought (Yao144
et al., 2023) and graph-of-thoughts (Besta et al., 2024).145
Similarly to our methodology, these approaches result146
in graph-like structures, composed of the LLM’s output,147
which can then be reasoned over post-hoc. In contrast148
to our method, the nodes of these graphs consist of de-149
composed components of the overall problem. Instead,150
our method permits a comprehensive and fully explain-151
able reasoning process to take place concerning a single152
claim, which may be controversial or highly complex, in153
addition to composite problems like the existing meth-154
ods. For example, a claim such as ‘it is a good idea to155
drink milk when you have a cough’, does not naturally156
lend itself to decomposition, but would benefit from157
argumentative reasoning, i.e., evaluating arguments for158
(e.g., ‘it is a traditional remedy’) and against (e.g., ‘there159
have been no scientific studies confirming this’).160

3 Preliminaries161

Claim Verification The considered task of claim veri-162
fication can be divided into two primary types: uncondi-163
tioned and conditioned. For unconditioned verification,164
a claim c is evaluated independently, without any con-165
textual information. The outcome of this evaluation is166
binary, represented as v(c) ∈ {0, 1}, where v(c) = 1 de-167
notes the claim is true, and v(c) = 0 indicates the claim168
is false. Meanwhile, conditioned verification considers169
a claim c given additional information or context i (with170
the context assumed to be truthful). The veracity of this171
tuple is also assessed in a binary manner, expressed as172
v(c | i) ∈ {0, 1}. Here, similarly, v(c | i) = 1 signi-173
fies that the claim c, given the context i, is true, while174
v(c | i) = 0 means it is false.175

Computational Argumentation We will now cover176
the relevant notions from this AI discipline (see Atkin-177
son et al. (2017); Baroni et al. (2018a) for overviews), on178
which our methodology leverages. A quantitative bipo-179
lar argumentation framework (QBAF) (Baroni et al.,180

2019) is a quadruple ⟨X ,A,S, τ⟩ comprising a set 181
of arguments X , binary, directed relations of attack 182
A ⊆ X ×X and support S ⊆ X ×X , where A∩S = ∅, 183
and a total function τ : X → [0, 1], where for any 184
x ∈ X , τ(x) is the base score of x.2 For any argument 185
x ∈ X , we use A(x) = {y ∈ X |(y, x) ∈ A} to refer 186
to the attackers of x and S(x) = {y ∈ X |(y, x) ∈ S} 187
to refer to the supporters of x. Arguments in QBAFs 188
may be evaluated by a gradual semantics (Baroni et al., 189
2019), i.e. a total function σ : X → [0, 1] which, for 190
any x ∈ X , assigns a strength σ(x) to x.3 191

One such gradual semantics, the discontinuity-free 192
quantitative argumentation debate (DF-QuAD) algo- 193
rithm (Rago et al., 2016), is such that, for a given 194
QBAF ⟨X ,A,S, τ⟩, for any x ∈ X with n ≥ 0 at- 195
tackers with strengths v1, . . . , vn, m ≥ 0 supporters 196
with strengths v′1, . . . , v

′
m and τ(x) = v0, σ(x) = 197

C(v0,F(v1, . . . , vn), F(v′1, . . . , v
′
m)), where C is de- 198

fined as follows. For va = F(v1, . . . , vn) and vs = 199
F(v′1, . . . , v

′
m): if va = vs then C(v0, va, vs) = v0; 200

else if va > vs then C(v0, va, vs) = v0−(v0 · |vs−va|); 201
otherwise C(v0, va, vs) = v0 + ((1 − v0) · |vs − va|). 202
Given n arguments with strengths v1, ..., vn, if n = 0 203
then F(v1, ..., vn) = 0, otherwise F(v1, ..., vn) = 204
1−

∏n
i=1(|1− vi|). 205

In addition to DF-QuAD, we will also use the 206
quadratic energy model (QEM) semantics (Potyka, 207
2018), which is defined as follows. For a given 208
QBAF ⟨X ,A,S, τ⟩, the energy at x ∈ X is defined 209
as Ex =

∑
y∈S(x) σ(y) −

∑
z∈A(x) σ(z). Then, for 210

all v ∈ R, we let h(v) = max{v,0}2

1+max{v,0}2 . Finally, 211

the strength of an argument x ∈ X is defined as 212
σ(x) = τ(x) + (1− τ(x)) · h(Ex)− τ(x) · h(−Ex).4 213

2Note that the codomain of the base score is defined more
generally by (Baroni et al., 2019) but we restrict to its most
common form.

3As with the base score, we use the most commonly occur-
ring codomain of gradual semantics.

4We describe a simplification of the original algorithm for
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4 Argumentative LLMs214

In this section, we introduce our framework for induc-215
ing argumentative reasoning in LLMs. As indicated in216
the pipeline shown in Figure 2, there are three integral217
components of our framework: argument generation,218
argument strength attribution and argument semantics.219

4.1 Argument Generation220

Previous work has demonstrated that LLMs are able to221
effectively generate counter-arguments given a preexist-222
ing argument (Chen et al., 2023; Furman et al., 2023).223
Leveraging this capability, we use LLMs to perform an224
extension of this task, where they produce arguments225
supporting and attacking a ‘root argument’. In our cause226
the root argument is a (domain-agnostic) claim. We de-227
rive these claims from existing QA datasets (for an ex-228
ample, see Figure 1). The LLMs are fed a prompt, with229
the claim included, on at least two separate occasions:230
once prompted to generate an argument supporting the231
root argument, and once an argument attacking it. We232
refer to these as the base support and attack arguments.233

Our first setting, which we refer to as having a depth234
of 1, contains only the base support and base attack235
arguments. When we include an additional layer of ar-236
guments (giving a depth of 2), we generate a further237
four arguments. These are a supporting and an attacking238
argument for each of the base support and base attack ar-239
gument. The prompt used for generating these includes240
the base support or base attack argument respectively.5241

4.2 Intrinsic Argument Strength Attribution242

There have been a number of previous attempts to assess243
the quality, or intrinsic strength, of arguments. Note that244
this intrinsic strength (also called a base score) gives245
an argument’s quality per se, i.e. before the rest of246
the argumentation framework is considered. These at-247
tempts have either used pairwise comparison between248
arguments (Habernal and Gurevych, 2016; Simpson249
and Gurevych, 2018), or human-annotated arguments250
(Lauscher et al., 2020) to produce argument quality251
scores. However, producing such data is highly resource252
intensive. Instead we rely on the knowledge embedded253
into the LLMs, using them to attribute strengths to the254
arguments, zero-shot and without any task-specific fine-255
tuning. There have been some analogous uses of LLMs,256
such as for forecasting (Halawi et al., 2024), where the257
models are used to assign numerical confidences to their258
outputs (within the same context window).259

Incidentally, our present study can be seen as assess-260
ing if this is an ‘emergent’ capability of current LLMs261
(it is unlikely that either the pretraining or the super-262
vised training stages contained many instances of this263
fairly niche task). Assigning a strength to an argument264
is quite subjective, and so a direct comparison between265
human and machine ratings may not be an ideal analysis266

the case of trees, rather than (potentially cyclic) graphs.
5Note that, while our preliminary experiments are with

these two depths, argumentation frameworks of any (computa-
tionally feasible) depth could be achieved with our method.

(as it is highly likely that there would be a large varia- 267
tion between human scores for an individual argument). 268
Therefore, using the scores for an objective-driven, em- 269
pirical task, and ascertaining their suitability post-hoc, 270
is perhaps a more effective method of assessing this 271
capacity in LLMs. 272

In our case, the argument strengths are elicited by 273
recursively prompting the LLMs with the arguments 274
they have previously generated (in a separate context 275
window). In order to capture the relative strength of the 276
argument (relative to what it is attacking or supporting), 277
we also include the root claim, or the base support or 278
attack argument, in the context window. 279

4.3 Argument Strength Calculation 280

Once argumentation frameworks have been constructed, 281
the arguments can be evaluated by means of an argu- 282
ment semantics. The choice of any argument seman- 283
tics is dictated by the requirements of the application 284
setting in which the argumentation frameworks are be- 285
ing deployed. We use gradual semantics (Baroni et al., 286
2018b) that evaluate arguments quantitatively rather 287
than extension-based semantics (Dung, 1995) that select 288
sets of jointy-acceptable arguments, since only gradual 289
semantics are applicable to arguments with continuous 290
intrinsic strengths used in our framework. We chose the 291
DF-QuAD semantics (as defined in Section 3) due to 292
the dialectical properties it satisfies (see (Baroni et al., 293
2019)), e.g. monotonicity, requiring that any attacker 294
(supporter) can only decrease (increase, respectively) 295
the strength of the argument it attacks (supports, respec- 296
tively). We also experimented with the QEM semantics 297
(defined in Section 3), given that it is shown to satisfy 298
suitable properties. However, when tested on the valida- 299
tion data, there was a negligible difference between the 300
performance of the two semantics. 301

4.4 Prompt Selection 302

We take a principled approach for prompt selection, as 303
it has been shown that the result of slight variations in 304
prompting on downstream task performance can be sig- 305
nificant (Santu and Feng, 2023). To reduce the impact of 306
prompt choice on our final evaluation, we independently 307
devise three different prompts for both our framework 308
and the baselines (see Appendix C for details). 309

We evaluate all prompts, and combinations thereof, 310
on two validation sets of 200 samples each, taken from 311
TruthfulQA (Lin et al., 2021) and StrategyQA (Geva 312
et al., 2021). In this evaluation, we separately consid- 313
ered the prompts for the baselines (direct inference, es- 314
timated confidence and chain-of-thought) as well as the 315
components of the argumentative approach (argument 316
generation and argument strength attribution). 317

We find a large variation in performance for a partic- 318
ular prompt with any given dataset and model combina- 319
tion, both for the argumentative approach and the base- 320
lines. We choose the highest average scoring prompt 321
over all tested models and datasets (as shown in Tables 322
2 and 3 in Appendix E). 323

4



5 Experimental Set-up324

In this section we describe the baselines we compare325
against, the datasets used, the LLMs we experiment326
with, and the variations of our method.6327

5.1 Baselines328

We compare our method with three baselines.329

Baseline 1: Direct questioning (Direct Question in330
short) We directly ask the LLMs if the given claim is331
true or false by prompting. The prompt used for this332
baseline is given in Appendix A.1. We constrained the333
output of the open-source models to true/false.334

Baseline 2: Estimated confidence (Est. Confidence335
in short) We ask the LLMs for a confidence score336
on the given claim. The confidence score ranges from337
0-100. The prompt used for this baseline is given in Ap-338
pendix A.2. We constrain the output to values ranging339
from 0-100 for the open-source models in this base-340
line. Then to get a final decision (i.e. true/false) for341
the claim we check whether the outputted confidence is342
greater than 50. If it is greater than 50 then the claim is343
considered true, otherwise the claim is deemed false.344

Baseline 3: Questioning with chain-of-thought345
(Chain-of-Thought in short) As our third baseline,346
we use (two-stage) chain-of-thought prompting (Wei347
et al., 2022). This prompt-based technique breaks down348
the problem into discrete steps before the final decision349
is outputted. Then, we pass the reasoning step back to350
the LLM, in a separate context window, to get the final351
decision. Both prompts are given in Appendix A.3.352

5.2 Datasets353

We focused on three datasets, which are adaptations354
of three existing Q/A datasets, turning Q/A pairs into355
claims with true/false labels. We did not use the datasets356
directly as the LLMs we experiment with did not per-357
form adequately when generating arguments about the358
validity of the answers, rather than the questions.359

Therefore, we have generated claims for the Q/A360
pairs. Firstly, we used LLMs for each dataset to auto-361
matically generate claims by prompting the LLM with362
the Q/A pair. Then, we manually checked all the claims363
with the Q/A pairs that we used, to see if the claim was364
faithful both to the question and to the answer. More365
details are given for each dataset below.366

TruthfulClaim (adapted from TruthfulQA) Truth-367
fulQA (Lin et al., 2021) is a dataset curated specifically368
to evaluate if LLMs are able to generate truthful answers369
without being deceived by common misconceptions and370
falsehoods. The original dataset contains questions with371
a list of correct answers and a list of incorrect answers372
for each question. We transformed each answer, from373
the list of correct/incorrect answers with their corre-374
sponding question, to a claim generated by the process375

6All our experiments are executed with two RTX 4090
24GB GPUs on an Intel(R) Xeon(R) w5-2455X.

described above. We labelled the generated claims as 376
True if the answer was from the correct answers list and 377
False if the answer was from the incorrect answers list. 378

StrategyClaim (adapted from StrategyQA) Strate- 379
gyQA (Geva et al., 2021) is a dataset designed to evalu- 380
ate whether LLMs can strategically reason. The original 381
dataset is made up of binary questions and their labels 382
as true/false. However, in this paper, we are focusing on 383
claim verification and so we generated claims that are 384
the affirmative answer to the question, once again using 385
LLMs. The claims generated by the LLMs sometimes 386
generated claims that were the negation of the question, 387
so we manually modified those claims. 388

MedClaim (adapted from MedQA) MedQA (Jin 389
et al., 2020) is a multi-choice Q/A dataset for solv- 390
ing medical problems which is collected from the 391
professional medical board exams. The MedQA 392
dataset is slightly different from the previous two 393
datasets as the questions are based on some contextual 394
information. Therefore, the task we consider for the 395
MedQA dataset becomes conditioned claim verification. 396
The original dataset contains (composite) questions 397
formed of contextual information and the final question 398
to be answered. Each question is associated with 399
five possible answers where only a single answer 400
is correct. To generate the claims for this dataset, 401
we only used the final question along with each of 402
the possible answers, disregarding the contextual 403
information. The claims generated in this way did not 404
always capture the answer sufficiently well, so we 405
manually checked and edited them where necessary. 406
Finally, to include the contextual information during the 407
experiments, we used the template given in Appendix D. 408

409
We randomly selected 700 claims from the Truthful- 410
Claim and the StrategyClaim datasets (200 for the 411
initial prompt experiments, and 500 for the main 412
experiments), and 500 claims from the MedClaim 413
dataset for the main experiments. All the datasets we 414
use for our main experiments are balanced (i.e. 250 true 415
and 250 false labels). The reason for selecting a subset 416
of the datasets is due to the resource cost associated 417
with experimenting with LLMs on bigger datasets. 418

5.3 LLMs 419

To run our experiment we use four models: Mistral 420
(Mistral-7B-Instruct-v0.2) (Jiang et al., 2023), Mix- 421
tral (Mixtral-8x7B-Instruct-v0.1) (Jiang et al., 2024), 422
Gemma (gemma-7b) (Team et al., 2024), and GPT-3.5- 423
turbo (GPT-3.5-turbo-0125) (Brown et al., 2020). We 424
chose Mistral, Mixtral, and Gemma as they were the 425
best-performing open-source7 models of reasonable size. 426
In order to reduce the computational costs of running 427
the open-source models, we quantise them to 4 bits 428
(Dettmers et al., 2023) when running our experiments 429

7We use a broad notion of the term “open-source", not
necessarily implying the use of OSI-approved licenses, etc.
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(both for the baselines and our method). As a repre-430
sentative of models with proprietary weights, we chose431
GPT-3.5-turbo as it had the best performance/cost trade-432
off. We did not use Llama-2 (Touvron et al., 2023), as433
its smaller variants are typically ranked worse compared434
to the selected models and since the Llama-2 70B model435
(which is the biggest Llama-2 model) did not perform436
well on the validation dataset. For all the models the437
used parameters were temperature 0.7, max new tokens438
for arguments 128, max new tokens for baselines 768,439
top-p 0.95 and repetition penalty 1.0.440

5.4 Our Method441

In our experiments, we use four different variations442
of our argumentative method explained in Section 4.443
For all the variations, we use the same prompts for444
argument generation and argument strength attribution.445
The prompt for argument generation is given in Figure 3446
and the one for argument strength attribution in Figure 4.447

Figure 3: Prompt used for argument generation. {"sup-
porting"/"attacking"} and {"support"/"attack"} are con-
ditional to the required argument type (i.e. if a support
argument is required, the conditionals would be "sup-
porting" and "support", respectively). In our prompt,
{claim} is replaced with the claim we want to verify.

Variation 1: 0.5 Base Argument (Depth=1) In this448
variation, we generate two arguments for the claim: a449
supporter and an attacker. The resulting argumenta-450
tion framework is a tree of depth 1, composed of three451
arguments. We only execute the argument strength at-452
tribution component for the generated arguments. The453
claim is assigned a neutral base score of 0.5 to make the454
decision unbiased.455

Variation 2: 0.5 Base Argument (Depth=2) In this456
variation, we generate two arguments for the claim and457
then generate a supporting and an attacking argument458
for both the supporter of the claim and the attacker of459
the claim. This gives us a tree of depth 2, made up of460
seven arguments in total. Again, we only execute the ar-461
gument strength attribution for the generated arguments,462
assigning a 0.5 base score to the claim.463

Variation 3: Estimated Base Argument (Depth=1)464
The argumentation framework structure in this variation465
is the same as in Variation 1 — a tree of depth 1 with466
three arguments. The only difference is that the argu-467
ment strength attribution is also applied to the claim468
(rather than using the fixed base score of 0.5). Since the469
original prompt for the argument strength does not work470

Figure 4: Prompt used for argument strength attribution.
{"in favour of"/"against"} and {"supports"/"refutes"} are
conditional to what type of argument is given (i.e. if
an attack argument is given the conditionals would be
"against" and "refutes", respectively). In our prompt,
{argument} is replaced with the argument that needs to
be evaluated and {parent argument} is replaced with the
parent argument of that argument.

for the claim (as it requires a parent argument), we use 471
its adapted version, which is shown in Figure 9). 472

Variation 4: Estimated Base Argument (Depth=2) 473
The tree structure in this variation is the same as in Vari- 474
ation 2 — a tree of depth 2 with seven arguments. The 475
only difference is that the argument strength attribution 476
is executed additionally for the claim (again, rather than 477
using the fixed base score of 0.5). 478

6 Results 479

We compared the performance of various methods 480
on adapted versions of several commonly considered 481
datasets (TruthfulClaim, StrategyClaim, and MedClaim) 482
using several LLMs (Mistral, Mixtral, Gemma 7B, and 483
GPT-3.5-turbo). 484

On the TruthfulClaim dataset, the estimated base 485
score methods exhibited higher accuracy compared to 486
other methods. Specifically, Est. Base Arg (D=1) had 487
the highest accuracy of 0.758 and 0.81 on Mistral and 488
Mixtral, respectively, and Est. Base Arg (D=2) reached 489
the highest accuracy of 0.748 on GPT-3.5-turbo. How- 490
ever, on Gemma 7B, chain-of-thought had the highest 491
accuracy of 0.68. For the StrategyClaim dataset, Est. 492
Base Arg (D=2) achieved the highest accuracy of 0.692 493
on Mixtral, while chain-of-thought had the highest ac- 494
curacy of 0.684 and 0.58 on Mistral and Gemma 7B, 495
respectively. Direct Question performed the best for 496
GPT-3.5-turbo, with an accuracy of 0.734. Regarding 497
the MedClaim dataset, chain-of-thought recorded the 498
highest accuracy of 0.612 and 0.546 on Mistral and 499
Gemma 7B, respectively. Meanwhile, Direct Question 500
had the highest accuracy of 0.67 on GPT-3.5-turbo while 501

6



Table 1: Accuracy of three baselines and four variations of our argumentative method on claim verification tasks.
The best performing method for each model-dataset combination is indicated in bold.

Direct
Question

Est.
Confidence

Chain-of-
Thought

0.5 Base
Arg (D=1)

0.5 Base
Arg (D=2)

Est. Base
Arg (D=1)

Est. Base
Arg (D=2)

Truthful
Claim

Mistral 0.726 0.732 0.748 0.646 0.644 0.758 0.752
Mixtral 0.772 0.77 0.756 0.718 0.718 0.81 0.806

Gemma 7B 0.648 0.624 0.68 0.642 0.64 0.626 0.626
GPT-3.5-turbo 0.698 0.728 0.744 0.604 0.606 0.728 0.748

Strategy
Claim

Mistral 0.604 0.614 0.684 0.578 0.576 0.622 0.63
Mixtral 0.68 0.67 0.64 0.62 0.618 0.684 0.692

Gemma 7B 0.55 0.556 0.58 0.556 0.556 0.568 0.568
GPT-3.5-turbo 0.734 0.696 0.716 0.558 0.558 0.696 0.708

Med
Claim

Mistral 0.552 0.568 0.612 0.496 0.494 0.532 0.55
Mixtral 0.598 0.62 0.614 0.592 0.592 0.608 0.616

Gemma 7B 0.524 0.532 0.546 0.512 0.512 0.518 0.518
GPT-3.5-turbo 0.67 0.572 0.666 0.564 0.56 0.574 0.566

GPT-4 0.66 0.60 0.66 0.52 0.54 0.64 0.68

Est. Base had the highest accuracy of 0.62 on Mixtral.502
Besides this, we carried out an extra experiment with503

GPT-4 (GPT-4-0613) to test our hypothesis that both504
argument generation and strength attribution were in-505
effective for smaller models, on the conditioned claim506
verification task (rather than standard claim verifica-507
tion). Since MedClaim was unique in this sense we only508
carried out the extra experiment for this dataset, and509
we used only 50 samples due to financial constraints.510
The results indicated that Est. Base Arg (D=2) had the511
best accuracy of 0.68, followed by Direct Question and512
chain-of-thought, both of which achieved an accuracy513
of 0.66. The improved performance of GPT-4 relative514
to the other models tested supports this hypothesis.515

In general, the accuracy of all methods varied on516
different dataset across different LLMs. However, the517
argumentative estimated base score methods and chain-518
of-thought performed better overall compared to others.519
Specifically, chain-of-thought performed better on Mis-520
tral and Gemma 7B, while Est. Confidence and Est.521
Base Arg (D=1) had advantages on Mixtral, and Direct522
Question performed relatively better on GPT-3.5-turbo.523
Furthermore, the estimated base score methods had bet-524
ter accuracy overall than fixed (0.5) base score methods.525

In addition to accuracy, we evaluated our argumenta-526
tive methods on Brier score and AUC, compared against527
Est. Confidence as the baseline. We present the results528
in the Appendix (Tables 16 and 17). Overall, our ar-529
gumentative methods outperformed Est. Confidence530
for all datasets and all LLMs. However, there were a531
few exceptions that Est. Confidence performed better532
than the argumentative methods on the TruthfulClaim533
and MedClaim datasets with Gemma 7B in terms of534
Brier score, and the StrategyClaim dataset with GPT-535
3.5-turbo for AUC, where argumentative methods were536
slightly worse than the baseline.537

7 Discussion538

Argumentative LLMs offer numerous benefits when539
compared to existing comparable techniques. As we540
have demonstrated with the instantiation presented in541

this paper, our methodology does not require any exter- 542
nal resources or fine-tuning, to perform comparably (in 543
terms of accuracy) at claim verification tasks with the 544
current state-of-the-art prompting methods. Addition- 545
ally, we believe that the performance of our approach 546
could benefit from fine-tuning for the argument genera- 547
tion and argument strength attribution sub-components. 548
Likewise, we expect that permitting information re- 549
trieval, both for generating the arguments and strengths, 550
would result in further improvements. 551

Figure 5: An illustration of a user contesting the strength
of an argument attacking a claim taken from Strategy-
Claim (both arguments are generated by Mixtral). Be-
fore the contestation, the claim was (incorrectly) classi-
fied as false, as the attacking argument was assigned a
strength of 0.9, whereas the supporting argument had a
strength of 0.7. However, a human user is able to modify
this score (e.g. from 0.9 to 0.5), citing the fallacious rea-
soning present in the attacking argument (highlighted in
red). This ultimately results in the correct classification.

However, perhaps the most important features of our 552
proposed methodology cannot be adequately captured 553
by quantitative performance metrics on benchmarks. 554
One of these features is that the outputs generated are 555
reasons, from which decisions can be derived, rather 556
than decisions directly. While chain-of-thought tech- 557
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niques do something akin to this, the reasons are output558
monolithically, and cannot guarantee that they faithfully559
imply the final decision. Whereas the final decision560
output by our system is necessarily a function of the561
constituent reasons, due to the system architecture.562

Furthermore, the composite nature of the reasoning563
results in highly explainable and contestable outputs.564
The explanation for why a decision has been made is565
transparent, and can be directly attributed to the gen-566
erated arguments and their associated strengths. This567
explainability offers users of the system plentiful op-568
portunity to disagree with the reasoning, either in terms569
of the arguments generated being relevant or true, or570
the strengths that have been attributed to them being571
representative of the extent to which they support or572
attack their parent argument (including the root claim).573
For an illustration of the latter scenario, see Figure 5.574

The advantages offered by these features are not nec-575
essarily demonstrated well by the relatively simple ex-576
amples found in commonly used benchmarks, such as577
the ones that we use for this study. The settings where578
they are most relevant, and important, are in highly com-579
plex, uncertain and high-stakes scenarios. These may580
include business, medical or legal decision-making.581

Ideally, the system would be used in conjunction with582
a domain-expert, who could review the outputted ar-583
guments and strengths, and leverage their experience584
and contextual knowledge to modify them accordingly.585
Additionally, they can add arguments of their own. This586
also lends itself to collaborative use, wherein a commu-587
nity of people can vote on the quality of the arguments,588
and add their own perspectives by including additional589
arguments (see Appendix G for examples).590

Previous work by Yin et al. (2023) facilitates the re-591
alisation of integrating our methodology into such a592
human-computer hybrid system. For very large and593
complex argument graphs, one is able to automatically594
surface the arguments which have the greatest impact on595
the final score. This would allow human users to manu-596
ally check only the most significant arguments, and their597
respective scores. This makes the system amenable to598
human oversight, even in cases where there are poten-599
tially hundreds or thousands of relevant arguments.600

Another factor which lends itself to the system’s use601
in high-stakes scenarios is that uncertainty is inherently602
calculated. This is a product of the argument semantics,603
which uses the constituent argument strengths to output604
a final score for the root argument. This score can be605
easily interpreted as uncertainty about the final decision.606
This is very useful in situations where a particular de-607
cision can have a highly detrimental outcome, such as608
in a medical setting. As shown by the Brier score and609
AUC results in Tables 16 and 17, generating additional610
arguments improves the quality of probability estimates,611
compared to models directly reporting their confidence612
(Est. Confidence).613

Lastly, the results of the prompt experiments (shown614
in Appendix E), emphasise the highly conditional per-615
formance of LLMs on the combination of the prompt616

and dataset being used. Moreover, this relationship is 617
inconsistent between different models. This suggests 618
that a model performing very well at a task in a partic- 619
ular setting does not guarantee that this performance 620
will transfer to a different setting. Our proposed system 621
combats this issue for the reasons noted above, namely 622
that the outputs are entirely explainable and contestable. 623
This provides human users with sufficient agency to 624
guard against and remedy any unexpected dips in per- 625
formance due to a change in the input data distribution. 626

8 Conclusions & Future Work 627

In this paper we introduce a methodology for harness- 628
ing the general reasoning capacity of LLMs - without 629
requiring any fine-tuning or external resources - making 630
them explainable, contestable and improving their rea- 631
soning in some circumstances. Furthermore, our system 632
innately permits human-computer collaboration, and 633
provides accurate uncertainty estimates as an output. 634

The instantiation of the system in this paper is very 635
basic. This is suitable for the simple claims that make 636
up the existing benchmarks we use. We leave to future 637
work the use of more general argumentative explana- 638
tions in the spirit of Kotonya and Toni (2024). 639

Similarly, we conduct all experiments without any 640
task-specific training and by using the most basic 641
method of argument strength attribution. The reason for 642
this decision was twofold - in order to assess the ability 643
of ‘out-the-box’ LLMs to perform argumentative reason- 644
ing, and to demonstrate the viability of our methodology 645
in its simplest form. While we have demonstrated that 646
this is a reasonably effective approach, we envision that 647
both fine-tuning, and employing more tailored methods 648
will result in improved results. 649

There are numerous methodologies for argument 650
strength attribution which warrant further analysis. 651
These include techniques which adapt our chosen 652
method of directly prompting an LLM by, for exam- 653
ple, sampling multiple outputs of the same LLM or 654
taking the weighted value of the relevant logits in the 655
final layer of the model. 656

Furthermore, an adapted version of the ‘semantic un- 657
certainty’ (Kuhn et al., 2023) methodology may be de- 658
vised, wherein one directly clusters semantically similar 659
sampled arguments, rather than having to prompt mod- 660
els for numerical scores. We also experimented with 661
verbal confidence scores to assign argument strengths. 662
While we did not observe promising results, this ap- 663
proach may respond well to supervised finetuning. 664

Another promising direction for future work is the 665
ensembling of many different LLMs, both for argument 666
generation and strength attribution. This is a way to 667
harness the heterogeneous knowledge encoded in dis- 668
parate models. In this vein, using information retrieval 669
or retrieval augmented generation (Lewis et al., 2020), 670
is a way to increase the breadth and reliability of the 671
arguments generated. 672
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9 Limitations673

Any study that is attempting to make general claims674
about LLMs should strive to use as many, and as diverse675
a range of them as possible. We have tried to do so, but676
due to the overwhelming number of both open-sourced677
and closed-sourced models available, we have only been678
able to test a fraction of the total available. However,679
by using the models that rank highest across various680
benchmarks, we have attempted to demonstrate that this681
methodology can be effectively employed with the state682
of the art.683

10 Ethics Statement684

There are potential risks of LLMs such as social bias685
and generation of misinformation. In this work, we686
intentionally devise our methodology to be used with687
human oversight. This means users have recourse in688
the case that any biased output is produced by an LLM689
being utilised as a part of our system. However, in cases690
where the argumentation framework that is produced is691
too large for humans to review every argument, there is692
some risk that biased reasoning could impact the final693
decision.694

Making the reasons for a LLM-driven decision ex-695
plicit increases explainability, and thus safety. However,696
the ability to contest decision may be co-opted by bad697
actors, who intentionally subvert the reasoning process.698
This is why the our proposed methodology is intended699
to be used with trusted human oversight.700
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Appendix1024

A Baseline Prompts1025

We show the prompts used for the baselines.1026

A.1 Direct questioning1027

The direct questioning prompt is shown in Figure 6.1028

Figure 6: Prompt used for direct questioning baseline.

In our prompt, {claim} is replaced with the claim we1029
want to verify.1030

A.2 Direct questioning on confidence1031

The direct questioning on confidence prompt is shown1032
in Figure 7.1033

Figure 7: Prompt used for direct questioning on confi-
dence baseline.

In our prompt, {claim} is replaced with the claim we1034
want to verify.1035

A.3 Questioning with Chain-of-thought1036

For chain-of-thought the first prompt used to obtain the1037
discrete steps and the prompt to get the final decision1038
are given in Figure 8.1039

Figure 8: Prompts used for chain-of-thought baseline.

The prompt above the line is to obtain the reasoning 1040
steps and {claim} is replaced with the claim we want 1041
to verify. The prompt below the line is to get the final 1042
decision and {Reasoning/Output from previous step} is 1043
replaced with the reasoning obtained from the prompt 1044
above the line. 1045

B Prompt for Argument Strength 1046

Attribution for Claim 1047

The prompt for argument strength attribution does not 1048
work for the claim as it requires a parent argument to 1049
be present. So, we altered the prompt for only claim 1050
argument strength attribution (the prompt could be seen 1051
in Figure 9). 1052

Figure 9: Prompt used for argument strength attribution
for the claim. In our prompt, {claim} is replaced with
the claim we want to verify.

C Considered Prompts 1053

C.1 ChatGPT prompts 1054

ChatGPT prompts were generated mostly using Chat- 1055
GPT. First, the prompt is initialised by giving ChatGPT 1056
the instructions, then the prompt is optimised by giving 1057
ChatGPT some outputs and asking it to improve the 1058
prompts. The ChatGPT Argument Generator prompt 1059
can be found in Figure 10 and the ChatGPT Argument 1060
Strength Attribution prompt can be found in Figure 11. 1061

Figure 10: ChatGPT Argument Generator prompt
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Figure 11: ChatGPT Argument Strength Attribution
prompt

C.2 Role-player prompts1062

Role-player prompts followed a prompting strategy1063
where the LLMs were expected to act like debater for the1064
Argument Generator component and analyst for the Ar-1065
gument Strength Attribution component. The Argument1066
Generator prompt, Debater, can be found in Figure 121067
and the Argument Strength Attribution, Analyst, can be1068
found in Figure 13.1069

Figure 12: Role-Player: Debater Argument Miner
prompt

Figure 13: Role-Player: Analyst Uncertainty Estimator
prompt

C.3 OPRO prompts 1070

OPRO prompts follow the Optimization by PROmpting 1071
(OPRO) strategy (Yang et al., 2023). The OPRO Argu- 1072
ment Generator prompt can be found in Figure 14 and 1073
the OPRO Argument Strength Attribution prompt can 1074
be found in Figure 15. 1075

Figure 14: OPRO Argument Miner prompt

Figure 15: OPRO Uncertainty Estimator prompt

D MedClaim Template 1076

For the MedClaim dataset, to include the contextual 1077
information during the experiments, we use the follow- 1078
ing template for the claims, where {information} is the 1079
contextual information and {claim} is the claim: 1080

Consider the following background informa- 1081
tion: {information} Given the background 1082
information the following is correct: {claim} 1083
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E Prompt Experiment Results1084

In this section we give the results of the prompt exper-1085
iments conducted on the two validation datasets, both1086
consisting of 200 samples.1087

Table 2 shows the average results for the prompts1088
used for baselines.1089

Table 3 shows the average results for the prompts1090
used for variations of our method.1091

Table 4 shows the results for the prompts used for1092
baselines using Mixtral on the TruthfulClaim dataset.1093

Table 5 shows the results for the prompts used for1094
variations with depth=1 of our method using Mixtral on1095
the TruthfulClaim dataset.1096

Table 6 shows the results for the prompts used for1097
variations with depth=2 of our method using Mixtral on1098
the TruthfulClaim dataset.1099

Table 7 shows the results for the prompts used for1100
baselines using Mixtral on the StrategyClaim dataset.1101

Table 8 shows the results for the prompts used for1102
variations with depth=1 of our method using Mixtral on1103
the StrategyClaim dataset.1104

Table 9 shows the results for the prompts used for1105
variations with depth=2 of our method using Mixtral on1106
the StrategyClaim dataset.1107

Table 10 shows the results for the prompts used for1108
baselines using Mistral on the TruthfulClaim dataset.1109

Table 11 shows the results for the prompts used for1110
variations with depth=1 of our method using Mistral on1111
the TruthfulClaim dataset.1112

Table 12 shows the results for the prompts used for1113
variations with depth=2 of our method using Mistral on1114
the TruthfulClaim dataset.1115

Table 13 shows the results for the prompts used for1116
baselines using Mistral on the StrategyClaim dataset.1117

Table 14 shows the results for the prompts used for1118
variations with depth=1 of our method using Mistral on1119
the StrategyClaim dataset.1120

Table 15 shows the results for the prompts used for1121
variations with depth=2 of our method using Mistral on1122
the StrategyClaim dataset.1123

F Final Results1124

This section gives the final results of all experiments1125
run on the three held-out test datasets, consisting of 5001126
samples each.1127

Table 16 gives the main experiment Brier scores of1128
Direct Questioning on Confidence baseline and varia-1129
tions of our method on all three datasets and all four1130
models.1131

Table 17 gives the main experiment AUC scores of1132
Direct Questioning on Confidence baseline and varia-1133
tions of our method on all three datasets and all four1134
models.1135

G Contestation Examples 1136

In this section we show different ways of contesting 1137
our model. Figure 16 and Figure 17 are illustrations of 1138
different methods by which the output of our system 1139
can be contested, and modified, by human users. 1140

Figure 16: An illustration of a user adding an additional
supporting argument. Please note that the ‘addition
sign’ is purely illustrative, and not indicative of the ac-
tual process that takes place in the argument semantics.
However, the effect of changing the classification from
false to true is a realistic demonstration of what would
happen in this case.

Figure 17: An illustration of a user modifying a sup-
porting information with extra information. Due to the
improvement in the argument, the argument strength
is increased, leading to a change in classification from
false to true.

H Licenses 1141

Following are the licenses for all the datasets we adapt, 1142
and models we experiment with. The purposes we 1143
use the models and data are all covered by their re- 1144
spective licenses. Datasets: TruthfulQA - Apache 2.0, 1145
StrategyQA - MIT, MedQA - N/A. Models: Mistral - 1146
Apache 2.0, Mixtral - Apache 2.0, Gemma - Apache 1147
2.0, GPT-3.5-turbo/4 - Creative Commons Attribution- 1148
NonCommercial-ShareAlike 4.0 International. 1149
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Baseline Prompt Direct Question Chain-of-Thought

ChatGPT 0.663 0.671
analyst 0.669 0.681
OPRO 0.613 0.633

Table 2: Baseline prompt experiment results — average over both models and datasets

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only (baseline)

ChatGPT ChatGPT 0.573 0.604 0.596
ChatGPT OPRO 0.63 0.649 0.645
ChatGPT analyst 0.615 0.663 0.65

OPRO ChatGPT 0.586 0.592 0.596
OPRO OPRO 0.584 0.64 0.645
OPRO analyst 0.601 0.679 0.65
debater ChatGPT 0.549 0.591 0.596
debater OPRO 0.624 0.644 0.645
debater analyst 0.573 0.64 0.65

Table 3: Argumentation prompt experiment results — average over models, depths and datasets

Baseline Prompt Direct Question Chain-of-Thought

ChatGPT 0.815 0.76
analyst 0.81 0.755
OPRO 0.67 0.685

Table 4: Mixtral baseline prompt experiment results, 4bit - TruthfulClaim on 200 datapoints

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only (baseline)

ChatGPT ChatGPT 0.56 0.69 0.695
ChatGPT OPRO 0.71 0.73 0.725
ChatGPT analyst 0.685 0.765 0.745

OPRO ChatGPT 0.665 0.7 0.695
OPRO OPRO 0.685 0.73 0.725
OPRO analyst 0.69 0.795 0.745
debater ChatGPT 0.68 0.695 0.695
debater OPRO 0.77 0.72 0.725
debater analyst 0.68 0.76 0.745

Table 5: Mixtral prompt experiment results, depth 1 - TQA on 200 datapoints

AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only (baseline)

ChatGPT ChatGPT 0.56 0.69 0.695
ChatGPT OPRO 0.71 0.73 0.725
ChatGPT analyst 0.685 0.76 0.745

OPRO ChatGPT 0.665 0.71 0.695
OPRO OPRO 0.685 0.73 0.725
OPRO analyst 0.69 0.785 0.745
debater ChatGPT 0.68 0.695 0.695
debater OPRO 0.77 0.715 0.725
debater analyst 0.675 0.755 0.745

Table 6: Mixtral prompt experiment results, depth 2 - TQA on 200 datapoints
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Baseline Prompt Direct Question Chain-of-Thought

ChatGPT 0.655 0.6
analyst 0.66 0.64
OPRO 0.55 0.58

Table 7: Mixtral baseline prompt experiment results, 4bit - SQA on 200 datapoints

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only (baseline)

ChatGPT ChatGPT 0.57 0.55 0.535
ChatGPT OPRO 0.565 0.64 0.625
ChatGPT analyst 0.59 0.62 0.635

OPRO ChatGPT 0.6 0.545 0.535
OPRO OPRO 0.58 0.63 0.625
OPRO analyst 0.57 0.655 0.635
debater ChatGPT 0.5 0.525 0.535
debater OPRO 0.58 0.635 0.625
debater analyst 0.55 0.61 0.635

Table 8: Mixtral prompt experiment results, depth 1 - SQA on 200 datapoints

AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only (baseline)

ChatGPT ChatGPT 0.57 0.55 0.535
ChatGPT OPRO 0.565 0.635 0.625
ChatGPT analyst 0.59 0.625 0.635

OPRO ChatGPT 0.6 0.55 0.535
OPRO OPRO 0.58 0.63 0.625
OPRO analyst 0.57 0.655 0.635
debater ChatGPT 0.5 0.535 0.535
debater OPRO 0.58 0.635 0.625
debater analyst 0.55 0.625 0.635

Table 9: Mixtral prompt experiment results, depth 2 - SQA on 200 datapoints

Baseline Prompt Direct Question Chain-of-Thought

ChatGPT 0.625 0.685
analyst 0.665 0.71
OPRO 0.68 0.65

Table 10: Mistral baseline prompt experiment results, 4bit - TQA on 200 datapoints

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only

ChatGPT ChatGPT 0.615 0.67 0.65
ChatGPT OPRO 0.67 0.73 0.725
ChatGPT analyst 0.635 0.715 0.705

OPRO ChatGPT 0.61 0.665 0.65
OPRO OPRO 0.605 0.715 0.725
OPRO analyst 0.62 0.73 0.705
debater ChatGPT 0.49 0.645 0.65
debater OPRO 0.615 0.725 0.725
debater analyst 0.545 0.665 0.705

Table 11: Mistral prompt experiment results, 4bit, depth 1 - TQA on 200 datapoints
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AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only

ChatGPT ChatGPT 0.615 0.66 0.65
ChatGPT OPRO 0.67 0.73 0.725
ChatGPT analyst 0.635 0.71 0.705

OPRO ChatGPT 0.61 0.655 0.65
OPRO OPRO 0.605 0.715 0.725
OPRO analyst 0.62 0.725 0.705
debater ChatGPT 0.49 0.655 0.65
debater OPRO 0.62 0.725 0.725
debater analyst 0.55 0.695 0.705

Table 12: Mistral prompt experiment results, 4bit, depth 2 - TQA on 200 datapoints

Baseline Prompt Direct Question Chain-of-Thought

ChatGPT 0.56 0.64
analyst 0.54 0.62
OPRO 0.55 0.615

Table 13: Mistral baseline prompt experiment results, 4bit - SQA on 200 datapoints

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only

ChatGPT ChatGPT 0.55 0.515 0.505
ChatGPT OPRO 0.575 0.5 0.505
ChatGPT analyst 0.55 0.56 0.515

OPRO ChatGPT 0.47 0.445 0.505
OPRO OPRO 0.465 0.485 0.505
OPRO analyst 0.525 0.54 0.515
debater ChatGPT 0.525 0.5 0.505
debater OPRO 0.53 0.495 0.505
debater analyst 0.515 0.515 0.515

Table 14: Mistral prompt experiment results, 4bit, depth 1 - SQA on 200 datapoints

AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only

ChatGPT ChatGPT 0.55 0.505 0.505
ChatGPT OPRO 0.575 0.5 0.505
ChatGPT analyst 0.55 0.55 0.515

OPRO ChatGPT 0.47 0.465 0.505
OPRO OPRO 0.465 0.485 0.505
OPRO analyst 0.525 0.545 0.515
debater ChatGPT 0.525 0.48 0.505
debater OPRO 0.53 0.5 0.505
debater analyst 0.515 0.495 0.515

Table 15: Mistral prompt experiment results, 4bit, depth 2 - SQA on 200 datapoints
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Table 16: Brier scores of a baseline and four variations of our argumentative method on claim verification tasks.
The best performing method for each model-dataset combination is indicated in bold.

Est. Confidence 0.5 Base
Arg (D=1)

0.5 Base
Arg (D=2)

Est. Base
Arg (D=1)

Est. Base
Arg (D=2)

Truthful
Claim

Mistral 0.205 0.21 0.215 0.195 0.198
Mixtral 0.169 0.187 0.195 0.153 0.155

Gemma 7B 0.238 0.272 0.294 0.273 0.286
GPT-3.5-turbo 0.205 0.219 0.222 0.191 0.183

Strategy
Claim

Mistral 0.335 0.266 0.258 0.321 0.321
Mixtral 0.258 0.23 0.229 0.26 0.259

Gemma 7B 0.304 0.27 0.286 0.321 0.332
GPT-3.5-turbo 0.245 0.256 0.243 0.252 0.243

Med
Claim

Mistral 0.353 0.362 0.305 0.378 0.331
Mixtral 0.268 0.282 0.257 0.273 0.256

Gemma 7B 0.302 0.373 0.42 0.41 0.443
GPT-3.5-turbo 0.314 0.245 0.248 0.305 0.315

Table 17: AUC of a baseline and four variations of our argumentative method on claim verification tasks. The best
performing method for each model-dataset combination is indicated in bold.

Est. Confidence 0.5 Base
Arg (D=1)

0.5 Base
Arg (D=2)

Est. Base
Arg (D=1)

Est. Base
Arg (D=2)

Truthful
Claim

Mistral 0.792 0.748 0.741 0.809 0.806
Mixtral 0.831 0.834 0.831 0.852 0.85

Gemma 7B 0.691 0.637 0.625 0.691 0.675
GPT-3.5-turbo 0.795 0.75 0.735 0.807 0.825

Strategy
Claim

Mistral 0.645 0.643 0.641 0.656 0.653
Mixtral 0.727 0.759 0.749 0.759 0.753

Gemma 7B 0.584 0.551 0.551 0.593 0.592
GPT-3.5-turbo 0.747 0.654 0.655 0.741 0.741

Med
Claim

Mistral 0.575 0.475 0.514 0.563 0.584
Mixtral 0.659 0.615 0.608 0.671 0.67

Gemma 7B 0.532 0.528 0.523 0.534 0.534
GPT-3.5-turbo 0.638 0.601 0.585 0.644 0.645
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