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Abstract

The diversity of knowledge encoded in large
language models (LLMs) and their ability to
apply this knowledge zero-shot in a range of
settings makes them a promising candidate for
use in decision-making. However, they are cur-
rently limited by their inability to reliably pro-
vide outputs which are explainable and con-
testable. In this paper, we attempt to reconcile
these strengths and weaknesses by introducing
a method for supplementing LLMs with argu-
mentative reasoning. Concretely, we introduce
argumentative LLMs, a method utilising LLMs
to construct argumentation frameworks, which
then serve as the basis for formal reasoning
in decision-making. The interpretable nature
of these argumentation frameworks and formal
reasoning means that any decision made by the
supplemented LLM may be naturally explained
to, and contested by, humans. We demonstrate
the effectiveness of argumentative LLMs exper-
imentally in the decision-making task of claim
verification. We obtain results that are competi-
tive with, and in some cases surpass, compara-
ble state-of-the-art techniques.

1 Introduction

Large language models (LLMs) have produced excel-
lent results on a diverse range of reasoning tasks (Brown
et al., 2020; Bubeck et al., 2023). This capacity has
made them compelling candidates for supporting auto-
mated decision systems (Zhang et al., 2023; Ouyang
and Li, 2023; Wang et al., 2023). However, their reason-
ing abilities currently suffer from various limitations,
e.g. hallucinations and logical inconsistencies (Shana-
han, 2024; Berglund et al., 2023; Fluri et al., 2023).
Deficiencies which are particularly worrying are a lack
of explainability and inability to provide faithful rep-
resentations of their reasoning, which raise questions
regarding their trustworthiness and ability to be con-
tested (Henin and Métayer, 2021; Lyons et al., 2021).
In this paper we explore the following question:

Can the reasoning abilities of LLMs improve
if they are made to argue with themselves?

The question is inspired by argumentative interpreta-
tions of human reasoning (Mercier and Sperber, 2011,

2018) and by the fact that argumentation has been shown
to excel in supporting decision making (Amgoud and
Prade, 2009). We take a broader than usual view of
what counts as an ‘improved’ ability to reason. In ad-
dition to demonstrating that our argumentative LLMs
achieve competitive scores on various reasoning bench-
marks, we show how an improved ability to reason
necessarily leads to more explainable and contestable
decision-making (Liao and Vaughan, 2024).

Previous methods for improving the reasoning of
LLMs do not necessitate a direct relationship between
the reasoning steps and the final decision. Our argu-
mentative approach, on the other hand, provides this
as a feature of the system. This is because the sys-
tem prediction is directly derived from the generated
argumentation framework using a formally defined and
deterministic procedure, thus providing faithful explain-
ability. Further, argumentative LLMs also provide a
guarantee of contestability, in that if a human intervenes
in the reasoning process (such as by adding or removing
an argument, or changing the strength of an argument),
this will have a measurable effect on the output of the
decision-making system. Comparable techniques lack
the necessary processing stage between the LLM’s out-
put and the final decision to accommodate this flexibil-
ity.

Rather than prompting an LLM to produce ‘thoughts’,
as in Wei et al. (2022) or Yao et al. (2023), that either
enrich the context of the LLM, or provide disparate
reasoning steps to compare, our approach can be seen as
providing ‘thoughts’ for and against particular outputs,
in the spirit of Miller (2023). This makes it a natural
fit for highly complex decision-making tasks, wherein
an option, or set of options, must be chosen from a
number of possible alternatives. In almost all real-world
settings, a particular decision will have both pros and
cons, which is a feature that argumentative LLMs both
formalise and leverage.

In this paper, we focus on the kind of reasoning under-
pinning claim verification. This setting lends itself well
to our framework, as claims are often under-determined,
so they do not necessarily have straightforward truth
values. By intrinsically considering both arguments in
favour of and in conflict with the truthfulness of claims,
argumentative LLMs are able to ascertain the best an-
swer given the available evidence. For simplicity, and
without loss of generality', we focus on a binary setting,

IThe framework is easily extended to the case where there
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Figure 1: Comparison of our approach (Argumentative LLM) with existing alternatives. The example claim is
adapted from Truthful QA (TruthfulClaim) and the abridged outputs are generated by Mixtral.

rather than general question-answer problems as in Wei
et al. (2022) and Yao et al. (2023). In order to handle
open-ended settings, it is first necessary to generate can-
didate answers — determining the optimal number of
answers can be thought of as a hyperparameter.

In summary, we make the following contributions:

* We define argumentative LLMs, a novel method
for supplementing LLMs with formal reasoning
for decision-making;

* We perform an extensive evaluation of our method
by comparing four variants thereof with three base-
lines, on three claim verification datasets, adapted
from existing datasets;

* We demonstrate the explainability and contestabil-
ity benefits of argumentative LLMs.

2 Related Work

A significant amount of research has been focused on
improving the reasoning abilities of LLMs. This can be
coarsely divided into approaches which exclusively fo-
cus on prompt optimisation (Wei et al., 2022; Yang et al.,
2023), and those which endow LLMs with the ability
to utilise external tools or information, or extra struc-
tural constraints (Schick et al., 2023; Yao et al., 2023;

are more than two options to decide between.

Lewis et al., 2020). Our system is more closely aligned
to the latter, as it results in symbolic, deterministically
evaluable graphs as its output.

Du et al. (2023) also use arguments to improve the
reasoning ability of LLMs. However, they focus on a
multi-agent setting and do not formalise the arguments
produced by LLMs, or their corresponding strengths.
Also at the intersection of LLMs and argumentation is
work looking at the efficacy of LLMs at completing
arguments (Thorburn and Kruger, 2022), and the per-
suasiveness of LLM generated arguments (Hinton and
Wagemans, 2023; Durmus et al., 2024).

Chain-of-thought approaches (Wei et al., 2022; Zhang
and Parkes, 2023) attempt to induce enhanced reason-
ing through a specific form of prompting. The prompt
specifies (either using few-shot examples, or using a
verbal description) that the problem should be broken
down into discrete steps, before the final decision is
outputted. However, all the reasoning takes place within
the autoregressively generated output of the model. Due
to the nature of the next token prediction mechanism
underlying these models, this does not guarantee that
the steps in the reasoning, or the final output actually
follow from each other (Xia et al., 2024). This under-
mines the premise that the reasoning is faithful to the
process taking place in the model or that it is directly
related to the final output. Our method avoids this pitfall
by building an argumentation graph which guarantees a
resolution based on the constituent entities.
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Figure 2: Pipeline for Argumentative LLMs (in comparison with baselines).

Other related approaches are tree-of-thought (Yao
et al., 2023) and graph-of-thoughts (Besta et al., 2024).
Similarly to our methodology, these approaches result
in graph-like structures, composed of the LLM’s output,
which can then be reasoned over post-hoc. In contrast
to our method, the nodes of these graphs consist of de-
composed components of the overall problem. Instead,
our method permits a comprehensive and fully explain-
able reasoning process to take place concerning a single
claim, which may be controversial or highly complex, in
addition to composite problems like the existing meth-
ods. For example, a claim such as ‘it is a good idea to
drink milk when you have a cough’, does not naturally
lend itself to decomposition, but would benefit from
argumentative reasoning, i.e., evaluating arguments for
(e.g., ‘itis a traditional remedy’) and against (e.g., ‘there
have been no scientific studies confirming this’).

3 Preliminaries

Claim Verification The considered task of claim veri-
fication can be divided into two primary types: uncondi-
tioned and conditioned. For unconditioned verification,
a claim c is evaluated independently, without any con-
textual information. The outcome of this evaluation is
binary, represented as v(c) € {0, 1}, where v(c) = 1 de-
notes the claim is true, and v(c) = 0 indicates the claim
is false. Meanwhile, conditioned verification considers
a claim c given additional information or context  (with
the context assumed to be truthful). The veracity of this
tuple is also assessed in a binary manner, expressed as
v(c | i) € {0,1}. Here, similarly, v(c | ¢) = 1 signi-
fies that the claim ¢, given the context i, is true, while
v(c | %) = 0 means it is false.

Computational Argumentation We will now cover
the relevant notions from this Al discipline (see Atkin-
son et al. (2017); Baroni et al. (2018a) for overviews), on
which our methodology leverages. A quantitative bipo-
lar argumentation framework (QBAF) (Baroni et al.,

2019) is a quadruple (X, A,S,T) comprising a set
of arguments X, binary, directed relations of attack
A C X x X and support S C X x X, where ANS = (),
and a total function 7 : X — [0, 1], where for any
x € X, 7(z) is the base score of z.> For any argument
x € X, weuse A(z) = {y € X|(y,z) € A} to refer
to the attackers of x and S(z) = {y € X|(y,z) € S}
to refer to the supporters of x. Arguments in QBAFs
may be evaluated by a gradual semantics (Baroni et al.,
2019), i.e. a total function o : X — [0, 1] which, for
any x € X, assigns a strength o(x) to z.3

One such gradual semantics, the discontinuity-free
quantitative argumentation debate (DF-QuAD) algo-
rithm (Rago et al., 2016), is such that, for a given
QBAF (X, A,S,7), for any z € X withn > 0 at-

tackers with strengths vy, ...,v,, m > 0 supporters
with strengths v{,...,v,, and 7(z) = vy, o(z) =
C(vg, F(v1,...,vp), F(vi,...,v},)), where C is de-
fined as follows. For v, = F(vy,...,v,) and vs =

Fi,...,v,): if v, = vs then C(vg, vq,vs) = vo;
else if v, > v, then C(vg, va, vs) = vo— (Vo - |Vs — V4 |);
otherwise C(vg, Vg, vs) = vo + ((1 — vg) + |vs — vg]).
Given n arguments with strengths vy, ...,v,, if n = 0
then F(vy,...,v,) = 0, otherwise F(v1,...,v,) =
=TT, (11 = v).

In addition to DF-QuAD, we will also use the
quadratic energy model (QEM) semantics (Potyka,
2018), which is defined as follows. For a given
QBAF (X, A, S,7), the energy at © € X is defined

as By = 32 50 0(Y) — 2 .ca() o(2). Then, for

all v € R, we let h(v) = %. Finally,

the strength of an argument € X is defined as
o(z) =7(@) + (1 - 7(x))  h(Ey) — 7(x) - h(—E;).*

“Note that the codomain of the base score is defined more
generally by (Baroni et al., 2019) but we restrict to its most
common form.

3As with the base score, we use the most commonly occur-
ring codomain of gradual semantics.

*We describe a simplification of the original algorithm for



4 Argumentative LLMs

In this section, we introduce our framework for induc-
ing argumentative reasoning in LLMs. As indicated in
the pipeline shown in Figure 2, there are three integral
components of our framework: argument generation,
argument strength attribution and argument semantics.

4.1 Argument Generation

Previous work has demonstrated that LLMs are able to
effectively generate counter-arguments given a preexist-
ing argument (Chen et al., 2023; Furman et al., 2023).
Leveraging this capability, we use LLMs to perform an
extension of this task, where they produce arguments
supporting and attacking a ‘root argument’. In our cause
the root argument is a (domain-agnostic) claim. We de-
rive these claims from existing QA datasets (for an ex-
ample, see Figure 1). The LLMs are fed a prompt, with
the claim included, on at least two separate occasions:
once prompted to generate an argument supporting the
root argument, and once an argument attacking it. We
refer to these as the base support and attack arguments.

Our first setting, which we refer to as having a depth
of 1, contains only the base support and base attack
arguments. When we include an additional layer of ar-
guments (giving a depth of 2), we generate a further
four arguments. These are a supporting and an attacking
argument for each of the base support and base attack ar-
gument. The prompt used for generating these includes
the base support or base attack argument respectively.’

4.2 Intrinsic Argument Strength Attribution

There have been a number of previous attempts to assess
the quality, or intrinsic strength, of arguments. Note that
this intrinsic strength (also called a base score) gives
an argument’s quality per se, i.e. before the rest of
the argumentation framework is considered. These at-
tempts have either used pairwise comparison between
arguments (Habernal and Gurevych, 2016; Simpson
and Gurevych, 2018), or human-annotated arguments
(Lauscher et al., 2020) to produce argument quality
scores. However, producing such data is highly resource
intensive. Instead we rely on the knowledge embedded
into the LLMs, using them to attribute strengths to the
arguments, zero-shot and without any task-specific fine-
tuning. There have been some analogous uses of LLMs,
such as for forecasting (Halawi et al., 2024), where the
models are used to assign numerical confidences to their
outputs (within the same context window).
Incidentally, our present study can be seen as assess-
ing if this is an ‘emergent’ capability of current LLMs
(it is unlikely that either the pretraining or the super-
vised training stages contained many instances of this
fairly niche task). Assigning a strength to an argument
is quite subjective, and so a direct comparison between
human and machine ratings may not be an ideal analysis

the case of trees, rather than (potentially cyclic) graphs.
SNote that, while our preliminary experiments are with

these two depths, argumentation frameworks of any (computa-

tionally feasible) depth could be achieved with our method.

(as it is highly likely that there would be a large varia-
tion between human scores for an individual argument).
Therefore, using the scores for an objective-driven, em-
pirical task, and ascertaining their suitability post-hoc,
is perhaps a more effective method of assessing this
capacity in LLMs.

In our case, the argument strengths are elicited by
recursively prompting the LLMs with the arguments
they have previously generated (in a separate context
window). In order to capture the relative strength of the
argument (relative to what it is attacking or supporting),
we also include the root claim, or the base support or
attack argument, in the context window.

4.3 Argument Strength Calculation

Once argumentation frameworks have been constructed,
the arguments can be evaluated by means of an argu-
ment semantics. The choice of any argument seman-
tics is dictated by the requirements of the application
setting in which the argumentation frameworks are be-
ing deployed. We use gradual semantics (Baroni et al.,
2018b) that evaluate arguments quantitatively rather
than extension-based semantics (Dung, 1995) that select
sets of jointy-acceptable arguments, since only gradual
semantics are applicable to arguments with continuous
intrinsic strengths used in our framework. We chose the
DF-QuAD semantics (as defined in Section 3) due to
the dialectical properties it satisfies (see (Baroni et al.,
2019)), e.g. monotonicity, requiring that any attacker
(supporter) can only decrease (increase, respectively)
the strength of the argument it attacks (supports, respec-
tively). We also experimented with the QEM semantics
(defined in Section 3), given that it is shown to satisfy
suitable properties. However, when tested on the valida-
tion data, there was a negligible difference between the
performance of the two semantics.

4.4 Prompt Selection

We take a principled approach for prompt selection, as
it has been shown that the result of slight variations in
prompting on downstream task performance can be sig-
nificant (Santu and Feng, 2023). To reduce the impact of
prompt choice on our final evaluation, we independently
devise three different prompts for both our framework
and the baselines (see Appendix C for details).

We evaluate all prompts, and combinations thereof,
on two validation sets of 200 samples each, taken from
Truthful QA (Lin et al., 2021) and StrategyQA (Geva
et al., 2021). In this evaluation, we separately consid-
ered the prompts for the baselines (direct inference, es-
timated confidence and chain-of-thought) as well as the
components of the argumentative approach (argument
generation and argument strength attribution).

We find a large variation in performance for a partic-
ular prompt with any given dataset and model combina-
tion, both for the argumentative approach and the base-
lines. We choose the highest average scoring prompt
over all tested models and datasets (as shown in Tables
2 and 3 in Appendix E).



5 Experimental Set-up

In this section we describe the baselines we compare
against, the datasets used, the LLMs we experiment
with, and the variations of our method.®

5.1 Baselines

We compare our method with three baselines.

Baseline 1: Direct questioning (Direct Question in
short) We directly ask the LLMs if the given claim is
true or false by prompting. The prompt used for this
baseline is given in Appendix A.1. We constrained the
output of the open-source models to true/false.

Baseline 2: Estimated confidence (Est. Confidence
in short) We ask the LLMs for a confidence score
on the given claim. The confidence score ranges from
0-100. The prompt used for this baseline is given in Ap-
pendix A.2. We constrain the output to values ranging
from 0-100 for the open-source models in this base-
line. Then to get a final decision (i.e. true/false) for
the claim we check whether the outputted confidence is
greater than 50. If it is greater than 50 then the claim is
considered true, otherwise the claim is deemed false.

Baseline 3: Questioning with chain-of-thought
(Chain-of-Thought in short) As our third baseline,
we use (two-stage) chain-of-thought prompting (Wei
et al., 2022). This prompt-based technique breaks down
the problem into discrete steps before the final decision
is outputted. Then, we pass the reasoning step back to
the LLM, in a separate context window, to get the final
decision. Both prompts are given in Appendix A.3.

5.2 Datasets

We focused on three datasets, which are adaptations
of three existing Q/A datasets, turning Q/A pairs into
claims with true/false labels. We did not use the datasets
directly as the LLMs we experiment with did not per-
form adequately when generating arguments about the
validity of the answers, rather than the questions.

Therefore, we have generated claims for the Q/A
pairs. Firstly, we used LLMs for each dataset to auto-
matically generate claims by prompting the LLM with
the Q/A pair. Then, we manually checked all the claims
with the Q/A pairs that we used, to see if the claim was
faithful both to the question and to the answer. More
details are given for each dataset below.

TruthfulClaim (adapted from TruthfulQA) Truth-
fulQA (Lin et al., 2021) is a dataset curated specifically
to evaluate if LLMs are able to generate truthful answers
without being deceived by common misconceptions and
falsehoods. The original dataset contains questions with
a list of correct answers and a list of incorrect answers
for each question. We transformed each answer, from
the list of correct/incorrect answers with their corre-
sponding question, to a claim generated by the process

SAll our experiments are executed with two RTX 4090
24GB GPUs on an Intel(R) Xeon(R) w5-2455X.

described above. We labelled the generated claims as
True if the answer was from the correct answers list and
False if the answer was from the incorrect answers list.

StrategyClaim (adapted from StrategyQA) Strate-
gyQA (Geva et al., 2021) is a dataset designed to evalu-
ate whether LLMs can strategically reason. The original
dataset is made up of binary questions and their labels
as true/false. However, in this paper, we are focusing on
claim verification and so we generated claims that are
the affirmative answer to the question, once again using
LLMs. The claims generated by the LLMs sometimes
generated claims that were the negation of the question,
so we manually modified those claims.

MedClaim (adapted from MedQA) MedQA (Jin
et al., 2020) is a multi-choice Q/A dataset for solv-
ing medical problems which is collected from the
professional medical board exams. The MedQA
dataset is slightly different from the previous two
datasets as the questions are based on some contextual
information. Therefore, the task we consider for the
MedQA dataset becomes conditioned claim verification.
The original dataset contains (composite) questions
formed of contextual information and the final question
to be answered. Each question is associated with
five possible answers where only a single answer
is correct. To generate the claims for this dataset,
we only used the final question along with each of
the possible answers, disregarding the contextual
information. The claims generated in this way did not
always capture the answer sufficiently well, so we
manually checked and edited them where necessary.
Finally, to include the contextual information during the
experiments, we used the template given in Appendix D.

We randomly selected 700 claims from the Truthful-
Claim and the StrategyClaim datasets (200 for the
initial prompt experiments, and 500 for the main
experiments), and 500 claims from the MedClaim
dataset for the main experiments. All the datasets we
use for our main experiments are balanced (i.e. 250 true
and 250 false labels). The reason for selecting a subset
of the datasets is due to the resource cost associated
with experimenting with LLMs on bigger datasets.

5.3 LLMs

To run our experiment we use four models: Mistral
(Mistral-7B-Instruct-v0.2) (Jiang et al., 2023), Mix-
tral (Mixtral-8x7B-Instruct-v0.1) (Jiang et al., 2024),
Gemma (gemma-7b) (Team et al., 2024), and GPT-3.5-
turbo (GPT-3.5-turbo-0125) (Brown et al., 2020). We
chose Mistral, Mixtral, and Gemma as they were the
best-performing open-source’ models of reasonable size.
In order to reduce the computational costs of running
the open-source models, we quantise them to 4 bits
(Dettmers et al., 2023) when running our experiments

"We use a broad notion of the term “open-source”, not
necessarily implying the use of OSI-approved licenses, etc.



(both for the baselines and our method). As a repre-
sentative of models with proprietary weights, we chose
GPT-3.5-turbo as it had the best performance/cost trade-
off. We did not use Llama-2 (Touvron et al., 2023), as
its smaller variants are typically ranked worse compared
to the selected models and since the Llama-2 70B model
(which is the biggest Llama-2 model) did not perform
well on the validation dataset. For all the models the
used parameters were temperature 0.7, max new tokens
for arguments 128, max new tokens for baselines 768,
top-p 0.95 and repetition penalty 1.0.

5.4 Our Method

In our experiments, we use four different variations
of our argumentative method explained in Section 4.
For all the variations, we use the same prompts for
argument generation and argument strength attribution.
The prompt for argument generation is given in Figure 3
and the one for argument strength attribution in Figure 4.

Please provide a single short argument {"supporting”/"attacking"} the following
claim. Construct the argument so it refers to the truthfulness of the claim. Only
provide an argument if you think there is a valid and convincing
{"support”/"attack"} for this claim (there is a non-zero probability that the
claim is true), otherwise return: N/A.

Claim: {claim}

Now take a deep breath and come up with an argument.

Argument:

Figure 3: Prompt used for argument generation. {"sup-
porting"/"attacking"} and {"support"/"attack"} are con-
ditional to the required argument type (i.e. if a support
argument is required, the conditionals would be "sup-
porting" and "support", respectively). In our prompt,
{claim} is replaced with the claim we want to verify.

Variation 1: 0.5 Base Argument (Depth=1) In this
variation, we generate two arguments for the claim: a
supporter and an attacker. The resulting argumenta-
tion framework is a tree of depth 1, composed of three
arguments. We only execute the argument strength at-
tribution component for the generated arguments. The
claim is assigned a neutral base score of 0.5 to make the
decision unbiased.

Variation 2: 0.5 Base Argument (Depth=2) In this
variation, we generate two arguments for the claim and
then generate a supporting and an attacking argument
for both the supporter of the claim and the attacker of
the claim. This gives us a tree of depth 2, made up of
seven arguments in total. Again, we only execute the ar-
gument strength attribution for the generated arguments,
assigning a 0.5 base score to the claim.

Variation 3: Estimated Base Argument (Depth=1)
The argumentation framework structure in this variation
is the same as in Variation 1 — a tree of depth 1 with
three arguments. The only difference is that the argu-
ment strength attribution is also applied to the claim
(rather than using the fixed base score of 0.5). Since the
original prompt for the argument strength does not work

4 )

You are an analyst evaluating the validity and relevance of arguments. For the
argument:

Argument: "{argument}”

please give your confidence that the argument presents a compelling case {'in
favour of’/'against'} the statement:

Statement: "{parent argument}

Your assessment should be based on how well the argument
{'supports’/'refutes'} the considered statement as well as the correctness,
accuracy and truthfulness of the given argument. Your response should be
between 0% and 100% with 0% indicating that the considered argument is
definitely invalid, 100% indicating that the considered argument is definitely
valid and values in between indicating various levels of uncertainty. Your
estimates should be well-calibrated, so feel free to err on the side of caution
and output moderate probabilities if you are not completely sure in your
assessment. Please respond in the following form:

Likelihood: The predicted likelihood that the considered argument is valid
Likelihood:

Figure 4: Prompt used for argument strength attribution.
{"in favour of"/"against"} and {"supports"/"refutes"} are
conditional to what type of argument is given (i.e. if
an attack argument is given the conditionals would be
"against" and "refutes", respectively). In our prompt,
{argument} is replaced with the argument that needs to
be evaluated and {parent argument} is replaced with the
parent argument of that argument.

for the claim (as it requires a parent argument), we use
its adapted version, which is shown in Figure 9).

Variation 4: Estimated Base Argument (Depth=2)
The tree structure in this variation is the same as in Vari-
ation 2 — a tree of depth 2 with seven arguments. The
only difference is that the argument strength attribution
is executed additionally for the claim (again, rather than
using the fixed base score of 0.5).

6 Results

We compared the performance of various methods
on adapted versions of several commonly considered
datasets (TruthfulClaim, StrategyClaim, and MedClaim)
using several LLMs (Mistral, Mixtral, Gemma 7B, and
GPT-3.5-turbo).

On the TruthfulClaim dataset, the estimated base
score methods exhibited higher accuracy compared to
other methods. Specifically, Est. Base Arg (D=1) had
the highest accuracy of 0.758 and 0.81 on Mistral and
Mixtral, respectively, and Est. Base Arg (D=2) reached
the highest accuracy of 0.748 on GPT-3.5-turbo. How-
ever, on Gemma 7B, chain-of-thought had the highest
accuracy of 0.68. For the StrategyClaim dataset, Esz.
Base Arg (D=2) achieved the highest accuracy of 0.692
on Mixtral, while chain-of-thought had the highest ac-
curacy of 0.684 and 0.58 on Mistral and Gemma 7B,
respectively. Direct Question performed the best for
GPT-3.5-turbo, with an accuracy of 0.734. Regarding
the MedClaim dataset, chain-of-thought recorded the
highest accuracy of 0.612 and 0.546 on Mistral and
Gemma 7B, respectively. Meanwhile, Direct Question
had the highest accuracy of 0.67 on GPT-3.5-turbo while



Table 1: Accuracy of three baselines and four variations of our argumentative method on claim verification tasks.
The best performing method for each model-dataset combination is indicated in bold.

Direct Est. Chain-of- 0.5 Base 0.5 Base Est. Base Est. Base
Question Confidence  Thought | Arg (D=1) Arg(D=2) ArgD=1) Arg(D=2)
Mistral 0.726 0.732 0.748 0.646 0.644 0.758 0.752
Truthful Mixtral 0.772 0.77 0.756 0.718 0.718 0.81 0.806
Claim Gemma 7B 0.648 0.624 0.68 0.642 0.64 0.626 0.626
GPT-3.5-turbo 0.698 0.728 0.744 0.604 0.606 0.728 0.748
Mistral 0.604 0.614 0.684 0.578 0.576 0.622 0.63
Strategy Mixtral 0.68 0.67 0.64 0.62 0.618 0.684 0.692
Claim Gemma 7B 0.55 0.556 0.58 0.556 0.556 0.568 0.568
GPT-3.5-turbo 0.734 0.696 0.716 0.558 0.558 0.696 0.708
Mistral 0.552 0.568 0.612 0.496 0.494 0.532 0.55
Med Mixtral 0.598 0.62 0.614 0.592 0.592 0.608 0.616
Claim Gemma 7B 0.524 0.532 0.546 0.512 0.512 0.518 0.518
GPT-3.5-turbo 0.67 0.572 0.666 0.564 0.56 0.574 0.566
GPT-4 0.66 0.60 0.66 0.52 0.54 0.64 0.68

Est. Base had the highest accuracy of 0.62 on Mixtral.

Besides this, we carried out an extra experiment with
GPT-4 (GPT-4-0613) to test our hypothesis that both
argument generation and strength attribution were in-
effective for smaller models, on the conditioned claim
verification task (rather than standard claim verifica-
tion). Since MedClaim was unique in this sense we only
carried out the extra experiment for this dataset, and
we used only 50 samples due to financial constraints.
The results indicated that Est. Base Arg (D=2) had the
best accuracy of 0.68, followed by Direct Question and
chain-of-thought, both of which achieved an accuracy
of 0.66. The improved performance of GPT-4 relative
to the other models tested supports this hypothesis.

In general, the accuracy of all methods varied on
different dataset across different LLMs. However, the
argumentative estimated base score methods and chain-
of-thought performed better overall compared to others.
Specifically, chain-of-thought performed better on Mis-
tral and Gemma 7B, while Est. Confidence and Est.
Base Arg (D=1) had advantages on Mixtral, and Direct
Question performed relatively better on GPT-3.5-turbo.
Furthermore, the estimated base score methods had bet-
ter accuracy overall than fixed (0.5) base score methods.

In addition to accuracy, we evaluated our argumenta-
tive methods on Brier score and AUC, compared against
Est. Confidence as the baseline. We present the results
in the Appendix (Tables 16 and 17). Overall, our ar-
gumentative methods outperformed Esz. Confidence
for all datasets and all LLMs. However, there were a
few exceptions that Est. Confidence performed better
than the argumentative methods on the TruthfulClaim
and MedClaim datasets with Gemma 7B in terms of
Brier score, and the StrategyClaim dataset with GPT-
3.5-turbo for AUC, where argumentative methods were
slightly worse than the baseline.

7 Discussion

Argumentative LLMs offer numerous benefits when
compared to existing comparable techniques. As we
have demonstrated with the instantiation presented in

this paper, our methodology does not require any exter-
nal resources or fine-tuning, to perform comparably (in
terms of accuracy) at claim verification tasks with the
current state-of-the-art prompting methods. Addition-
ally, we believe that the performance of our approach
could benefit from fine-tuning for the argument genera-
tion and argument strength attribution sub-components.
Likewise, we expect that permitting information re-
trieval, both for generating the arguments and strengths,
would result in further improvements.

e |

@ Support

Attack-LJ-

While it might seem unlikely that birds
would have any significance to the sport of
badminton, there is still a connection to be
made. One important aspect of badminton
is the shuttlecock, the cone-shaped
projectile used to hit the net. Interestingly,
the shape of the shuttlecock was inspired
by the feathered design of bird's wings,
specifically that of a bird called the
Chinese goose. The structure of the
feathers on the shuttlecock is meant to
mimic the aerodynamics of a bird's wing in

While birds are fascinating creatures and
can sometimes be found near badminton
courts, the claim that birds are important to
badminton is tenuous at best. The sport of
badminton, which involves hitting a
shuttlecock over a net, does not require
the presence of birds. In fact, the
shuttlecock used in badminton is not bird-
related at all; it is called a "shuttlecock"
because the shuttle-shaped projectile is
historically made with feathers, but these
are goose or duck feathers, not those of

flight, allowing the shuttlecock to travel birds typically associated with badminton

smoothly and swiftly. such as sparrows. J

h A

Figure 5: An illustration of a user contesting the strength
of an argument attacking a claim taken from Strategy-
Claim (both arguments are generated by Mixtral). Be-
fore the contestation, the claim was (incorrectly) classi-
fied as false, as the attacking argument was assigned a
strength of 0.9, whereas the supporting argument had a
strength of 0.7. However, a human user is able to modify
this score (e.g. from 0.9 to 0.5), citing the fallacious rea-
soning present in the attacking argument (highlighted in
red). This ultimately results in the correct classification.

However, perhaps the most important features of our
proposed methodology cannot be adequately captured
by quantitative performance metrics on benchmarks.
One of these features is that the outputs generated are
reasons, from which decisions can be derived, rather
than decisions directly. While chain-of-thought tech-



niques do something akin to this, the reasons are output
monolithically, and cannot guarantee that they faithfully
imply the final decision. Whereas the final decision
output by our system is necessarily a function of the
constituent reasons, due to the system architecture.

Furthermore, the composite nature of the reasoning
results in highly explainable and contestable outputs.
The explanation for why a decision has been made is
transparent, and can be directly attributed to the gen-
erated arguments and their associated strengths. This
explainability offers users of the system plentiful op-
portunity to disagree with the reasoning, either in terms
of the arguments generated being relevant or true, or
the strengths that have been attributed to them being
representative of the extent to which they support or
attack their parent argument (including the root claim).
For an illustration of the latter scenario, see Figure 5.

The advantages offered by these features are not nec-
essarily demonstrated well by the relatively simple ex-
amples found in commonly used benchmarks, such as
the ones that we use for this study. The settings where
they are most relevant, and important, are in highly com-
plex, uncertain and high-stakes scenarios. These may
include business, medical or legal decision-making.

Ideally, the system would be used in conjunction with
a domain-expert, who could review the outputted ar-
guments and strengths, and leverage their experience
and contextual knowledge to modify them accordingly.
Additionally, they can add arguments of their own. This
also lends itself to collaborative use, wherein a commu-
nity of people can vote on the quality of the arguments,
and add their own perspectives by including additional
arguments (see Appendix G for examples).

Previous work by Yin et al. (2023) facilitates the re-
alisation of integrating our methodology into such a
human-computer hybrid system. For very large and
complex argument graphs, one is able to automatically
surface the arguments which have the greatest impact on
the final score. This would allow human users to manu-
ally check only the most significant arguments, and their
respective scores. This makes the system amenable to
human oversight, even in cases where there are poten-
tially hundreds or thousands of relevant arguments.

Another factor which lends itself to the system’s use
in high-stakes scenarios is that uncertainty is inherently
calculated. This is a product of the argument semantics,
which uses the constituent argument strengths to output
a final score for the root argument. This score can be
easily interpreted as uncertainty about the final decision.
This is very useful in situations where a particular de-
cision can have a highly detrimental outcome, such as
in a medical setting. As shown by the Brier score and
AUC results in Tables 16 and 17, generating additional
arguments improves the quality of probability estimates,
compared to models directly reporting their confidence
(Est. Confidence).

Lastly, the results of the prompt experiments (shown
in Appendix E), emphasise the highly conditional per-
formance of LLMs on the combination of the prompt

and dataset being used. Moreover, this relationship is
inconsistent between different models. This suggests
that a model performing very well at a task in a partic-
ular setting does not guarantee that this performance
will transfer to a different setting. Our proposed system
combats this issue for the reasons noted above, namely
that the outputs are entirely explainable and contestable.
This provides human users with sufficient agency to
guard against and remedy any unexpected dips in per-
formance due to a change in the input data distribution.

8 Conclusions & Future Work

In this paper we introduce a methodology for harness-
ing the general reasoning capacity of LLMs - without
requiring any fine-tuning or external resources - making
them explainable, contestable and improving their rea-
soning in some circumstances. Furthermore, our system
innately permits human-computer collaboration, and
provides accurate uncertainty estimates as an output.

The instantiation of the system in this paper is very
basic. This is suitable for the simple claims that make
up the existing benchmarks we use. We leave to future
work the use of more general argumentative explana-
tions in the spirit of Kotonya and Toni (2024).

Similarly, we conduct all experiments without any
task-specific training and by using the most basic
method of argument strength attribution. The reason for
this decision was twofold - in order to assess the ability
of ‘out-the-box’ LLMs to perform argumentative reason-
ing, and to demonstrate the viability of our methodology
in its simplest form. While we have demonstrated that
this is a reasonably effective approach, we envision that
both fine-tuning, and employing more tailored methods
will result in improved results.

There are numerous methodologies for argument
strength attribution which warrant further analysis.
These include techniques which adapt our chosen
method of directly prompting an LLM by, for exam-
ple, sampling multiple outputs of the same LLM or
taking the weighted value of the relevant logits in the
final layer of the model.

Furthermore, an adapted version of the ‘semantic un-
certainty’ (Kuhn et al., 2023) methodology may be de-
vised, wherein one directly clusters semantically similar
sampled arguments, rather than having to prompt mod-
els for numerical scores. We also experimented with
verbal confidence scores to assign argument strengths.
While we did not observe promising results, this ap-
proach may respond well to supervised finetuning.

Another promising direction for future work is the
ensembling of many different LLMs, both for argument
generation and strength attribution. This is a way to
harness the heterogeneous knowledge encoded in dis-
parate models. In this vein, using information retrieval
or retrieval augmented generation (Lewis et al., 2020),
is a way to increase the breadth and reliability of the
arguments generated.



9 Limitations

Any study that is attempting to make general claims
about LLMs should strive to use as many, and as diverse
a range of them as possible. We have tried to do so, but
due to the overwhelming number of both open-sourced
and closed-sourced models available, we have only been
able to test a fraction of the total available. However,
by using the models that rank highest across various
benchmarks, we have attempted to demonstrate that this
methodology can be effectively employed with the state
of the art.

10 Ethics Statement

There are potential risks of LLMs such as social bias
and generation of misinformation. In this work, we
intentionally devise our methodology to be used with
human oversight. This means users have recourse in
the case that any biased output is produced by an LLM
being utilised as a part of our system. However, in cases
where the argumentation framework that is produced is
too large for humans to review every argument, there is
some risk that biased reasoning could impact the final
decision.

Making the reasons for a LLM-driven decision ex-
plicit increases explainability, and thus safety. However,
the ability to contest decision may be co-opted by bad
actors, who intentionally subvert the reasoning process.
This is why the our proposed methodology is intended
to be used with trusted human oversight.
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Appendix
A Baseline Prompts
We show the prompts used for the baselines.

A.1 Direct questioning

The direct questioning prompt is shown in Figure 6.

( N\

You are an analyst evaluating whether statements are true or false. For the
statement:

Statement: "{claim}"
please determine whether the statement is correct, accurate and truthful. Please
give the result in the form 'Result: True' if the statement is true and 'Result:

False' if the statement is false.

Result:
. J

Figure 6: Prompt used for direct questioning baseline.

In our prompt, {claim} is replaced with the claim we
want to verify.
A.2 Direct questioning on confidence

The direct questioning on confidence prompt is shown
in Figure 7.

-
You are an analyst evaluating the validity of statements. For the statement:
Statement: "{claim}"

please give your confidence that the statement is correct, accurate and truthful.
Your response should be between 0% and 100% with 0% indicating that the
considered statement is definitely invalid, 100% indicating that the considered
statement is definitely valid and values in between indicating various levels of
uncertainty. Your estimates should be well-calibrated, so feel free to err on the
side of caution and output moderate probabilities if you are not completely sure
in your assessment. Please respond in the following form:

Likelihood: The predicted likelihood that the considered statement is valid

Likelihood:
.

J

Figure 7: Prompt used for direct questioning on confi-
dence baseline.

In our prompt, {claim} is replaced with the claim we
want to verify.

A.3 Questioning with Chain-of-thought

For chain-of-thought the first prompt used to obtain the
discrete steps and the prompt to get the final decision
are given in Figure 8.

You are an analyst evaluating the validity of statements. For the statement:
Statement: "{claim}"

please determine whether the statement is correct, accurate and truthful. Please
think step by step before providing the final answer.

Let's think step by step.

{Reasoning/Output from previous step}

Therefore, the final answer (true or false) is:
\

Figure 8: Prompts used for chain-of-thought baseline.
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The prompt above the line is to obtain the reasoning
steps and {claim} is replaced with the claim we want
to verify. The prompt below the line is to get the final
decision and {Reasoning/Output from previous step} is
replaced with the reasoning obtained from the prompt
above the line.

B Prompt for Argument Strength
Attribution for Claim

The prompt for argument strength attribution does not
work for the claim as it requires a parent argument to
be present. So, we altered the prompt for only claim
argument strength attribution (the prompt could be seen
in Figure 9).

You are an analyst evaluating the validity of statements. For the statement:
Statement: "{claim}”

please give your confidence that the statement is correct, accurate and

truthful. Your response should be between 0% and 100% with 0% indicating that
the considered statement is definitely invalid, 100% indicating that the
considered statement is definitely valid and values in between indicating various
levels of uncertainty. Your estimates should be well-calibrated, so feel free to err
on the side of caution and output moderate probabilities if you are not
completely sure in your assessment. Please respond in the following form:

Likelihood: The predicted likelihood that the considered argument is valid
\Likelihood:

Figure 9: Prompt used for argument strength attribution
for the claim. In our prompt, {claim} is replaced with
the claim we want to verify.

C Considered Prompts

C.1 ChatGPT prompts

ChatGPT prompts were generated mostly using Chat-
GPT. First, the prompt is initialised by giving ChatGPT
the instructions, then the prompt is optimised by giving
ChatGPT some outputs and asking it to improve the
prompts. The ChatGPT Argument Generator prompt
can be found in Figure 10 and the ChatGPT Argument
Strength Attribution prompt can be found in Figure 11.

~

Claim: {claim}

Instructions:
Provide a concise argument {"supporting”/"opposing"} the claim in
than 2 sentences.
Utilize critical thinking and logical reasoning in your argument.
Ensure clarity in your reasoning.
Avoid circular reasoning or fallacious arguments.

If you cannot return a valid and convincing argument for this claim,

N/A.
J

Figure 10: ChatGPT Argument Generator prompt

less

reply

&‘Supporﬁng”/”Opposing”) Argument for “{claim}":




-

Task Description:

Generate a certainty score for a given argument. The certainty score
should reflect the level of confidence in the validity or strength of the
argument.

~

Instructions:

1. Consider the argument provided and evaluate its clarity, logical
coherence, and the amount of evidence presented.

2. Assign a numerical certainty score on a scale from 0 to 1, where 0
indicates maximum uncertainty, 1 indicates maximum certainty, and values in
between represent varying degrees of certainty.

3. Explain the reasoning behind the certainty score, taking into account
factors such as ambiguity in language, lack of evidence, and logical fallacies.

Argument: {argument}

Additional Guidance:

Consider the context in which the argument is presented and any potential
biases or assumptions that may affect its credibility.

Evaluate the strength of the evidence provided and the coherence of the
argument's structure.

Take into account any potential counterarguments or alternative
interpretations that could impact the certainty of the argument.

Please respond in the following form:

Certainty Score: Your certainty score on the argument

\Certainty Score:

J

Figure 11: ChatGPT Argument Strength Attribution
prompt

C.2 Role-player prompts

Role-player prompts followed a prompting strategy
where the LLMs were expected to act like debater for the
Argument Generator component and analyst for the Ar-
gument Strength Attribution component. The Argument
Generator prompt, Debater, can be found in Figure 12
and the Argument Strength Attribution, Analyst, can be
found in Figure 13.

-

You are a professional debater who will try to provide arguments on a topic
even if they go against your personal believes. Please give a brief, one-
sentence argument {'in favour of’/'against'} the statement:

\

Statement: {claim}

Note that the provided argument should provide a clear justification why the

considered statement is {'true and accurate’/'untrue or inaccurate’}. The

argument should also be as self-contained as possible. Please reply only with

the argument sentence without any further commentary. If you are truly
\unable to provide such an argument, reply N/A.

J

Figure 12: Role-Player: Debater Argument Miner
prompt
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4 )

You are an analyst evaluating the validity and relevance of arguments. For the
argument:

Argument: "{argument}”

please give your confidence that the argument presents a compelling case {'in
favour of’/'against'} the statement:

Statement: "{parent argument}”

Your assessment should be based on how well the argument
{'supports’/'refutes'} the considered statement as well as the correctness,
accuracy and truthfulness of the given argument. Your response should be
between 0% and 100% with 0% indicating that the considered argument is
definitely invalid, 100% indicating that the considered argument is definitely
valid and values in between indicating various levels of uncertainty. Your
estimates should be well-calibrated, so feel free to err on the side of caution
and output moderate probabilities if you are not completely sure in your
assessment. Please respond in the following form:

Likelihood: The predicted likelihood that the considered argument is valid

Q(elihood:

Figure 13: Role-Player: Analyst Uncertainty Estimator
prompt

C.3 OPRO prompts

OPRO prompts follow the Optimization by PROmpting
(OPRO) strategy (Yang et al., 2023). The OPRO Argu-
ment Generator prompt can be found in Figure 14 and
the OPRO Argument Strength Attribution prompt can
be found in Figure 15.

Please provide a single short argument {"supporting”/"attacking"} the following
claim. Construct the argument so it refers to the truthfulness of the claim. Only
provide an argument if you think there is a valid and convincing
{"support”/"attack"} for this claim (there is a non-zero probability that the
claim is true), otherwise return: N/A.

Claim: {claim}

Now take a deep breath and come up with an argument.

Argument:

Figure 14: OPRO Argument Miner prompt

Please provide a quality score (as a single numerical value between 0 and 100)
based on factuality, relevance and effectiveness, for how well the following
argument {"supports”/"attacks"} the claim. If the argument suggests that the
claim is partially false or must be interpreted in a specific way to be considered
true, it should receive a low score.

Claim: {parent argument}

{"Supporting”/"Attacking"} argument: {argument}

Now take a deep breath and give a quality score.

Quality score:

Figure 15: OPRO Uncertainty Estimator prompt

D MedClaim Template

For the MedClaim dataset, to include the contextual
information during the experiments, we use the follow-
ing template for the claims, where {information} is the
contextual information and {claim} is the claim:

Consider the following background informa-
tion: {information} Given the background
information the following is correct: {claim}



E Prompt Experiment Results

In this section we give the results of the prompt exper-
iments conducted on the two validation datasets, both
consisting of 200 samples.

Table 2 shows the average results for the prompts
used for baselines.

Table 3 shows the average results for the prompts
used for variations of our method.

Table 4 shows the results for the prompts used for
baselines using Mixtral on the TruthfulClaim dataset.

Table 5 shows the results for the prompts used for
variations with depth=1 of our method using Mixtral on
the TruthfulClaim dataset.

Table 6 shows the results for the prompts used for
variations with depth=2 of our method using Mixtral on
the TruthfulClaim dataset.

Table 7 shows the results for the prompts used for
baselines using Mixtral on the StrategyClaim dataset.

Table 8 shows the results for the prompts used for
variations with depth=1 of our method using Mixtral on
the StrategyClaim dataset.

Table 9 shows the results for the prompts used for
variations with depth=2 of our method using Mixtral on
the StrategyClaim dataset.

Table 10 shows the results for the prompts used for
baselines using Mistral on the TruthfulClaim dataset.

Table 11 shows the results for the prompts used for
variations with depth=1 of our method using Mistral on
the TruthfulClaim dataset.

Table 12 shows the results for the prompts used for
variations with depth=2 of our method using Mistral on
the TruthfulClaim dataset.

Table 13 shows the results for the prompts used for
baselines using Mistral on the StrategyClaim dataset.

Table 14 shows the results for the prompts used for
variations with depth=1 of our method using Mistral on
the StrategyClaim dataset.

Table 15 shows the results for the prompts used for
variations with depth=2 of our method using Mistral on
the StrategyClaim dataset.

F Final Results

This section gives the final results of all experiments
run on the three held-out test datasets, consisting of 500
samples each.

Table 16 gives the main experiment Brier scores of
Direct Questioning on Confidence baseline and varia-
tions of our method on all three datasets and all four
models.

Table 17 gives the main experiment AUC scores of
Direct Questioning on Confidence baseline and varia-
tions of our method on all three datasets and all four
models.
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G Contestation Examples

In this section we show different ways of contesting
our model. Figure 16 and Figure 17 are illustrations of
different methods by which the output of our system
can be contested, and modified, by human users.

e |

@ New Support @ Support Attack@
While some shuttlecocks old While birds are fascinating creatures and A
are now made with A can sometimes be found near badminton
artificial feathers, many rgument courts, the claim that birds are important to

are still made with the
duck or geese feathers,
including those used by

badminton is tenuous at best. The sport of

@

badminton, which involves hitting a
shuttlecock over a net, does not require
the presence of birds. In fact, the
shuttlecock used in badminton is not bird-
related at all; it is called a "shuttlecock”
because the shuttle-shaped projectile is
historically made with feathers, but these
are goose or duck feathers, not those of
birds typically associated with badminton
such as sparrows.

T

Figure 16: An illustration of a user adding an additional
supporting argument. Please note that the ‘addition
sign’ is purely illustrative, and not indicative of the ac-
tual process that takes place in the argument semantics.
However, the effect of changing the classification from
false to true is a realistic demonstration of what would
happen in this case.

professionals. This
means that birds can be
considered important to
badminton

J

Gl |

@ Support A(tack@

While it might seem unlikely that birds While bird§ are fascinating creatures_ and A
would have any significance to the sport can sometimes be found near badminton
of badminton, there is still a connection courts, the claim that birds are important to
to be made. One important aspect of badminton is tenuous at best. The sport of
badminton is the shuttlecock, the cone- badminton, which involves hittinga
shaped projectile used to hit the net. shuttlecock over a net, does not require
Interestingly, the shape of the the presence of birds. In fact, the
shuttlecock \;vas inspired by the shuttlecock used in badminton is not bird-
feathered design ofl:Jird's \X/ings related at all; it is called a "shuttlecock"
specifically that of a bird called t‘he because the shuttle-shaped projectile is
C‘:\' Y h f historically made with feathers, but these

inese goose. Furthermore, often are goose or duck feathers, not those of
shuttlecocks are partially made from the birds typically associated with badminton
feathers of a goose or a duck such as sparrows. )

€ ¥

Figure 17: An illustration of a user modifying a sup-
porting information with extra information. Due to the
improvement in the argument, the argument strength
is increased, leading to a change in classification from
false to true.

H Licenses

Following are the licenses for all the datasets we adapt,
and models we experiment with. The purposes we
use the models and data are all covered by their re-
spective licenses. Datasets: Truthful QA - Apache 2.0,
StrategyQA - MIT, MedQA - N/A. Models: Mistral -
Apache 2.0, Mixtral - Apache 2.0, Gemma - Apache
2.0, GPT-3.5-turbo/4 - Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International.



Baseline Prompt  Direct Question Chain-of-Thought

ChatGPT 0.663 0.671
analyst 0.669 0.681
OPRO 0.613 0.633

Table 2: Baseline prompt experiment results — average over both models and datasets

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only (baseline)
ChatGPT ChatGPT 0.573 0.604 0.596
ChatGPT OPRO 0.63 0.649 0.645
ChatGPT  analyst 0.615 0.663 0.65
OPRO ChatGPT 0.586 0.592 0.596
OPRO OPRO 0.584 0.64 0.645
OPRO analyst 0.601 0.679 0.65
debater  ChatGPT 0.549 0.591 0.596
debater OPRO 0.624 0.644 0.645
debater analyst 0.573 0.64 0.65

Table 3: Argumentation prompt experiment results — average over models, depths and datasets

Baseline Prompt  Direct Question  Chain-of-Thought

ChatGPT 0.815 0.76
analyst 0.81 0.755
OPRO 0.67 0.685

Table 4: Mixtral baseline prompt experiment results, 4bit - TruthfulClaim on 200 datapoints

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only (baseline)
ChatGPT ChatGPT 0.56 0.69 0.695
ChatGPT OPRO 0.71 0.73 0.725
ChatGPT  analyst 0.685 0.765 0.745
OPRO ChatGPT 0.665 0.7 0.695
OPRO OPRO 0.685 0.73 0.725
OPRO analyst 0.69 0.795 0.745
debater  ChatGPT 0.68 0.695 0.695
debater OPRO 0.77 0.72 0.725
debater analyst 0.68 0.76 0.745

Table 5: Mixtral prompt experiment results, depth 1 - TQA on 200 datapoints

AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only (baseline)
ChatGPT ChatGPT 0.56 0.69 0.695
ChatGPT OPRO 0.71 0.73 0.725
ChatGPT  analyst 0.685 0.76 0.745
OPRO ChatGPT 0.665 0.71 0.695
OPRO OPRO 0.685 0.73 0.725
OPRO analyst 0.69 0.785 0.745
debater  ChatGPT 0.68 0.695 0.695
debater OPRO 0.77 0.715 0.725
debater analyst 0.675 0.755 0.745

Table 6: Mixtral prompt experiment results, depth 2 - TQA on 200 datapoints
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Baseline Prompt  Direct Question Chain-of-Thought

ChatGPT 0.655 0.6
analyst 0.66 0.64
OPRO 0.55 0.58

Table 7: Mixtral baseline prompt experiment results, 4bit - SQA on 200 datapoints

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only (baseline)
ChatGPT ChatGPT 0.57 0.55 0.535
ChatGPT OPRO 0.565 0.64 0.625
ChatGPT  analyst 0.59 0.62 0.635
OPRO ChatGPT 0.6 0.545 0.535
OPRO OPRO 0.58 0.63 0.625
OPRO analyst 0.57 0.655 0.635
debater  ChatGPT 0.5 0.525 0.535
debater OPRO 0.58 0.635 0.625
debater analyst 0.55 0.61 0.635

Table 8: Mixtral prompt experiment results, depth 1 - SQA on 200 datapoints

AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only (baseline)
ChatGPT ChatGPT 0.57 0.55 0.535
ChatGPT OPRO 0.565 0.635 0.625
ChatGPT  analyst 0.59 0.625 0.635
OPRO ChatGPT 0.6 0.55 0.535
OPRO OPRO 0.58 0.63 0.625
OPRO analyst 0.57 0.655 0.635
debater  ChatGPT 0.5 0.535 0.535
debater OPRO 0.58 0.635 0.625
debater analyst 0.55 0.625 0.635

Table 9: Mixtral prompt experiment results, depth 2 - SQA on 200 datapoints

Baseline Prompt  Direct Question Chain-of-Thought

ChatGPT 0.625 0.685
analyst 0.665 0.71
OPRO 0.68 0.65

Table 10: Mistral baseline prompt experiment results, 4bit - TQA on 200 datapoints

AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only
ChatGPT ChatGPT 0.615 0.67 0.65
ChatGPT  OPRO 0.67 0.73 0.725
ChatGPT  analyst 0.635 0.715 0.705

OPRO  ChatGPT 0.61 0.665 0.65
OPRO OPRO 0.605 0.715 0.725
OPRO analyst 0.62 0.73 0.705
debater  ChatGPT 0.49 0.645 0.65
debater OPRO 0.615 0.725 0.725
debater analyst 0.545 0.665 0.705

Table 11: Mistral prompt experiment results, 4bit, depth 1 - TQA on 200 datapoints
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AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only
ChatGPT  ChatGPT 0.615 0.66 0.65
ChatGPT  OPRO 0.67 0.73 0.725
ChatGPT  analyst 0.635 0.71 0.705

OPRO  ChatGPT 0.61 0.655 0.65
OPRO OPRO 0.605 0.715 0.725
OPRO analyst 0.62 0.725 0.705
debater  ChatGPT 0.49 0.655 0.65
debater OPRO 0.62 0.725 0.725
debater analyst 0.55 0.695 0.705
Table 12: Mistral prompt experiment results, 4bit, depth 2 - TQA on 200 datapoints
Baseline Prompt  Direct Question Chain-of-Thought
ChatGPT 0.56 0.64
analyst 0.54 0.62
OPRO 0.55 0.615
Table 13: Mistral baseline prompt experiment results, 4bit - SQA on 200 datapoints
AM UE 0.5 Base + Arg (D=1) Estimated Base + Arg (D=1) Estimated Base Only
ChatGPT ChatGPT 0.55 0.515 0.505
ChatGPT  OPRO 0.575 0.5 0.505
ChatGPT  analyst 0.55 0.56 0.515

OPRO  ChatGPT 0.47 0.445 0.505

OPRO OPRO 0.465 0.485 0.505

OPRO analyst 0.525 0.54 0.515

debater =~ ChatGPT 0.525 0.5 0.505
debater OPRO 0.53 0.495 0.505
debater analyst 0.515 0.515 0.515
Table 14: Mistral prompt experiment results, 4bit, depth 1 - SQA on 200 datapoints
AM UE 0.5 Base + Arg (D=2) Estimated Base + Arg (D=2) Estimated Base Only
ChatGPT  ChatGPT 0.55 0.505 0.505
ChatGPT  OPRO 0.575 0.5 0.505
ChatGPT  analyst 0.55 0.55 0.515

OPRO  ChatGPT 0.47 0.465 0.505

OPRO OPRO 0.465 0.485 0.505

OPRO analyst 0.525 0.545 0.515

debater ~ ChatGPT 0.525 0.48 0.505

debater OPRO 0.53 0.5 0.505

debater analyst 0.515 0.495 0.515
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Table 16: Brier scores of a baseline and four variations of our argumentative method on claim verification tasks.
The best performing method for each model-dataset combination is indicated in bold.

Est. Confidence 0.5 Base 0.5 Base Est. Base  Est. Base

Arg (D=1) Arg(D=2) Arg([D=1) Arg(D=2)
Mistral 0.205 0.21 0.215 0.195 0.198
Truthful Mixtral 0.169 0.187 0.195 0.153 0.155
Claim Gemma 7B 0.238 0.272 0.294 0.273 0.286
GPT-3.5-turbo 0.205 0.219 0.222 0.191 0.183
Mistral 0.335 0.266 0.258 0.321 0.321
Strategy Mixtral 0.258 0.23 0.229 0.26 0.259
Claim Gemma 7B 0.304 0.27 0.286 0.321 0.332
GPT-3.5-turbo 0.245 0.256 0.243 0.252 0.243
Mistral 0.353 0.362 0.305 0.378 0.331
Med Mixtral 0.268 0.282 0.257 0.273 0.256
Claim Gemma 7B 0.302 0.373 0.42 0.41 0.443
GPT-3.5-turbo 0.314 0.245 0.248 0.305 0.315

Table 17: AUC of a baseline and four variations of our argumentative method on claim verification tasks. The best
performing method for each model-dataset combination is indicated in bold.

Est. Confidence 0.5 Base 0.5 Base Est. Base  Est. Base
Arg (D=1) Arg(D=2) Arg([D=1) Arg(D=2)
Mistral 0.792 0.748 0.741 0.809 0.806
Truthful Mixtral 0.831 0.834 0.831 0.852 0.85
Claim Gemma 7B 0.691 0.637 0.625 0.691 0.675
GPT-3.5-turbo 0.795 0.75 0.735 0.807 0.825
Mistral 0.645 0.643 0.641 0.656 0.653
Strategy Mixtral 0.727 0.759 0.749 0.759 0.753
Claim Gemma 7B 0.584 0.551 0.551 0.593 0.592
GPT-3.5-turbo 0.747 0.654 0.655 0.741 0.741
Mistral 0.575 0.475 0.514 0.563 0.584
Med Mixtral 0.659 0.615 0.608 0.671 0.67
Claim Gemma 7B 0.532 0.528 0.523 0.534 0.534
GPT-3.5-turbo 0.638 0.601 0.585 0.644 0.645
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