
Boosting Offline Optimizers with Surrogate Sensitivity

Manh Cuong Dao 1 Phi Le Nguyen 1 Thao Nguyen Truong 2 Trong Nghia Hoang 3

Abstract
Offline optimization is an important task in numer-
ous material engineering domains where online
experimentation to collect data is too expensive
and needs to be replaced by an in silico maxi-
mization of a surrogate of the black-box function.
Although such a surrogate can be learned from
offline data, its prediction might not be reliable
outside the offline data regime, which happens
when the surrogate has narrow prediction margin
and is (therefore) sensitive to small perturbations
of its parameterization. This raises the follow-
ing questions: (1) how to regulate the sensitivity
of a surrogate model; and (2) whether condition-
ing an offline optimizer with such less sensitive
surrogate will lead to better optimization perfor-
mance. To address these questions, we develop
an optimizable sensitivity measurement for the
surrogate model, which then inspires a sensitivity-
informed regularizer that is applicable to a wide
range of offline optimizers. This development is
both orthogonal and synergistic to prior research
on offline optimization, which is demonstrated in
our extensive experiment benchmark.

1. Introduction
Finding material designs that maximize a set of desirable
properties is a fundamental task in material engineering.
Historically, these design problems were frequently tackled
through online experimentation, which can be exceedingly
labor-intensive, time-consuming, and often impractical. To
avoid such expenses, offline optimization (Brookes et al.,
2019; Trabucco et al., 2021; 2022) has emerged as a com-
putational alternative that leverages past experiment results

1School of Information and Communications Technology,
Hanoi University of Science and Technology, Hanoi, Vietnam
2National Institute of Advanced Industrial Science and Technology,
Tokyo, Japan 3School of Electrical Engineering and Computer Sci-
ence, Washington State University, Washington, USA. Correspon-
dence to: Trong Nghia Hoang <trongnghia.hoang@wsu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to predict properties of unseen material candidates without
running actual experiments. This is achieved via (1) fitting a
parameterized model on such past data relating the material
input with its output properties; and (2) finding an input
optimizer with respect to the learned parameterization.

Naively, such in silico approach would trivialize the opti-
mal design problem into a vanilla application of gradient
ascent and supervised learning. However, in practice, the
prediction of such vanilla surrogate might not be reliable
outside the offline data regime (Fannjiang & Listgarten,
2020). Often, its prediction can become highly erratic at
out-of-distribution data regimes, misguiding the optimiza-
tion process toward sub-optimal candidates. This happens
when the surrogate has narrow prediction margin at those
out-of-distribution input regimes where a small perturbation
to the model weights might cause a significant change in its
prediction. This is potentially due to the fact that without
relevant data, the training process does not have any mecha-
nisms to recognize and avoid moving toward such sensitive
model candidates.

To date, while most existing approaches addressing this
problem have proposed numerous strategies to avoid mak-
ing such spurious predictions during extrapolation (due to
high model sensitivity), their conditioning techniques were
not built on a direct characterization of sensitivity. For exam-
ple, Fu & Levine (2021); Kumar & Levine (2020); Trabucco
et al. (2021; 2022) and Yu et al. (2021) reduce their surro-
gate estimations at out-of-distribution inputs, while Brookes
et al. (2019) and Fannjiang & Listgarten (2020) condition
on domain-specific properties under which sampled inputs
will have high performance. Intuitively, model sensitivity
could be reduced where the conditioning happens, which
is however either surrogate- or search-specific. As a result,
the conditioning is localized depending on how these out-
of-distribution inputs and domain-specific properties are
specified. It therefore remains unclear what impact such
localized conditioning has on the overall model sensitiv-
ity. More importantly, it is also unclear whether in such
approaches, the surrogate is well-conditioned at the regions
where the search might visit. Otherwise, it would be less
effective if the surrogate is only well-conditioned in regions
where the search rarely visits. In this view, the core issue
here is the lack of a model-agnostic characterization of sen-
sitivity, which does not depend on the specifics of either

1

Boosting Offline Optimizers with Surrogate Sensitivity

the search or surrogate models. Such characterization could
play the role of a negotiating medium that coordinates the
conditioning between the search and surrogate models.

This prompts two fundamental inquiries: (1) how to explic-
itly characterize and regulate the sensitivity of a surrogate
model; and (2) whether such sensitivity-regulated approach
can be agnostic of the search and surrogate model specifi-
cations, allowing it to be seamlessly integrated into both
the search process and surrogate models to enhance the
overall optimization performance. To shed light on these
matters, our paper formalizes a model-agnostic sensitivity
measure which can be optimized to coordinate the surrogate
and search biases so that the surrogate is conditioned to be
risk-averse wherever the search goes. This is substantiated
with the following technical contributions:

1. We develop a novel concept of model sensitivity in
terms of how often its output would change beyond a user-
specified threshold under small model perturbations. Intu-
itively, if a model’s output is sensitive to such perturbations,
its prediction margin must be narrow and have high variance,
which means the chance that it would fit well the unseen
part of the oracle function is low. The developed sensitivity
notion therefore provides a quantifiable risk assessment that
can be exploited by both the surrogate and search models
(Section 3).

2. We show that our model sensitivity measurement is op-
timizable and can be used as a regularizer for a diverse
range of existing offline optimizers which either define their
search based on derivatives of their surrogate models or
couple both search and surrogate models in a single differ-
entiable loss function. To enable this, we also develop a
numerical algorithm to tractably and effectively optimize
our sensitivity-informed regularizers (Section 4). The pseu-
docode of our boosting framework for offline optimizers via
surrogate sensitivity (BOSS) is detailed in Algorithm 1.

3. We demonstrate the empirical efficiency of the proposed
regularization method on a wide variety of benchmark prob-
lems, which shows consistently that its synergistic perfor-
mance boost on existing offline optimizers is significant.
Overall, our results corroborate our earlier hypothesis that
a model-agnostic characterization of sensitivity can help
coordinate the conditioning between the search and surro-
gate models better, which is evident from the consistent
performance improvement across many baselines and opti-
mization tasks (Section 5).

4. For clarity, we also provide a concise review of the
existing literature in Section 2.

2. Related Work
In numerous material engineering fields, such as molecular
structure, robot morphology, and protein design, the primary
objective is to discover the optimal design that maximizes
performance based on specific criteria. A significant chal-
lenge in addressing this problem arises from the fact that
the relationship between a design and its performance is a
black-box function, which requires expensive experiments
or simulations to evaluate the performance output of each
candidate input. Consequently, finding the optimal design is
equivalent to optimizing a black-box function whose deriva-
tive information is not accessible.

Furthermore, sampling data from this black-box function
also requires excessive laboring cost of conducting biophysi-
cal experiments, which makes existing derivative-free meth-
ods, such as random gradient estimation (Wang et al., 2018)
or Bayesian optimization (Snoek et al., 2012), not economi-
cally viable as they often require sampling a large amount
of data. This has inspired a new paradigm of offline opti-
mization which learns an explicit model parameterization
that explains well the relationship between input candidates
and their corresponding experiment results in a past dataset.

To date, there have been several solutions proposed for of-
fline optimization, which mostly focus on encoding some
conservative preferences in either the search process or the
(surrogate) training process. Such conservative preferences
often aim to compensate for potential erratic function ap-
proximation so as to avoid false optimism during extrapola-
tion. Trabucco et al. (2021) forces the model to underesti-
mate the output value of input candidates found during early
iterations of gradient updates (deemed out-of-distribution),
whereas Fu & Levine (2021) maximizes the normalized
data likelihood to reduce uncertainty in prediction. Hoang
et al. (2024) matches the gradient fields of the oracle and
surrogate, and shows that the optimization performance is
directly bounded by the gradient gap. Yu et al. (2021) adopts
techniques in model pre-training and adaptation to enforce
a criteria of local smoothness.

Alternatively, Brookes et al. (2019); Fannjiang & List-
garten (2020) and Chemingui et al. (2024) focus instead
on conditioning the search process. Under this paradigm,
the search model is represented as a distribution condi-
tioned on rare event of achieving high oracle performance
or an adaptive gradient update policy with learnable pa-
rameters (Chemingui et al., 2024), which is substantiated
using different approaches. For instance, Brookes et al.
(2019) models such conditioned distribution via an adver-
sarial zero-sum game while Kumar & Levine (2020) learns
an inverse mapping from the performance output to the in-
put design using conditional generative adversarial network
(Mirza & Osindero, 2014), from which design candidates
performing at least as good as the example candidates in

2

Boosting Offline Optimizers with Surrogate Sensitivity

Surrogate
Model

Search
Model

	𝐗

(a) Existing Offline Optimizer

minimize loss(,)

(b) Boosting Offline Optimizers with Surrogate Sensitivity

Perturbation
Model

minimize [loss(,) + max regularizer(,)]

Sensitivity Metric
(see Eq. (4))

Surrogate
Model

Search
Model

	𝐗

Figure 1: Workflows of (a) existing offline optimizers; and (b) our sensitivity-informed regularized optimizer (BOSS)
which regulates the training workflow of existing offline optimizers with a new sensitivity metric – see Definition 3.1.
Our regularizer is generic and can be applied to most existing offline optimizer workflows to boost their performance as
demonstrated in Section 5.

the offline dataset can be sampled. However, as mentioned
previously, the implicit conditioning of these approaches
is either search- or surrogate-specific, which does not co-
ordinate well between the search and (surrogate) training
processes. As such, the risk of following a search model
will depend on how accurate the conditioning is at out-of-
distribution inputs. This depends on the specific of the
algorithm that was adopted, which has neither been defined
nor investigated.

3. Sensitivity-Guided Offline Optimization
In what follows, we will define the problem setting for of-
fline optimization and introduce key notations (Section 3.1).
We formalize the concept of model sensitivity (Section 3.2)
and develop a sensitivity-informed regularizer for existing
offline optimizers (Section 3.3). For clarity, an overview of
our solution workflow is visualized in Figure 1.

3.1. Problem Setting and Notations

A design problem is formulated as finding an optimal input
or design x∗ ∈ X that maximizes the output of an experi-
ment or simulation process g(x),

x∗ ≜ argmax
x∈X

g(x) . (1)

As mentioned previously, we cannot access the black-box
function g(x) but we are provided with a set D of n training
data points (xi, zi)

n
i=1 such that zi = g(xi). This allows us

to learn a surrogate g(x;ϕ) of g(x) via supervised learning,

ϕ ≜ argmin
ϕ′

L(ϕ′;D) , (2)

where L(ϕ′;D) ≜
∑n

i=1 err
(
g
(
xi;ϕ

′), zi) and ϕ′ (ϕ) de-
notes the surrogate parameterization and err(z′, z) denotes

the loss of predicting z′ when the oracle value is z. For
example, err(z′, z) = (z′ − z)2 and g(x;ϕ) = ϕ⊤x. Once
learned, ϕ is fixed and we can use g(x;ϕ) as a surrogate to
find (approximately) the optimal design,

xϕ ≜ argmax
x∈X

g(x;ϕ) . (3)

The quality of xϕ is then defined as the (normalized) differ-
ence in oracle output between xϕ and the oracle maximizer
x∗, C(xϕ) = |g(xϕ)−minx g(x)| / |g(x∗)−minx g(x)| ∈
(0, 1). Naively, if the surrogate g(x;ϕ) is accurate over the
entire input space X then solving (3) is all we need. How-
ever, this might only be true near the training data.

3.2. Sensitivity of Surrogate Model

Inspired by recent work in assessing model sensitivity
(Stephenson et al., 2022; Tsai et al., 2021), the prediction of
a model at a particular input x is considered sensitive if we
can find a slightly perturbed variant of it that produces a sig-
nificantly different prediction at x. Following this intuition,
we propose to measure the sensitivity of a model trained on
the offline dataset D as the probability (over random per-
turbation) that the absolute difference between its expected
output before and after perturbation is larger than a certain
threshold. This is formalized below.
Definition 3.1. The (α, ω)-sensitivity of a model g(x;ϕ)
on the offline dataset D is defined as

Sϕ (α, ω) ≜ Pr
γ∼N(ωµ,ω2

σI)

(
A(ϕ, γ) ≥ α

)
, (4)

where A(ϕ, γ) ≜
∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣
and ω = (ωµ, ωσ) defines the parameter of the Gaussian
distribution of the perturbation γ.

Intuitively, the above definition implies that if there is a high
chance that the expected output of a model g(x;ϕ) would

3

Boosting Offline Optimizers with Surrogate Sensitivity

change significantly (larger than α) when its parameteriza-
tion ϕ is perturbed by a certain amount of noise γ controlled
by ω, then the model is sensitive. Hence, we want to condi-
tion the surrogate g(x;ϕ) such that its induced sensitivity
Sϕ(α, ω) is low. Otherwise, the larger Sϕ(α, ω) is, the more
likely there exists a neighborhood of input at which the sur-
rogate prediction is brittle against small perturbations of the
model. This is established below.

Lemma 3.2. Let Sϕ(α, ω) defined via Definition 3.1. Sup-
pose Sϕ(α, ω) ≥ 1 − δ with δ ∈ (0, 1). Then, with
probability at least 1 − δ over the space of random per-
turbation γ ∼ N(ωµ, ω

2
σI), there exists x ∈ D such that

|g(x;ϕ+ γ)− g(x;ϕ)| ≥ α and

∀x′ ∈ D :
∥∥x′ − x

∥∥ ≤ α

4Lϕ
, we have∣∣g(x′;ϕ+ γ)− g(x′;ϕ)
∣∣ ≥ α

2
. (5)

where Lϕ ≜ maxγ Lϕ+γ and Lϕ+γ denotes the correspond-
ing Lipschitz constant1 of the surrogate g(.;ϕ + γ). A de-
tailed derivation of this lemma can be found in Appendix A.

This sensitivity measurement is however relative to a spe-
cific configuration of (α, ω), which needs to be set metic-
ulously. Otherwise, it is easy to see that Sϕ(α, ω) would
quickly become vacuous (e.g., reaching the maximum value
of one regardless of the choice of ϕ) with decreasing values
of α and increasing values of (ωµ, ω

2
σ). Conversely, if α

is too large while (ωµ, ω
2
σ) are too small, Sϕ(α, ω) instead

approaches zero regardless of the choice of ϕ and again, be-
comes vacuous. Intuitively, this means the above sensitivity
measure is only meaningful at the right range of values for
α and (ωµ, ω

2
σ) which needs to be determined via empirical

observations. We suggest a new method to determine the
parameters by utilizing only the offline dataset and not ac-
cessing the oracle function, described in Appendix D.3. Fur-
thermore, following the practice in Trabucco et al. (2021),
we use the oracle function to conduct ablation studies in
Section 5.3 to find the most robust, universal values (across
all tasks) for α as well as the ranges on which (ωµ, ω

2
σ) are

optimized. Interestingly, the parameters found in Appendix
D.3 are the same as reported in Section 5.3.

3.3. Sensitivity-Informed Regularizer

The previous discussion suggests that among surrogate can-
didates g(x;ϕ) that fit equally well to the dataset, we would
prefer one whose sensitivity Sϕ is smallest. Such surrogates
tend to have prediction boundaries with (relatively) larger
margins, which reduce the risk of being misguided by spu-
rious predictions. Thus, suppose that the surrogate g(x;ϕ)
is fitted to offline data via minimizing a loss function L(ϕ),

1L is a Lipschitz constant of a function g(x) if it is the smallest
value for which |g(x)− g(x′)| ≤ L∥x− x′∥ for all (x,x′).

we can regularize it via the following augmentation:

ϕ = argmin
ϕ′

(
L(ϕ′) + λ · Sϕ′(α, ω)

)
, (6)

where ω ≜ argmaxω′ Sϕ′(α, ω′) and λ > 0 is a hyper-
parameter regularizing between the two objectives: (1) fit-
ting to offline data and (2) minimizing sensitivity. This
features a bi-level optimization task, which can be relaxed
into a minimax optimization task,

ϕ = argmin
ϕ′

(
L(ϕ′) + λ ·max

ω′
Sϕ′(α, ω′)

)
. (7)

The resulting formulation can now be solved approximately
via (1) minimizing ϕ′ and (2) maximizing ω′ simultaneously.
Intuitively, this process features a two-player game where
one seeks to decrease the function value while the other
seeks to increase it. The optimization thus mimics a ficti-
tious play that often finds an optimal equilibrium between
the surrogate and the perturbation model. At this equilib-
rium, the surrogate has its sensitivity minimized in the worst
case (against a most adversarial perturbation). This is in
fact similar to the intuition behind Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014).

In addition, our regularization technique here is also agnos-
tic to the specific choice of the loss function L(ϕ′). This
makes our regularization technique synergistically amenable
to a wider range of offline optimizers which could involve
both the search and surrogate models. However, the main
issue with this approach is that the mathematical characteri-
zation of Sϕ(α, ω) (see Definition 3.1) is not differentiable
with respect to either ω or ϕ, which prevents it from being
optimized with gradient descent/ascent. This is a practical
challenge which will be addressed next.

4. Practical Algorithm
To enable numerical optimization of the sensitivity measure
Sϕ(α, ω) effectively, we will develop approximations of
Sϕ(α, ω) that can be differentiated with respect to ϕ and ω,
respectively. These approximations are detailed below.

Optimizing ω. First, given the sensitivity threshold α and
current surrogate estimate ϕ, we define

Rα(ϕ) ≜

{
γ

∣∣∣∣ ∣∣∣E[g(x;ϕ+ γ)
]
− E

[
g(x;ϕ)

]∣∣∣ ≥ α

}
(8)

which helps rewrite Sϕ(α, ω) = Pr(γ ∈ Rα(ϕ)) where

Pr
(
γ ∈ Rα(ϕ)

)
= Eγ

[
Pr
(
γ ∈ Rα(ϕ)

∣∣∣γ)]
with γ ∼ N(ωµ, ω

2
σI)

= Eϵ

[
Pr
(
ωµ + ωσ · ϵ ∈ Rα(ϕ)

∣∣∣ϵ)],
with ϵ ∼ N(0, I)

≃ 1

m

m∑
i=1

Φ
(
γi;w

)
(9)

4

Boosting Offline Optimizers with Surrogate Sensitivity

where γi ≜ ωµ + ω2
σ · ϵi and {ϵi}mi=1 are identical and

independent samples drawn from N(0, I) while Φ(γi;w)
is a learnable neural net that predicts the probability that
γi ≜ ωµ + ω2

σ · ϵi ∈ Rα(ϕ).

We will refer to the last step in (9) above as the neural
re-parameterization, which can approximate Sϕ(α, ω) ar-
bitrarily closely given a sufficiently large number m of
samples and that the parameterization of Φ(γ;w) is suf-
ficiently rich. Given a set of samples (γi, κi)

m
i=1 where

κi ≜ I(γi ∈ Rα(ϕ)) ∈ {0, 1}, we can learn this neural
re-parameterization via solving

w = argmax
w′

[(
1− κi

)
log
(
1− Φ

(
γi;w

′
))

+ κi log Φ
(
κi;w

′
)]

(10)

which is a standard logistic regression losses with param-
eterized bias Φ(γ;w) and training data (γi, κi)

m
i=1. Note

that κi = I(γi ∈ Rα(ϕ)) which is tractable. Once learned,
we can take advantage of the differentiability of Φ(γ;w) to
compute the gradient of Sϕ with respect to ω:

∂Sϕ

∂ω
≃ 1

m

m∑
i=1

∂Φ

∂ω
=

1

m

m∑
i=1

(
∂Φ

∂γi
· ∂γi
∂ω

)
(11)

Now recall that by the change of parameter, γi = ωµ+ωσ ·ϵi.
Thus, ∂γi/∂ωµ = 1 and ∂γi/∂ωσ = ϵi. As such, replacing
ω, respectively, with ωµ and ωσ in (11) produces2

∂Sϕ

∂ωµ
=

1

m

m∑
i=1

∂Φ

∂γi
and

∂Sϕ

∂ωσ
=

1

m

m∑
i=1

ϵi ·
∂Φ

∂γi
(12)

which enables maximization of ω via gradient ascent.

Optimizing ϕ. To optimize ϕ, we need another approxima-
tion since the neural re-parameterization above is still not
differentiable with respect to ϕ. This is developed via the
following lemma.
Lemma 4.1. Let Sϕ(α, ω) defined via Definition 3.1. We
have Sϕ(α, ω) ≤ S+

ϕ (α, ω) where

S+
ϕ (α, ω) = Eγ

[
min

(
1, (A(ϕ, γ)/α)2

)]
(13)

where γ ∼ N(ωµ, ω
2
σI) and A(ϕ, γ) is defined previously

in Definition 3.1. A detailed derivation of this lemma is
provided in Appendix B.

Lemma 4.1 establishes an upper bound for Sϕ(α, ω), which
is now differentiable with respect to ϕ. Note that while min-
imizing ϕ, ω = (ωµ, ω

2
σ) is fixed and hence, the expectation

2Note that we abuse the notation a bit here to treat ϵi as a scalar
while it should be a random vector. This is not an issue since the
covariance matrix of its distribution N(0, I) is diagonal, which
implies components of the random vector are i.i.d and hence, (12)
applies separately to each such scalar component.

Algorithm 1 BOSS
Input: offline data D = {(xi, zi)}ni=1; initial surrogate model
g(x;ϕ); initial perturbation parameters ω = (ωµ, ω

2
σ); no. m

of sampled perturbations γ ∼ N(ωµ, ω
2
σI); no. of iterations τ ;

sensitivity threshold α; learning rates (ηω, ηϕ); Bound of ωµ

[ωµl , ωµu]; Bound of ωσ [ωσl , ωσu].

1: Initialize ϕ(1) ← ϕ and ω(1) ← ω
2: for t← 1 : τ do
3: Sample {γi}mi=1 : γi = ω

(t)
µ + ω

(t)
σ · ϵi with ϵi ∼ N(0, I)

4: ∇ϕh(ϕ) = Ex∼D

[
∇ϕg(x;ϕ)

]
at ϕ = ϕ(t) – see Eq. (14)

5: for i← 1 : m do
6: κi ← I

(∣∣∣∇ϕh(ϕ)
⊤γi

∣∣∣ > α
)

– see Eq. 8
7: end for
8: Learn Φ(γ;w) with dataset {(γi, κi)}mi=1 – see Eq. 10
9: Optimizing ω:

10: ∇ωµSϕ ← m−1
(∑m

i=1∇γΦ(γi)
)

via Eq. 12

11: ∇ωσSϕ ← m−1
(∑m

i=1 ϵi · ∇γΦ(γi)
)

via Eq. 12

12: ω
(t+1)
µ ← ω

(t)
µ + ηω · ∇ωµSϕ

13: ω
(t+1)
σ ← ω

(t)
σ + ηω · ∇ωσSϕ

14: Project ω(t+1)
µ into [ωµl , ωµu]

15: Project ω(t+1)
σ into [ωσl , ωσu]

16: Optimizing ϕ:

17: S+
ϕ (α, ω) = m−1 ∑m

i=1

[
min

(
1,
((
∇ϕh(ϕ)

⊤γi
)2

/α2
))]

see Eq. 13 and Eq. 14
18: ϕ(t+1) ← ϕ(t) + ηϕ ·

(
∇ϕL(ϕ;D) + λ · ∇ϕS+

ϕ (α, ω)
)

at ϕ = ϕ(t) and ω = ω(t+1)

19: end for
20: return learned surrogate g

(
x;ϕ(τ+1)

)

does not involve parameters that need to be differentiated.
Thus, the derivative operator can be pushed inside the ex-
pectation, which is differentiable with respect to ϕ.

However, one minor detail here is that computing S+
ϕ (α, ω)

still requires computing the expected output difference for
each sampled γ. This operation is not vectorizable and
cannot take advantage of the GPU compute infrastructure.
To sidestep this final hurdle, we propose to approximate
h(ϕ+ γ) ≜ E[g(x;ϕ+ γ)] with a first-order Taylor expan-
sion around ϕ. That is, E[g(x;ϕ+ γ)]− E[g(x;ϕ)] =

h(ϕ+ γ)− h(ϕ) ≃ ∇h(ϕ)⊤γ (14)

which is computable via a (vectorizable) matrix multipli-
cation involving γ. For clarity, a full pseudo-code of our
method is detailed in Algorithm 1.

Remark. As an alternative approach, the Taylor approxi-
mation presented in Eq. (14) can also be applied directly
to (A(ϕ, γ) in Eq. (4). This results in an approximation of
Sϕ(α, ω) in terms of the Gaussian cumulative distribution
function (CDF) detailed in Appendix C, which is differen-
tiable with respect to all parameters. Consequently, Eq. (4)

5

Boosting Offline Optimizers with Surrogate Sensitivity

can be optimized directly without using the relaxation form
in Lemma 4.1 or the use of the neural re-parameterization
in Eq. (9). This alternative approximation of the proposed
regularizer also helps improve well over the baseline perfor-
mance but the overall improvement is less pronounced than
that of BOSS, as reported in Appendix C.

5. Experiments
This section evaluates the effectiveness of our proposed
regularizer (BOSS) on boosting the performance of existing
state-of-the-art offline optimizers. Our empirical studies
adopt the benchmark tasks from Design-Bench (Trabucco
et al., 2022) and its widely recognized baseline algorithms
and evaluation protocol (Section 5.1). All empirical results
and analyses are reported in Section 5.2.

5.1. Benchmarks, Baselines and Evaluation

Benchmark Tasks. Our empirical evaluations are con-
ducted on 6 real-world tasks from Design-Bench (Trabucco
et al., 2022), with both discrete and continuous domains.

The discrete tasks include TF-Bind-8, TF-Bind-10, and
ChEMBL where TF-Bind-8 and TF-Bind-10 (Barrera
et al., 2016) involve discovering DNA sequences with
high binding affinity to a specific transcription factor
(SIX6 REF R1) with sequence lengths 8 and 10, respec-
tively; and ChEMBL is derived from a drug property
database (Gaulton et al., 2012) and requires optimizing a
molecule for a high MCHC value when paired with assay
CHEMBL3885882.

The continuous tasks include Ant Morphology (Brockman
et al., 2016), D’Kitty Morphology (Ahn et al., 2020), and
Superconductors (Brookes et al., 2019). In Ant Morphol-
ogy and the D’Kitty Morphology task, we optimize the
physical structure of a simulated robot Ant from OpenAI
Gym (Brockman et al., 2016) and the D’Kitty robot from
ROBEL (Ahn et al., 2020). The Superconductor task is
about designing superconductor molecules that have the
highest critical temperature.

Baselines. To assess how our proposed regularizer BOSS in-
fluences the performance of established baseline algorithms,
we selected 11 widely recognized offline optimizers for
comparison. These include BO-qEI (Trabucco et al., 2022),
CbAS (Brookes et al., 2019), RoMA (Yu et al., 2021),
ICT (Yuan et al., 2023), CMA-ES (Hansen), COMs (Tra-
bucco et al., 2021), MINs (Kumar & Levine, 2020), REIN-
FORCE (Williams, 1992), and 3 variants of gradient ascent
(GA, ENS-MIN, ENS-MEAN) which correspond to the
vanilla gradient ascent, the min ensemble of gradient ascent,
and the mean ensemble of gradient ascent.

Evaluation Protocol. For each baseline algorithm, we

configure it with its corresponding best hyperparameters
specified in (Trabucco et al., 2022). To provide a compre-
hensive evaluation of each algorithm’s performance, we
adhere to the recommended approach in (Trabucco et al.,
2022), which requires each method to generate K = 128
optimized design candidates, which are then evaluated us-
ing the oracle function. The evaluated performance of these
candidates are then sorted in increasing order from which
performance at 50-th and 75-th and 100-th percentile levels
are reported. All reported performance are averaged over 8
independent runs.

Hyper-parameter Configuration. Our proposed regu-
larizer BOSS also has additional hyperparameters (α, ω)
as highlighted previously in Section 3.2. In particular,
ω = (ωµ, ω

2
σ) is a tuple of learnable parameters that de-

fine the (adversarial) perturbation distribution N(ωµ1, ω
2
σI),

which is used to measure the sensitivity of the regularizer.
However, the perturbation is supposed to be in the low-noise
regime which requires the range of values for those parame-
ters to be set so that the perturbation will not dominate the
surrogate’s parameters. Otherwise, our sensitivity measure
will become vacuous. We have conducted ablation studies in
Section 5.3 to find the most appropriate bounds for these pa-
rameters, which appear to be [−10−3, 10−3] for [ωµl

, ωµu]
and [10−5, 10−2] for [ωσl

, ωσu
]. We use the above bounds

in all experiments, in which ωµ and ω2
σ are initialized to 0

and 10−3, respectively. Likewise, for the sensitivity thresh-
old, our ablation studies observe the impact of several values
of α on the performance and find that α = 0.1 is the best
universal value for BOSS. In addition, we set the weight of
the regularizer λ to 10−3, the no. m of perturbation sam-
ple per iteration to 100 and the learning rates ηω = 10−2,
ηϕ = 10−3. We find that this configuration is universally
robust across all benchmark tasks. Φ is a neural network
with one hidden layer comprising two hidden units and one
output layer.

5.2. Results and Discussion

This section reported the percentage of improvement over
baseline performance achieved by BOSS when it is applied
to an existing baseline. We have evaluated this at 50-th,
75-th and 100-th percentile levels. However, due to limited
space, we only report result of the 100-th percentile level
in the main text. The other results are instead deferred to
Appendix D.5.

Results on Continuous Tasks. The first part (the first 3
column) of Table 1 shows that among 33 cases (across 11
baselines and 3 tasks), incorporating the BOSS regularizer
improves the baseline performance positively up to 9.4%.
There is only one instance where BOSS decreases the per-
formance but the decrease is only 0.2%, which is negligible.

Moreover, in some cases, even when BOSS only maintains

6

Boosting Offline Optimizers with Surrogate Sensitivity

Table 1: Percentage of performance improvement achieved by BOSS across all tasks and baselines at the 100-th percentile
level. P denote the achieved normalized performance while G denote BOSS’s percentage of gain over baseline performance.

Continuous Tasks Discrete Tasks

Ant Morphology D’Kitty Morphology Superconductor TF Bind 8 TF Bind 10 ChEMBL

Algorithms P G P G P G P G P G P G

D(best) 0.565 0.884 0.400 0.439 0.467 0.605

CbAS Base 0.856 ± 0.029 0.895 ± 0.011 0.480 ± 0.038 0.911 ± 0.034 0.615 ± 0.031 0.636 ± 0.005
BOSS 0.861 ± 0.032 +0.5% 0.907 ± 0.012 +1.2% 0.485 ± 0.025 +0.5% 0.919 ± 0.054 +0.8% 0.656 ± 0.042 +4.1% 0.637 ± 0.010 +0.1%

BO-qEI Base 0.812 ± 0.000 0.896 ± 0.000 0.394 ± 0.048 0.779 ± 0.125 0.692 ± 0.126 0.659 ± 0.023
BOSS 0.812 ± 0.000 +0.0% 0.896 ± 0.000 +0.0% 0.464 ± 0.013 +7.0% 0.802 ± 0.069 +2.3% 0.692 ± 0.126 +0.0% 0.688 ± 0.000 +2.9%

CMA-ES Base 1.915 ± 0.909 0.723 ± 0.001 0.481 ± 0.026 0.944 ± 0.035 0.676 ± 0.039 0.633 ± 0.000
BOSS 2.009 ± 1.540 +9.4% 0.725 ± 0.002 +0.2% 0.482 ± 0.024 +0.1% 0.941 ± 0.029 -0.3% 0.672 ± 0.063 -0.4% 0.633 ± 0.000 +0.0%

GA Base 0.299 ± 0.037 0.871 ± 0.012 0.506 ± 0.008 0.980 ± 0.015 0.647 ± 0.029 0.640 ± 0.010
BOSS 0.314 ± 0.034 +1.5% 0.883 ± 0.012 +1.2% 0.515 ± 0.014 +0.9% 0.986 ± 0.007 +0.6% 0.658 ± 0.072 +1.1% 0.646 ± 0.002 +0.6%

ENS-MIN Base 0.399 ± 0.077 0.892 ± 0.010 0.501 ± 0.013 0.986 ± 0.006 0.642 ± 0.025 0.653 ± 0.018
BOSS 0.472 ± 0.110 +7.3% 0.893 ± 0.009 +0.1% 0.504 ± 0.010 +0.3% 0.989 ± 0.007 +0.3% 0.662 ± 0.038 +2.0% 0.662 ± 0.007 +0.9%

ENS-MEAN Base 0.403 ± 0.045 0.897 ± 0.009 0.510 ± 0.012 0.984 ± 0.007 0.628 ± 0.028 0.653 ± 0.014
BOSS 0.412 ± 0.094 +0.9% 0.897 ± 0.005 +0.0% 0.511 ± 0.015 +0.1% 0.986 ± 0.007 +0.2% 0.641 ± 0.032 +1.3% 0.662 ± 0.009 +0.9%

REINFORCE Base 0.253 ± 0.047 0.674 ± 0.138 0.481 ± 0.015 0.929 ± 0.031 0.664 ± 0.061 0.634 ± 0.002
BOSS 0.278 ± 0.014 +2.5% 0.732 ± 0.003 +5.8% 0.483 ± 0.007 +0.2% 0.943 ± 0.029 +1.4% 0.964 ± 0.096 +30.0% 0.639 ± 0.010 +0.5%

MINs Base 0.906 ± 0.019 0.944 ± 0.009 0.461 ± 0.027 0.907 ± 0.051 0.636 ± 0.039 0.633 ± 0.000
BOSS 0.924 ± 0.016 +1.8% 0.942 ± 0.008 -0.2% 0.476 ± 0.023 +1.5% 0.938 ± 0.053 +3.1% 0.644 ± 0.047 +0.8% 0.634 ± 0.003 +0.1%

COMs Base 0.896 ± 0.024 0.937 ± 0.012 0.483 ± 0.026 0.946 ± 0.035 0.628 ± 0.044 0.633 ± 0.000
BOSS 0.918 ± 0.025 +2.2% 0.942 ± 0.011 +0.5% 0.486 ± 0.030 +0.3% 0.954 ± 0.020 +0.8% 0.664 ± 0.038 +3.6% 0.638 ± 0.009 +0.5%

RoMA Base 0.574 ± 0.073 0.821 ± 0.019 0.490 ± 0.022 0.665 ± 0.000 0.547 ± 0.011 0.633 ± 0.000
BOSS 0.607 ± 0.087 +3.4% 0.830 ± 0.028 +0.9% 0.504 ± 0.022 +1.4% 0.665 ± 0.000 +0.0% 0.553 ± 0.000 +0.6% 0.633 ± 0.000 +0.0%

ICT Base 0.930 ± 0.030 0.938 ± 0.012 0.489 ± 0.018 0.911 ± 0.049 0.655 ± 0.022 0.633 ± 0.000
BOSS 0.939 ± 0.013 +0.9% 0.943 ± 0.013 +0.5% 0.501 ± 0.022 +1.2% 0.918 ± 0.023 +0.7% 0.667 ± 0.033 +1.2% 0.643 ± 0.017 +1.0%

similar performance as the baseline, it still helps reduce the
performance variance, as demonstrated by a reduction from
0.9% to 0.5% with ENS-MEAN baseline on the D’kitty
Morphology task. In addition, for certain cases, BOSS also
helps establish new SOTA performance. For example, in
the Ant Morphology task where the SOTA baseline is
represented by CMA-ES achieving 191.5%, incorporating
BOSS elevates its performance by 200.9%, setting a new
SOTA performance.

Results on Discrete Tasks. The second part (last 3 columns)
of Table 1 illustrates the impact of our regularizer BOSS on
the performance of baseline algorithms in 3 discrete do-
mains (TF-BIND-8, TF-BIND-10, and ChEMBL). It is
observed that in most cases (28/33), BOSS enhances the
baseline algorithms’ performance significantly up to 30%.

For the two instances in which BOSS decreases the perfor-
mance, the amount of decrease is (relatively) much milder,
ranging between 0.2% and 0.4%. Furthermore, on a closer
look, it is also observable that for certain cases, the in-
corporation of BOSS also helps elevate the state-of-the-art
(SOTA) results (in addition to improving the baseline perfor-
mance). For example, on TF-BIND-8 and ChEMBL, the
original SOTA performance (0.986 and 0.659) are achieved
by ENS-MIN and BO-qEI, respectively. These are fur-
ther elevated to 0.989 and 0.688 when BOSS is added to

regulate the loss function of ENS-MIN and BO-qEI, es-
tablishing new SOTA. Overall, our observations suggest
that BOSS demonstrates consistently a high probability
(84.85% = 56/66 cases) of improving baseline performance.
On average, it leads to an improvement of approximately
2.08%, with a notable peak improvement of 30%. Con-
versely, BOSS also carries a relatively much lower prob-
ability (4.5% = 3/66 cases) of decreasing baseline per-
formance. When such cases occur, the average perfor-
mance decrease is at most 0.3%, which is almost negli-
gible. The code for reproducing our results is at https:
//github.com/daomanhcuonghust/BOSS

5.3. Ablation Experiments

This section presents additional experiments to examine
the sensitivity of two representative baselines, COMs and
GA (regularized with BOSS) to changes in the number of
gradient ascent steps performed during optimization. Fur-
thermore, we also conduct ablation studies to investigate
the effects of specific hyperparameters of BOSS (see Algo-
rithm 1), including the sensitivity threshold α, the no. of
sampled perturbations m, and the effective value ranges
for ωµ, ω

2
σ, on the performance. Our studies are mainly

conducted on two tasks: SUPERCONDUCTOR and TF-
BIND-8. In addition, we also present empirical experiments

7

https://github.com/daomanhcuonghust/BOSS
https://github.com/daomanhcuonghust/BOSS

Boosting Offline Optimizers with Surrogate Sensitivity

88

90

92

94

96

98

0 10 20 30 40 50

Gradient ascent steps

C
ri

ti
c
a
l
te

m
p

e
ra

tu
re

SUPERCONDUCTOR

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Gradient ascent steps

B
in

d
in

g
 a

ff
in

it
y

TF−BIND−8

COMs w/ BOSS

COMs w/o BOSS

Grad. w/ BOSS

Grad. w/o BOSS

(a) (b)

(c) (d)

Figure 2: Plots of performance variation of COMS and GA (regularized by BOSS) to changes in (a) the no. of gra-
dient ascent steps during optimization; (b) values of the sensitivity threshold α; (c) changes in the no. of perturbation
samples m; and (d) changes in value ranges of bound ([ωµl

, ωµu
], [ωσl

, ωσu
]) for parameter ω of the perturbation dis-

tribution. These are ([−10−3, 10−3], [10−5, 10−2]), ([−10−3, 10−3], [10−6, 10−3]), ([−10−2, 10−2], [10−5, 10−2]), and
([−10−2, 10−2], [10−6, 10−3]) which are indexed with 0, 1, 2, 3 in this figure.

to demonstrate the tightness of Lemma 4.1, validating the
localized conditioning effect with relevant metrics and com-
putational complexity. Finally, we present tuning of λ, con-
vergence analysis, and limitations in Appendices D.6, D.7,
and D.12, respectively, due to limited space.

BOSS enhances stability of COMs and gradient ascent
(GA). Figure 2a depicts the performance variation of two
baseline algorithms, COMs, and GA, with and without our
BOSS regularizer. It is observed that initially these base-
lines outperform their BOSS-enhanced counterparts, but as
the number of optimization steps increases, their perfor-
mance starts to lag behind. This suggests that BOSS will
become increasingly beneficial for improving the baseline
performance in the latter stages of the optimization process.

Choosing the sensitivity threshold α – see Definition 3.1.
Figure 2b visualizes how the performance of baselines reg-
ularized with BOSS is influenced by varying the value of
α. The results indicate that using either an excessively low
or high value for α will impact the performance negatively.
In all cases, the results suggest that a universal value of 0.1
for α tend to generate consistent and effective performance
across all tasks.

Choosing the no. m of perturbation samples. Figure
2c visualizes how the performance of baselines regularized

with BOSS is influenced by varying the number of perturba-
tion samples drawn from N(ωµ1, ω

2
σI). It is observed that

with more perturbation samples, BOSS -regularized baseline
achieves higher performance gain but also incurs more com-
pute expense. As the performance gain beyond m = 100 is
marginal, we choose m = 100 in all experiments.

Choosing value ranges for ω. As we mentioned previously
in Section 3.2, large values for ω can make the sensitivity
measure vacuous because by definition, sensitivity character-
izes changes under slight perturbation of the model weight.
To find this appropriate range, we plot the performance of
the GA and COMS baselines regularized with BOSS with
respect to a set of potential ranges ([ωµl

, ωµu
], [ωσl

, ωσu
])

for ωµ and ωσ in Figure 2d. The results indicate that us-
ing an excessively low or high range of values will impact
the performance negatively. Overall, the empirical results
suggest that [−10−3, 10−3] and [10−5, 10−2] are best value
ranges for ωµ for ωσ, respectively. Additionally, we report
the final performance of BOSS with huge bound for ω in
Appendix D.9.

Tightness of Lemma 4.1. Technically, Lemma 4.1 can be
made tighter by replacing (A(ϕ, γ)/α)2 with (A(ϕ, γ)/α)n

for n > 2 on the RHS of Eq. (13). This is however not nec-
essary as our empirical studies suggest that even with n = 2,
the gap between the Sϕ and S+

ϕ is already sufficiently small.

8

Boosting Offline Optimizers with Surrogate Sensitivity

0.02

0.04

0.06

0.08

0 10 20 30 40 50
Gradient ascent steps

| S
φ

−
S

φ+ |
GA SUP GA TF8

Figure 3: The mean and standard deviation of
|Sϕ − S+

ϕ | across data batches during 50 epochs
of GA on Superconductor and TF-BIND-8.

Figure 4: Improvement in terms of RMSE and correlation between the
final performance with RMSE of CBAS, COMs on unseen data after
being conditioned with BOSS on TF-BIND-8 and TF-BIND-10.

This is detailed in Fig. 3 below. The plotted experiment
results essentially reveal that the biggest difference between
Sϕ and S+

ϕ is about 7.5%, while the average is about 5%.
This establishes the tightness of Lemma 4.1.

Validating the localized conditioning effect with relevant
metrics. The localized conditioning effect in the offline
optimizer arises because the offline data is not representative
of the entire data space, causing the learned optimizer to
overspecialize to the offline data.

This localized conditioning effect can be validated by ex-
amining the predictive performance (instead of the final
optimization performance) of prior work’s conditioned sur-
rogate, both with and without our developed regularizer, on
unseen input. An example of such validation is provided in
Figure 5b, which demonstrates that the root-mean-squared-
error (RMSE) of CBAS on unseen data improves after being
further conditioned with our proposed BOSS framework.
This improvement is observed on both the TF-BIND-8 and
TF-BIND-10 tasks.

Additionally, we conducted an experiment to assess the im-
provement in terms of RMSE and the correlation between
the final performance and RMSE of CBAS and COMs
on unseen data after being conditioned with BOSS on TF-
BIND-8 and TF-BIND-10. The results of this experiment
are presented in Figure 4. Figure 4 conclusively illustrates
that: (1) the localized conditioning effect exists (validated
via RMSE); (2) localized conditioning can be significantly
mitigated with our regularizer (the surrogate conditioned
with our regularizer achieves better RMSE); and (3) there is
a correlation between validation and the final metric (the sur-
rogate with lower RMSE also achieves better optimization
metrics).

Computational Complexity. For clarity, we would like to
detail the computational complexity of the BOSS algorithm
(i.e., Algorithm 1) below in terms of the number of parame-

ters of the surrogate model |ϕ|, the number of parameters of
the neural approximation |Φ| (see Eq. (8)-(9)), the number
of perturbation samples m, the number of training epochs e
needed to generate Φ in line 8, and the number of iterations
τ in line 1 of Algorithm 1. Below is the per-line complexity
breakdown that occurs within an outer loop over τ iterations
in line 2:

Line 3: O(m); Line 4: O(|ϕ|); Lines 5-6: O(m|ϕ|); Line
8: O(me|Φ|), where e is the number of epochs to train Φ;
Lines 10-11: O(2m); Line 17: O(m|ϕ|); Line 18: O(3|ϕ|)

Given that the above per-line complexity breakdown, the
total computational complexity of Algorithm 1 is

O(τ∗(3m+4|ϕ|+2m|ϕ|+me|Φ|)) = O(τ∗m∗(|ϕ|+|Φ|))

This indicates that the complexity is linear in m. Therefore,
a linear increase in m (e.g. ∆m) will result in a corre-
sponding linear increase in computational overhead (e.g.
O(∆m ∗ τ ∗ (|ϕ|+ |Φ|))).

6. Conclusion
This paper formalized the concept of model sensitivity
in offline optimization, which inspires a new sensitivity-
informed regularization that works synergistically with nu-
merous existing approaches to boost their performance. As
such, our contribution stands as an essential addition to the
existing body of research in this field, providing a versa-
tile and effective performance booster for a wide range of
offline optimizers. This is extensively demonstrated on a di-
verse task benchmark. In addition, we believe the developed
principles can also be adapted to related disciplines such
as safe Bayesian optimization (BO) or safe reinforcement
learning (RL) in online interactive learning scenarios, which
are potential follow-up of our current work.

9

Boosting Offline Optimizers with Surrogate Sensitivity

Impact Statement
This research focuses on developing an effective regularizer
for a wide range of existing offline optimization algorithms
that help improve their performance. The mathematical ap-
proaches and insights developed in this paper will benefit
various science and engineering applications, such as op-
timizing the design of hardware, materials, and molecules
which require optimizing a black-box function using only
its prior (offline) experimental data. Our experimental work
uses publicly available datasets to evaluate the performance
of our algorithms and we foresee no adverse ethical or soci-
etal consequences stemming from this research.

Acknowledgement
This work was funded by Vingroup Joint Stock Com-
pany (Vingroup JSC),Vingroup, and supported by Vin-
group Innovation Foundation (VINIF) under project code
VINIF.2021.DA00128.

References
Ahn, M., Zhu, H., Hartikainen, K., Ponte, H., Gupta, A.,

Levine, S., and Kumar, V. Robel: Robotics benchmarks
for learning with low-cost robots. In Conference on robot
learning, pp. 1300–1313. PMLR, 2020.

Barrera, L. A., Vedenko, A., Kurland, J. V., Rogers, J. M.,
Gisselbrecht, S. S., Rossin, E. J., Woodard, J., Mariani,
L., Kock, K. H., Inukai, S., et al. Survey of variation in
human transcription factors reveals prevalent dna binding
changes. Science, 351(6280):1450–1454, 2016.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Brookes, D., Park, H., and Listgarten, J. Conditioning by
adaptive sampling for robust design. In International
conference on machine learning, pp. 773–782. PMLR,
2019.

Chemingui, Y., Deshwal, A., Hoang, T. N., and Doppa, J. R.
Offline model-based optimization via policy-guided gradi-
ent search. In AAAI Conference on Artificial Intelligence,
2024.

Chen, C., Beckham, C., Liu, Z., Liu, X., and Pal, C. Parallel-
mentoring for offline model-based optimization. arXiv
preprint arXiv:2309.11592, 2023.

Deng, Y. and Mahdavi, M. Local stochastic gradient de-
scent ascent: Convergence analysis and communication
efficiency. In International Conference on Artificial Intel-
ligence and Statistics, pp. 1387–1395. PMLR, 2021.

Fannjiang, C. and Listgarten, J. Autofocused oracles for
model-based design. Advances in Neural Information
Processing Systems, 33:12945–12956, 2020.

Fu, J. and Levine, S. Offline model-based optimization
via normalized maximum likelihood estimation. arXiv
preprint arXiv:2102.07970, 2021.

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies,
M., Hersey, A., Light, Y., McGlinchey, S., Michalovich,
D., Al-Lazikani, B., et al. Chembl: a large-scale bioactiv-
ity database for drug discovery. Nucleic acids research,
40(D1):D1100–D1107, 2012.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Hansen, N. The cma evolution strategy: a comparing review.
Towards a new evolutionary computation: Advances in
the estimation of distribution algorithms, pp. 75–102.

Hoang, M., Fadhel, A., Deshwal, A., Doppa, J., and Hoang,
T. N. Learning surrogates for offline black-box optimiza-
tion via gradient matching. In ICML, 2024.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. The collected works of Wassily Hoeffd-
ing, pp. 409–426, 1994.

Krishnamoorthy, S., Mashkaria, S. M., and Grover, A. Dif-
fusion models for black-box optimization. arXiv preprint
arXiv:2306.07180, 2023.

Kumar, A. and Levine, S. Model inversion networks for
model-based optimization. Advances in Neural Informa-
tion Processing Systems, 33:5126–5137, 2020.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25,
2012.

Stephenson, W. T., Ghosh, S., Nguyen, T. D., Yurochkin,
M., Deshpande, S., and Broderick, T. Measuring the
robustness of gaussian processes to kernel choice. In
Camps-Valls, G., Ruiz, F. J. R., and Valera, I. (eds.),
Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151 of Pro-
ceedings of Machine Learning Research, pp. 3308–3331.
PMLR, 28–30 Mar 2022.

Trabucco, B., Kumar, A., Geng, X., and Levine, S. Conser-
vative objective models for effective offline model-based

10

Boosting Offline Optimizers with Surrogate Sensitivity

optimization. In International Conference on Machine
Learning, pp. 10358–10368. PMLR, 2021.

Trabucco, B., Geng, X., Kumar, A., and Levine, S. Design-
bench: Benchmarks for data-driven offline model-based
optimization. In International Conference on Machine
Learning, pp. 21658–21676. PMLR, 2022.

Tsai, Y.-L., Hsu, C.-Y., Yu, C.-M., and Chen, P.-Y. Formal-
izing generalization and robustness of neural networks to
weight perturbations. arXiv preprint arXiv:2103.02200,
2021.

Wang, Y., Du, S., Balakrishnan, S., and Singh, A. Stochastic
zeroth-order optimization in high dimensions. In Interna-
tional conference on artificial intelligence and statistics,
pp. 1356–1365. PMLR, 2018.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Yu, S., Ahn, S., Song, L., and Shin, J. Roma: Robust
model adaptation for offline model-based optimization.
Advances in Neural Information Processing Systems, 34:
4619–4631, 2021.

Yuan, Y., Chen, C., Liu, Z., Neiswanger, W., and Liu, X.
Importance-aware co-teaching for offline model-based
optimization. arXiv preprint arXiv:2309.11600, 2023.

11

Boosting Offline Optimizers with Surrogate Sensitivity

A. Derivation of Lemma 3.2
The derivation of Lemma 3.2 goes as follows. First, note that:∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣ ≤ Ex∼D

∣∣∣g(x;ϕ+ γ)− g(x;ϕ)
∣∣∣ (15)

≤ max
x∈D

∣∣∣g(x;ϕ+ γ)− g(x;ϕ)
∣∣∣ . (16)

This implies the probability that the LHS is larger than α is smaller than the probability that the RHS is larger than α. Hence,

1− δ ≤ Sϕ(α, ω) ≤ Pr
γ∼N(ωµ,ω2

σI)

{
max
x∈D

∣∣∣g(x;ϕ+ γ)− g(x;ϕ)
∣∣∣ ≥ α

}
, (17)

which implies with probability at least 1− δ, there exists an input at which the prediction might change by more than α due
to a slight perturbation. This establishes the first part of Lemma 3.2.

Now, let this input be x. Then, with probability at least 1− δ:

α ≤
∣∣g(x;ϕ+ γ)− g(x;ϕ)

∣∣ ≤
∣∣g(x;ϕ+ γ)− g(x′;ϕ+ γ)

∣∣
+

∣∣g(x′;ϕ+ γ)− g(x′;ϕ)
∣∣ + ∣∣g(x′;ϕ)− g(x;ϕ)

∣∣
≤ 2Lϕ∥x− x′∥ +

∣∣g(x′;ϕ+ γ)− g(x′;ϕ)
∣∣ (18)

is true for any x′ ∈ D. To see this, the first step in (18) above follows from the quadrilateral generalization of the triangle
inequality and the second step follows from the definition of Lipschitz constant in Lemma 3.2. Now, if x′ is within a
(α/4Lϕ)-ball centered at x, we have ∥x− x′∥ ≤ α/(4Lϕ).

Plugging this into (18) leads to:

α ≤ 2Lϕ∥x− x′∥ +
∣∣g(x′;ϕ+ γ)− g(x′;ϕ)

∣∣
≤ 2Lϕ · α

4Lϕ
+
∣∣g(x′;ϕ+ γ)− g(x′;ϕ)

∣∣ =
α

2
+
∣∣g(x′;ϕ+ γ)− g(x′;ϕ)

∣∣ , (19)

which implies |g(x′;ϕ + γ) − g(x′;ϕ)| ≥ α − α/2 = α/2. Thus, with probability 1 − δ, this is true for all x′ in the
(α/4Lϕ)-ball centered at x. The second part of Lemma 3.2 has been derived.

B. Derivation of Lemma 4.1
The derivation of Lemma 4.1 goes as follows. First, note that:

Sϕ (α, ω) ≜ Pr
γ∼N(ωµ,ω2

σI)

(∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣ ≥ α

)
(20)

= E
γ∼N(ωµ,ω2

σI)

[
I
(∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣ ≥ α
)]

. (21)

On the other hand, we have

A = I
(∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣ ≥ α
)

(22)

<
1

αn
·
∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣n , (23)

which is true for any γ ∼ N(ωµ, ω
2
σI) and α > 0. Thus, choosing n = 2 results in a differentiable (with respect to ϕ)

function that upper bounds the regularizer as follows:

Sϕ (α, ω) <
1

α2
· E
γ∼N(ωµ,ω2

σI)

[∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣2] . (24)

12

Boosting Offline Optimizers with Surrogate Sensitivity

However, when the difference between the surrogate model’s prediction and the perturbed model’s prediction is considerably
larger than alpha, the upper bound will be significantly higher than the original value, leading to reduced reliability of
the upper bound. To address this issue, we employ the minimum function to set a threshold on the disparity between the
upper bound regularizer and the original regularizer. By using the min function, we aim to reduce the difference between
the upper bound regularizer and the original one, without affecting the computation of gradients since the min function is
differentiable. Hence,

Sϕ (α, ω) < E
γ∼N(ωµ,ω2

σI)

[
min

(
1,

1

α2
·
∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣2)] ≜ S+
ϕ (α, ω) . (25)

C. Alternative Formulation of BOSS : BOSS-2 via using Taylor Approximation in Eq. (8)

Alternative to our main formulation of BOSS regularization, we can also apply Taylor approximation directly to the
definition of Sϕ(α, ω) as follows:

Sϕ (α, ω) ≜ Pr
γ∼N(ωµ,ω2

σI)

(∣∣∣Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]∣∣∣ ≥ α

)
. (26)

Instead of using the neural re-parameterization (as detailed in the main text), we could approximate h(ϕ + γ) ≜

Ex∼D

[
g(x;ϕ+ γ)

]
with a first-order Taylor expansion around ϕ. That is,

Ex∼D

[
g(x;ϕ+ γ)

]
− Ex∼D

[
g(x;ϕ)

]
= h(ϕ+ γ)− h(ϕ) ≃ ∇h(ϕ)⊤γ . (27)

Plugging Eq. (27) into Eq. (26) leads to

Sϕ (α, ω) = Pr
γ∼N(ωµ,ω2

σI)

(∣∣∇h(ϕ)⊤γ
∣∣ ≥ α

)
. (28)

Since γ follows the Gaussian distribution N(ωµ, ω
2
σI), we have ∇h(ϕ)⊤γ follows the univariate Gaussian distribution

N
(
ω⊤
µ ∇h(ϕ), ∇h(ϕ)⊤ω2

σI ∇h(ϕ)
)
= N(µz, σ

2
z) where µz ≜ ω⊤

µ ∇h(ϕ) and σ2
z ≜ ω2

σ∇h(ϕ)⊤∇h(ϕ) as a direct
consequence. Now, let z ≜ ∇h(ϕ)⊤γ,

Sϕ (α, ω) ≜ Pr
z∼N(µz,σ2

z)

(
|z| ≥ α

)
= Pr

z∼N(µz,σ2
z)

(
z ≤ −α

)
+ Pr

z∼N(µz,σ2
z)

(
z ≥ α

)
= Pr

z∼N(µz,σ2
z)

(
z ≤ −α

)
+ 1 − Pr

z∼N(µz,σ2
z)

(
z ≤ α

)
= 1 + Fz(−α) − Fz(α) , (29)

where Fz(.) is the cumulative distribution function (CDF) of the real-valued random variable z ∼ N(µz, σ
2
z). As the direct

approximation in Eq. (29) is already differentiable, we can bypass the use of a differentiable upper-bound in Lemma 4.1
and the neural re-parameterization in Eq. (9) to optimize Sϕ(α, ω) via its (differentiable) proxy in Eq. (29). Despite its
simplified formulation, its empirical improvement over the baseline performance is less pronouncing than the improvement
achieved by our main method BOSS. This is reported in Table 2 below where the alternative approach BOSS-2 is compared
with our main method BOSS on 3 baselines: GA, REINFORCE, and COMs over 6 benchmark tasks.

In particular, the results in Table 2 show that BOSS-2 also improves well over the baseline performance in the majority
of cases. For example, BOSS-2 consistently enhances the baseline performance in 13/18 instances, with a maximum
and average improvement of 3.1% and 1.25%, respectively. However, our main method BOSS still achieves better and
more consistent improvement than BOSS-2 . Using BOSS, we observe no task instances with degradation over baseline
performance. Furthermore, BOSS also outperforms BOSS-2 in 12/18 cases with a maximum and average difference
of 29.3% and 3.78%, respectively. In contrast, BOSS-2 only improves slightly over BOSS in 6/18 cases with a small
(average) margin of 0.5%.

13

Boosting Offline Optimizers with Surrogate Sensitivity

Table 2: Percentage of performance improvement achieved by BOSS across all tasks and baselines at the 100-th percentile
level. P denotes the normalized performance while G denotes BOSS’s and BOSS-2’s percentage of gain over the baseline
performance.

Continuous Tasks Discrete Tasks

Ant Morphology D’Kitty Morphology Superconductor TF Bind 8 TF Bind 10 ChEMBL

Algorithms P G P G P G P G P G P G

GA

Base 0.299 ± 0.037 0.871 ± 0.012 0.506 ± 0.008 0.980 ± 0.015 0.647 ± 0.029 0.640 ± 0.010
BOSS 0.314 ± 0.034 +1.5% 0.883 ± 0.012 +1.2% 0.515 ± 0.014 +0.9% 0.986 ± 0.007 +0.6% 0.658 ± 0.072 +1.1% 0.646 ± 0.002 +0.6%
BOSS-2 0.323 ± 0.051 +2.4% 0.881 ± 0.013 +1.0% 0.527 ± 0.012 +1.1% 0.985 ± 0.012 +0.5% 0.645 ± 0.029 -0.2% 0.640 ± 0.009 +0.0%

REINFORCE
Base 0.253 ± 0.047 0.674 ± 0.138 0.481 ± 0.015 0.929 ± 0.031 0.664 ± 0.061 0.634 ± 0.002
BOSS 0.278 ± 0.014 +2.5% 0.732 ± 0.003 +5.8% 0.483 ± 0.007 +0.2% 0.943 ± 0.029 +1.4% 0.964 ± 0.096 +30.0% 0.639 ± 0.010 +0.5%
BOSS-2 0.284 ± 0.045 +3.1% 0.696 ± 0.083 +2.2% 0.443 ± 0.012 -3.8% 0.938 ± 0.047 +0.9% 0.671 ± 0.037 +0.7% 0.640 ± 0.015 +0.6%

COMs
Base 0.896 ± 0.024 0.937 ± 0.012 0.483 ± 0.026 0.946 ± 0.035 0.628 ± 0.044 0.633 ± 0.000
BOSS 0.918 ± 0.025 +2.2% 0.942 ± 0.011 +0.5% 0.486 ± 0.030 +0.3% 0.954 ± 0.020 +0.8% 0.664 ± 0.038 +3.6% 0.638 ± 0.009 +0.5%
BOSS-2 0.900 ± 0.024 +0.4% 0.944 ± 0.010 +0.7% 0.496 ± 0.019 +1.3% 0.943 ± 0.025 -0.3% 0.641 ± 0.041 +1.3% 0.633 ± 0.000 +0.0%

91

92

93

94

95

96

97

0 10 20 30 40 50

Gradient ascent steps

C
ri

ti
c
a
l
te

m
p

e
ra

tu
re

SUPERCONDUCTOR

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50

Gradient ascent steps

B
in

d
in

g
 a

ff
in

it
y

TF−BIND−8

GA w/ BOSS GA w/ L1 GA w/ L2 GA w/o BOSS

(a)

0.4

0.5

0.6

0.7

0 20 40 60 80 100
Steps

R
M

S
E

TF−BIND−8

0.5

0.6

0.7

0.8

0 20 40 60 80 100
Steps

R
M

S
E

TF−BIND−10

w/ BOSS w/o BOSS

(b)

Figure 5: Additional experiments: (a) Comparison BOSS with L1 and L2 regularization; (b) Root-mean-square-error
(RMSE) of surrogate model trained with and without BOSS in simulated out-of-distribution regime.

D. Additional Experiment Results
D.1. Comparison with Other Regularization Methods

In the realm of machine learning, traditional L1 and L2-norm regularization techniques are known to prevent overfitting
during model training. To evaluate their effectiveness, we carried out a compact experiment to juxtapose these methods with
our regularization approach. This comparison involves examining the objective values of 128 solution designs through 50
steps of Gradient Ascent in two distinct tasks: SUPERCONDUCTOR and TF-BIND-8. Figure 5a indicates that while L1
and L2 norms improve upon the baseline solution, they do not surpass the performance of our regularization technique.
This is expected since BOSS is specifically designed to condition the output behavior of the model against adversarial
perturbation while L1 and L2 only generically penalize models with high complexity, measured by the L1 and L2 norms of
their parameters.

D.2. Precision of Surrogate Prediction using BOSS

Our regularization technique is designed to develop a more resilient surrogate model capable of handling minor disturbances
and delivering accurate predictions in out-of-distribution regimes. To assess the precision of predictions using BOSS versus
the original baseline, we carried out a small-scale experiment. In this experiment, we trained surrogate models with and
without the BOSS regularizer on the offline dataset and subsequently computed their root-mean-square-error (RMSE) on a
test dataset to assess their prediction precision on a simulated out-of-distribution regime. This is based on the observation
that the test dataset comprises samples with higher objective values than those of the offline dataset. The experimental
results are illustrated in Figure 5b which plots the mean and standard deviation of RMSE across multiple runs. The figures
showed that the integration of BOSS into surrogate training resulted in a model that produces more accurate prediction than
the model learned without using BOSS. This can be seen by observing a lower RMSE and reduced standard deviation in
settings where the surrogate training was regularized with BOSS. This observation is consistent across both the TF-BIND-8

14

Boosting Offline Optimizers with Surrogate Sensitivity

3.3

3.4

3.5

3.6

0 10 20 30 40 50

Gradient ascent stepsN
o

rm
a
li
z
e
d

 c
ri

ti
c
a
l
te

m
p

e
ra

tu
re

SUPERCONDUCTOR

0.68

0.70

0.72

0.74

0.76

0.78

0 10 20 30 40 50

Gradient ascent steps
B

in
d

in
g

 a
ff

in
it

y

TF−BIND−8

GA−0.01 GA−0.05 GA−0.1 GA−0.15 GA−0.2

(a)

3.3

3.4

3.5

3.6

0 10 20 30 40 50

Gradient ascent stepsN
o

rm
a
li
z
e
d

 c
ri

ti
c
a
l
te

m
p

e
ra

tu
re

SUPERCONDUCTOR

0.77

0.79

0.81

0.83

0 10 20 30 40 50

Gradient ascent steps

B
in

d
in

g
 a

ff
in

it
y

TF−BIND−8

GA−100 GA−150 GA−200 GA−50

(b)

3.3

3.4

3.5

3.6

0 10 20 30 40 50

Gradient ascent stepsN
o

rm
a
li
z
e
d

 c
ri

ti
c
a
l
te

m
p

e
ra

tu
re

SUPERCONDUCTOR

0.68

0.70

0.72

0.74

0.76

0.78

0 10 20 30 40 50

Gradient ascent steps
B

in
d

in
g

 a
ff

in
it

y

TF−BIND−8

GA−0 GA−1 GA−2 GA−3

(c)

Figure 6: Plots of performance (evaluated by COMs pseudo-oracle) variation of GA (regularized by BOSS) to changes in
(a) values of the sensitivity threshold α; (b) changes in the no. of perturbation samples m; and (c) changes in value ranges of
bound ([ωµl

, ωµu
], [ωσl

, ωσu
]) for parameter ω of the perturbation distribution. These are ([−10−3, 10−3], [10−5, 10−2]),

([−10−3, 10−3], [10−6, 10−3]), ([−10−2, 10−2], [10−5, 10−2]), and ([−10−2, 10−2], [10−6, 10−3]) which are indexed with
0, 1, 2, 3 in this figure.

and TF-BIND-10 tasks.

D.3. Tuning Hyper-parameters of the Proposed Regularizer

To fine-tune the hyper-parameters of our regularizer, we can use the surrogate of the base method (which was trained on
the offline data) as a pseudo-oracle, which helps evaluate design proposals generated by each specific configuration of the
regularizer. For example, we can leverage the surrogate model of COMs as a pseudo-oracle to evaluate design proposals
generated by the gradient ascent method (GA).

To demonstrate this, we conducted three experiments that mirrored those in our ablation studies in Section 5.3 with the key
difference being the use of a pseudo-oracle in place of the true oracle. The results are promising, showing that this technique
can successfully discover the same optimal hyperparameters as those determined using the true oracle. Figure 6a shows that
the value of sensitivity threshold α = 0.1 (GA-0.1) is the best, as previously demonstrated using true oracle in Figure 2b.
Likewise, Figure 6b shows that number of perturbation sample m = 100 as the corresponding regularized baseline GA-100
is the best among those in that plot. Figure 6c shows the bounds on mean and variance of the perturbation distribution
([−10−3, 10−3], [10−5, 10−2]) as the corresponding regularized baseline GA-0 is best. These are the same tuning results
found by the oracle in our ablation studies in Figure 2c and Figure 2d. Note that we only use the true oracle in the ablation
studies (Section 5.3) which is necessary to show the isolated effect of each of the components. Our other experiments do
not use the true oracle for hyper-parameter tuning. It is also noted that the indexing of baseline in Figure 6a, 6b, and 6c
correspond to different indexing systems of the tuning parameter candidates.

D.4. Comparison with Other Baselines

We also conducted additional experiments to compare the optimal performance achieved by BOSS with two recent
algorithms: DDOM (Krishnamoorthy et al., 2023) and tri mentoring (Chen et al., 2023). The results reported in Table 3
indicate that BOSS also significantly outperforms these new baselines in almost all tasks, except for D’Kitty Morphology
where our performance is slightly behind tri mentoring. We note that it is also possible to integrate the BOSS regularizer to
potentially improve the performance of tri mentoring similar to how it was done with ICT.

15

Boosting Offline Optimizers with Surrogate Sensitivity

Table 3: Performance achieved by BOSS , DDOM, and tri mentoring across all benchmark tasks at 100-th percentile. We
are not able to run the released code of tri mentoring on the ChEMBL task.

Algorithms Continuous Tasks Discrete Tasks

Ant Morphology D’Kitty Morphology Superconductor TF Bind 8 TF Bind 10 ChEMBL

DDOM 0.920 ± 0.013 0.934 ± 0.007 0.481 ± 0.037 0.946 ± 0.022 0.668 ± 0.075 0.635 ± 0.005
tri mentoring 0.932 ± 0.014 0.952 ± 0.011 0.509 ± 0.012 0.927 ± 0.015 0.665 ± 0.011 N/A

BOSS 0.939 ± 0.013 0.943 ± 0.013 0.515 ± 0.014 0.989 ± 0.007 0.964 ± 0.096 0.688 ± 0.000

D.5. Performance Evaluation at 75-th and 50-th Percentile Level

According to the reported results in Table 4, the no. of cases where there is a slight performance decrease is 20/66. The
maximum decrease across all such cases is 1.9%. This means in 46/66 = 69.7% of the cases the performance is either
preserved or improved. The performance also strictly increases in 24 cases with a maximum and average improvement of
23.3% and 2.104%, respectively. On the other hand, the average decrease is only 0.59%. Likewise, in Table 5, the observed
average improvement is 2.233% while the average decrease is only 0.952%. Following the protocol in (Trabucco et al., 2021)
(COMS), the offline optimizer starts with 128 initial points and performs a number of search steps to arrive at 128 solution
candidates. These solutions are sorted in increasing order such that the last point corresponds to the 100-th percentile, the
3-rd quarter point corresponds to the 75-th percentile and the middle point corresponds to the 50-th percentile. Consequently,
the result at the 100-th percentile is better than the results at the 75-th and 50-th percentile settings as expected.

Table 4: Percentage of performance improvement achieved by BOSS across all tasks and baselines at the 75-th percentile
level. P denotes the normalized performance while G denotes BOSS’s percentage of gain over the baseline performance.

Continuous Tasks Discrete Tasks

Ant Morphology D’Kitty Morphology Superconductor TF Bind 8 TF Bind 10 ChEMBL

Algorithms P G P G P G P G P G P G

D(best) 0.565 0.884 0.400 0.439 0.467 0.605

CbAS Base 0.523 ± 0.037 0.797 ± 0.009 0.195 ± 0.014 0.534 ± 0.015 0.496 ± 0.009 0.633 ± 0.000
BOSS 0.522 ± 0.057 -0.1% 0.794 ± 0.007 -0.3% 0.209 ± 0.012 +1.4% 0.531 ± 0.033 -0.3% 0.505 ± 0.011 +0.9% 0.633 ± 0.000 +0.0%

BO-qEI Base 0.607 ± 0.000 0.884 ± 0.000 0.306 ± 0.020 0.439 ± 0.000 0.502 ± 0.007 0.629 ± 0.005
BOSS 0.607 ± 0.000 +0.0% 0.884 ± 0.000 +0.0% 0.362 ± 0.026 +5.6% 0.439 ± 0.000 +0.0% 0.502 ± 0.006 +0.0% 0.622 ± 0.000 -0.7%

CMA-ES Base -0.001 ± 0.014 0.717 ± 0.001 0.389 ± 0.006 0.633 ± 0.015 0.528 ± 0.017 0.633 ± 0.000
BOSS 0.001 ± 0.012 +0.2% 0.717 ± 0.002 +0.0% 0.391 ± 0.006 +0.2% 0.635 ± 0.020 +0.2% 0.527 ± 0.013 -0.1% 0.633 ± 0.000 +0.0%

GA Base 0.180 ± 0.019 0.749 ± 0.026 0.474 ± 0.022 0.802 ± 0.022 0.512 ± 0.007 0.633 ± 0.000
BOSS 0.180 ± 0.016 +0.0% 0.755 ± 0.034 +0.6% 0.486 ± 0.019 +1.2% 0.783 ± 0.039 -1.9% 0.508 ± 0.004 -0.4% 0.633 ± 0.000 +0.0%

ENS-MIN Base 0.220 ± 0.012 0.808 ± 0.013 0.485 ± 0.017 0.821 ± 0.010 0.506 ± 0.009 0.633 ± 0.000
BOSS 0.226 ± 0.013 +0.6% 0.819 ± 0.007 +1.1% 0.485 ± 0.011 +0.0% 0.801 ± 0.008 +2.0% 0.507 ± 0.007 +0.1% 0.633 ± 0.000 +0.0%

ENS-MEAN Base 0.220 ± 0.010 0.828 ± 0.019 0.487 ± 0.026 0.806 ± 0.023 0.503 ± 0.007 0.633 ± 0.000
BOSS 0.220 ± 0.008 +0.0% 0.809 ± 0.021 -1.9% 0.488 ± 0.009 +0.1% 0.795 ± 0.021 -1.1% 0.502 ± 0.007 -0.1% 0.633 ± 0.000 +0.0%

REINFORCE Base 0.169 ± 0.031 0.479 ± 0.187 0.473 ± 0.015 0.564 ± 0.019 0.512 ± 0.009 0.633 ± 0.000
BOSS 0.174 ± 0.032 +0.5% 0.712 ± 0.008 +23.3% 0.468 ± 0.008 -0.5% 0.581 ± 0.023 +1.7% 0.511 ± 0.003 -0.1% 0.633 ± 0.000 +0.0%

MINs Base 0.738 ± 0.024 0.905 ± 0.003 0.363 ± 0.023 0.511 ± 0.015 0.506 ± 0.007 0.633 ± 0.000
BOSS 0.737 ± 0.014 -0.1% 0.903 ± 0.003 -0.2% 0.372 ± 0.015 +0.9% 0.519 ± 0.016 +0.9% 0.506 ± 0.006 +0.0% 0.633 ± 0.000 +0.0%

COMs Base 0.624 ± 0.025 0.884 ± 0.004 0.404 ± 0.018 0.714 ± 0.084 0.512 ± 0.013 0.633 ± 0.000
BOSS 0.614 ± 0.031 -1.0% 0.881 ± 0.002 -0.3% 0.404 ± 0.010 +0.0% 0.746 ± 0.062 +3.2% 0.514 ± 0.011 +0.2% 0.633 ± 0.000 +0.0%

RoMA Base 0.282 ± 0.025 0.724 ± 0.018 0.387 ± 0.016 0.614 ± 0.068 0.525 ± 0.003 0.633 ± 0.000
BOSS 0.278 ± 0.018 -0.4% 0.725 ± 0.018 +0.1% 0.385 ± 0.018 -0.2% 0.647 ± 0.037 +3.3% 0.526 ± 0.003 +0.1% 0.633 ± 0.000 +0.0%

ICT Base 0.672 ± 0.025 0.891 ± 0.003 0.405 ± 0.023 0.690 ± 0.049 0.547 ± 0.016 0.633 ± 0.000
BOSS 0.685 ± 0.012 +1.3% 0.891 ± 0.004 +0.0% 0.391 ± 0.033 -1.4% 0.683 ± 0.035 -0.7% 0.555 ± 0.017 +0.8% 0.633 ± 0.000 +0.0%

D.6. Setting value for λ:

The regularization coefficient λ controls the balance between the original loss and the proposed regularizer. It must be set
carefully to avoid being too small or too large, ensuring an effective trade-off between the two terms.

16

Boosting Offline Optimizers with Surrogate Sensitivity

Table 5: Percentage of performance improvement achieved by BOSS across all tasks and baselines at the 50-th percentile
level. P denotes the normalized performance while G denotes BOSS’s percentage gain over the baseline performance.

Continuous Tasks Discrete Tasks

Ant Morphology D’Kitty Morphology Superconductor TF Bind 8 TF Bind 10 ChEMBL

Algorithms P G P G P G P G P G P G

D(best) 0.565 0.884 0.400 0.439 0.467 0.605

CbAS Base 0.371 ± 0.017 0.737 ± 0.021 0.119 ± 0.017 0.426 ± 0.021 0.456 ± 0.006 0.633 ± 0.000
BOSS 0.381 ± 0.027 +1.0% 0.729 ± 0.023 -0.8% 0.128 ± 0.006 +0.9% 0.420 ± 0.026 -0.6% 0.465 ± 0.009 +0.9% 0.633 ± 0.000 +0.0%

BO-qEI Base 0.568 ± 0.000 0.883 ± 0.000 0.295 ± 0.006 0.439 ± 0.000 0.467 ± 0.000 0.609 ± 0.031
BOSS 0.568 ± 0.000 +0.0% 0.883 ± 0.000 +0.0% 0.305 ± 0.015 +1.0% 0.439 ± 0.000 +0.0% 0.467 ± 0.000 +0.0% 0.569 ± 0.000 -4.0%

CMA-ES Base -0.047 ± 0.005 0.685 ± 0.011 0.378 ± 0.006 0.546 ± 0.011 0.486 ± 0.019 0.633 ± 0.000
BOSS -0.041 ± 0.007 +0.6% 0.685 ± 0.010 +0.0% 0.379 ± 0.006 +0.1% 0.550 ± 0.015 -0.4% 0.481 ± 0.012 -0.5% 0.633 ± 0.000 +0.0%

GA Base 0.140 ± 0.018 0.616 ± 0.124 0.459 ± 0.034 0.613 ± 0.034 0.472 ± 0.004 0.633 ± 0.000
BOSS 0.141 ± 0.020 +0.1% 0.583 ± 0.158 -3.3% 0.471 ± 0.020 +1.2% 0.598 ± 0.043 -1.5% 0.468 ± 0.005 -0.4% 0.633 ± 0.000 +0.0%

ENS-MIN Base 0.183 ± 0.009 0.751 ± 0.018 0.478 ± 0.020 0.659 ± 0.023 0.469 ± 0.003 0.633 ± 0.000
BOSS 0.187 ± 0.011 +0.4% 0.758 ± 0.016 +0.7% 0.475 ± 0.013 -0.3% 0.624 ± 0.028 -2.5% 0.469 ± 0.002 +0.0% 0.633 ± 0.000 +0.0%

ENS-MEAN Base 0.182 ± 0.012 0.777 ± 0.028 0.480 ± 0.030 0.632 ± 0.023 0.469 ± 0.002 0.633 ± 0.000
BOSS 0.182 ± 0.004 +0.0% 0.751 ± 0.033 -2.6% 0.480 ± 0.009 +0.0% 0.629 ± 0.019 -0.3% 0.467 ± 0.002 -0.2% 0.633 ± 0.000 +0.0%

REINFORCE Base 0.137 ± 0.022 0.454 ± 0.192 0.468 ± 0.014 0.440 ± 0.010 0.468 ± 0.007 0.633 ± 0.000
BOSS 0.144 ± 0.029 +0.7% 0.697 ± 0.011 +24.3% 0.464 ± 0.008 -0.4% 0.455 ± 0.022 +1.5% 0.472 ± 0.005 +0.4% 0.633 ± 0.000 +0.0%

MINs Base 0.631 ± 0.033 0.887 ± 0.005 0.333 ± 0.019 0.425 ± 0.010 0.468 ± 0.005 0.633 ± 0.000
BOSS 0.628 ± 0.019 -0.3% 0.885 ± 0.002 -0.2% 0.346 ± 0.013 +1.3% 0.424 ± 0.010 -0.1% 0.467 ± 0.006 -0.1% 0.633 ± 0.000 +0.0%

COMs Base 0.502 ± 0.027 0.862 ± 0.005 0.384 ± 0.020 0.593 ± 0.052 0.474 ± 0.010 0.633 ± 0.000
BOSS 0.489 ± 0.026 -1.3% 0.854 ± 0.003 -0.8% 0.383 ± 0.013 -0.1% 0.634 ± 0.061 +4.1% 0.476 ± 0.012 +0.2% 0.633 ± 0.000 +0.0%

RoMA Base 0.227 ± 0.013 0.612 ± 0.146 0.356 ± 0.024 0.489 ± 0.060 0.518 ± 0.005 0.633 ± 0.000
BOSS 0.224 ± 0.013 -0.3% 0.636 ± 0.089 +2.4% 0.358 ± 0.021 +0.2% 0.512 ± 0.051 +2.3% 0.516 ± 0.006 -0.2% 0.633 ± 0.000 +0.0%

ICT Base 0.547 ± 0.024 0.870 ± 0.004 0.374 ± 0.021 0.590 ± 0.038 0.505 ± 0.014 0.633 ± 0.000
BOSS 0.560 ± 0.018 +1.3% 0.870 ± 0.005 +0.0% 0.363 ± 0.033 -1.1% 0.575 ± 0.030 -1.5% 0.518 ± 0.013 +1.3% 0.633 ± 0.000 +0.0%

In practice, we find λ = 10−3 to be reasonably effective across all task benchmarks. We conduct hyper-parameter tuning for
λ when BOSS is applied to the GA baseline on two tasks: Ant-Morphology and TF Bind 8. The results are reported in
Table 6.

D.7. Convergence Analysis

Our perturbation distribution is learned to optimize our notion of sensitivity while simultaneously minimizing the fit of
the surrogate. This results in a min-max optimization task of a non-convex function minϕ maxω F (ϕ, ω) which is then
optimized via stochastic gradient descent ascent (SGDA) for (ϕ, ω) – see Algorithm 1. Although SGDA can generally have
convergence issues, this is not the case here due to the specific form of our loss function, F (ϕ, ω) = L(ϕ) + λ · Sϕ(ω)

To elaborate, suppose the gradient norm of the sensitivity measure ∥∇ωSϕ(ω)∥2 is bounded below by 2µ with µ > 0, then

1

2
∥∇ωF (ϕ, ω)∥2 =

1

2
λ2∥∇ωSϕ(ω)∥2

≥ λ2µ ≥ λ2µ(Sϕ(ω
∗)− Sϕ(ω))

= λµ(F (ϕ, ω∗)− F (ϕ, ω)) (30)

where ω∗ ≜ argmaxSϕ(ω) and the second last step holds because Sϕ is defined to be a probability mass in (0, 1) – see
Definition 3.1 – and hence, 1 ≥ (Sϕ(ω

∗) − Sϕ(ω)) ≥ 0. This final equation is known as the Polyak-Łojasiewicz (PL)
condition with constant λµ. Along with the commonly adopted assumptions on the smoothness and Lipschitz continuity of
F (ϕ, ω), it implies that SGDA will converge, following Theorem 6.1 of (Deng & Mahdavi, 2021).

It’s important to note that Theorem 6.1 of (Deng & Mahdavi, 2021) is originally positioned in the distributed optimization
context, which reduces to the centralized case when the number of optimizing clients is set to 1. Additionally, the theorem
references prior work that directly proves the convergence of vanilla local SGDA on non-convex min-max optimization
tasks with the PL condition.

This explains why our alternating optimization scheme (i.e., local SGDA) will converge under mild technical assumptions

17

Boosting Offline Optimizers with Surrogate Sensitivity

λ Ant-Morphology TF Bind 8

1e-4 0.295 ± 0.026 0.976 ± 0.014
1e-3 0.314 ± 0.034 0.986 ± 0.007
1e-2 0.307 ± 0.026 0.967 ± 0.015
1e-1 0.299 ± 0.038 0.968 ± 0.017

Table 6: Hyper-parameter tuning for λ when
BOSS is applied to the GA baseline on two tasks:
Ant-Morphology and TF Bind 8.

Bound ωµ Bound ωσ Optimization performance

[−10−3, 10−3] [10−5, 10−2] 0.656 ± 0.042
[−0.1, 0.1] [10−3, 0.1] 0.626 ± 0.035
[−0.5, 0.5] [10−3, 0.5] 0.636 ± 0.043
[−1, 1] [10−3, 1] 0.636 ± 0.028
[−2, 2] [10−3, 2] 0.632 ± 0.036
[−4, 4] [10−3, 4] 0.620 ± 0.028

Table 7: Experiments on TF-BIND-10 using Cbas regularized with
our BOSS regularizer, varying the bounds/limits for ωµ and ωσ .

(i.e., a lower-bounded gradient of sensitivity, and smooth loss function with Lipschitz continuity). These assumptions are
reasonable and have been introduced in prior work on convergence analysis.

D.8. Effectiveness of Eq. (12)

Assuming Φ accurately approximates the sensitivity Sϕ via Eq. (8)-(9), Eq. (12) is a mathematically correct application
of the chain rule. Therefore, the effectiveness of Eq. (12) is tied to the approximation accuracy of Sϕ via Eq. (9). This is
explained as follows:

According to Eq. (9), the sensitivity measure (see Eq. (4)) is defined as the expectation of Φ(γ), where the expectation is
taken over the distribution of γ. This expectation is approximated using an empirical average based on a finite set of m
samples of γ.

The learning accuracy of the sensitivity measure can be characterized by the gap between the expectation and the empirical
average of a random variable I(γ ∈ Rα(ϕ)) ∈ [0, 1] based on a finite sample set. This gap can be upper-bounded using the
Hoeffding bound (Hoeffding, 1994), which implies a learning accuracy of ϵ with m = O(1/ϵ) samples of γ. In practice, we
find that m = 100 samples are sufficient.

D.9. Effect if the upper limit of ω is too large

To investigate this effect, we conducted multiple experiments on TF-BIND-10 using Cbas regularized with our BOSS
regularizer, varying the bounds/limits for ωµ and ωσ . The results are reported in Table 7.

The first row in the Table 7 uses the same bound setting as in our main paper, which appears to yield the best performance.
Overall, the results suggest that increasing the range of the bounds can cause the sampled perturbations to have larger values.
These larger perturbations might dominate the learning of the surrogate parameters, meaning the direction of the gradient
update is primarily influenced by ω, leading to minimal changes in the gradient direction for the ϕ component. This slows
down the learning of ϕ and ultimately reduces the final optimization performance. Note that we have previously shown that
the predictive accuracy of ϕ correlates with its optimization performance.

D.10. Connection to robust optimization

There is a conceptual connection between our work and robust optimization/machine learning through the idea of sensitivity
measures, though these ideas are substantiated in different mathematical forms tailored to different use cases. This is
elaborated below.

First, our work relates to robust optimization and adversarial learning through the high-level concept of sensitivity measures.
However, the mathematical formulations differ to suit different applications. Intuitively, sensitivity can be viewed as
brittleness to low-energy adversarial noise, a well-known concept in adversarial or robust machine learning. In our definition
of sensitivity, the perturbation γ corresponds to adversarial noise in adversarial learning. The distinction lies in the
formulation tailored to different use cases: In adversarial machine learning, sensitivity/brittleness is defined based on the
test input and is used post-training to attack a previously trained model on a specific test input. In our problem setting, the
definition applies to the model weights and also depends on the entire training input distribution, used during training to
condition the surrogate model.

18

Boosting Offline Optimizers with Surrogate Sensitivity

0.4

0.5

0.6

0.7

0.8

0 25 50 75 100
Steps

R
M

S
E

RMSE OOD

0.900

0.925

0.950

0.975

1.000

1.025

0 25 50 75 100
Steps

R
M

S
E

RMSE TRAIN

w/ BOSS w/o BOSS

(a)

0.67

0.69

0.71

0.73

0.75

0 50 100 150
Steps

R
M

S
E

RMSE OOD

0.975

1.000

1.025

1.050

0 50 100 150
Steps

R
M

S
E

RMSE TRAIN

w/ BOSS w/o BOSS

(b)

Figure 7: RMSE curves of COMs’s surrogate model, which is trained on the offline data of TF-BIND-8 (a) and TF-BIND-10
(b), on both training and unseen test data. RMSE OOD denotes the RMSE curves on unseen data while RMSE TRAIN
denotes the RMSE curves on training data

Second, beyond its main use of conditioning the surrogate model to improve the performance of existing offline optimizers,
our sensitivity measurement (see Eq. (4)) could potentially serve as a regularizer in training modern deep learning models.
This might enable a form of certified (attack-agnostic) defense in scenarios where the test distribution is known in advance.
Most defense approaches in robust machine learning assume knowledge of the test distribution. For instance, if we replace
the training distribution with the test distribution over which the expectation is taken in Eq. (4), the sensitivity measurement
could be seen as a certificate condition: For any Gaussian noise from a given distribution, the expected output of the
perturbed model will not significantly differ from the expected output of the unperturbed model with high probability. This
is a speculative hypothesis about a potential connection or direction. Whether this notion of a robust certificate would be
accepted by experts in the field of robust machine learning requires further investigation, which is beyond the scope of this
paper.

D.11. More RMSE curves in training and OOD regimes

Similar to Figure 5b which shows the RMSE curves for CbAS’s surrogate model trained on the offline data of TF-BIND-8
and TF-BIND-10, for both training and unseen test data, we also plot the RMSE curves for COMs’s surrogate on the same
datasets. The plots are illustrated in Figure 7. The results clearly demonstrate that our regularizer, BOSS, effectively reduces
RMSE on both training and test data, thereby improving overall performance.

D.12. Limitations

We want to clarify that the consistently improved performance of our method is not unexpected. Unlike previous work that
proposes a competing method and may struggle to outperform all existing methods across all tasks, our approach acts as a
booster, enhancing the performance of existing methods.

This aspect is both a strength and a limitation. It is a strength because it can robustly and directly leverage prior work to
advance the state-of-the-art and is arguably applicable as a model-agnostic booster to future methods. However, it is also a
limitation because it is not a standalone method; its effectiveness depends on the base performance of the existing method it
is coupled with. Additionally, it is only compatible with methods characterized by a differentiable loss function, and cannot
be applied to methods involving non-differentiable training routines.

Moreover, the booster’s effectiveness diminishes when considering lower solution percentiles, such as the 50-th and 75-th
percentiles, as detailed in Tables 5 and 4. The chance of a successful boost in these cases is substantially lower than that for
the 100-th percentile, as reported in Table 1.

19

