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Abstract

Transformer language models have demonstrated impressive generalization capa-
bilities in natural language domains, yet we lack a fine-grained understanding of
how such generalization arises. In this paper, we investigate length generaliza-
tion—the ability to extrapolate from shorter to longer inputs—through the lens
of task association. We find that length generalization can be transferred across
related tasks. That is, training a model with a longer and related auxiliary task can
lead it to generalize to unseen and longer inputs from some other target task. We
demonstrate this length generalization transfer across diverse algorithmic tasks,
including arithmetic operations, string transformations, and maze navigation. Our
results show that transformer models can inherit generalization capabilities from
similar tasks when trained jointly. Moreover, we observe similar transfer effects
in pretrained language models, suggesting that pretraining equips models with
reusable computational scaffolding that facilitates extrapolation in downstream
settings. Finally, we provide initial mechanistic evidence that length generalization
transfer correlates with the re-use of the same attention heads between the tasks.
Together, our findings deepen our understanding of how transformers generalize
to out-of-distribution inputs and highlight the compositional reuse of inductive
structure across tasks.

1 Introduction

A central theme of transformer language models is their ability to generalize. By scaling up data and
model size, large language models develop emergent abilities that exceed expectations [Wei et al.,
2022]. They can also transfer knowledge across domains and tasks [OpenAI, 2024, Brown et al.,
2020, Sanh et al., 2022]. While it is widely believed that language models are not simply parroting or
memorizing their training data, we still lack a fine-grained understanding of how language models
apply skills learned during training to potentially unseen problems.

The out-of-distribution (OOD) generalization capabilities of language models have garnered much
attention in the literature [Anil et al., 2022, Zhang et al., 2024, Yang et al., 2024]. In this work,
we study a canonical example of OOD generalization, length generalization, which is the ability to
generalize from shorter to longer inputs [Zhou et al., 2023]. There is a long line of work focusing on
improving length generalization of arithmetic tasks in transformers, which has spurred innovations in
positional encoding schemes and transformer architecture [Cho et al., 2024, McLeish et al., 2024].
Closely related is the concept of compositional generalization, where the model combines previously
learned skills to solve new problems [Yang et al., 2024, Xu et al., 2024].
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In this work, we study a new mechanism underlying length generalization: extrapolation by associ-
ation. We hypothesize that, when faced with a problem outside its training distribution, language
models can use related skills to solve it. Specifically, we ask: Can generalization to longer inputs in
one task transfer to another task that is only trained on short examples?
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Figure 1: Trained separately, each task fails to generalize to
longer inputs. When trained jointly, the main task inherits
the generalization range of the auxiliary task.

To showcase the length generaliza-
tion transfer capabilities in transform-
ers, we choose three distinct groups
of synthetic tasks. The tasks in each
group are related such that they rep-
resent similar algorithmic procedures.
Within each group, we train multiple
tasks together, and crucially, we train
an “auxiliary task” at a longer length
and a “main task” at a shorter length.
Using this setup, we observe that the
shorter main task generalizes to the
length of the longer auxiliary task
when trained together. See Figure 2
for the tasks and respective lengths
used in each experiment.

Contributions

1. We present the phenomenon of length generalization transfer, in which transformer models
trained on related tasks exhibit extrapolation behavior not present when trained on the target
task alone, providing new insights on the effect of multitask training on length generalization.

2. We show that the same phenomenon replicates in pretrained language models, and that natural
language pretraining transfers length generalization capabilities to synthetic downstream tasks.

3. We provide mechanistic evidence that transfer correlates with shared internal computa-
tion—specifically, the reuse of attention heads across tasks.

2 Related Works

Length Generalization. Length generalization concerns extrapolating to longer sequence lengths
than those seen during training [Dubois et al., 2019, Hupkes et al., 2020, Newman et al., 2020, Anil
et al., 2022]. Previous approaches include architectural modifications such as specialized positional
embeddings [Press et al., 2021, Li et al., 2023, Ruoss et al., 2023, Kazemnejad et al., 2024, Sabbaghi
et al., 2024, Cho et al., 2024, Zhou et al., 2024, McLeish et al., 2024], looping [Fan et al., 2024],
novel attention mechanisms [Duan et al., 2023, Li et al., 2025], and input format augmentation [Zhou
et al., 2023, 2024]. Beyond arithmetic, Yehudai et al. [2021] studies length generalization in graph
tasks. In contrast, our work examines a novel mechanism from which length generalization emerges:
transfer from related tasks. Finally, closely related to our work, "task hinting" [Awasthi and Gupta,
2023] trains sorting and increment-by-one tasks with simpler auxiliary tasks, showing improvements
in length generalization performance.

Compositional Capabilities. To explain emergent capabilities in language models, many works
study compositional generalization to understand whether transformers can gain abilities beyond those
in the training set. Yu et al. [2023], Zhao et al. [2025] and Hosseini et al. [2024] design benchmarks
testing the ability to combine learned skills to solve compositional math problems. Ahuja and
Mansouri [2024] derive provable guarantees for length and compositional generalization conditioned
on training set diversity. Some works use synthetic tasks to probe compositional generalization.
Ramesh et al. show transformers achieve compositional generalization on unseen combinations using
a series of bijections and permutations applied to strings, while Abedsoltan et al. [2025] show similar
results on families of parity functions.

For the specific task of reverse addition, works like Quirke and Barez [2023] and Quirke et al. [2025]
identify computational circuits responsible for compositional subtasks and show transferability of
such circuits to the related task of subtraction.
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3 Experimental Settings

Models. For from-scratch experiments, we use transformer models with 6 heads and 6 layers,
following the Llama architecture [AI@Meta, 2024], which uses Rotary Positional Embeddings
(RoPE) [Su et al., 2023] for position encoding. For experiments with pretrained models, we use
SmolLM [Allal et al., 2024], which provides access to intermediate checkpoints during pretraining,
allowing us to investigate how length generalization transfer evolves over time.

Tasks. We evaluate length generalization transfer across three categories of algorithmic problems:
arithmetic, string manipulation, and maze solving. Our tasks include:

• Arithmetic Tasks
– reverse add – Compute the sum of two integers, presented in reversed order.

– no carry – Compute digit-wise sums mod 10, without carry propagation.

– carry only – Output a binary mask indicating carry positions during addition.

– reverse subtract – Compute the reversed digit-wise difference between two numbers.

– n× 3 CoT multiply – Multiply an n-digit number by 3, with chain-of-thought steps.
• String Manipulation Tasks

– string copy – Return the input string unchanged.

– MQAR (Multi-Query Associative Recall) [Arora et al., 2023] – Given a repeated query
substring, retrieve the next character following each occurrence.

– capitalize – Flip the case of all alphabetic characters (lower ↔ upper).

– reverse – Reverse the character order of the input string.

– capitalize-reverse – Apply both reversal and case-flipping to the input string.
• Maze Tasks

– DFS trace – Simulate a depth-first search from a start node to a goal node in a maze.

– shortest path – Return the optimal (shortest) path between a start and goal node.

Task Groups. We construct task groups by pairing a main task, trained on short sequence lengths,
with one or more auxiliary tasks, trained on longer sequences. The main goal is to evaluate whether
training on a related auxiliary task improves the main task’s ability to generalize to longer inputs,
despite never seeing such lengths during training. The list of task groups are:

Main Task (Train Length) Auxiliary Task(s) (Train Length)
reverse add (16) no carry & carry only (32)
reverse add (16) reverse subtract (32)
reverse add (8) n× 3 CoT multiply (16)
string copy (16) MQAR (32)
capitalize-reverse (16) capitalize (32), reverse (32)
DFS trace (32) shortest path (64)

Data sampling and Task Length. Since we train under a multi-task setting, at each iteration, a task
is sampled uniformly at random from a predefined task group. For the selected task, an individual
training example is constructed based on a single governing parameter: length, which determines the
size or complexity of the problem instance. The length of each example is sampled uniformly from a
specified range for that task. All training data is generated on-the-fly during training.

Since the notion of length varies across task types, we define length for each task as:

• Addition Tasks: the maximum number of digits in both operands.
• String Tasks: the number of characters in the input string.
• Maze Tasks: the number of nodes in the input maze graph. See Section 4.3 for further details.
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Carry Only:        2050465+7829548=00000011

No Carry:          2050465+7829548=98799030

Reverse Subtract:  2050465+7829548=5878182-

Auxiliary Task

nx3 COT Multiply:  60844671*502=

                   030422880+0000000000=

                   (03042288)+00216982530=

                   (0325817163)

Main Task

Reverse Add:       2050465+7829548=98799041

Arithmetic Tasks

Auxiliary Task

Multi-query AR:   kYO4FL8T=O4FL;O4FL;FL8T

Main Task

Copy string:        0NFqtcebkY=0NFqtcebkY

Auxiliary Task

Reverse String:     rYPay1IcVT=TVcI1yaPY

Capitalize String:  0kf1bHesDA=0KF1BhESd

Main Task

Capital & Reverse:  Pay1IcVT0k=K0tvCi1YAp

String Tasks

Main Task

DFS Trace:

Auxiliary Task

Shortest

Path:

Maze Tasks

[5]:[30],

[13]:[8][58][45],[62]:[18]
[61][29],

...

[28]>[55]?

In: adjacency list Out: shortest path

[28][23][60][34][32][41][55]

[5]:[30],

[13]:[8][58][45],[62]:[18]
[61][29],

...

[28]>[55]?

[28][52][21];

[52][23][60][34][48];

[58][1];

[13][8];

[32][41][55]

In: adjacency list Out: All paths in DFS

Figure 2: Overview of the tasks used in our length generalization transfer experiments, spanning
three domains: arithmetic, string manipulation, and maze solving. Each group consists of a main
task trained on shorter sequences and one or more auxiliary tasks trained on longer ones. We study
whether generalization to longer inputs can be transferred from the auxiliary to the main task.

Training and Evaluation. Each example consists of an input-output pair. We use a loss mask to
train only on output tokens (and for MQAR, only on answer characters). At test time, we evaluate
using exact match accuracy on a fixed test set of 1024 examples. For each configuration, we report
results across 5 random initialization seeds but the dataset is kept the same. Full experimental
configurations and hyperparameter details are provided in Appendix C.

4 Length Generalization Transfer in Algorithmic Tasks

In this section, we demonstrate that while length generalization is often difficult for algorithmic
tasks, it can emerge through transfer when the model is co-trained on longer auxiliary tasks. Figure 2
illustrates the three categories of tasks we study—arithmetic operations, string transformations, and
maze navigation.

4.1 Arithmetic Tasks

Reverse addition has become a popular synthetic task for studying length generalization [Lee et al.,
2023, Shen et al., 2023, Zhou et al., 2023, 2024, Cho et al., 2024, McLeish et al., 2024, Lee et al.,
2025] in Transformers. The task involves calculating the sum of two randomly sampled integers,
and length generalization in this task involves training on examples up to some fixed length, and
generalizing on test data beyond the training lengths. Here, we adopt the reverse add format
proposed by Lee et al. [2023], where the operands and the sum are reversed for faster learning. For
the auxiliary tasks, we consider (1) reverse subtract , which computes the difference between
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two operands, (2) no carry , which computes the digit-wise sum mod 10, ignoring the carries, and
(3) carry only , which computes the locations where a carry happens in the addition.
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(b) Aux: reverse subtract
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Figure 3: Length generalization results for addition-related task groups. The main task is
reverse add , with performance shown when trained with different auxiliary tasks. Each model

is trained with 5 random seeds; best-performing runs are shown in bold. The dashed vertical line
indicates the maximum training length for each task. When trained alone (d), the model fails to
generalize beyond training length. Co-training with related auxiliary tasks (a-c) enables extrapolation
to longer inputs.

As shown in Figure 3, models trained only on reverse add (Figure 3d) struggle to generalize
beyond the training length. However, when co-trained with longer auxiliary tasks (Figures 3a, 3b,
3c), the model successfully extrapolates, often matching the auxiliary task’s generalization range.
This provides empirical evidence that length generalization can transfer across tasks.

It is worth noting that the generalization behavior is not entirely robust: different random seeds yield
noticeably different outcomes, suggesting unstable training dynamics. We discuss this instability
further in Section 6.2.

4.2 String Tasks

We now turn to string operations, where we observe similar transfer effects on two task groups.
The tasks include: string copy , which returns the input unchanged; MQAR (Multi-Query As-
sociative Recall) [Arora et al., 2023], where the model retrieves the next character given a random
substring; reverse , which reverses character order; capitalize , which inverts letter case; and
capitalize-reverse , combining case inversion and reversal.

Figure 4 shows that when trained on main tasks alone (Figures 4b, 4d), the model does not generalize
beyond the training range. On the other hand,Adding training with auxiliary tasks enables substantial
extrapolation (as shown in Figures 4a and 4c).

4.3 Maze Tasks

Lastly, we examine maze-solving tasks as a testbed for length generalization transfer. We define a
maze as a spanning tree over a square grid, generated using Wilson’s algorithm [Wilson, 1996], which
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Figure 4: Performance plots for string tasks. When trained alone (b, d), models fail to generalize
beyond their training range. Co-training with auxiliary tasks (a, c) enables substantial length
extrapolation.

ensures uniform sampling via loop-erased random walks. For each problem instance, we randomly
sample a start and end node, and the model is tasked with producing a path from start to end. Mazes
are represented as adjacency lists, with each node and its neighbors encoded as individual tokens
(e.g., [1], [2], ..., [64]). Input/output formatting examples are shown in Figure 2 and Section C.2.

A challenge in defining length generalization for mazes is that increasing grid size introduces unseen
node tokens at test time. To avoid this, we fix the grid size and instead vary the number of nodes
included in the spanning tree. Specifically, we define the input length as the total number of nodes
in the maze graph and generate partial mazes by stopping Wilson’s algorithm early. For example,
to construct a 32-node maze on an 8× 8 grid, we run the algorithm until 32 nodes are added. The
resulting maze may not span the full grid but remains a valid traversal problem. Figure 5 illustrates
such partial mazes with 16, 32, and 64 nodes.

Figure 5: 8× 8 mazes with number of nodes equal to 16, 32, and 64. We define length generalization
as the ability to generalize to mazes with a higher number of nodes.

We consider two maze tasks: (1) shortest path , where the model outputs the shortest path from
start to end node, and (2) DFS trace , where the model simulates a depth-first search traversal
(including backtracking). Shortest path is harder to learn perfectly, as it requires "lookahead" at
branch points, while DFS trace allows exploration and backtracking. Figure 6 shows that in the
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multi-task setting, the addition of shortest path helps DFS trace generalize to higher lengths.
The opposite is true as well: DFS trace helps shortest path generalize to higher lengths,
which is shown in Figure 7.
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Figure 6: Performance plots for maze tasks. Co-training DFS trace with shortest path (a)
enables generalization to longer lengths compared to training on DFS trace alone (b).

4.3.1 Transfer with Swapped Main and Auxiliary Tasks

We consider another maze task group where we the main and auxiliary tasks are reversed relative to
Section 4.3. In this case, the main task is shortest path , and the auxiliary task is DFS trace .
As shown in Figure 7, co-training with the auxiliary task again improves length generalization
performance. While shortest path is more difficult than DFS trace , the model benefits from
learning a related traversal strategy.
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(a) Main: shortest path , Aux: DFS trace
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Figure 7: Length generalization results for maze task group with reversed task roles. Co-
training shortest path with DFS trace (a) leads to improved generalization over training on
shortest path alone (b).

4.4 Control Tasks

To verify that length generalization transfer does not arise from merely seeing longer inputs, we
further test arithmetic tasks and string operations with control auxiliary tasks. or arithmetic, we use
copy-first-op , which follows the addition format but simply copies the first operand. For string

operations, we pair string copy with reverse . As expected, length generalization transfer is
not observed with unrelated task (Figure 8).

5 Length Generalization Transfer from Pretraining

Remarkably, we find that natural language pretraining can serve as an effective form of implicit
auxiliary task that enhances length generalization in synthetic tasks. To explore this, we finetune
various checkpoints of SmolLM-360M [Allal et al., 2024] on reverse add and shortest path
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Figure 8: Control tasks for (a) addition and (b) string operations. These unrelated task pairs fail to
produce length generalization transfer, confirming that task relatedness is crucial.

tasks. SmolLM is released by Huggingface and pretrained on a diverse corpus containing natural
language and programming data, which includes long-range structures and dependencies.

Before finetuning, we verify that the model does not already solve these tasks. For reverse add ,
a zero-shot evaluation using prompt-based input results in near-zero accuracy, confirming that the
model has not learned this task during pretraining. For the maze task, all node tokens are newly
introduced during finetuning, meaning the entire input format is unseen by the pretrained model.

We then finetune models from multiple publicly available checkpoints, taken throughout the pretrain-
ing process (from step 160K to 2.56M), and evaluate their length generalization performance on
out-of-distribution inputs. As shown in Figure 9, we observe a clear trend: generalization to longer
inputs improves steadily with pretraining progress, for both arithmetic and maze-solving tasks. This
suggests that natural language pretraining instills reusable inductive biases that transfer to novel
tasks—even when those tasks have little structural resemblance to natural language. We speculate the
extent of generalization transfer from pretrained models may not be limited to length generalization,
but could extend to other forms of out-of-distribution generalization such as compositional reasoning,
distributional shifts, and task complexity. Future work could explore whether similar transfer effects
exist for other generalization challenges.

Additionally, we confirm that length generalization transfer is not limited to small models trained
from scratch, but also emerges in finetuned pretrained models. Additional results across other task
groups are provided in Appendix A.3.
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(a) reverse add task.
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Figure 9: Finetuning at different SmolLM-360M checkpoints reveals that length generalization
transfer improves with more natural language pretraining.

6 Ablations

In this section, we present several complementary analyses to better understand the conditions under
which transfer occurs. We examine the effect of varying the length configurations of the main and
auxiliary tasks and also provide an initial mechanistic explanation of the transfer phenomenon based
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on circuit sharing between tasks. Additional analyses, including the instability of training dynamics
(Section 6.2) and the effect of positional encodings (Section 6.3) are included in the Appendix.

6.1 Varying Main and Auxiliary Task Lengths

In our previous experiments, we fixed the main task length to 16 and the auxiliary task length to 32.
A natural question is: does length generalization transfer persist across other main–auxiliary length
configurations? To investigate this, we define the generalization gap (Figure 10), a scalar between 0
and 1 that quantifies the discrepancy in performance between the main and auxiliary tasks across a
range of evaluation lengths. A smaller generalization gap indicates stronger transfer, with a value of
0 implying perfect alignment between the main and auxiliary generalization curves.

First we fix the task group reverse add , no carry and carry only . Then, we systemati-
cally vary the training lengths of both main and auxiliary tasks across the range {4, 8, 16, . . . , 256}
and compute the average generalization gap over three random seeds. As shown in Figure 10, we
find that the transfer effect is most effective when the ratio between the auxiliary and main lengths is
between 0.5 and 2. The intuitive explanation is that, when the difference between task length is too
high, the model will overfit to the task length difference and therefore do not exhibit length transfer.
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Figure 10: (a) The generalization gap is defined as the average difference in accuracy between the
main and auxiliary tasks across evaluation lengths, normalized to the range [0, 1]. A lower value indi-
cates better transfer. (b) Generalization gap across different combinations of main ( reverse add )
and auxiliary ( no carry & carry only ) training lengths. The transfer effect is strongest when
the ratio between auxiliary and main lengths is between 0.5 and 2, as shown by the dark diagonal
band.

6.2 Unstable Training Dynamics in Length Generalization Transfer
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Figure 11: Training curves for the reverse add when co-trained with no carry and
carry only . Accuracy in the transfer region (length 17–32) fluctuates significantly, illustrat-

ing unstable training dynamics in length generalization transfer.
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As shown in Figures 3, 4, and 6, not all random seeds exhibit successful length generalization transfer.
In our experiments with 5 different seeds per task group, we observe considerable variability in length
generalization transfer performance. The variability is entirely due to different model initializations,
since we keep the dataset the same between runs. To better illustrate this instability, we visualize
training dynamics in Figure 11.

The plots show training curves for the reverse add main task when co-trained with no carry

and carry only auxiliary tasks. During evaluation, we sweep over input lengths from 1 to 36,
which is classified into three regimes:

• In-distribution (length 1–16): These inputs fall within the training range for the main task.
Accuracy in this regime improves quickly and remains stable.

• Expected transfer range (length 17–32): These inputs are unseen by the main task but seen by the
auxiliary tasks. Performance in this range is highly variable and sensitive to training dynamics.

• Fully OOD (length >32): These inputs are unseen by both the main and auxiliary tasks. As
expected, accuracy in this regime remains low.

6.3 Rotary Position Encoding Encourages Length Generalization Transfer

In length generalization literature, NoPE (no positional encoding) is often favored for its strong
extrapolation on individual tasks. However, many modern transformer models use Rotary Positional
Encoding (RoPE) due to its empirical robustness in long-context and real-world settings [Peng et al.,
2023, Ding et al., 2024, Barbero et al., 2024].

We re-evaluate our multitask transfer setup under both encoding schemes. Across task families, RoPE
consistently yields stronger length-generalization transfer from auxiliary to main tasks. Detailed
per-task curves are provided in Appendix A.1. Figure 12 summarizes the overall trend. This finding
is orthogonal to the previous understanding that NoPE is better suited for length generalization and
potentially explains the superior performance of RoPE in real-world models and tasks.
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Figure 12: Comparison of generalization gap across task groups. Smaller gap means stronger transfer.
RoPE consistently outperforms NoPE, indicating that rotary embeddings better support cross-task
extrapolation.

7 Limitations

While our work demonstrates length generalization transfer across a range of synthetic tasks, several
important limitations remain. First, our study does not provide a formal theoretical framework for
understanding when and why transfer occurs. Without a principled understanding of the underlying
mechanisms, predicting or optimizing transfer remains challenging. Second, our experiments are
limited to relatively simple algorithmic domains with well-defined length parameters and deterministic
solution paths. While this setup allows for controlled comparisons, it is unclear whether similar
transfer effects would hold in settings that involve hierarchical reasoning, abstract problem-solving,
or tasks requiring integration of multiple skills simultaneously. Addressing these limitations is a
promising direction for future work and could further illuminate the generalization capabilities of
transformer models in more realistic settings.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

15



3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is included in the supplementary materials section of the submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all relevant training and test details in Section 3 and
Appendix B, including model architectures, task specifications, data generation procedures,
and hyperparameter configurations as shown in Tables 1-3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports results across 5 different random seeds for model initial-
ization (mentioned in Section 3), and the figures show multiple runs with different random
seeds, providing visual indication of result variability.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides type of compute, amount of compute used for each
experiment run as well as estimate of total compute in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: Yes
Justification: The authors have reviewed and verified that the paper conforms to the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: The fundamental nature of the research on transformer models’ length general-
ization capabilities suggests limited direct societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper works with synthetic algorithmic tasks rather than models or datasets
that pose risks of misuse, so safeguards aren’t applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites previous work and models used, including SmolLM
and other transformer architectures, attributing them to their creators with appropriate
citations.
Guidelines:

19



• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper doesn’t introduce new datasets or models intended as assets for the
broader community.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research doesn’t involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: No human subjects are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: While the paper studies transformer models, it doesn’t use LLMs as part of its
research methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Additional Results

A.1 Detailed Plots for Rotary vs. NoPE Models

To complement Section 6.3, we show full length-generalization curves for the No Positional Encoding
(NoPE) and Rotary Positional Encoding (RoPE) variants under the same task settings. Each subplot
reports exact-match accuracy versus input length. The dashed vertical line indicates the maximum
training length for each task. In all domains, RoPE models exhibit smoother extrapolation and better
alignment between main and auxiliary tasks.
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Figure 13: Detailed performance curves comparing RoPE and NoPE variants across arithmetic and
string tasks. RoPE models maintain strong transfer to longer lengths, while NoPE variants degrade
rapidly beyond the training range.

A.2 Additional Results on Arithmetic and String Tasks

For task groups with two auxiliary tasks– reverse add with no carry and carry only , and
capitalize-reverse with capitalize and reverse –we additionally evaluate the effect

of training with only one of the auxiliary tasks. As shown in Figure 14, length generalization
transfer performance consistently declines when only a single auxiliary task is used, compared to
co-training with both. Notably, the choice of auxiliary task matters: models trained with the more
relevant auxiliary ( no carry or reverse ) exhibit stronger generalization than those trained
with less relevant ones ( carry only or capitalize ). These results reinforce the importance
of task alignment for successful transfer. As shown in Figure 14, length generalization transfer
performance consistently declines when only a single auxiliary task is used, compared to co-training
with both. Notably, the choice of auxiliary task matters: models trained with the more relevant
auxiliary ( no carry or reverse ) exhibit stronger generalization than those trained with less
relevant ones ( carry only or capitalize ). These results reinforce the importance of task
alignment for successful transfer.
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Figure 14: Additional results for arithmetic and string (copy) task groups. Each row shows perfor-
mance on the main task (A) when co-trained with: both auxiliary tasks (left), only one of the auxiliary
task (middle & right). Performance degrades when training with only one auxiliary task, especially
when the auxiliary is less structurally aligned with the main task.
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A.3 Finetuning from Pretrained Models

We replicate our length generalization transfer experiments using a pretrained language model,
SmolLM-360M, where we observe similar patterns of length generalization transfer as in the from-
scratch setting. Figure 15 presents results across three arithmetic task groups and one string ma-
nipulation group. As with our earlier experiments, co-training with structurally related auxiliary
tasks facilitates generalization beyond the training length. Notably, we also confirm that control task
pairs–such as reverse add with copy-first-op –do not lead to successful transfer. Orthogo-
nal to the length generalization transfer, results show that SmolLM-360M exhibits strong inherent
generalization in copying tasks (15c, 15d).
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Figure 15: Length generalization transfer with the pretrained model SmolLM-360M. (a–c): Arith-
metic task groups. In (a) and (b), we observe successful transfer from auxiliary to main tasks,
mirroring results from from-scratch training. In (c), no transfer occurs when using the control task
copy-first-op , confirming the importance of task relevance. (d): String manipulation task,

showing transfer from capitalize and reverse to capitalize-reverse . Overall, the
transfer effect persists in the pretrained model.
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B Mechanistic Evidence of Circuit Sharing

In this section we consolidate the mechanistic analysis of length generalization transfer, showing
that successful transfer coincides with reuse of internal attention circuits across related tasks.

Metrics and protocol. We study whether transformer models reuse similar attention mechanisms
across tasks when length generalization transfer occurs. We use two complementary metrics:

• Attention matrix difference: sum of entry-wise absolute differences between attention matrices
(per head) for two tasks. Lower values indicate more similar attention patterns.

• Attention-head mean-ablation map difference: for each head (6 layers × 6 heads), we replace
its output with the batch mean and measure the accuracy drop (activation patching). This
produces a head-importance map per task; we then take the average absolute difference between
the two maps. Lower values indicate more similar head usage.

This follows standard activation-patching methodology used in mechanistic-interpretability stud-
ies [Wang et al., 2022, Cammarata et al., 2021, Olsson et al., 2022]. Across checkpoints, reductions
in the generalization gap (defined in Fig. 10) generally coincide with smaller differences in both
metrics—i.e., tighter alignment of attention mechanisms across tasks when transfer strengthens.
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Figure 16: Arithmetic task group ( reverse add with auxiliaries reverse subtract /
no carry ). Evolution of generalization gap, attention-matrix difference, and head mean-ablation

map difference across checkpoints. When transfer improves (smaller gap), attention mechanisms
align (smaller differences).

B.0.1 Example Attention-Head Ablation Maps

We visualize the attention-head mean-ablation maps for a pair of related tasks— reverse add and
reverse subtract —across four training checkpoints (Figure 17). Each 6× 6 matrix represents

the importance of each attention head: the value at position (i, j) indicates the drop in accuracy when
head i in layer j is replaced with the mean activation across the batch. These matrices reveal which
heads are functionally critical for each task. If two tasks reuse the same circuitry, their ablation maps
will appear similar; our scalar similarity metric is the average absolute difference between the two
matrices.

B.0.2 Extended Results Across Tasks

We next compare how the two circuit-similarity metrics track with the generalization gap across
training checkpoints for string, arithmetic, and control tasks.

String tasks. Figure 18 shows that the raw attention-matrix difference does not correlate well with
generalization for string tasks, whereas the ablation-map difference does. Shared head usage, rather
than raw attention weights, better captures functional similarity.
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Figure 17: Mean-ablation maps for reverse add and reverse subtract across checkpoints.
Each (i, j) entry shows the accuracy drop after mean-ablating head i in layer j. Similar maps indicate
overlapping computational circuits.
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(b) A: copy , B: MQAR
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(c) A: copy , B: reverse

Figure 18: Circuit-sharing results for string task pairs. The attention-matrix difference shows
weak correlation with generalization, whereas the head-ablation map difference tracks it closely,
highlighting shared head usage.
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Arithmetic tasks. For arithmetic task pairs (Figure 19), both metrics strongly correlate with the
generalization gap, suggesting that these tasks share not only head usage but also detailed attention-
pattern structure.

Control tasks. For unrelated task pairs such as reverse add with copy-first-op , neither
metric correlates with performance, confirming that the observed correlations are not incidental.
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(b) A: reverse add , B: no carry
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(c) A: reverse add , B: reverse subtract

Figure 19: Circuit-sharing results for arithmetic tasks. Both attention-matrix and head-ablation map
differences correlate with generalization gap in related task pairs (b,c) but not in the unrelated control
pair (a).

Takeaway. Across arithmetic, string, and maze domains (not shown), strong length-generalization
transfer coincides with shared attention-head usage between tasks. This supports the hypothesis that
transformers reuse a compositional “scaffold” of attention circuits when transferring extrapolation
behavior across related problems.
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C Experiment Details

C.1 Model

For all experiments, we use decoder-only transformer models following the Llama architecture.
Unless otherwise specified, we use Rotary Positional Embeddings (RoPE) for positional encoding;
exceptions are noted in the ablation studies in Section 6.3.

For pretrained model experiments, we use SmolLM-360M [Allal et al., 2024], a compact transformer
trained on natural language and code. Table 1 summarizes the model configurations used in our
experiments.

Table 1: Model configurations used in our experiments.

Model Self-Attn Layers Num Heads Embedding Dim
From-Scratch 6 6 384

SmolLM 32 15 2560

C.2 Data Formats and Data Sampling

We provide examples of each task in Table 2. For all arithmetic tasks, both the inputs and outputs are
written in reverse digit order. For the n× 3 CoT multiply task, the output includes intermediate
steps where the first operand is multiplied by each digit of the second operand.

For maze-based tasks, we serialize graphs using an adjacency list format with unique node tokens,
followed by a query specifying the start and end node. A detailed example is shown in Figure 20.

Table 2: Examples of algorithmic tasks used in our experiments.
Task Name Input Output
only carry 82050465+23782955= 010010111
no carry 82050465+23782955= 057323100
reverse add 82050465+23782955= 067333211
reverse subtract 82050465+23782955= 692674000
n× 3 CoT multiply 60844671*502= 030422880+0000000000=

03042288+00216982530=
0325817163

copy string fVOBA1fR= fVOBA1fR
Multi-Query

Associative Recall
fVOBA1fR= fVOB;OBA1;

string reverse fVOBA1fR= Rf1ABOVf
capitalize fVOBA1fR= Fvoba1Fr
capitalize-reverse fVOBA1fR= rF1abovF
Shortest Path [0]:[10], [15]:[4][5], [11]:[1][3][5],

[3]:[11], [4]:[2][15], [14]:[9][5],
[10]:[0][9][13], [2]:[4],
[1]:[11], [7]:[5], [13]:[8][10],
[5]:[11][7][14][15], [12]:[8][6],
[9]:[10][14], [8]:[12][13], [6]:[12]
?[12]>[2]?

[12][8][13] [10][9][14] [5][15][4][2]

DFS trace [0]:[10], [15]:[4][5], [11]:[1][3][5],
[3]:[11], [4]:[2][15], [14]:[9][5],
[10]:[0][9][13], [2]:[4],
[1]:[11], [7]:[5], [13]:[8][10],
[5]:[11][7][14][15], [12]:[8][6],
[9]:[10][14], [8]:[12][13], [6]:[12]
?[12]>[2]?

[12][6];
[12][8][13][10][9][14][5][11][1];
[11][3]; [5][15][4][2]
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Figure 20: Detailed example of maze data format. Each node is a random number selected from
n× n nodes in the grid.

C.3 Experimental Settings

C.3.1 Hyperparameter Configurations

Table 3 lists the hyperparameters used for training across different task domains and model types.
From-scratch models are trained with a higher learning rate and larger batch sizes, while pretrained
models (SmolLM-360M) use lower learning rates and shorter training schedules. All models are
optimized using AdamW with a learning rate schedule that includes a warm-up phase, a constant
phase, and a cosine decay phase.

Table 3: Hyperparameters for training

Task Batch Size LR Iterations Warmup Iter Decay Iter
Arithmetic Tasks 1024 1e-3 20000 2000 5000

String Tasks 1024 1e-3 5000 500 1000
Maze Tasks 256 1e-3 20000 2000 5000

Arithmetic Tasks (SmolLM) 128 5e-5 2500 250 500
String Tasks (SmolLM) 128 5e-5 1000 100 500
Maze Tasks (SmolLM) 256 5e-5 2500 250 500

C.3.2 Computational Resources

For all experiments in the paper, we run on a single machine with two NVIDIA GeForce RTX 3090
graphics cards. For all experiment settings, each individual training run is at most 2 hours. The total
estimate of compute used, in terms of hours on the 2-GPU machine, is around 300 hours.
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