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Abstract

Recent text-only models demonstrate remarkable reasoning capabilities.
Extending these to visual domains requires vision-language models to trans-
late images into text descriptions. However, current models, trained to
produce captions for human readers, often omit the precise details that
reasoning systems require. This creates an interface mismatch: reasoners
often fail not due to reasoning limitations but because they lack access to
critical visual information. We propose Adaptive-Clarification Reinforce-
ment Learning (AC-RL), which teaches vision models what information
reasoners need through interaction. Our key insight is that clarification re-
quests during training reveal information gaps; by penalizing success that
requires clarification, we create pressure for comprehensive initial captions
that enable the reasoner to solve the problem in a single pass. AC-RL im-
proves average accuracy by 4.4 points over pretrained baselines across seven
visual reasoning benchmarks, and analysis shows it would cut clarification
requests by up to 39% if those were allowed. By treating clarification as
a form of implicit supervision, AC-RL demonstrates that vision-language
interfaces can be effectively learned through interaction alone, without re-
quiring explicit annotations.

1 Introduction

Recent advances in reinforcement learning have produced text-based reasoning models with
remarkable reasoning capabilities (Guo et al., 2025a; Shao et al., 2024). While these rea-
soning capabilities are impressive, extending them to visual domains requires careful con-
sideration of how visual and linguistic information should interface.
Several recent works explore decoupled architectures for visual reasoning, where vision mod-
ules translate images into text descriptions that are then processed by text-only reason-
ers (Chen et al., 2023; Zhou et al., 2024a; Gupta & Kembhavi, 2023). This modular paradigm
can offer practical advantages: it enables reuse of existing text-only reasoning models with-
out costly multimodal retraining, allows flexible composition of specialized components,
and provides interpretable interfaces between perception and reasoning. This decoupling
is particularly relevant when powerful reasoners are available only through APIs that can-
not be fine-tuned, or when reasoners are prohibitively expensive to fine-tune. Furthermore,
many domains have specialized vision-language models (e.g., for medical imaging (Li et al.,
2023), web interfaces (Lee et al., 2023), or engineering diagrams (Doris et al., 2025)) but
these models often lack the broader reasoning ability of text based models. This further
motivates decoupling perception from reasoning, and learning the interface between them.
Systems like COLA and ViCor demonstrate this approach, using LLMs as coordinators that
operate on text descriptions of visual content (Chen et al., 2024). The common thread in
these approaches is that visual information flows through a linguistic bottleneck, requiring
careful design of what information to communicate (Singh et al., 2024; Guo et al., 2025c).
However, this decoupling creates a critical alignment challenge: vision-language tools must
learn what visual information each specific reasoner requires for successful problem-solving.
Vision-language models are typically trained on diverse multimodal datasets to produce
descriptions sufficient for general visual understanding and question answering. Yet differ-
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Figure 1: Adaptive-Clarification Reinforcement Learning (AC-RL) training
framework. Given an image and a question, a trainable captioner ( ) generates an initial
description. During training, the frozen reasoner ( ) evaluates whether this description
contains sufficient detail to solve the problem. If yes (Direct Answer Path), it attempts to
answer directly, receiving reward R = 1 for correct answers or R = 0 for incorrect ones. If
the description lacks crucial information (Clarification Path), the reasoner requests specific
details, which are provided by a frozen reference captioner ( ). Correct answers after clar-
ification receive partial reward R = 0.7, while incorrect answers receive R = 0. Gradients
(dotted arrows) flow only through the initial caption generation, not through clarification
responses. At inference, only the direct answer path is used: the model has learned to
generate sufficiently detailed initial captions, eliminating the need for clarification.

ent reasoning models may have distinct information needs: one might excel with precise
measurements, while another benefits from structural or topological descriptions. Tradi-
tional supervised approaches would require annotating “ideal captions” for each reasoner,
an infeasible task given the diversity of visual reasoning problems and the implicit nature
of reasoner preferences. Moreover, what constitutes an informative caption cannot be de-
termined a priori; it emerges only through interaction with the reasoning model.
Reinforcement learning offers a natural framework for this interface learning problem, but
applying it to vision-reasoner coordination is challenging. The primary difficulty lies in
the sparsity of learning signals: when using binary task rewards, the vision model receives
identical zero rewards whether its caption is completely inadequate or missing one crucial
detail. Additionally, the large action space of language generation combined with sparse
rewards leads to inefficient exploration, where most generated captions result in failure
without providing informative gradients.
To overcome the limitations of this sparse reward signal, we introduce Adaptive-Clarification
Reinforcement Learning (AC-RL), a framework that encourages vision–language models to
produce captions aligned with the needs of a specific reasoner (Figure 1). The key idea is
to make use of successful clarification during training: when the reasoner fails to solve a
task directly but succeeds after a clarification exchange, this suggests that the initial caption
contained partially useful information but was not complete. We assign partial credit to such
clarification-based success but prefer solutions achieved on the first attempt, thereby creating
optimization pressure for more informative initial captions. During training, clarification
responses are generated by a frozen reference model, and gradients flow only through the
initial caption. This ensures that the clarifier is not optimized and prevents the captioner
from “hiding behind” a strong clarifier instead of learning to produce sufficiently informative
initial captions. Over time, this leads the vision module to front-load relevant details into
the initial caption, enabling single-pass inference without clarification at test time.
More specifically, AC-RL transforms sparse binary rewards into a tiered structure: full
reward for direct success, partial reward (we used α = 0.7) for success requiring clarifica-
tion, and zero for failure. This densification serves dual purposes. First, it converts many
zero-reward episodes into partially rewarded ones, providing a gradient signal when initial
captions are nearly sufficient. Second, the penalty (1− α) creates pressure to discover self-
sufficient captioning strategies aligned with single-pass deployment. Through thousands of
interactions, the vision model explores different description strategies, learning without ex-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

plicit supervision what quantitative details, spatial relationships, or structural patterns this
particular reasoner needs for solving a problem.
We evaluate AC-RL on visual reasoning benchmarks, chosen as a controlled testbed where
clear ground truth enables clean measurement and strong text-only reasoners exist, isolating
the vision-language interface as the primary bottleneck. Most of these benchmarks target
different forms of mathematical reasoning (such as visual geometry, diagram interpretation,
logic puzzles, or reasoning over plots and tables) yet some also extend beyond mathematics,
including problems from chemistry, physics, and biology, e.g., MMMU (Yue et al., 2024).
The key contributions of our work are as follows:

• An exploration-based framework that enables vision-language models to discover
through reinforcement learning what visual information a reasoner requires, adapt-
ing from human-caption pretraining without explicit supervision.

• A clarification-aware reward structure that uses interaction patterns as learning
signals, allowing models to identify information gaps and iteratively improve their
captioning strategies through trial and error.

• An empirical demonstration that our clarification-aware training scaffold effectively
teaches captioners to anticipate reasoner needs, leading to improved accuracy on
seven mathematical VQA benchmarks and a measurable reduction in clarification
dependency at inference.

2 Related Work

Reinforcement learning for reasoning in language models. Recent work shows RL
can teach extended mathematical reasoning, with DeepSeek-R1 demonstrating learned poli-
cies outperform prompt-based chain-of-thought (Guo et al., 2025a). Visual extensions em-
ploy diverse strategies: training stability (Skywork-R1V2 (Wang et al., 2025b), Vision-R1
(Huang et al., 2025)), replay mechanisms (VL-Rethinker (Wang et al., 2025a), OpenVL-
Thinker (Deng et al., 2025)), and cross-modal formalization (R1-OneVision (Yang et al.,
2025), Mulberry (Yao et al., 2024)). These methods focus on extending reasoning chains to
handle visual inputs. We take an orthogonal approach by shaping the interface between per-
ception and reasoning modules, using clarification-aware rewards to teach captioners what
information reasoners need rather than how to reason about it.

Decoupled perception–reasoning and interface design Decoupling visual percep-
tion from linguistic reasoning offers modularity and the ability to reuse strong text-only
reasoners, but it raises an interface-alignment challenge: captions optimized for human
readability may omit the quantitative and structural cues a reasoner needs (Zhou et al.,
2024a; Guo et al., 2025c; Singh et al., 2024). Coordination frameworks use an LLM to route
or aggregate information from one or more VLMs (e.g., COLA’s coordinator that queries
complementary experts) (Chen et al., 2023), or to interleave “see-think-confirm’’ phases that
explicitly ground and verify intermediate steps (VCTP) (Chen et al., 2024). Neuro-symbolic
systems like VisProg sidestep monolithic pipelines by composing programs over off-the-shelf
vision tools (Gupta & Kembhavi, 2023). Our approach adheres to the decoupled setup but
replaces fixed protocols with an RL objective that learns, from interaction, which caption
features best serve a specific reasoner.

Learning alignment through interaction. Several methods optimize captions specif-
ically for reasoning rather than human readability. Most relevant to our work, RACRO
directly uses binary task rewards to align a captioner to a reasoner (Gou et al., 2025),
demonstrating that interface learning is possible through RL alone. However, RACRO re-
lies solely on sparse binary rewards, which we show can be significantly improved through
our clarification-aware tiered reward structure that densifies the learning signal. LAMOC
and VLRM leverage language model feedback and VLM-as-reward-model, respectively (Du
et al., 2023; Dzabraev et al., 2024). OmniCaptioner generates long-context descriptions
that improve LLM reasoning (Lu et al., 2025), while Critic-V employs a learned VLM critic
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(Zhang et al., 2025). Beyond vision, multi-agent frameworks have shown that LLMs can
coordinate through language-only protocols, and that adapting inputs to a solver’s biases
can improve performance (Wu et al., 2024; Zhou et al., 2024b).

3 Methodology

3.1 The Vision-Reasoner Interface Problem

We consider a modular architecture where a trainable vision-language model, the captioner
Vθ, translates images into text descriptions that enable a frozen text-only model, the reasoner
R, to solve visual reasoning tasks. Given an image I and question Q, the system produces
an answer A. The central challenge lies in learning what visual information the specific
reasoner requires, without explicit supervision defining “ideal captions”.
We specifically target scenarios where the reasoner R is frozen, reflecting deployment con-
straints where the reasoning system cannot be modified (e.g., accessible only via an API).
This makes the learning problem more challenging: the captioner must unilaterally adapt
to a fixed target through interaction, with no co-adaptation to make the reasoner more
accommodating.
Our approach leverages successful clarification as implicit supervision. When the reasoner
fails to solve a task directly but succeeds after a clarification exchange, this suggests that
the initial caption was partially informative: it must have provided enough context for
the reasoner to identify what might be missing, formulate a meaningful follow-up question,
and ultimately solve the problem. AC-RL captures this signal through a tiered reward
structure: full reward for direct success, partial reward for success after clarification, and
zero otherwise. Over time, the captioner learns to anticipate the kind of information that
would otherwise be requested and to include it proactively in the initial description. This
leads to progressively more informative captions and enables efficient single-pass inference
without clarification at test time.

3.2 Training and Inference Protocols

During training, we permit structured interaction between the captioner and reasoner. The
captioner first generates an initial caption c0 ∼ πθ(· | I,Q) describing the visual content.
The reasoner processes this caption and either produces an answer directly or requests
clarification with a specific question q1. When clarification is requested, a frozen reference
model πref provides the response c1 ∼ πref(· | I,Q, q1). The reasoner then produces its final
answer A using all available information.
Crucially, the clarification response comes from a frozen checkpoint that receives no gradients
during training. This design ensures that the captioner cannot rely on improving clarification
capabilities and must instead learn to front-load relevant information into the initial caption.
Details of this protocol and the complete algorithm appear in Figure 1 and Appendix A.
At inference time, the system operates in a single pass: the captioner generates one descrip-
tion c0 ∼ πθ(· | I,Q), and the reasoner must produce the answer based solely on this initial
caption. This single-pass constraint is crucial for practical applications where multi-turn
interaction would be computationally expensive or require architectural changes to existing
tool-calling frameworks. By learning to front-load information during training, our approach
produces captioners that work with standard single-pass inference. The reasoner processes
the initial caption without needing to be modified to request clarifications.

3.3 Clarification-Aware Reward Design

A key contribution of AC-RL is the tiered reward structure that densifies the learning signal.
In standard reinforcement learning for visual question answering, episodes receive binary
rewards based solely on answer correctness. This sparse signal provides limited feedback
when the captioner produces nearly sufficient but incomplete descriptions.
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Our reward function addresses this sparsity by distinguishing three outcomes:

R(τ) =


1 if correct answer without clarification
α if correct answer with clarification
0 if incorrect answer

(1)

where α ∈ (0, 1) and τ denotes the complete episode trajectory. We set α = 0.7.
This structure serves dual purposes. First, it converts many zero-reward episodes into
partially rewarded ones, providing gradient signal when the initial caption contains most but
not all necessary information. This densification is particularly valuable early in training
when captions frequently lack specific details. Second, the penalty (1 − α) for requiring
clarification creates optimization pressure toward self-sufficient initial captions that align
with single-pass deployment.
Clarification responses come from a frozen reference model rather than the training policy.
This ensures gradients flow only through the initial caption, creating direct pressure to front-
load information rather than rely on clarification quality. Problems beyond the reasoner’s
capability contribute no gradient: when all caption variants for a problem receive zero
reward, all advantages are zero and the problem is effectively ignored during optimization.
The clarification mechanism thus acts as a scaffold that provides intermediate credit assign-
ment. Episodes where the reasoner would fail with the initial caption alone but succeeds
after clarification receive partial reward, signaling that the caption was nearly adequate.
This graded feedback enables more sample-efficient learning compared to binary rewards
that treat all failures equivalently.

3.4 Policy Optimization

We optimize the captioner using a KL-regularized objective that balances task performance
with proximity to the pretrained initialization:

J(θ) = E(I,Q)∼D [Eτ∼πθ
[R(τ)]]− β ·DKL(πθ‖πref) (2)

where πref denotes a fixed reference policy for regularization.
We employ Beta-Normalization Policy Optimization (Xiao et al., 2025)1, which is a variant
of GRPO (Shao et al., 2024), an on-policy RL algorithm that optimize over groups of
responses per prompt. Although rewards are assigned individually to each rollout A, the
update is driven by relative performance across rollouts for the same task (I,Q): only
captions that perform strictly better than alternatives contribute a gradient. When all
rollouts fail identically (including after clarification) no update is applied, preventing tasks
unsolvable by the reasoner from penalizing otherwise potentially strong captions.
Importantly, gradients flow only through the initial caption generation c0. Neither the frozen
reasoner R nor the clarification model πref receive gradient updates, ensuring the captioner
adapts unilaterally to the fixed reasoner’s preferences. We prove in Appendix B that our
tiered reward preserves unbiasedness of the policy gradient estimator despite post-action
stochasticity from the reasoner.

4 Experiments

We evaluate whether Adaptive-Clarification Reinforcement Learning (AC-RL) successfully
aligns vision-language models with the information needs of downstream reasoning systems.
Our experimental design tests five key hypotheses: (1) AC-RL improves task performance
compared to both pretrained models and standard reinforcement learning approaches (i.e.,
learning with the tiered rewards and clarifications is beneficial), (2) the clarification-aware
training scaffold contributes meaningfully to performance gains beyond standard RL, (3)
the improvements stem from learning to front-load reasoner-relevant information into initial
captions, (4) AC-RL is robust to the penalty α, and (5) generalizes to held-out reasoners.

1BNPO fits a Beta distribution to the reward distribution within each prompt group, providing
more stable advantage estimation for bounded rewards compared to standard normalization. Details
are provided in Appendix A
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System Architecture. We instantiate the trainable captioning policy with InternVL3-2B
or Qwen2.5-VL-3B. Their modest size enables extensive RL experimentation and ablations,
and when paired with a strong reasoner, they provide reliable baseline competence across
the evaluated benchmarks. Their scale also makes GRPO optimization tractable without
requiring extensive computational resources. The frozen reasoning system R is DeepSeek-
R1-Qwen-32B, a powerful text-only model trained for mathematical reasoning with par-
ticularly strong instruction following capabilities. We also evaluate the vision models as
standalone systems to quantify the benefits of architectural decoupling. We chose mathe-
matical reasoning as our evaluation domain for two reasons: (1) clear ground truth enables
clean measurement of interface improvements, and (2) strong text-only reasoners exist, iso-
lating the vision-language interface as the bottleneck rather than reasoning capability.

Training Configurations and Method Baselines We compare four training configu-
rations to isolate the effects of different design choices. The Standalone VLM baseline
has the vision-language model answer questions directly without a separate reasoner. The
Pretrained + Reasoner configuration pairs the pretrained VLM with the frozen reasoner
without fine-tuning, measuring the immediate benefit of modular architectures. Binary-
Reward RL fine-tunes the captioner with binary task success rewards, similarly to re-
cent work, RACRO (Gou et al., 2025). Finally, AC-RL employs our tiered rewards and
clarification-aware training scaffold. These baselines allow us to decompose gains from ar-
chitectural decoupling, reinforcement learning, and our clarification-aware training scaffold.
All RL methods are trained on ViRL-39K (Wang et al., 2025a), a visual instruction dataset
focused on mathematical reasoning, with evaluation performed on held-out benchmarks.

Training Protocol. AC-RL training uses the clarification-aware scaffold detailed in Sec-
tion 3. During training, the captioner generates c0 ∼ πθ, and if the reasoner requests clarifi-
cation, a frozen reference policy provides the response. The tiered rewards (R = 1 for direct
success, R = 0.7 with clarification, R = 0 for failure) create gradients only through the ini-
tial caption. We optimize using BNPO with KL regularization. Notably, AC-RL maintains
greater generation diversity than standard RL throughout training (Appendix D).

Evaluation Protocol. All models are evaluated using single-pass evaluation: the cap-
tioner produces a description that the reasoner uses to generate a final answer, with no clar-
ification permitted. This protocol ensures that performance gains reflect improved caption
quality rather than multi-turn interaction benefits. For behavioral analyses in Section 4.3,
we additionally conduct instrumented runs with clarification-enabled evaluation where
clarification is allowed, to measure clarification patterns. We evaluate on seven benchmarks
spanning diverse visual math reasoning challenges and compare against leading proprietary
and open-weights models (details in Appendix C). We report exact-match accuracy using
EvalScope (Team, 2024a) and VLMEvalKit (Duan et al., 2024).

4.1 Overall Performance

Table 1 presents our results in the context of leading proprietary and open-weights models.
We first note that small vision-language models achieve limited performance when solving
problems directly: InternVL-2B and Qwen2.5-VL-3B reach only 32.4% and 34.6% average
accuracy respectively as standalone systems. Simply pairing these models with a strong
reasoner (Pretrained + Reasoner) improves performance to 39.3% and 39.0%, demonstrating
the value of modular architectures. However, applying AC-RL yields the most gains.
With a Qwen2.5-VL-3B captioner, AC-RL improves the average accuracy from 39.0 to 43.4
(+4.4 points), with substantial gains on robustness and vision-centric benchmarks like Dyna-
Math (+10.6) and MathVerse (+5.2). The InternVL-2B captioner sees a similar +3.3 average
point increase. These results, obtained under an identical single-pass protocol, demonstrate
that AC-RL effectively aligns the captioning policy with the downstream reasoner’s needs.
While we observe minor regressions on WeMath (−0.7 to −1.5 points), this benchmark
explicitly targets preexisting knowledge deficits rather than visual extraction. AC-RL’s op-
timization pressure prioritizes precise visual details, yielding substantial gains on extraction-
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heavy tasks like DynaMath and MathVerse. AC-RL excels at enabling reasoners to see more,
but cannot address the reasoner’s internal knowledge gaps such as missing formulas, which
limit WeMath performance.

Table 1: Main results on multi-modal reasoning benchmarks: MathVista (MVista), Math-
Vision (MVision), MathVerse (MVerse), MMMU, WeMath (WeM), DynaMath (DynaM),
and LogicVista (LVista). Our AC-RL method, evaluated in the final blocks for each model
size, significantly enhances the performance of small vision models.

Model MVista MVision MVerse MMMU WeM DynaM LVista AVG

Proprietary Models
GPT-4o-20241120 60.0 31.2 40.6 70.7 45.8 34.5 52.8 47.9
Gemini-2.0-Flash 70.4 43.6 47.7 72.6 47.4 42.1 52.3 53.7
Claude-3.7-Sonnet 66.8 41.9 46.7 75.0 49.3 39.7 58.2 53.9
o1 73.9 42.2 — 78.2 — — — —
Gemini 2.5 Pro 80.9 69.1 76.9 74.7 78.0 56.3 73.8 72.8
Seed1.5-VL (Thinking) 79.5† 68.7 — 77.9 77.5 — — 75.9∗

Open-Weights Models
InternVL3-2B-MPO 57.0 21.7 25.3 48.6 22.4 14.6 36.9 32.4
InternVL3-8B-MPO 71.6 29.3 39.8 62.7 37.1 25.5 44.1 44.3
Ovis2-8B 71.8† 25.9 42.3 59.0 — — 39.4 47.7
InternVL3-14B-MPO 75.1 37.2 44.4 67.1 43.0 31.3 51.2 49.9
QVQ-72B-Preview 70.3 34.9 48.2 70.3 39.0 30.7 58.2 50.2
MMR1-Math-v0-7B 71.0† 30.2 49.2 — — — 50.8 50.3
InternVL3-38B-MPO 75.1 34.2 48.2 70.1 48.6 35.3 58.4 52.8
VL-Rethinker-72B 80.3 43.9 — 68.8 — — — —
InternVL3-78B-MPO 79.0 43.1 51.0 72.2 46.0 35.1 55.9 54.6
InternVL-2B
Standalone VLM 57.0 21.9 25.3 48.6 22.4 14.6 36.9 32.4
Pretrained + Reasoner 61.0 34.7 28.9 57.4 32.8 12.0 48.3 39.3
AC-RL (ours) 65.3 36.7 36.8 58.4 32.1 20.0 49.0 42.6

(+4.3) (+2.0) (+7.9) (+1.0) (-0.7) (+8.0) (+0.7) (+3.3)

Qwen2.5-VL-3B
Standalone VLM 64.5 21.9 28.8 50.1 24.2 13.4 39.6 34.6
Pretrained + Reasoner 59.7 32.8 29.2 55.2 34.7 14.2 47.2 39.0
AC-RL (ours) 63.8 36.8 34.4 57.7 33.2 24.8 53.0 43.4

(+4.1) (+4.0) (+5.2) (+2.5) (-1.5) (+10.6) (+5.8) (+4.4)
† Result on testmini/mini subset.

4.2 Ablations

To better understand the source of these improvements, we analyze the incremental value
of each component in our approach using the Qwen2.5-VL-3B model (Table 2). All config-
urations are evaluated using direct inference (no clarification allowed).

4.2.1 Decomposition of Performance Gains

Table 2: Decomposition of performance gains on Qwen2.5-VL-3B across multi-
modal reasoning benchmarks: MathVista (MVista), MathVision (MVision), MathVerse
(MVerse), MMMU, WeMath (WeM), DynaMath (DynaM), and LogicVista (LVista). All
models are evaluated in a single-pass setting. The results show that AC-RL provides a
significant performance boost beyond both architectural decoupling and Binary Rewards.

Training Method MVista MVision MVerse MMMU WeM DynaM LVista AVG
VLM-only (No Reasoner) 64.50 21.90 28.80 50.10 24.20 13.40 39.60 34.64
Decoupled (No RL) 59.69 32.80 29.18 55.22 34.71 14.17 47.20 39.00
Binary-Reward RL 62.60 34.30 31.09 55.44 33.45 17.56 47.42 40.27
AC-RL (Ours) 63.80 36.84 34.39 57.70 33.22 24.75 53.02 43.39
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The results illustrate a clear progression. First, decoupling the captioner from the reasoner
(Pretrained + Reasoner) yields substantial gains, particularly on structurally complex tasks
like MathVision (21.9 → 32.8). Second, applying binary-reward RL provides further im-
provements across most benchmarks. However, our clarification-aware AC-RL delivers the
most substantial gains over Binary-Reward RL: DynaMath improves by +7.2 points (17.56
→ 24.75), LogicVista by +5.6 points, and MathVerse by +3.3 points.
The improvements on DynaMath are especially noteworthy. While Binary-Reward RL
achieves modest gains over the pretrained baseline (+3.4 points), AC-RL delivers an ad-
ditional +7.2 points, reaching 24.75% accuracy on the most challenging problem variants.

4.2.2 Sensitivity to Clarification Penalty

Table 3: Sensitivity to the clarifica-
tion penalty (1− α).

Penalty LVista MVision
0.1 53.2 35.8
0.3 55.7 40.2
0.5 52.4 40.1
0.7 50.1 35.5

The clarification penalty (1 − α) controls the reward
reduction for success requiring clarification. Table 3
shows results across penalty values {0.1, 0.3, 0.5, 0.7}.
Intermediate penalties (0.3, 0.5) consistently outper-
form extremes, with near-identical MathVision per-
formance (40.2 vs 40.1) demonstrating robustness.
Penalties that are too weak (0.1) provide insuffi-
cient optimization pressure, while too strong (0.7) ap-
proaches binary rewards, losing partial credit benefits.

4.2.3 Generalization Across Reasoners

Table 4: Cross-reasoner generalization.

Captioner Reasoner LVista MVision
Pretrained Train (32B) 47.2 34.7
AC-RL Train (32B) 55.7 40.2
Pretrained Unseen (8B) 44.3 30.0
AC-RL Unseen (8B) 53.0 36.5

A natural question is whether learned
strategies generalize or overfit to the train-
ing reasoner. Table 4 compares caption-
ers paired with DeepSeek-R1-0528-Qwen3-
8B, differing in size and checkpoint from
our training reasoner (DeepSeek-R1-Qwen-
32B). With the training reasoner, AC-RL
improves by +8.5 and +5.5 points on Log-
icVista and MathVision. With the unseen reasoner, AC-RL achieves comparable gains
(+8.7, +6.5), suggesting it learns generally useful captioning strategies rather than exploit-
ing idiosyncrasies of the training reasoner.

4.3 Analysis of Interface Behavior

To understand the mechanism underlying AC-RL’s performance gains, we analyze how
the training procedure modifies the captioner’s behavior. Our hypothesis is that the
clarification-aware reward teaches the model to front-load reasoner-salient information into
the initial caption, thereby reducing the need for clarification.

Table 5: Clarification attempt rate (%).

MathVision MathVerse
Binary Reward 40.7 49.6
AC-RL 29.0 30.3
Reduction 29% 39%

We first measure the clarification at-
tempt rate using clarification-enabled eval-
uation (for measurement purposes only) and
counting how frequently it requests clarifi-
cation when processing captions from AC-
RL-trained versus baseline models. Table 5
shows that AC-RL dramatically reduces the
frequency of clarification requests. On MathVision, the clarification rate drops from 40.69%
(Binary-Reward RL baseline) to 28.95% (AC-RL). On MathVerse, the reduction is even
more pronounced at 39%. This confirms that AC-RL-trained captioners learn to preemp-
tively include information that would otherwise trigger follow-up questions.
Building on this evidence, we compute the clarification gap: the difference in accuracy
between clarification-enabled evaluation and single-pass evaluation. A smaller gap indi-
cates that the initial caption is more informationally self-sufficient. Table 6 presents these
results. For the baseline model, allowing clarification provides substantial accuracy gains:
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+2.89 points on MathVision and +4.06 points on MathVerse. In contrast, the AC-RL model
shows minimal benefit from clarification and even a negative gap on MathVerse (-2.54), sug-
gesting that its initial captions are so well-aligned that additional clarification can sometimes
introduce noise. The relative improvement metric (fraction of previously incorrect answers
that become correct with clarification) further confirms this pattern: AC-RL achieves 1.5%
relative improvement on MathVision versus 4.4% for the baseline.
Table 6: Performance gap between clarification-enabled and single-pass evaluation. “Rel”
denotes the fraction of previously incorrect answers that become correct when clarification
is allowed. Smaller gaps indicate greater self-sufficiency of initial captions.

Dataset Model Clarification-Enabled Single-Pass Gap (Abs / Rel)

MathVision AC-RL 37.66% 36.71% +0.95 / 0.015
Binary-Reward 37.20% 34.31% +2.89 / 0.044

MathVerse_MINI AC-RL 34.26% 36.80% -2.54 / -0.040
Binary-Reward 35.15% 31.09% +4.06 / 0.059

Finally, to assess whether clarification requests are genuinely necessary, we measure ac-
curacy under denied clarification: we identify instances where the model requested
clarification during clarification-enabled evaluation, then examine the single-pass accu-
racy on this same subset (equivalent to denying the clarification request). The drop
∆deny = Accclarification-enabled − Accdenied quantifies how much the model relies on clari-
fication when it requests it. Table 7 shows that while AC-RL reduces overall clarification
frequency, its remaining requests are more selective. The AC-RL model exhibits a larger
performance drop when clarification is denied (∆deny = 14.21 on MathVision versus 11.43
for the baseline), despite making fewer requests overall (880 versus 1,237). This suggests
that AC-RL learns to distinguish between recoverable and irrecoverable information gaps: it
produces self-sufficient captions when possible, but when it does request clarification, these
requests target instances where critical visual details cannot be inferred from context alone.

Table 7: Accuracy impact of denying clarification on instances where it was requested.
Accdeny is computed on the subset of problems where the reasoner requested clarification
during clarification-enabled evaluation; for these specific problems, we measure accuracy
using only the initial caption (i.e., denying the clarification request).

Dataset Model # Requests Accsingle-pass Accdeny / ∆deny

MathVision AC-RL 880 36.71% 22.50% / 14.21
Binary-Reward 1237 34.31% 22.88% / 11.43

MathVerse_MINI AC-RL 276 36.80% 33.33% / 3.47
Binary-Reward 496 31.09% 28.43% / 2.66

4.4 Subject-Level Performance Analysis

To better understand the nature of these improvements, we conduct a fine-grained analysis
of performance across different mathematical subjects and difficulty levels. This reveals
whether the model is generically improving or learning to prioritize specific types of in-
formation relevant to the reasoner. We decompose the MathVision and DynaMath bench-
marks by subject area and compute per-subject accuracy for both the AC-RL model and
the pretrained baseline (Qwen2.5-VL-3B + Reasoner configuration). Additionally, we ana-
lyze DynaMath average performance stratified by education level (elementary, high school,
undergraduate) to assess whether AC-RL’s benefits vary with problem complexity.
Figure 2 visualizes the per-subject performance comparison. The analysis reveals that AC-
RL’s gains are concentrated in subjects that depend heavily on precise quantitative and
structural information. On MathVision, we observe the largest improvements in metric
geometry for angles (+10.4 points), transformation geometry (+8.3 points), and algebra
(+7.5 points). DynaMath shows even more pronounced gains in solid geometry (+18.7
points), algebra (+15.1 points), and puzzle tests (+13.5 points). These subjects arguably
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Figure 2: Subject-level performance comparing AC-RL to the pretrained baseline using
Qwen2.5-VL-3B + Reasoner. Left: MathVision subjects. Right: DynaMath categories.
AC-RL shows targeted improvements in quantitatively-intensive.

require extracting specific numerical values, spatial relationships, or structural patterns
from images. In contrast, performance differences are minimal in subjects that rely more
on general visual understanding or pattern recognition.
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Figure 3: DynaMath
average accuracy across
education levels. AC-RL
consistently outperforms
the baseline regardless of
problem difficulty.

Figure 3 shows that AC-RL maintains consistent improvements
across all difficulty levels on DynaMath. The absolute gains re-
main relatively stable at 6.5, 6.3, and 4.3 points for elementary,
high school, and undergraduate levels, respectively. While both
models show expected degradation as problem complexity in-
creases, AC-RL preserves its advantage by learning to extract
critical visual details needed at each level. The smaller gain
at the undergraduate level may reflect inherent limits in what
visual information alone can contribute to abstract problems.
This non-uniform improvement pattern indicates that AC-RL
learns to extract and prioritize the specific types of informa-
tion most valuable to the downstream reasoner. The selective
nature of these improvements suggests that the clarification-
aware training identifies and addresses systematic information
gaps in the original captioning policy, with the model discovering domain-specific extraction
strategies through interaction rather than explicit supervision.

5 Conclusion

We presented Adaptive-Clarification Reinforcement Learning (AC-RL), a framework that
learns vision-reasoner interfaces through interaction rather than supervision. By using
clarification requests as implicit feedback and tiered rewards, AC-RL enables captioners
to discover what information their paired reasoner requires without explicit annotation.
Our experiments demonstrate consistent improvements across seven mathematical reason-
ing benchmarks, with particularly strong gains on quantitatively-intensive domains.
The success of AC-RL suggests that interface alignment between AI modules can be learned
through reinforcement learning without requiring explicit caption annotations. We demon-
strated this on mathematical reasoning as a controlled testbed where clear ground truth
enables clean measurement. The core mechanism of penalizing clarification-dependent suc-
cess to encourage information front-loading could naturally extend to other settings where
specialized VLMs interface with frozen reasoners, such as medical imaging (Li et al., 2023) or
engineering diagrams (Doris et al., 2025); we leave empirical validation of such extensions
for future work. Other promising directions include bidirectional adaptation where both
modules co-evolve, using clarification content (not just occurrence) as richer supervision,
and multi-turn clarification with decaying rewards for iterative refinement.
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A AC-RL Algorithm

We provide a formal specification of the Adaptive-Clarification Reinforcement Learning (AC-
RL) algorithm. The algorithm operates in an episodic setting where each episode consists
of a visual reasoning problem (I,Q) sampled from the dataset D.

A.1 Formal Problem Setup

Let M = (S,A, P,R, γ) denote the Markov Decision Process where:

• S = I × Q×H is the state space,
• A = C is the action space (caption generation),
• P : S ×A → ∆(S) is the transition kernel,
• R : T → [0, 1] is the reward function defined on trajectories,
• γ = 1 (undiscounted episodic setting).

A single episode proceeds as follows. At t = 0, the vision policy emits the initial caption
c0 ∼ πθ(· | s0) with s0 = (I,Q, ∅). The reasoner stochastically decides whether to request
clarification and, if so, which question to ask; we denote this by a θ-independent kernel
q1 ∼ p(· | s0, c0). When q1 6= ∅, the clarification caption is produced by a frozen checkpoint
πref:

c1 ∼ πref(· | s1), s1 = (I,Q, {c0, q1}),
and the reasoner produces a final answer according to a θ-independent kernel A ∼ p(· |
Q, c0, (q1, c1)). When q1 = ∅, the reasoner answers from (Q, c0) directly. The next state
appends the sampled variables to the dialogue history. Thus P composes the reasoner’s
stochastic behavior and the frozen clarification-caption policy πref; conditioned on the
agent’s action c0, these post-action mechanisms are θ-independent by construction. The
episode terminates after the answer A is produced, and the reward is assigned as in the
main text.

Clarification captioning is frozen. In all experiments, the clarification caption c1 is
generated by a frozen checkpoint πref (typically the reference policy). Its distribution does
not change during training. Consequently, no gradients flow through πref or through the
reasoner R; only the log-probabilities of the initial caption tokens c0 contribute to the policy
update.

A.2 Advantage Computation

We use Beta-Normalization Policy Optimization (BNPO) (Xiao et al., 2025) for advan-
tage estimation. BNPO addresses a limitation of standard GRPO: while GRPO uses fixed
normalization, BNPO adaptively normalizes rewards using a Beta distribution whose pa-
rameters evolve with the policy. This provides lower-variance gradient estimates and more
stable training.
For a group of rewards {R(i)}Mi=1 from a single prompt, BNPO fits Beta distribution param-
eters (αβ , ββ) via method-of-moments from the group statistics, then computes advantages
as:

A
(i)
BNPO =

R(i) − µβ

σβ + ε
, where µβ =

αβ

αβ + ββ
(3)

Although BNPO was designed for binary rewards, we found it effective with our ternary
reward structure, moderately outperforming standard GRPO in our experiments.

A.3 Policy Update

The policy is updated using the clipped surrogate objective with a fixed KL reference:

Lclip(θ) = −E(st,at) [min (rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] + β DKL(πθ ‖πref-KL), (4)
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where rt(θ) = πθ(at | st)/πθold(at | st), and At is the advantage computed via BNPO (Xiao
et al., 2025). The gradient is computed solely on the initial captioning segments c0; the
clarification responses c1 are emitted by the frozen πref and are thus θ-independent.

A.4 Training Algorithm

Algorithm 1 Adaptive-Clarification Reinforcement Learning (AC-RL)
Require: Dataset D, vision model Vθ, reasoner R, penalty α, group size M , gradient steps

K
1: Initialize policy πθ ← Vθ with parameters θ
2: Initialize frozen clarification captioner πref (checkpoint used only for c1)
3: Initialize fixed KL reference πref ← πθ

4: for iteration t = 1 to T do
5: Sample batch B = {(Ij , Qj)}Bj=1 ∼ D
6: for each (Ij , Qj) ∈ B do
7: for i = 1 to M do
8: Generate initial caption: c

(i,j)
0 ∼ πθ(· | Ij , Qj)

9: Sample reasoner’s clarification decision: q
(i,j)
1 ∼ Rclarify(· | Qj , c

(i,j)
0 ) (no

gradients)
10: if q(i,j)1 6= ∅ then
11: Generate clarification caption from frozen checkpoint: c

(i,j)
1 ∼ πref(· |

Ij , Qj , (c
(i,j)
0 , q

(i,j)
1 )) (no gradients)

12: Get answer: A(i,j) ∼ R(· | Qj , c
(i,j)
0 , (q

(i,j)
1 , c

(i,j)
1 )) (no gradients)

13: Set clarification flag: C(i,j) = 1
14: else
15: Get answer: A(i,j) ∼ R(· | Qj , c

(i,j)
0 ) (no gradients)

16: Set clarification flag: C(i,j) = 0
17: end if

18: Compute reward: R(i,j) =


1.0 if correct(A(i,j)) ∧ C(i,j) = 0

α if correct(A(i,j)) ∧ C(i,j) = 1

0 otherwise
19: end for
20: Fit Beta parameters (α

(j)
β , β

(j)
β ) to {R(i,j)}Mi=1

21: Compute BNPO advantages {A(i,j)
BNPO}Mi=1

22: end for
23: for k = 1 to K do
24: Update policy with clipping and KL penalty: θ ← θ − η∇θLclip(θ;πref-KL)
25: end for
26: end for
27: return Trained policy πθ
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B Unbiasedness of the Three-Tier Reward

In this section, we provide a formal proof that our three-tier reward structure maintains
the unbiasedness property of the REINFORCE policy gradient estimator, even when the
reasoner exhibits stochasticity.
Theorem 1 (Unbiasedness of the Three-Tier Reward with Stochastic Reasoner). Let ξ ∼
p(· | τ) denote all post-action randomness after the policy chooses its actions (e.g., the
reasoner’s sampling noise and, when clarification is used, the frozen clarification-caption
sampling). Define the extended trajectory τ̃ = (τ, ξ) with joint density:

pθ(τ̃) = pθ(τ) · p(ξ | τ) (5)

where p(ξ | τ) is independent of θ.
Let the tiered reward function be defined as:

Rtier(τ̃) =


1 if correct(A(τ̃)) ∧ C(τ̃) = 0

α if correct(A(τ̃)) ∧ C(τ̃) > 0

0 otherwise
(6)

where α ∈ (0, 1), and define the training objective:

J(θ) = Eτ̃∼pθ
[Rtier(τ̃)]. (7)

For any baseline bt(st) that does not depend on the action at, the REINFORCE estimator:

ĝ(τ̃) =

T−1∑
t=0

∇θ logπθ(at | st) · (Rtier(τ̃)− bt(st)) (8)

satisfies Eτ̃∼pθ
[ĝ(τ̃)] = ∇θJ(θ), i.e., the policy gradient remains unbiased despite the 0/α/1

reward shaping and post-action stochasticity.

Proof. Step 1: Setup. The extended trajectory τ̃ = (τ, ξ) includes both the policy-
generated trajectory τ = (s0, a0, s1, a1, ..., sT ) and the post-action randomness ξ. The joint
probability decomposes as:

pθ(τ̃) = p(s0)

T−1∏
t=0

πθ(at | st)P (st+1 | st, at) · p(ξ | τ), (9)

where p(s0) is the initial state distribution, P is the environment transition kernel, and
p(ξ | τ) is the distribution over post-action randomness given the trajectory; by assumption,
p(ξ | τ) is θ-independent.
Step 2: Policy Gradient Theorem. For Rtier(τ̃),

∇θJ(θ) = ∇θ

∫
pθ(τ) p(ξ | τ)Rtier(τ̃) dξ dτ (10)

=

∫
pθ(τ) p(ξ | τ)Rtier(τ̃)∇θ log pθ(τ) dξ dτ (11)

=

∫
pθ(τ̃)Rtier(τ̃)∇θ log pθ(τ) dτ̃ , (12)

using that ∇θ log pθ(τ̃) = ∇θ log pθ(τ) + ∇θ log p(ξ | τ) and ∇θ log p(ξ | τ) = 0 by θ-
independence. Since p(s0) and P are θ-independent,

∇θ log pθ(τ) =
T−1∑
t=0

∇θ logπθ(at | st), (13)

hence

∇θJ(θ) = Eτ̃∼pθ

[
T−1∑
t=0

∇θ logπθ(at | st) ·Rtier(τ̃)

]
. (14)
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Step 3: Baseline Subtraction. For any bt(st) not depending on at,

Eτ̃∼pθ

[
T−1∑
t=0

∇θ logπθ(at | st) · bt(st)

]
(15)

=

T−1∑
t=0

Est

[
bt(st) · Eat∼πθ(·|st) [∇θ logπθ(at | st)]

]
= 0, (16)

so

Eτ̃∼pθ

[
T−1∑
t=0

∇θ logπθ(at | st) · (Rtier(τ̃)− bt(st))

]
= ∇θJ(θ). (17)

Remark 2 (If the reasoner is θ-dependent). If, instead, p(ξ | τ) depends on θ (e.g., shared
trunk), then

∇θ log pθ(τ̃) =
∑
t

∇θ logπθ(at | st) + ∇θ log pθ(ξ | τ),

and an unbiased estimator must add the extra score term ∇θ log pθ(ξ | τ) multiplied by the
same return. Alternatively, one may stop gradients through the reasoner or generate ξ using
frozen modules to enforce θ-independence.
Proposition 3 (Unbiased gradient with θ-dependent reasoner). If pθ(ξ | τ) depends on θ,
then

∇θJ(θ) = E

[(∑
t

∇θ logπθ(at | st) +∇θ log pθ(ξ | τ)

)
Rtier(τ̃)

]
,

so the unbiased score-function estimator must include both terms (each may use an appro-
priate baseline that is independent of the respective sampled variable).
Corollary 4. Under the θ-independence of p(ξ | τ), the three-tier reward preserves the
unbiasedness of the REINFORCE estimator for ∇θJ(θ). Algorithms such as PPO, GRPO,
and BNPO, which optimize clipped or normalized surrogate objectives, remain applicable with
this reward; however, their gradient estimates are generally biased (by design) and converge
to stationary points of their respective surrogate objectives rather than guaranteeing an
unbiased gradient of J(θ).
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C Datasets and Baselines

We evaluate on seven benchmarks that span diverse visual contexts beyond symbolic math-
ematics: natural images, statistical charts, scientific diagrams, tables, real-world scenes,
puzzles, and pattern recognition tasks. This diversity ensures our evaluation captures a
broad range of visual reasoning challenges.

• MathVista (testmini) (Lu et al., 2024a): A consolidated benchmark of 1000 examples,
covering figure QA, geometry, math word problems, and textbook QA across diverse
reasoning types.

• MathVision (Wang et al., 2024): 3040 problems sourced from real math competitions,
spanning 16 mathematical disciplines across 5 difficulty levels.

• MathVerse (Zhang et al., 2024): 2612 visual math problems transformed into 6 versions
with varying visual vs. textual information to test genuine diagram comprehension.

• MMMU (dev & validation) (Yue et al., 2024): 1050 college-level questions across 6
disciplines and 30 image types including charts, diagrams, tables, and scientific figures.

• WeMath (testmini, strict) (Qiao et al., 2024): 1740 visual math problems organized
around 67 hierarchical knowledge concepts, decomposing composite problems into sub-
problems to assess foundational knowledge.

• DynaMath (worst-case) (Zou et al., 2025): 501 seed questions represented as Python
programs generating variants with different numerical values or geometric transforma-
tions to test reasoning robustness.

• LogicVista (Xiao et al., 2024): 448 questions evaluating logical reasoning across 5 types
(deductive, inductive, spatial, numerical, mechanical) sourced from human IQ and rea-
soning test banks.

Model Baselines. We compare against leading proprietary models: GPT-4o (Achiam
et al., 2023), Claude-3.7-Sonnet, Gemini-2.0-Flash (Team et al., 2023), o1 (Jaech et al.,
2024), Gemini 2.5 Pro (Comanici et al., 2025), and Seed1.5-VL (Guo et al., 2025b);
open-weights general-purpose models: Qwen2.5-VL (Bai et al., 2025) and Ovis2 (Lu
et al., 2024b); and reasoning-optimized models: InternVL3-MPO variants (Zhu et al.,
2025), VL-Rethinker (Wang et al., 2025a), QVQ-72B-Preview (Team, 2024b), and MMR1-
Math (Sicong Leng, 2025).

D Generation Diversity During Training

An interesting emergent property of AC-RL training is that it maintains greater generation
diversity compared to standard binary-reward RL. Figure 4 tracks the fraction of training
batches where all M generated captions receive identical rewards (zero standard deviation),
which serves as an indicator of diversity collapse.
Both methods show an upward trend as entropy naturally decreases during policy optimiza-
tion. However, AC-RL consistently maintains a lower fraction of uniform-reward batches
(approximately 0.31 vs 0.42 at convergence). This difference likely stems from the tiered
reward structure: while standard RL only distinguishes between success and failure, AC-
RL’s intermediate reward (α = 0.7) creates a richer gradient landscape that encourages the
model to explore different captioning strategies.

E Training Dynamics

Figure 5 tracks the (smoothed) frequency of clarification requests during training. The
consistent decrease confirms our hypothesis that AC-RL teaches the captioner to front-load
information that would otherwise trigger follow-up questions. Combined with the main-
tained generation diversity shown in Appendix D, this suggests the model finds genuinely
informative captioning strategies rather than mode-collapsing to a narrow set of templates.
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Figure 4: Fraction of uniform-reward batches during training. AC-RL (red) maintains lower
values than standard RL (blue), indicating more diverse caption generation throughout
training. Both methods show increasing trends as policies converge, but AC-RL’s tiered
reward structure preserves more exploration.
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Figure 5: Clarification request frequency during AC-RL training. The rate decreases from
approximately 65% at initialization to 20% at convergence, demonstrating that the model
learns to produce more self-sufficient initial captions.
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F Qualitative Caption Comparisons

To illustrate how AC-RL modifies captioning behavior, we present a representative example
comparing captions from the pretrained baseline and AC-RL on a table-reading problem
(Figure 6).

Question: Chase wants to buy 4 kilograms of oval beads and 5 kilograms
of star-shaped beads. How much will he spend? (Unit: $)

Baseline Caption

The image appears to be a table listing
various types of beads along with their
respective prices per kilogram. The ta-
ble has two columns and lists differ-
ent types of beads available for pur-
chase. I can see oval beads, rectan-
gular beads, star-shaped beads, spher-
ical beads, heart-shaped beads, square
beads, and flower-shaped beads. Each
type has a corresponding price per kilo-
gram shown in the second column. The
table appears to be from a craft supply
store or similar retailer.

AC-RL Caption

The image appears to be a table
listing various types of beads along
with their respective prices per kilo-
gram. The table is as follows:

Beads Price/kg

oval beads $2
rectangular beads $3
star-shaped beads $2
spherical beads $2
heart-shaped beads $3
square beads $2
flower-shaped beads $2

(Model outputs Markdown; rendered for readability.)

Figure 6: Qualitative comparison on a table-reading problem. The baseline describes the
table structure but omits numerical values. AC-RL extracts all prices needed to compute
the answer.

The baseline caption correctly identifies the table structure and all bead types, but refers
to prices abstractly without extracting the actual values. AC-RL, having learned from
clarification requests during training that numerical details are essential, extracts every
price explicitly.

G Prompt Templates

We present the complete set of prompts used in our AC-RL framework. The prompts are
structured to maintain clear role separation between the captioner (visual description) and
reasoner (problem-solving), while enabling controlled interaction during training.

G.1 Vision-Language Model Prompts

Initial Caption Generation. The following prompt instructs the VLM to generate com-
prehensive visual descriptions without solving the problem:
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vlm_initial_description_prompt

I need your help analyzing this image to prepare for answering the following
question:
{question}
IMPORTANT: DO NOT answer the question directly. Instead, provide a
comprehensive and detailed description of everything visible in the image
that could be relevant for answering this question.
Focus on describing:

• All objects, people, text, and visual elements in the image

• Spatial relationships between different elements

• Any text content that is visible, transcribed exactly

• Colors, shapes, patterns, and visual attributes

• Relevant contextual details and background information

Your description should be detailed enough that someone could mentally
reconstruct the image without seeing it, but DO NOT provide step-by-step
instructions on how to recreate it.

Clarification Response. When the reasoner requests specific visual information, the
frozen reference model uses this prompt:

vlm_focused_description_prompt

Original Question: {question}
Previous Description: {previous_descriptions}
CONTEXT: The description above was provided for this image, but some details
might be missing or unclear. We are asking this specific follow-up question
to gather additional visual details.
Your specific task: {focus_request}
CRITICAL INSTRUCTIONS:

• You are a VISUAL DESCRIBER only - DO NOT attempt to answer the
original question

• DO NOT solve the problem or provide calculations

• DO NOT give step-by-step solutions or reasoning

• ONLY describe what you can see in the image that relates to the
specific request

• Focus solely on visual elements: objects, text, numbers, shapes,
spatial relationships

• If asked about measurements, describe what you see but don't
calculate or solve

• If asked about equations, transcribe what's visible but don't solve
them

• Be thorough and precise in your description since this is to clarify
specific missing details

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.2 Reasoner Prompts

Adaptive Decision Mechanism. The reasoner evaluates whether the initial caption is
sufficient or requires clarification:

reasoner_adaptive_decision_prompt

You are an expert visual reasoning assistant. Your task is to analyze the
given image description and decide if you can solve the problem directly or
if you need one specific piece of additional visual information.
Image Description: {description}
Question: {question}
ANALYSIS INSTRUCTIONS:

1. CAREFUL EVALUATION: Analyze if the description contains all specific
visual details needed to solve completely and accurately.

2. BE CONSERVATIVE: If missing ANY crucial visual detail, request MORE
information rather than guess.

3. ONE CLARIFICATION ONLY: You can request specific additional visual
information if needed.

4. DECISION CRITERIA:

• If you have ALL visual details needed: Status = SOLVED
• If missing crucial visual information: Status = NEED_MORE_INFO

5. AVOID ASSUMPTIONS: Don't guess numbers, assume "typical" values, or
fill in missing details.

CRITICAL PRINCIPLES:

• BE SPECIFIC in requests: Ask for exact details you need

• SOLVE CONFIDENTLY when possible: If you have enough information,
provide the complete solution

• REQUEST STRATEGICALLY: Make your one request count - ask for the most
crucial missing details

OUTPUT FORMAT (all fields required):
Reasoning: [Your detailed analysis of what information you have and what
might be missing]
Status: [SOLVED or NEED_MORE_INFO]
Answer: [Your complete final answer if Status is SOLVED - use \boxed{answer}
format, otherwise N/A]
Request: [Your specific request for additional visual information if Status
is NEED_MORE_INFO, otherwise N/A]
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Final Answer Generation. For both direct solving and post-clarification scenarios:

reasoner_final_prompt

You are an expert mathematical reasoning assistant. Based on the complete
image description below, please solve the mathematical problem step-by-step.
Complete Image Description: {description}
Question: {question}
INSTRUCTIONS:

1. Analyze the complete image description carefully

2. Work through the problem step-by-step with clear mathematical
reasoning

3. Show all calculations and logical steps

4. Provide your final answer in the required format

5. Use \boxed{answer} notation. For multiple choice, use \boxed{letter}
format

You MUST follow this format:
<think>
Your detailed reasoning and thought process here...
</think>
<answer> Final Answer: your final answer here </answer>

H Training Hyperparameters

We provide complete hyperparameter specifications to ensure reproducibility. All experi-
ments use the same random seed for dataset sampling to enable fair comparisons.

Table 8: Hyperparameter settings for AC-RL training across different model sizes.

Hyperparameter 2B Models 3B Models
Optimization
Learning rate 3× 10−6 2× 10−6

Effective batch size 256 256
KL divergence weight (β) 0.001 0.001
LoRA Configuration
LoRA rank (r) 128 256
LoRA alpha (α) 256 512
LoRA dropout 0.05 0.05
BNPO Settings
Group size (M) 8 8
Number of iterations 6 6
Remaining parameters TRL library defaults
Generation Parameters
Captioner temperature 1.0
Captioner max tokens 800
Reasoner temperature 0.6
Reasoner top-p 0.95
Reasoner max tokens 100,000
Reward Configuration
Clarification penalty (1− α) 0.3

Implementation Details. We implement AC-RL using the Transformers Reinforcement
Learning (TRL) library von Werra et al. (2020) with Beta-Normalization Policy Optimiza-
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tion (BNPO). The LoRA Hu et al. adapters are applied to all linear layers in the vision-
language models. Training typically converges within 1,000 steps on the ViRL-39K dataset.
All experiments use mixed precision training (fp16).

Computational Requirements. Training a 3B parameter captioner with AC-RL re-
quires approximately 50 hours on 8 NVIDIA A6000-Ada GPUs. The 2B models require 40
hours on the same hardware configuration. The reasoner is hosted on a 4× AMD MI250X
node, though it is never fully saturated during training.

I LLM Usage Statement

We used large language models for grammatical corrections and rewording suggestions to
improve clarity. All research ideas, experimental design, analysis, and scientific contributions
are the original work of the authors. LLMs were not used for generating research content
or results interpretation.

25


	Introduction
	Related Work
	Methodology
	The Vision-Reasoner Interface Problem
	Training and Inference Protocols
	Clarification-Aware Reward Design
	Policy Optimization

	Experiments
	Overall Performance
	Ablations
	Decomposition of Performance Gains
	Sensitivity to Clarification Penalty
	Generalization Across Reasoners

	Analysis of Interface Behavior
	Subject-Level Performance Analysis

	Conclusion
	AC-RL Algorithm
	Formal Problem Setup
	Advantage Computation
	Policy Update
	Training Algorithm

	Unbiasedness of the Three-Tier Reward
	Datasets and Baselines
	Generation Diversity During Training
	Training Dynamics
	Qualitative Caption Comparisons
	Prompt Templates
	Vision-Language Model Prompts
	Reasoner Prompts

	Training Hyperparameters
	LLM Usage Statement

