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ABSTRACT

Deep learning with large models have achieved amazing success in a wide range of domains, but
the optimization on billions of parameters is challenging in terms of the training speed, memory
cost, and communication efficiency, especially under the differential privacy (DP) regime. On the
one hand, DP optimization has comparable efficiency to the standard non-private optimization on
a single device, but existing DP distributed learning (such as data/pipeline parallel) has significant
limitations in efficiency. On the other hand, the Zero Redundancy Optimizer (ZeRO) is a state-of-
the-art solution to optimize memory and improve the training efficiency on large models under the
standard regime, but it encounters technical challenges to work compatibly with DP. In this work,
we develop a new systematic solution, DP-ZeRO, to scale up the model size and obtain almost the
same computation and communication efficiency as the standard distributed learning, in both the
full and mixed precision. Our DP-ZeRO, like the standard ZeRO, has the potential to train models
with arbitrary size and is evaluated on DP models that has the world’s largest number of trainable
parameters.1

1 INTRODUCTION

Recent advances in differentially private (DP) deep learning has overcome the computational difficulty and allowed
the optimization to be almost as efficient as the standard non-DP optimization on a single device (8; 24). It is high
time to apply DP in distributed learning, where new challenges such as the communication efficiency and compatibility
with mixed precision emerge. In this work, we equip state-of-the-art distributed learning solution, Zero Redundancy
Optimizer (21) (ZeRO), with DP, and tackle these technical challenges. We term our solution DP-ZeRO and carefully
analyze its performance on large model training, as well as the difference between DP optimization on single device
and in distributed learning.

Solution Parallelism Model partition Platform Remark
Opacus DDP Data No Pytorch cannot fit large model; memory inefficient (due to per-sample gradients)

(9; 18) Data No JAX cannot fit large model; time inefficient (e.g. 2− 9× slowdown)
(14) Pipeline Yes Pytorch pipeline parallelism has bubble that wastes GPU time
Ours Data(&Model) Yes Pytorch time & memory & communication efficient

Table 1: DP distributed learning; more to be added

2 PRELIMINARY

2.1 DIFFERENTIAL PRIVACY

DP provides a strong privacy guarantee on a per-sample basis, making it difficult to extract any information about an
arbitrary training sample. We study (ϵ, δ)-DP in Definition 2.1, with smaller (ϵ, δ) means lower privacy risk.

Definition 2.1 ((11)). A randomized algorithm M is (ε, δ)-DP if, for any two neighboring datasets S, S′ that differ by
one sample and for any event E, we have P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ.

1This paper is part of an upcoming full version.

1



2.1.1 PRIVATE GRADIENT DESCENT

In deep learning, DP can be realized by applying standard optimizers such as SGD, Adam, LAMB, and FedAvg on
the private gradient (1), which is the noisy sum of the clipped per-sample gradients:

private gradient: G[m] :=
∑
i

Ci(Rm)g[m],i + σDP∥[R1, · · · , RM ]∥ · N (0, I). (1)

Note that the privacy guarantee is proportional to the noise multiplier σDP, according to the privacy accounting theory
(1; 3; 10; 27; 13; 17), with σDP = 0 leading to ϵ = ∞ (non-private).

Group-wise gradient clipping The trainable parameters and their gradients are mathematically partitioned into M
groups, e.g. in all-layer clipping, all parameters form one group (M = 1); in layer-wise clipping (20), each layer’s
parameters form a group (M = # of layers). Other examples include per-device (14), parameter-wise (23), and
uniform grouping. We denote g[m],i as the i-th per-sample gradient of the m-th group’s parameters.

Gradient clipping Per-sample gradient clipping gi → Cigi requires the clipping factor Ci = C(∥gi∥). This
factor is determined by (I) the clipping function, e.g. regular clipping Ci = min(R/∥gi∥, 1) (1), automatic clipping
Ci = 1/(∥gi∥ + 0.01) (6; 22), and global clipping Ci = I(∥gi∥ < R) (5); (II) the clipping threshold R, which is
usually data-independent if defined prior to the training, or data-driven at the cost of extra hyperparameters and privacy
spending (14; 2). For example, in the automatic clipping, one can set Rm = 1/

√
M and ∥[R1, · · · , RM∥ = 1.

Per-sample gradient norm To clip the per-sample gradients, it is necessary to compute their norms, which is made
efficient via the ghost clipping trick (12; 19; 4). In fact, the per-sample gradient norms can be computed without
instantiating the computationally expensive gradients, thus having small overhead compared to the standard non-
private optimization. Additionally, the noise generation in (1) has negligible overhead. In this work, we adopt the
Book-Keeping (BK) algorithm (8), which is state-of-the-art and only adding ≈ 10% time/space complexity to the
standard optimization of large ViT and GPT2 models.

2.2 ZERO REDUNDANCY OPTIMIZER

2.2.1 PARALLEL COMPUTING

Parallel computing is necessary to train large-scale models and is critical to the efficiency. For models that fit in a single
device, data parallelism (DataP) can be used to scale up the training by partition the batch of samples into multiple
micro-batches on multiple devices. That is, each device holds a full copy of parameters and executes its forward and
backward propagation, and generates the parameter gradient on its micro-batch of samples, which is averaged across
devices to update the trainable parameters. For models that do not fit in a single device, the model parameters are
partitioned by model parallelism (ModelP) and pipeline parallelism (PipeP).

ModelP partitions a model vertically, e.g. using 3 GPUs to store the parameters of one layer. As a consequence,
ModelP does not scale efficiently beyond a single node due to fine-grained computation and expensive communication
between layers. Notice that ModelP is complementary to ZeRO for its use on very large models. In contrast, PipeP
partitions a model horizontally across layers, e.g. storing 3 layers in each GPU. Each device deals with all micro-
batches sequentially, and PipeP can be inefficient due to the “pipeline bubble”, which is overcome by ZeRO.

2.2.2 MODEL STATE PARTITION

We take an example of mixed precision Adam optimizer to introduce the three stages of ZeRO .

Optimizer state partition (Pos) The optimizer states in ZeRO are fp32: the (master) parameters, variance and
momentum, each taking 4Ψmodel memory. ZeRO1 only applies the optimizer state partition, reducing the memory cost
of model states from 16Ψmodel to (4 + 12

Nd
)Ψmodel at each device.

Gradient partition (Pg) During the back-propagation, the fp16 gradients are partitioned, taking 2Ψmodel memory.
In addition to ZeRO1, ZeRO2 further applies the gradient partition, reducing the memory cost to (2 + 14

Nd
)Ψmodel at

each device.
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Parameter partition (Pp) During the forward propagation, the fp16 parameters are partitioned, taking 2Ψmodel
memory. In addition to ZeRO2, ZeRO3 also applies the parameter partition, further reducing the memory cost to
16
Nd

Ψmodel at each device. Notice that FullyShardedDataParallel (26) (FSDP) is based on ZeRO3.

2.3 PARAMETER EFFICIENT FINE-TUNING

In contrast to full fine-tuning, where all model parameters are trainable, the parameter efficient fine-tuning (PEFT) only
trains a small amount (e.g. 0.1%) of model parameters. Some examples include LoRA (16), Adapter (15), BiTFiT
(25), and linear probing. Consequently, PEFT significantly boosts the computation and communication efficiency in
three ways: (I) The most amazing save is the communication cost of the micro-batched parameter gradient among
devices, possibly by 1000×. (II) PEFT has a theoretically 50% speedup2, which has been observed in LoRA (see
Footnote 5 of (16)) and BiTFiT (see Section 3.2 of (7)) in practice. (III) PEFT can save the memory cost on non-
trainable layers by not caching the parameter gradient nor the activation tensor, and therefore trade the saved memory
for larger batch size and faster training. We highlight that this work is parallel to PEFT and will present results in this
direction.

model # param(Ψmodel) # trainable param(Ψtrain)
(14) GPT3 175B 151M
(8) GPT2-large 774M 774M
(7) GPT2-large 774M 0.5M

this work ViT-Gigantic 1.84B 1.84B
this work GPT2-XL 1.56B 1.56B
this work GPT-J 6B 6B
this work GPT3 175B 175B
this work GPT 1T 1T

Table 2: State-of-the-art large-scale optimization with differential privacy.

2.4 MIXED PRECISION TRAINING

Mixed precision training is a key technique which saves ≈ 50% of the memory and accelerates the large model training
by ≈ 20%, in comparison to the full precision training. This is achieved by performing the forward and backward
propagation on the half precision (fp16) parameters, activations, and gradients, which only occupy half the space of the
full precision (fp32) and take less time to multiply or add. We highlight that because the per-sample gradient clipping
already plays the role of scaling, one should not use loss scaling in DP mixed precision training.

Specifically, in standard mixed precision training, there are two steps: scaling up the loss before the back-propagation,
and scaling down (by the same factor) the parameter gradient after the back-propagation. However, in DP mixed
precision training, scaling up the loss may cause overflow, while scaling down the gradient is incorrect, as can be seen
from the scales in the ‘param gard’ columns of Table 3.

loss scale=103 activation output grad (scaled) per-sample grad norm clipping factor param grad param grad
vec(AA⊤) vec(BB⊤) (not scaled down) (if scaled down)

standard w/o scaling 10−3 ∼ 102 10−7 ∼ 101 N/A N/A 1 10−10 ∼ 101 10−10 ∼ 101

standard w/ scaling 10−3 ∼ 102 10−4 ∼ 104 N/A N/A 1 10−7 ∼ 104 10−10 ∼ 101

DP w/o scaling 10−3 ∼ 102 10−7 ∼ 101 102 ∼ 103 10−6 ∼ 100 10−3 ∼ 102 10−10 ∼ 101 10−10 ∼ 101

DP w/ scaling 10−3 ∼ 102 10−4 ∼ 104 102 ∼ 103 100 ∼ 106 10−6 ∼ 10−1 10−10 ∼ 101 10−13 ∼ 10−2

Table 3: Illustrative example based on ViT-large CIFAR100.

3 DIFFERENTIALLY PRIVATE ZERO

We describe the DP-ZeRO algorithm in Figure 1.
2Forward propagation, output gradient, parameter gradient each takes one unit of time complexity (see (8)). As PEFT almost

eliminates the computation of parameter gradient, the training accelerates by 50% compared to full fine-tuning.
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Figure 1: DP-ZeRO (stage 3).

Suppose we use Nd devices and train a neural network as

sl = alWl + bl,al+1 = ϕl(sl) (2)

where al ∈ RBTldl is the layer’s input, also known as the activation, sl ∈ RBTlpl is the layer’s output, Wl ∈ Rdlpl is
the weight, bl ∈ Rpl is the bias, and ϕl is any inter-layer operation such as ReLU, tanh or pooling. We denote B as
the physical batch size3 and Tl as the hidden feature dimension (e.g. text sequence length or number of pixels).

During the forward propagation, al is computed for each layer and stored in the computation graph. This activation is
then used during the back-propagation to compute the parameter gradient gl = ∂L

∂Wl
, where L =

∑
i Li is the sum of

per-sample losses Li.

3B (also known as the micro-batch size) is the number of samples processed by each of Nd devices and determines the time
and memory efficiency, but not the accuracy. The logical batch size that determines the convergence/accuracy is B ×Nd ×Nacc,
where Nacc is the steps of gradient accumulation.
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During the back-propagation, the output gradient ∂L
∂sl

is computed for each layer as
∂L

∂sl
=

∂L

∂sl+1

∂sl+1

∂al+1
◦ ∂al+1

∂sl
=

∂L

∂sl+1
Wl+1 ◦ ϕ′

l(sl).

In constrast, the parameter gradient is only computed if a layer is trainable, as

Standard (non-DP):
∂L

∂Wl
=

∂
∑

i Li

∂Wl
= a⊤ ∂L

∂sl
,

DP (without noise):
∂
∑

i CiLi

∂Wl
= a⊤diag(C1, · · · , CB)

∂L

∂sl
.

Here the per-sample gradient norm (or the clipping factor Ci) can be computed at small cost, by the mixed ghost norm
(4) (see also Appendix A).

In what follows, we describe certain insights in DP-ZeRO. First of all, it is clear that DP only affects the computation
of gradients and thus do not affect the communication efficiency at all.

Secondly, an important difference between DP and standard mixed precision training is the loss scaling. Without DP,
the mixed precision training scales up the loss Li by 103 ∼ 109, computes the back-propagation, and then scales
down by the same factor to fp32 gradient. The scale up prevents the underflow (i.e. fp16 gradient is too small to be
representable), and the scale down recovers the correct magnitude of gradient, thus achieving almost the same accuracy
as full precision training. However, because the per-sample gradient clipping already plays the role of scaling, one
should not use loss scaling in DP mixed precision training, in order to prevent overflow and failure to train. We explain
the details in appendix.

Thirdly, the noise addition in (1) is implemented with different magnitude, depending on whether a random seed is
fixed on each device. If the seed is fixed for reproducibility, each device (say the j-th) will generate the same noise
for the j-th micro-batch private gradient. Therefore, the noise magnitude is σDP/N in order to sum to the total noise
σDPN (0, I); otherwise, the j-th private gradient requires σDP√

N
noise because each device has independent noise. In the

single-device learning (N = 1), the noise addition is equivalent either way.
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Figure 2: Memory cost of training ViT-Gigantic-patch14-224 (2B) with 8 A100 GPUs.

We provide the code to experiment with GPT2-XL and GPT-J in the supplementary material. Larger models (e.g. GPT
175B/1T) will be released in the full version.
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A EFFICIENT COMPUTATION OF PER-SAMPLE GRADIENT NORMS

The mixed ghost norm (4) is the state-of-the-art technique to compute the per-sample gradient norm. It hybridizes two
basic techniques to compute the Frobenius norm of a product of tensors, say X = A⊤B, from A ∈ RTd, B ∈ RTp.∥∥A⊤B

∥∥2 = ∥X∥2Fro = vec
(
AA⊤) · vec(BB⊤), (3)

where vec flattens the tensor to an one-dimensional vector.

To be more specific, although both equalities are equivalent mathematically, they are computed differently and thus
have significantly different efficiency:

• ∥X∥2Fro =
∥∥A⊤B

∥∥2 firstly computes A⊤B and then its norm.

• ∥X∥2Fro = vec
(
AA⊤) · vec(BB⊤) firstly computes AA⊤, BB⊤ ∈ RTT and then their dot product.

That is, the second technique computes X’s norm without ever instantiating the variable X , similar to the idea of
Gaussian elimination that solves A−1b without inverting A.

The complexity analysis (4; 8) has shown that ∥X∥2Fro =
∥∥A⊤B

∥∥2 requires pd space complexity and 2Tpd time
complexity, while ∥X∥2Fro = vec

(
AA⊤) ·vec(BB⊤) requires 2T 2 space complexity and 2T 2(p+d) time complexity.

To put this into perspective, to compute the per-sample gradient norm, we denote X = ∂Li

∂Wl
, A = al,i, B = ∂L

∂sl,i
=

∂Li

∂sl,i
. Consequently, the two techniques are termed the per-sample gradient instantiation and the ghost norm.

∥∥∥∥a⊤
(l),i

∂L

∂s(l),i

∥∥∥∥2 per-sample grad
==== ∥ ∂Li

∂W(l)
∥2Fro

ghost norm
==== vec

(
∂L

∂s(l),i

∂L

∂s(l),i

⊤
)

· vec(a(l),ia
⊤
(l),i) (4)
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To maximize out the memory efficiency, the mixed ghost norm uses a layer-wise decision rule that applies the ghost
norm if and only if 2T 2 < pd on a layer. In other words, the mixed ghost norm always applies whichever tech-
niques that is the cheapest, thus reducing the space complexity of computing the weight’s per-sample gradient norm
to min(2BT 2, Bpd).

Finally, we note that the per-sample gradient of the bias is computed differently. This is because

∂Li

∂b
= 1⊤ ∂L

∂si

is activation-free and not actually a product of tensors like X = A⊤B. In fact, the multiplication with 1 turns out
to be a summation along the first dimension T × p → p. This is equivalent to set d = 1 and hence we always use
per-sample gradient instantiation to compute the bias gradient norms.
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