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Abstract

Diffusion models such as Stable Diffusion, DALL-E 2, and Imagen have garnered1

significant attention for their ability to generate high-quality synthetic images from2

their training distribution. However, recent works have shown that diffusion models3

can memorize training images and emit them at generation time. Although this4

behavior has been extensively studied, some of the metrics used for evaluation5

suffer from different biases.6

We introduce SOLIDMARK, a novel metric that provides a well-defined notion of7

pixel-level memorization. Our metric injects patterns (keys) into training images8

and aims to retrieve them at generation time via inpainting. We use our metric9

to evaluate existing memorization mitigation techniques. With our findings, we10

propose our metric as an intuitive lower bound for the amount of pixel-level11

memorization in a model.12

1 Introduction13

Diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020, Rombach et al., 2022] are a class14

of generative neural networks that have gained prominence because of their ability to generate15

remarkably photorealistic images. However, they have also been the subject of scrutiny and litigation16

[Saveri and Butterick, 2023] owing to their ability to memorize and regurgitate potentially copyrighted17

training images. Additionally, commonly used datasets [Schuhmann et al., 2021] have been shown18

to contain sensitive documents such as clinical images of medical patients, whose recreation poses19

incredibly intrusive privacy concerns. As a result, recent works [Somepalli et al., 2022, 2023, Carlini20

et al., 2023, Wen et al., 2024, Ren et al., 2024, Kumari et al., 2023] have looked to quantify, explain,21

and mitigate memorization in diffusion models.22

We start by demonstrating some potential issues with current memorization metrics, specifically when23

measuring pixel-level memorization. As an alternative, we present SOLIDMARK, a novel metric that24

allows for the precise quantification of pixel-level memorization. SOLIDMARK augments each image25

with a solid grayscale border (see Fig. 1). This pattern is randomized independently for each image,26

so a correct reconstruction of the pattern’s color indicates memorization of the sample. This concept27

is closely related to watermarking, but there are also some key differences that distinguish it: (i) a28

watermark should be difficult to remove, whereas our pattern is easily removable; (ii) a watermark29

only needs to be detectable, but our pattern needs to be precise enough to provide a continuous metric30

for quantifying memorization; (iii) our pattern should ideally be unique for any given image, which is31

not necessary for a watermark.32

We designed SOLIDMARK to be included in newer models as they are developed (or finetuned into33

existing ones) since the pattern can be cropped out when generating images. SOLIDMARK is a near34

zero-cost way to evaluate memorization in foundation models.35
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Figure 1: An overview of SOLIDMARK. We begin by augmenting training images with random
scalar keys. Next, we inject these keys into the model weights by training it on these augmented
images. To query for one of these keys, we ask the model to inpaint the training image in question
using the training caption as the text prompt and retrieve its prediction at the key. Finally, we report
the distance between the predicted key and the true value.

2 Background and Related Work36

Many previous works [Carlini et al., 2023, Somepalli et al., 2022, Kumari et al., 2023] have attempted37

to detect memorization in diffusion models. One key result from Carlini et al. [2023] is that a diffusion38

model’s performance on the inpainting task drastically increases when the target image is memorized.39

A number of recent works [Somepalli et al., 2023, Chen et al., 2024, Wen et al., 2024, Ren et al.,40

2024] have also aimed to mitigate memorization in diffusion models, either with training time data41

perturbation or inference-time techniques (perturbation at inference time). Needle-in-a-Haystack42

evaluation [Kamradt, 2023] has been used in many recent works [Fu et al., 2024, Kuratov et al., 2024,43

Wang et al., 2024, Levy et al., 2024] to test the long-context understanding and retrieval capabilities of44

Large Language Models (LLMs) by inserting a random ‘needle’ (key) in the middle of a large corpus45

of text and prompting the model to recall it. Our metric uses a similar idea to evaluate memorization46

in images.47

3 Existing Memorization Evaluation Methods48

Types of Memorization. Memorization in diffusion models can usually be classified into either49

pixel-level or reconstructive (semantic). Pixel-level memorization [Carlini et al., 2023] is identified by50

a near-identical recreation of a particular training image. Alternatively, reconstructive memorization51

is identified by the recreation of specific objects or people found in training images, even if the52

generation in question is not pixel-wise similar to any training images [Somepalli et al., 2022].53

Measuring Memorization. Neither pixel-level nor reconstructive memorization have precise math-54

ematical definitions, making it rather difficult to declare how strongly a training image is memorized.55

Instead, when constructing metrics, the literature refines certain qualities about generated images into56

mathematical representations that can identify memorizations when they occur at generation time.57

Specifically, for a training dataset X and a generation x̂0, papers will use some distance function158

ℓ(x̂0,X), with lower values indicating a higher likelihood of memorization. After collecting these59

values for a large number of generations, they are converted into an overall score: for example, the60

95th percentile of all similarities is a common metric [Somepalli et al., 2023]. Recently, [Chen61

et al., 2024] questioned the validity of percentile-based scoring strategies in memorization metrics,62

especially when the distribution of distances is heavy-tailed as in Figure 2.63

1Other works [Somepalli et al., 2022, Chen et al., 2024] use a similarity σ instead, but flipping signs makes
these interchangeable, so we will use the most natural measure in each case.
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Figure 2: 95th percentile scoring fails to capture fine-
grained reductions in memorization. The above graphs
demonstrate how a 95th percentile metric can fail to report
successful memorization reduction. (Top) A distribution
showing the density (vertical axis) of different similarity val-
ues (horizontal axis) in a model’s baseline results. (Bottom)
The memorization-reduced evaluation, where the 95th per-
centile did not change at all despite clear memorization re-
ductions shown in the 96th percentile.

Notably, Carlini et al. [2023] track64

the proportion of generations with dis-65

tances under a certain threshold, also66

known as “eidetic” memorization. Us-67

ing similar language, we will refer to68

a metric that counts the number of69

distances ℓ below a threshold δ as an70

(ℓ, δ)-eidetic metric. Additionally, a71

training image x is said to be (ℓ, δ)-72

eidetically memorized if the respec-73

tive model returns a generation x̂074

where ℓ(x̂0, x̂) ≤ δ.75

Modified ℓ2 Distance. A common76

choice of the distance function ℓ as an77

indicator for pixel-level memorization78

is a modified ℓ2 distance (which we79

call ℓ̄2 distance for short) that was in-80

troduced in Carlini et al. [2023]. We81

formally define this distance in Ap-82

pendix section A.1. In Figure 3, we83

show examples of the strongest memorizations reported by ℓ̄2 distance in our experiments, demon-84

strating that the measure reports monochromatic images as false positives. Because of this lack of85

specificity, we found that their metric was not a satisfying solution to detect pixel-level memorization.86

Figure 3: ℓ̄2 distance reports monochromatic images as memorizations. Despite not always being
memorizations of the training set, monochromatic images still generate a low ℓ̄2 distance. (Top) Out
of 5000 generations, we present the 10 generations with smallest patched ℓ̄2 distance from CIFAR-10
train. (Bottom) We show the corresponding nearest neighbors in CIFAR-10 train to the top row of
generations. Implementation details in Appendix Section A.1.

4 SOLIDMARK: A Precise Metric for Memorization87

We introduce SOLIDMARK, a framework for precise evaluation of pixel-level memorization. We88

aimed to find a key-query mechanism, where recalling the key could indicate memorization of an89

image. We found the inpainting task naturally conducive to this idea—by masking out part of a90

training image, we can provide the unmasked portion to the model as a ‘query’ and ask it to recall the91

‘key’ (the masked portion). We inject our training images with an unrelated scalar key by inserting92

a grayscale border. By training the model on these augmented images, we teach it to output a93

“prediction at a key” in the borders of its generations. At evaluation time, we can prompt the diffusion94

model to inpaint the border (key) for a training image and can evaluate its accuracy with a scalar95

distance function. An accurate prediction of the random color we assigned to the border would96

indicate that the exact image may be memorized.97

To generate the borders, we will define a key function k(x) that returns a key kx ∈ R for any image98

x. For simplicity, we will set k(x) ∼ Unif(0, 1); we draw a grayscale color (which is the same scalar99

across all channels) uniformly at random.100

We now turn to define the distance function that we use as a metric. We begin by augmenting a101

training dataset X with key-encoded borders to yield a new dataset X̄ . Then, we either pretrain a102

new model or finetune an existing model on X̄ . After inpainting x with RePaint [Lugmayr et al.,103
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Table 1: Evaluating Inference-Time Methods with SOLIDMARK. Evaluation of inference-time
memorization mitigation methods from Somepalli et al. [2023]. We compare the percentage reductions
in memorization as measured by 95th percentile SSCD similarities from the source paper and
(ℓSM, 0.01)-eidetic memorizations.We show all techniques both with their default values and the
parameter we found as optimal.

Metric GNI RT CWR RNA

95th Percentile of SSCD Similarities 3.74% ↓ 16.42% ↓ 9.43% ↓ 13.63% ↓
SOLIDMARK (Default Parameters) 0.001% ↓ 4.10% ↓ 5.80% ↓ 2.67% ↓
SOLIDMARK (Tuned Parameters) 15.67% ↓ 5.70% ↓ 5.80% ↓ 3.64% ↓

2022], we find the absolute difference ℓSM (SM = SOLIDMARK) between the ground-truth key for104

the image kx and the average of the inpainted border.105

5 Evaluation106

Validation on a Toy Model We wanted to ensure that the metric’s results tended to follow changes107

in memorization. For this, we augmented CIFAR-10 with a solid 4-pixel thick border. On this108

augmented dataset, we pretrained DDPMs and applied a technique known to reduce memorization to109

verify SOLIDMARKas a metric. Since the DDPMs were class-conditioned and not text-conditioned,110

the only relevant technique from Somepalli et al. [2023] was Gaussian Noise at Inference (GNI),111

which adds Gaussian noise to the conditional embedding. Accordingly, we applied Gaussian noise112

with mean 0 and a range of magnitudes, tracking the number of (ℓSM, δ)-eidetic memorizations113

over 5000 generations as the magnitude of noise increased. We measured a monotonic decrease114

in eidetic memorizations for δ = 0.01 with an overall 57.1% decrease at the highest magnitude of115

noise. Eidetic memorizations for δ = 0.001 showed a 66.7% decrease. These results are plotted in116

Appendix section A.2.117

Re-Evaluating Mitigation Techniques For Stable Diffusion, we were able to test all of the118

inference-time techniques from Somepalli et al. [2023]. To do this, we augmented a subset of119

LAION-400M with solid 16-pixel thick borders. We then finetuned Stable Diffusion 1.4 on this120

subset and compared the percentage decrease2 in (ℓSM, 0.01)-eidetic memorizations in our models121

against the percentage decrease in the source results of 95th percentile SSCD similarities. We have122

included these results in Table 1. Overall, our results with the source parameters correlate with the123

general hierarchy of the previously used metric (i.e, which methods are better than others). However,124

we also observed very different magnitudes of memorization reduction compared to the original125

metric. The only technique that provided over 10% reduction was GNI, which only happened when126

using a much stronger parameter than what Somepalli et al. [2023] suggested.127

6 Discussion128

Limitations. Our metric may struggle with quantifying duplication-induced memorization as129

duplicates will receive different keys.130

SOLIDMARK as a “Lower Bound” for Memorization. Chiefly, SOLIDMARK’s strength resides131

in its ability to function as a lower bound, where any instance of memorization found by SOLIDMARK132

indicates the model has explicit knowledge on a specific image. This strength derives from the key-133

query structure, where the keys are semantically unrelated from their queries. It would be incredibly134

unlikely to randomly infer such a key with high precision. For this reason, we consider SOLIDMARK135

an “intuitive lower bound” on pixel-level memorization. On the other hand, although the setting itself136

defines a strict form of memorization, we do provide the model with highly favorable conditions such137

that it would almost definitely be able to recall a sample if memorized.138

2We used percentages to corroborate the results into numbers that could be meaningfully compared.
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A Appendix190

A.1 Modified ℓ2 Distance191

This distance rescales the ℓ2 distance between a generation and its nearest neighbor based on its
relative distance from the set Sx̂0

of x̂0’s n nearest neighbors in X . Specifically, we define Sx̂0
⊆ X

where |Sx̂0
| = n and

∀x∈X\Sx̂0
ℓ2(x̂0,x) ≥ max

y∈Sx̂0

ℓ2(x̂0,y)

We then define the modified ℓ2 distance as

ℓ̄2(x̂0,X;Sx̂0
) =

ℓ2(x̂0,x)

α · Ey∈Sx̂0
[ℓ2(x̂0,y)]

where α is a scaling factor. This distance increases when x̂0 is much closer to its nearest neighbor192

when compared to its n nearest neighbors, potentially indicative of memorization.193

For our experiments, we trained class-conditional DDPMs for 500 epochs on CIFAR-10 train and194

sampled 5000 images with random classes, recording ℓ̄2 for each generation with n = 50 and α = 0.5195

as in the original paper.196

A.2 CIFAR-10 DDPM Results Plotted197

Figure 4: SOLIDMARK shows an overall reduction in memorization from GNI. As the magnitude
of the Gaussian noise increases, both δ values find a decrease in memorization.
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