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Abstract

Building design optimization often relies on
physics-based simulation tools, which have a high
computational cost. Surrogate-assisted optimiza-
tion offers a more efficient alternative by approx-
imating simulation outputs and is typically com-
bined with conventional optimization algorithms
such as genetic algorithms or particle swarm opti-
mization. These optimization algorithms initiate
their search without any prior knowledge, requir-
ing optimization from scratch for each new build-
ing or weather scenario. This study proposes a
Reinforcement Learning (RL) approach that in-
corporates transfer learning through actor–critic
policy reuse, enabling adaptation to new weather
conditions and building types. Experimental re-
sults demonstrate improved sample efficiency,
faster convergence, and reduced training variabil-
ity. These findings highlight the promise of RL-
based transfer learning for scalable and sustain-
able building design optimization.

1. Introduction
Buildings are among the largest consumers of energy glob-
ally and account for a substantial share of greenhouse gas
emissions, making them a critical sector in climate change
mitigation efforts (Programme, 2023). Enhancing the en-
ergy performance of buildings through improved design
strategies is an effective means of reducing long-term emis-
sions. Early design-stage decisions—such as insulation lev-
els, glazing types, and orientation—can significantly reduce
energy demand over the building’s lifetime and enhance sus-
tainability (Chen et al., 2018; Homod et al., 2014; Ramessur
& Gooroochurn, 2021; Huang et al., 2015; Zhang et al.,
2018; Ferreira et al., 2012; Dey et al., 2020).
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However, optimizing building designs using high-fidelity
simulation tools such EnergyPlus and TRNSYS remains
computationally expensive and time-consuming. Surrogate
models offer a more efficient alternative by approximating
simulation outputs through data-driven learning (Asadi et al.,
2014; Didwania et al., 2023; Li et al., 2017; Yu & Leng,
2021), but these models are typically task-specific. As a
result, both the surrogate model training and the optimiza-
tion must be repeated for each new building or weather file,
limiting their scalability.

To improve generalizability, recent studies have explored
surrogate models trained across multiple locations by in-
corporating weather features or categorical location identi-
fiers (Kerdan & Gálvez, 2020; Zheng et al., 2024; Wester-
mann et al., 2020). However, traditional optimization algo-
rithms such as Genetic Algorithms (GAs), Particle Swarm
Optimization (PSO), and Grey Wolf Optimization (GWO)
still approach each problem independently, discarding prior
search knowledge and requiring fresh exploration for every
new task (Ma et al., 2020; Zheng et al., 2022). Although
transfer learning techniques have been proposed in the con-
text of evolutionary optimization (Tan et al., 2023), they
remain largely unexplored in surrogate-assisted building
design workflows. Transferring knowledge from previous
tasks has the potential to improve convergence speed and
accuracy when applied to new building configurations or
climate scenarios.

Recently, Pan et al. (2024) demonstrated that RL agents can
learn building design strategies by interacting with surrogate
models, offering greater adaptability and sample efficiency
than conventional optimization algorithms. However, their
work primarily focused on single-task optimization and did
not explore the transferability of learned policies across
different building types or climates—a key requirement for
scalable design automation.

To address this, we present an RL-based transfer learning
for building design optimization, where actor–critic poli-
cies trained in one context are fine-tuned in new surrogate
environments representing different weather conditions or
building configurations. Our experiments show that policy
transfer accelerates convergence, improves training stabil-
ity, and reduces the overall cost of optimization for new
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tasks. These results highlight the potential of RL-based
transfer learning to enable flexible, efficient, and sustainable
building design optimization across diverse scenarios.

2. Related Work
A review of surrogate-assisted optimization studies (Man-
matharasan et al., 2025) showed that traditional metaheuris-
tic algorithms such as GAs, PSO, and GWO are the most
commonly used optimization techniques. These traditional
algorithms start their searches without initial information
and do not use knowledge from any previous tasks. Despite
the advancements in surrogate-assisted optimization work-
flow, most optimization tasks are still approached in isola-
tion—each new design scenario or location requiring a new
optimization run. This practice is inefficient, particularly
when the tasks share similar characteristics. Transferring
knowledge from previous optimization problems could im-
prove performance in new tasks by reducing both search
time and simulation costs. While some studies (Jiang et al.,
2018; Mweshi & Pillay, 2024) have used transfer mecha-
nisms with the conventional evolutionary frameworks, these
methods are not integrated into surrogate-assisted settings.

Recently, RL has gained attention for its ability to provide
adaptive and data-driven solutions in complex optimization
tasks. In contrast to traditional optimizers, RL offers native
support for transfer learning through mechanisms such as
policy reuse and fine-tuning. While the already mentioned
work of Pan et al.2024 employed RL, they did not exam-
ine the possibility of transfer among different buildings or
weather conditions. Although RL transferability remains
untapped in surrogate-assisted building design, several stud-
ies outside this domain have demonstrated the effectiveness
of RL transferability. Parisotto et al.(Parisotto et al., 2016)
introduced policy distillation in the game environments,
where a student agent accelerates convergence by imitating
a pre-trained teacher policy. Wang et al.(Wang et al., 2022)
applied policy transfer to well placement optimization in oil
reservoirs, using autoencoders to extract latent environmen-
tal representations that enabled policy transfer. Similarly,
Zhang et al. (Zhang et al., 2024) proposed a safety-critical
RL approach for robotic control tasks, allowing pre-trained
policies to be deployed in high-risk, resource-constrained
environments while preserving safety.

This highlights a clear research gap in incorporating trans-
fer learning into the optimization process itself. RL, with
its proven ability to transfer policies across tasks, offers a
promising pathway to improve both the accuracy and ef-
ficiency of surrogate-assisted building design. Therefore,
our approach leverages actor–critic policy transfer within an
RL framework to enable knowledge-transferable building
design optimization across diverse climates and building
types.

3. Methodology
3.1. Reinforcement Learning Framework

The proposed RL–based surrogate optimization approach
comprises two main components: a surrogate environment
and an RL agent, as illustrated in Figure 1. RL is a natural fit
for scalable building design optimization due to its capacity
for learning through interactions and its compatibility with
transfer learning. In this work, we adopt the Deep Determin-
istic Policy Gradient (DDPG) algorithm, which supports
continuous action spaces and is therefore well-suited for
optimizing real-valued building parameters.

The surrogate environment is constructed using a surrogate
model trained on EnergyPlus simulations. Given a vector of
building design variables B (e.g., insulation levels, glazing
properties), the surrogate model predicts key performance
metrics such as annual energy consumption (Y1) and ther-
mal comfort measured by predicted mean vote (Y2). These
predicted values serve as the environment state, and are also
used to compute the reward, which reflects the deviation
from the design objectives.

The RL agent follows an actor–critic architecture. The actor
network (π) proposes design configurations (actions), while
the critic network (Q) estimates their Q-value. To improve
training stability, we employ target networks Qtarget and
πtarget, which are delayed copies of the main critic and actor
networks. These target networks are updated incrementally
using soft updates governed by a rate τ , as follows:

θπtarget ← τθπ + (1− τ)θπtarget (1)

θQtarget ← τθQ + (1− τ)θQtarget (2)

where θπ and θQ denote the weights of the main actor and
critic networks, and θπtarget and θQtarget are the weights of the
corresponding target networks. Both the actor and critic net-
works are implemented as fully connected neural networks
with ReLU activations. The architecture for each network,
including the number of hidden layers and the number of
units per layer, is determined through hyperparameter tun-
ing.

The critic is trained by minimizing the Temporal-Difference
(TD) error between its predicted Q-value and a target value
computed using the target networks. The target value t is
defined as:

t = r + γQtarget(s
′, πtarget(s

′)) (3)

Here, r is the immediate reward, γ is the discount factor,
and s′ is the next state. The critic loss is the mean squared
error between this target and the predicted Q-value:

Lcritic = E(s, a, r, s′)
[
(t−Q(s, a))

2
]

(4)
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Figure 1. RL–based surrogate optimization framework. The actor–critic agent interacts with a surrogate environment trained on EnergyPlus
outputs.

where s and a represent the current state and action. This
setup encourages the critic to match its predictions to more
stable target estimates generated by the delayed target net-
work. To improve learning stability and sample efficiency,
a replay buffer is used to store past transitions (s, a, r, s′).
During training, mini-batches are randomly sampled from
this buffer to update the actor and critic networks.

The actor is updated to maximize the Q-value predicted by
the critic, leading to better-performing design proposals:

Lactor = −Es [Q(s, π(s))] (5)

To encourage exploration in the continuous action space,
Gaussian noise is added to the actions during training. The
noise standard deviation gradually decayed over time to shift
the agent from exploration to exploitation. Each RL train-
ing session is run for a fixed number of episodes (e.g., 100).
Through iterative interaction with the surrogate environment,
the actor learns a policy π(s) that proposes high-performing
building configurations. The learned actor and critic net-
works, which together encode optimization knowledge, are
reused when transferring the RL agent to a new scenario,
allowing the agent to begin learning with prior experience.

3.2. Transfer Learning for Cross-Context Adaptation

To enhance sample efficiency and reduce retraining time
when transitioning to new design contexts, we adopt a trans-

fer learning approach that reuses both the actor and critic
networks. Specifically, actor–critic models trained on a
source task are transferred to a new target task, where the
building or weather file differs. This allows the RL agent
to leverage both policy knowledge and value estimations
learned previously.

In the surrogate environment, a new surrogate model is
trained on the target building to represent the updated envi-
ronment. The reward structure for the RL agent remains con-
sistent across tasks, but values are now calculated using the
new surrogate model. To facilitate smooth transfer across
different building types with varying energy scales, energy
consumption values are normalized by dividing each value
by the mean energy consumption of its respective building
type. This scaling ensures that performance metrics remain
comparable, allowing the transferred actor to interpret feed-
back consistently and continue generating plausible design
configurations aligned with the original objective.

Fine-tuning is performed over a number of episodes using
the DDPG algorithm. During this phase, both the trans-
ferred actor and critic networks are updated from their initial
knowledge using newly collected experience in the target
environment. This setup accelerates convergence and im-
proves early-stage learning stability by leveraging prior opti-
mization knowledge embedded in both, while still allowing
for adaptation to the specifics of the new task.
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(a) London Medium → London Large (b) London Medium → Toronto Medium

(c) Toronto Medium → Toronto Large (d) Toronto Medium → London Medium

Figure 2. Transfer learning scenarios explored in this study. Each plot compares reward trajectories of models trained from scratch (red)
vs. models initialized with pretrained actors (blue).

4. Results
This section presents the results of RL-based optimization
experiments designed to evaluate the scalability and transfer-
ability of learned policies across different building configu-
rations and climates. Two building types were selected from
the EnergyPlus example library: the Medium Office and the
Large Office reference model. Each building was simulated
under two distinct climate conditions, Toronto and London
(Canada), resulting in four unique optimization scenarios.
For each scenario, an actor–critic RL agent was trained from
scratch to learn optimal building design parameters.

To evaluate the effectiveness of transfer learning and assess
whether knowledge from previous optimization episodes
could improve convergence speed, stability, and early-stage
performance in new but related environments, we conducted
experiments in which training was initialized from four
pretrained actor–critic models derived from related source
tasks and subsequently fine-tuned for the new target tasks.
Each transfer scenario was repeated over 20 independent
trials to account for variability in training outcomes.

As illustrated in Figure 2, transfer learning consistently
provided a clear advantage across all scenarios. Models ini-
tialized with pretrained actor-critic networks (blue curves)
achieved higher average rewards and exhibited lower vari-
ance compared to those trained from scratch (red curves).
This indicated that prior optimization knowledge is success-

fully leveraged to accelerate learning and improve early-
stage design exploration. These benefits were most pro-
nounced in the initial episodes, suggesting that transfer
learning enhances sample efficiency and training stability.

5. Conclusion
This work proposed an RL–based transfer learning for build-
ing design optimization using surrogate models. By reusing
actor–critic networks across different weather files and build-
ing types, the approach improves convergence and training
stability while reducing the need for retraining from scratch.
These benefits were most evident when tasks shared sim-
ilar characteristics, supported by normalization strategies
that aligned performance metrics across scenarios. The re-
sults highlight the potential of RL-based transfer learning
to enable scalable and sample-efficient design workflows.
Future work will consider advanced transfer learning strate-
gies to enhance generalization across varied task settings
and application domains.

Impact Statement
This research contributes to scalable and efficient build-
ing design optimization, supporting global efforts toward
sustainable and low-carbon architecture. By reducing simu-
lation and retraining costs, the proposed method accelerates
energy-efficient design practices across diverse weather files
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and buildings.
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