
A Best-of-both-worlds Algorithm for Bandits with
Delayed Feedback with Robustness to Excessive Delays

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose a new best-of-both-worlds algorithm for bandits with variably delayed1

feedback. In contrast to prior work, which required prior knowledge of the maximal2

delay dmax and had a linear dependence of the regret on it, our algorithm can3

tolerate arbitrary excessive delays up to order T (where T is the time horizon). The4

algorithm is based on three technical innovations, which may all be of independent5

interest: (1) We introduce the first implicit exploration scheme that works in best-6

of-both-worlds setting. (2) We introduce the first control of distribution drift that7

does not rely on boundedness of delays. The control is based on the implicit8

exploration scheme and adaptive skipping of observations with excessive delays.9

(3) We introduce a procedure relating standard regret with drifted regret that does10

not rely on boundedness of delays. At the conceptual level, we demonstrate that11

complexity of best-of-both-worlds bandits with delayed feedback is characterized12

by the amount of information missing at the time of decision making (measured by13

the number of outstanding observations) rather than the time that the information14

is missing (measured by the delays).15

1 Introduction16

Delayed feedback is an ubiquitous challenge in real-world applications. Study of multiarmed bandits17

with delayed feedback has started at least four decades ago in the context of adaptive clinical trials18

(Simon, 1977, Eick, 1988), the same problem that has earlier motivated introduction of the bandit19

model itself (Thompson, 1933). We focus on robustness to delay outliers and to the loss generation20

mechanism. In practice occasional delay outliers are common (e.g., observations that never arrive).21

Robustness to the loss generation mechanism implies that the algorithm does not need to know22

whether the losses are stochastic or adversarial, but still provides regret bounds that match the optimal23

stochastic rates if the losses happen to be stochastic, while guaranteeing the adversarial rates if they24

are not (so-called best-of-both-worlds regret bounds). Such algorithms are important from a practical25

viewpoint, because the loss generation mechanism can rarely assumed to be stochastic, but it is still26

desirable to have tighter regret bounds if it happens to be. From the theoretical perspective both27

forms of robustness are interesting and challenging, requiring novel analysis tools and yielding better28

understanding of the problems.29

Joulani et al. (2013) have studied multiarmed bandits with delayed feedback under the assumption that30

the rewards are stochastic and the delays are sampled from a fixed distribution. They provided a mod-31

ification of the UCB1 algorithm for stochastic bandits with non-delayed feedback (Auer et al., 2002).32

They have shown that the regret of the modified algorithm is O
(∑

i:∆i>0

(
log T
∆i

+ σmax∆i

))
,33

where i indexes the arms, ∆i is the suboptimality gap of arm i, T is the time horizon (unknown to the34

algorithm), and σmax is the maximal number of outstanding observations. (An observation is counted35
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Table 1: Comparison to state-of-the-art. The following notation is used: T is the time horizon,
K is the number of arms, i indexes the arms, ∆i is the suboptimality gap or arm i, σmax is the
maximal number of outstanding observations, D =

∑T
t=1 dt is the total delay, S ⊆ [T ] is a set of

skipped rounds, S̄ = [T ] \ S is the set of non-skipped rounds, DS̄ =
∑

t∈S̄ dt is the total delay in
the non-skipped rounds, and dmax is the maximal delay. We have minS

(
|S|+

√
DS̄
)
≤

√
D and

σmax ≤ dmax, and in some cases minS
(
|S|+

√
DS̄
)
≪

√
D and σmax ≪ dmax.

Paper Key results

Joulani et al. (2013) Stochastic bound: O
(∑

i:∆i>0

(
log T
∆i

+ σmax∆i

))
Zimmert and Seldin (2020) Adversarial bound

without skipping: O
(√

KT +
√
D logK

)
with skipping: O

(√
KT +minS

(
|S|+

√
DS̄ logK

))
(Masoudian et al. (2022) provide a matching lower bound)

Masoudian et al. (2022) Best-of-both-worlds bound, stochastic part
O
(∑

i̸=i∗

(
log T
∆i

+ σmax

∆i logK

)
+ dmaxK

1/3 logK
)

The results assume oracle Best-of-both-worlds bound, adversarial part
knowledge of dmax O

(√
TK +

√
D logK + dmaxK

1/3 logK
)

Our paper Best-of-both-worlds bound, stochastic part
O
(∑

i̸=i∗

(
log T
∆i

+ σmax

∆i logK

)
+Kσmax + S∗

)
, where

S∗ = O
(
min

(
dmaxK

2
3 logK,minS

{
|S|+

√
DS̄K

2
3 logK

}))
Best-of-both-worlds bound, adversarial part
O
(√

KT +minS
{
|S|+

√
DS̄ logK

}
+ S∗ +Kσmax

)

as outstanding at round t if it originates from round t or earlier, but due to delay it was not revealed36

to the algorithm by the end of round t. The number of outstanding observations σt at round t is the37

number of actions that have already been played, but their outcome was not observed yet. We also call38

σt the [running] count of outstanding observations. The maximal number of outstanding observations39

σmax is the maximal value that σt takes and is unknown to the algorithm.) The result implies that in40

the stochastic setting the delays introduce an additive term in the regret bound, proportional to the41

maximal number of outstanding observation.42

In the adversarial setting, multiarmed bandits with delayed feedback were first analyzed under the43

assumption of uniform delays (Neu et al., 2010, 2014). For this setting Cesa-Bianchi et al. (2019)44

have shown an Ω(
√
KT +

√
dT logK) lower bound and an almost matching upper bound, where K45

is the number of arms and d is a fixed delay. The algorithm of Cesa-Bianchi et al. is a modification of46

the EXP3 algorithm of Auer et al. (2002b). Cesa-Bianchi et al. used a fixed learning rate that is tuned47

based on the knowledge of d. The analysis is based on control of the drift of the distribution over arms48

played by the algorithm from round t to round t+ d. Thune et al. (2019) and Bistritz et al. (2019)49

provided algorithms for variable adversarial delays, but under the assumption that the delays are50

known “at action time”, meaning that the delay dt is known at time t, when the action is taken, rather51

that at time t+ dt, when the observation arrives. The advanced knowledge of delays was used to tune52

the learning rate and control the drift of played distribution from round t, when an action is played, to53

round t+ dt, when the observation arrives. Alternatively, an advance knowledge of the cumulative54

delay up to the end of the game could be used for the same purpose. Finally, Zimmert and Seldin55

(2020) derived an algorithm for the adversarial setting that required no advance knowledge of delays56

and matched the lower bound of Cesa-Bianchi et al. (2019) within constants. The algorithm and57

analysis of Zimmert and Seldin avoid explicit control of the distribution drift and are parameterized58

by running counts of the number of outstanding observations σt, which is an empirical quantity that59

is observed at time t (“at the time of action”).60

Masoudian et al. (2022) attempted to extend the algorithm of Zimmert and Seldin (2020) to the61

best-of-both-worlds setting. The stochastic part of the analysis of Masoudian et al. is based on a62
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direct control of the distribution drift. The control is achieved by damping the learning rate to make63

sure that the played distribution on arms is not changing too much from round t, when an action is64

played, to round t+ dt, when the loss is observed. Highly varying delays cannot be treated with this65

approach, because fast learning rates limit the range dt for which the drift is under control, while slow66

learning rates prevent learning. Therefore, Masoudian et al. had to reintroduce the assumption that67

that the maximal delay dmax is known, and used it to tune the learning rate. Unfortunately, damping68

of the learning rate to control the drift over dmax rounds made dmax show up additively in the bound,69

meaning that potential presence of even a single delay of order T made both the stochastic and the70

adversarial bounds linear in the time horizon. We emphasise that the linear dependence of the regret71

on dmax is real and not an artefact of the analysis, because it comes from damped learning rate.72

We introduce a different best-of-both-worlds modification of the algorithm of Zimmert and Seldin73

(2020) that is fully parameterized by the running count of outstanding observations and requires74

no advance knowledge of delays or the maximal delay dmax. Our algorithm is based on a careful75

augmentation of the algorithm of Zimmert and Seldin with implicit exploration (described below),76

followed by application of a skipping technique (also described below) as a tool to limit the time span77

over which we need to control the distribution shift.78

Implicit exploration was introduced by Neu (2015) to control the variance of importance-weighted79

loss estimates in adversarial bandits. But the exploration parameters add up linearly to the regret80

bound, making it highly challenging to design a scheme for best-of-both-worlds setting. The implicit81

exploration schedule of Neu leads to Ω(
√
T ) regret bound and, therefore, unsuitable for that. Jin82

et al. (2022) introduced a different schedule for adversarial Markov decision processes with delayed83

feedback. However, it is unknown whether their schedule can work in a stochastic analysis. We84

introduce a novel schedule and show that it works in best-of-both-worlds setting.85

Skipping was introduced by Thune et al. (2019) as a way to limit the dependence of an algorithm on86

a small number of excessively large delays. The idea is that it is “cheaper” to skip a round with an87

excessively large delay and bound the regret in the corresponding round by 1, than to include it in the88

core analysis. Thune et al. have assumed prior knowledge of delays, but Zimmert and Seldin (2020)89

have perfected the technique by basing it on a running count of outstanding observations. In both90

works skipping was an optional add-on aimed to improve regret bounds in case of highly unbalanced91

delays. In our work skipping becomes an indispensable part of the algorithm, because, apart from92

making the algorithm robust to a few excessively large delays, it also limits the time span over which93

the control of distribution drift is needed.94

In Table 1 we compare our results to state of the art. In a nutshell, we replace terms dependent on95

dmax by terms dependent on σmax, and terms dependent on the square root of the total cumulative96

delay D =
∑T

t=1 dt, by terms dependent on the number of skipped rounds |S| and a square root of97

the cumulative delay DS̄ =
∑

t∈S̄ dt in the non-skipped rounds S̄ (those with the smaller delay).98

This yields robustness to excessive delays, because neither σmax nor minS
(
|S|+

√
DS̄
)

depend on99

the magnitude of delay outliers. By contrast, both the stochastic and the adversarial regret bounds of100

Masoudian et al. (2022) become linear in T in presence of a single delay of order T .101

There are also additional benefits. It has been shown that σmax ≤ dmax, and in some cases σmax ≪102

dmax (Joulani et al., 2013, Masoudian et al., 2022). For example, if the first observation has delay103

T , and the remaining observations have zero delay, then dmax = T , but σmax = 1. We also have104

that minS
(
|S|+

√
DS̄
)
≤

√
D, because S = ∅ is part of the minimization on the left, and in105

some cases minS
(
|S|+

√
DS̄
)
≪

√
D. For example, if the delays in the first

√
T rounds are of106

order T , and the delays in the remaining rounds are zero, then minS
(
|S|+

√
DS̄
)
= O

(√
T
)

, but107
√
D = Ω

(
T 3/4

)
(Thune et al., 2019). Therefore, bounds that exploit skipping are preferable over108

bounds that do not, and for some problem instances the improvement is significant. In Appendix F109

we show that bounds with an additive term dmax, including the results of Masoudian et al. (2022),110

cannot benefit from skipping, in contrast to ours.111

The following list highlights our main contributions.112

1. We provide the first best-of-both-worlds algorithm for bandits with delayed feedback that is robust113

to delay outliers. It improves both the stochastic and the adversarial regret bounds relative to the114

work of Masoudian et al. (2022), which lacks such robustness. For some problem instances the115
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improvement is dramatic, e.g., in presence of a single delay of order T both the stochastic and the116

adversarial regret bounds of Masoudian et al. are of order T , whereas our bounds are unaffected.117

2. We provide an efficient technique to control the distribution drift under highly varying delays.118

3. We provide the first implicit exploration scheme that works in best-of-both-worlds setting.119

4. We provide a procedure relating drifted regret to normal regret in presence of delay outliers.120

5. At the conceptual level, we show that best-of-both-worlds regret depends on the amount of121

information missing at the time of decision making (the number of outstanding observations) rather122

than the time that the information is missing (the delays). It was shown to be the case for the stochastic123

and adversarial regimes in isolation (Joulani et al., 2013, Zimmert and Seldin, 2020), but we are the124

first to show that it is also the case for best-of-both-worlds.125

2 Problem setting126

We study the problem of multi-armed bandit with variable delays. In each round t = 1, 2, . . ., the127

learner picks an action It from a set of K arms and immediately incurs a loss ℓt,It from a loss128

vector ℓt ∈ [0, 1]K . However, the incurred loss is observed by the learner only after a delay of dt,129

at the end of round t + dt. The delays are arbitrary and chosen by the environment. We use σt130

to denote the number of outstanding observations at time t defined as σt =
∑

s≤t 1(s + ds > t)131

and σmax = maxt∈[T ] σt to be the maximal number of outstanding observations. We consider two132

regimes for generation of losses by the environment: oblivious adversarial and stochastic.133

We use pseudo-regret to compare the expected total loss of the learner’s strategy to that of the best134

fixed action in hindsight. Specifically, the pseudo-regret is defined as:135

RegT = E

[
T∑

t=1

ℓt,It

]
− min

i∈[K]
E

[
T∑

t=1

ℓt,i

]
= E

[
T∑

t=1

(
ℓt,It − ℓt,i∗T

)]
,

where i∗T = mini∈[K] E
[∑T

t=1 ℓt,i

]
is the best action in hindsight. In the oblivious adversarial136

setting, the losses are assumed to be deterministic and independent of the actions taken by the137

algorithm. As a result, the expectation in the definition of i∗T can be omitted and the pseudo-regret138

definition coincides with the expected regret. Throughout the paper we assume that i∗T is unique. This139

is a common simplifying assumption in best-of-both-worlds analysis (Zimmert and Seldin, 2021).140

Tools for elimination of this assumption can be found in Ito (2021).141

3 Algorithm142

The algorithm is a best-of-both-worlds modification of the adversarial FTRL algorithm with hybrid143

regularizer by Zimmert and Seldin (2020). It is provided in Algorithm 1 display. The modification144

includes biased loss estimators (implicit exploration) and adjusted skipping threshold. The algorithm145

maintains a set of skipped rounds St (initially empty), a cumulative count of “active” outstanding146

observations (those that have not been skipped yet), and a vector of cumulative observed loss estimates147

L̂obs
t from non-skipped rounds. At round t the algorithm constructs an FTRL distribution xt over148

arms using regularizer Ft defined in equation (2) below, and samples an arm according to xt. Then149

it receives the observations that arrive at round t, except those that come from the skipped rounds,150

and updates the vector L̂obs
t of cumulative loss estimates. The loss estimates ℓ̂t are defined below in151

equation (1). Then it counts the number of “active” outstanding observations σ̂t (those that belong to152

non-skipped rounds), updates the cumulative count of outstanding observations Dt, and computes153

the skipping threshold dtmax =
√

Dt

49K2/3 logK
. Finally, it adds rounds s for which the observation154

has not arrived yet and the waiting time (t − s) exceeds the skipping threshold dtmax to the set of155

skipped rounds St. Lemma 20, which is an adaptation of Zimmert and Seldin (2020, Lemma 5) to156

our skipping rule, shows that at most one round s is skipped at a time (at most one index s satisfies157

the if-condition for skipping in Line 15 of the algorithm for a given t).158

We use implicit exploration to control importance-weighted loss estimates. The idea of using implicit159

exploration is inspired by the works of Neu (2015) and Jin et al. (2022), but its parametrization and160
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Algorithm 1: Best-of-both-worlds algorithm for bandits with delayed feedback

1 Initialize S0 = ∅, D0 = 0, and L̂obs
0 = 0, where 0 is the zero vector in RK

2 for t = 1, 2, . . . do
3 // Playing an arm and receiving observations (except from skipped rounds)
4 Set xt = argminx∈∆K−1⟨L̂obs

t−1, x⟩+ Ft(x) // Ft is defined in (2)
5 Sample It ∼ xt

6 for s : (s+ ds = t) ∧ (s /∈ St−1) do
7 Observe (s, ℓs,Is)

8 L̂obs
t = L̂obs

t−1 + ℓ̂s // ℓ̂s is defined in (1)
9 // Counting “active” outstanding observations and updating the skipping threshold

10 Set σ̂t =
∑

s∈[t−1]\St−1
1(s+ ds > t)

11 Update Dt = Dt−1 + σ̂t

12 Set dtmax =

√
Dt/

(
49K

2
3 logK

)
13 // Skipping observations with excessive delays (by Lemma 20 at most one is skipped at a time)
14 for s ∈ [t− 1] \ St−1 do
15 if min {ds, t− s} ≥ dtmax then
16 St = St−1 ∪{s} // If the waiting time t− s exceeds dtmax, then s is skipped
17 else
18 St = St−1

purpose are different from prior work. To the best of our knowledge, it is the first time implicit161

exploration is used for best-of-both-worlds bounds. For any s, t ∈ [T ] with s ≤ t we define implicit162

exploration terms λs,t = e−
Dt

Dt−Ds . Our biased importance-weighted loss estimators are defined by163

ℓ̂t,i =
ℓt,i1(It = i)

max
{
xt,i, λt,t+d̂t

} , (1)

where d̂s = min
(
ds,min {(t− s) : t− s ≥ dtmax}

)
denotes the time that the algorithm waits for164

the observation from round s. It is the minimum of the delay ds, and the time (t − s) to the first165

round when the waiting time exceeds the skipping threshold dtmax.166

Similar to Zimmert and Seldin (2020), we use a hybrid regularizer based on a combination of the167

negative Tsallis entropy and the negative entropy, with separate learning rates168

Ft(x) = −2η−1
t

(
K∑
i=1

√
xi

)
+ γ−1

t

(
K∑
i=1

xi(log xi − 1)

)
, (2)

where the learning rates are η−1
t =

√
t and γ−1

t =
√

49Dt

logK . The update rule for xt is169

xt = ∇F̄ ∗
t (−L̂obs

t ) = arg min
x∈∆K−1

⟨L̂obs
t , x⟩+ Ft(x), (3)

where L̂obs
t =

∑t−1
s=1 ℓ̂s1(s + ds < t)1(s /∈ St−1) is the cumulative importance-weighted loss170

estimate of observations that have arrived by time t and have not been skipped. We use S∗ = ST to171

denote the final set of skipped rounds at time T .172

4 Regret Bounds173

The following theorem provides best-of-both-worlds regret bounds for Algorithm 1. A proof is174

provided in Section 5 and a bound on S∗ can be found in Appendix H.175

Theorem 1. The pseudo-regret of Algorithm 1 for any sequence of delays and losses satisfies176

RegT = O
(√

KT + min
S⊆[T ]

{
|S|+

√
DS̄ logK

}
+ S∗ +Kσ̂max

)
,
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where σ̂max = maxt∈[T ] {σ̂t} is the maximal number of outstanding observations after skipping and177

S∗ = O
(
min

(
dmaxK

1/3 logK , min
S⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}))
.

Furthermore, if the losses are stochastic, the pseudo-regret also satisfies178

RegT = O

∑
i ̸=i∗

(
log T

∆i
+

σ̂max

∆i logK

)
+Kσ̂max + S∗

 .

Masoudian et al. (2022) provide an Ω
(√

KT +minS⊂[T ]

{
|S|+

√
DS̄ logK

})
regret lower bound179

for adversarial environments with variable delays, which is matched within constants by the algorithm180

of (Zimmert and Seldin, 2020) for adversarial environments. Our algorithm matches the lower bound181

within a multiplicative factor of K
1
3 on the delay-dependent term, which is the price we pay for182

obtaining a best-of-both-worlds guarantee. It is an open question whether this factor can be reduced.183

In the stochastic regime, assuming that the delays in the first σmax rounds are of order T , and that184

the losses come from Bernoulli distributions with bias close to 1
2 , a trivial regret lower bound is185

Ω
(
σmax

∑
i̸=i∗ ∆i

K +
∑

i̸=i∗
log T
∆i

)
. This bound is almost matched by the algorithm of Joulani et al.186

(2013) for the stochastic regime only. Our bound has some extra terms, most notably
∑

i ̸=i∗
σ̂max

∆i logK187

and S∗. It is an open question whether these terms are inevitable or can be reduced.188

Theorem 1 provides three major improvements relative to the results of Masoudian et al. (2022): (1) it189

requires no advance knowledge of dmax; (2) it replaces terms dependent on dmax by terms dependent190

on σ̂max, which never exceeds dmax, and in some cases may be significantly smaller; and (3) it makes191

skipping possible and beneficial, making the algorithm robust to a small number of excessively large192

delays and replacing
√
D logK term with minS⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}
, which is never much193

larger, but in some cases significantly smaller.194

5 Analysis195

In this section, we present a proof of Theorem 1. We begin with the stochastic part of the bound in196

Section 5.1, followed by the adversarial part in Section 5.2.197

5.1 Stochastic Analysis198

We start by defining the drifted regret Reg
drift

T = E
[∑T

t=1

(
⟨xt, ℓ̂

obs
t ⟩ − ℓ̂obst,i∗T

)]
, where ℓ̂obst =199 ∑t

s=1 ℓ̂s1(s+ d̂s = t)1(s /∈ St) is the cumulative vector of losses received at time t. Lemma 2 is200

the first major contribution establishing a relationship between Reg
drift

T and the actual regret RegT .201

Lemma 2 (Drift of the Drifted Regret). Let σt
max = maxs∈[t] {σ̂s}. Then202

Reg
drift

T ≥ 1

4
RegT − 2K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
− σmax

4
− S∗,

where S∗ is the total number of rounds skipped by the algorithm.203

In prior work on bounded delays the relation between Reg
drift

T and RegT was achieved by shifting204

all the arrivals by dmax, leading to an additive term of order dmax. This approach fails for unbounded205

delays, because a single delay of order T prevents shifting and leads to linear regret. We address the206

challenge by introducing a procedure to rearrange the arrivals (Algorithm 2 below) and advanced207

control of the drift (Lemma 3 below). A proof of Lemma 2 is provided at the end of the section.208

The drift control lemma (Lemma 3) is the second major contribution of the paper. Prior work on209

bounded delays controlled the drift by slowing the learning rate in accordance with dmax. This210
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Algorithm 2: Greedy Rearrangement

1 Initialize υnew
t = 0 for all t = 1, . . . , T + dTmax

2 for t = 1, . . . , T do
3 for s = 1, . . . , t : s+ d̂s = t do
4 Find the first round π(s) ∈ [t, t+ dtmax] such that υnew

π(s) = 0

5 Move the arrival from round s to round π(s) and update υnew
π(s) = 1

does not work for highly varying delays, because slow learning rates prevent learning, whereas211

fast learning rates fail to control the drift. Lemma 3 relies on implicit exploration terms in the loss212

estimators in equation (1) and on skipping of excessive delays, leaving the learning rates intact.213

Lemma 3 (Drift Control Lemma). Let dtmax be the skipping threshold at time t. Then, for any214

i ∈ [K] and s, t ∈ [T ], where s ≤ t and t− s ≤ dtmax, we have215

xt,i ≤ 4max(xs,i, λs,t).

The proof is based on introduction of an intermediate variable x̃s = ∇F̄ ∗
s (−L̂obs

t−1), which is based216

on the regularizer from round s and the loss estimate from round t. It exploits the implicit exploration217

term λs,t to show that xt,i

max(x̃i,λs,t)
≤ 2 and skipping to show that x̃i

xs,i
≤ 2. The latter implies that218

max(x̃i,λs,t)
max(xs,i,λs,t)

≤ 2, and in combination with the former completes the proof. The details of the two219

steps are provided in Appendix B.220

Given Lemmas 2 and Lemma 3, we apply standard FTRL analysis, similar to Masoudian et al. (2022),221

to obtain an upper bound for Reg
drift

T . Specifically, in Appendix A we show that222

Reg
drift

T ≤ E
[
a

T∑
t=1

∑
i ̸=i∗

ηtx
1/2
t,i + b

T∑
t=1

∑
i ̸=i∗

γt+d̂t
(υt+d̂t

− 1)xt,i∆i + c

T∑
t=2

K∑
i=1

σ̂tγtxt,i log(1/xt,i)

logK

]

+O

(
K

T∑
t=1

λt,t+d̂t

)
, (4)

where a, b, c ≥ 0 are constants and υt =
∑t

s=1 1
(
s+ d̂s = t

)
is the number of arrivals at time t223

(if a round s is skipped at time t it counts as an “empty” arrival with loss estimate set to zero). By224

combining (4) with Lemma 2, we obtain225

RegT ≤ E
[
2a

T∑
t=1

∑
i ̸=i∗

ηtx
1/2
t,i + 2b

T∑
t=1

∑
i ̸=i∗

γt+d̂t
(υt+d̂t

− 1)xt,i∆i + 2c

T∑
t=2

K∑
i=1

σ̂tγtxt,i log(1/xt,i)

logK

]

+O

(
K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
+ σmax + S∗

)
. (5)

Then we apply a self-bounding analysis, similar to Masoudian et al. (2022), and get226

RegT = O

(∑
i ̸=i∗

(
1

∆i
log(T ) +

σmax

∆i logK

)
+ σmax +K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
+ S∗

)
.

The details of the self-bounding analysis are provided in Appendix C.227

The stochastic analysis is completed by the following lemma, which bounds the sum of implicit228

exploration terms above. It constitutes the third key result of the paper and shows that the bias from229

implicit exploration does not deteriorate neither the stochastic nor the adversarial bound. The proof is230

based on a careful study of the evolution of Dt throughout the game, and is deferred to Appendix D.231

Lemma 4 (Summation Bound). For all s ∈ [T ], let Ds =
∑s

r=1 σ̂r and λs,t = e−
Dt

Dt−Ds , then232

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
= O(σ̂max).
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Proof of Lemma 2 (Drift of the Drifted Regret)233

We start with the definition of the drifted regret.234

Reg
drift

T = E

[
T∑

t=1

(
⟨xt, ℓ̂

obs
t ⟩ − ℓ̂obst,i∗T

)]
=

T∑
t=1

∑
s+d̂s=t
s/∈St

K∑
i=1

E

[
ℓs,ixs,ixt,i

max {xs,i, λs,t}
−

ℓs,i∗T xs,i∗T
xt,i

max
{
xs,i∗T

, λs,t

}]

≥
T∑

t=1

∑
s+d̂s=t
s/∈St

K∑
i=1

E
[

ℓs,ixs,ixt,i

max {xs,i, λs,t}
− ℓs,i∗T xt,i

]

≥
T∑

t=1

∑
s+d̂s=t

K∑
i=1

E
[

ℓs,ixs,ixt,i

max {xs,i, λs,t}︸ ︷︷ ︸
⋆

−ℓs,i∗T xt,i

]
− S∗.

(6)

Note that when taking the expectation, we rely on the fact that ℓ̂s with s+ d̂s = t does not affect xt.235

If max {xs,i, λs,t} = xs,i, then ⋆ = ℓs,ixt,i, otherwise236

⋆ = ℓs,ixt,i −
ℓs,ixt,i (λs,t − xs,i)

λs,t
≥ ℓs,ixt,i −

4λs,t(λs,t − xs,i)

λs,t
≥ ℓs,ixt,i − 4λs,t, (7)

where the first inequality uses xt,i ≤ 4max(xs,i, λs,t) = 4λs,t by Lemma 3, and ℓs,i ≥ 1, and the237

second inequality follows by xs,i ≥ 0. Plugging (7) into (6) gives238

Reg
drift

T ≥
T∑

t=1

∑
s+d̂s=t

K∑
i=1

E
[(
ℓs,ixt,i − 4λs,t − ℓs,i∗T xt,i

)]
− S∗

≥ E

 T∑
t=1

∑
s+d̂s=t

K∑
i=1

∆ixt,i


︸ ︷︷ ︸

RT

−4K

T∑
t=1

∑
s+d̂s=t

E [λs,t]− S∗. (8)

It suffices to give a lower bound for RT in terms of the actual regret RegT . The difference between239

RT and RegT is that RegT = E
[∑T

t=1

∑K
i=1 ∆ixt,i

]
, whereas in RT the sum

∑K
i=1 ∆ixt,i is240

multiplied by the number of arrivals υt =
∑t

s=1 1
(
s+ d̂s = t

)
at time t, and υt might be larger241

than one or zero due to delays.242

Our main idea here is to leverage the drift control lemma to provide a lower bound for RT in terms of243

RegT . Specifically, by Lemma 3 for all r ∈ [0, dtmax], we have max(xt,i, λt,t+r) ≥ 1
4xt+r,i, which244

implies xt,i ≥ 1
4xt+r,i − λt,t+r. Thus, we obtain the following bound for any r ∈ [0, dtmax]245

K∑
i=1

∆ixt,i ≥
1

4

K∑
i=1

∆ixt+r,i −Kλt,t+r. (9)

In Algorithm 2 we provide a greedy procedure to rearrange the arrivals by postponing some arrivals246

to future rounds to create a hypothetical rearranged sequence with at most one arrival at each round.247

Colliding arrivals are postponed to the first available (unoccupied) slot in the future. In Lemma 5248

below we show that arrival originally received at time t stays in the [t, t + σt
max] interval (note249

that σt
max ≤ dtmax). When an observation from round s is postponed from arriving at round t250

to arriving at round t + r for r ∈ [0, dtmax], by (9) it is equivalent to replacing
∑K

i=1 ∆ixt,i by251

1
4

∑K
i=1 ∆ixt+r,i − Kλt,t+r in RT . Note that Algorithm 2 may push an arrival to a round larger252

than T , which is equivalent to replacing
∑K

i=1 ∆ixt,i by zero.253
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Let υnew
t for all t ∈ [T + dTmax] be the total arrivals at time t after the rearrangement, and let π(t) be254

the round to which we have mapped round t for all t ∈ [T ]. Then for any rearrangement255

RT = E

[
T∑

t=1

υt

K∑
i=1

∆ixt,i

]
≥ E

[
T∑

t=1

1

4
υnew
t

K∑
i=1

∆ixt,i −K

T∑
t=1

λt,π(t)

]
. (10)

The following lemma provides properties of the rearrangement procedure.256

Lemma 5. Let σt
max = maxs∈[t] {σ̂s}. Then Algorithm 2 ensures for any t ∈ [T + dTmax] that257

υnew
t ∈ {0, 1}. Furthermore, for any round t ∈ [T ] it keeps all the arrivals at time t in the interval258

[t, t+ σt
max], such that ∀s ≤ t : s+ d̂s = t ⇒ π(s)− t ≤ σt

max.259

We provide a proof of the lemma in Appendix E. As a corollary, after the Greedy Rearrangement260

(Algorithm 2) the number of rounds with zero arrivals is at most σT
max. This is because there will261

be no arrivals after T + σT
max and

∑T+σT
max

t=1 υnew
t =

∑T
t=1 υt = T , which implies there are at most262

σT
max zero arrivals as each round receives at most one arrival. Therefore263

E
[ T∑

t=1

υnew
t

K∑
i=1

∆ixt,i

]
= RegT − E

[
T∑

t=1

1(υnew
t = 0)

K∑
i=1

∆ixt,i

]

≤ RegT − E

[
T∑

t=1

1(υnew
t = 0)

]
≤ RegT − E

[
σT
max

]
≤ RegT − σmax,

(11)

where the first equality uses the definition of RegT = E[
∑T

t=1

∑K
i=1 ∆ixt,i] and that ∀t ∈ [T ] :264

υnew
t ∈ {0, 1}.265

Since ∀t ∈ [T ] : π(t) ≤ t + d̂t + σt
max, we have λt,π(t) ≤ λt,t+d̂t+σt

max
. Together with (11), (10),266

and (8) it completes the proof.267

5.2 Adversarial Analysis268

The adversarial analysis is similar to the analysis of Zimmert and Seldin (2020, Theorem 2). In269

Appendix G we show that270

RegT = O

(
√
KT + min

S⊆[T ]

{
|S|+

√
DS̄ logK

}
+ S∗ +K

T∑
t=1

λt,t+d̂t

)
,

where the first two terms originate from the analysis of Zimmert and Seldin due to structural similarity271

of the algorithm, S∗ is due to adjusted skipping threshold, and K
∑T

t=1 λt,t+d̂t
is due to implicit272

exploration bias and is bounded by Lemma 4. The proof is completed by the following bound on S∗,273

which is shown in Appendix H.274

Lemma 6. We have S∗ = O
(
min

(
dmaxK

2
3 logK ,minS⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}))
.275

6 Discussion276

We have successfully addressed the challenge of handling varying and potentially unbounded delays277

in best-of-both-worlds setting. The success was based on three technical innovations, which may278

be interesting in their own right: (1) A relation between the drifted and the standard regret under279

unbounded delays (given by Lemma 2, Algorithm 2, and Lemma 5); (2) A novel control of distribution280

drift based on implicit exploration and skipping that does not alter the learning rates and exhibits281

efficiency under highly varying delays (Lemma 3); and (3) An implicit exploration scheme applicable282

in best-of-both-worlds setting (Lemma 4).283
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A Details of the Drifted Regret Analysis324

In this section we prove the bound on drifted regret in equation (4). The derivation is same as the325

one by Masoudian et al. (2022), however, for the sake of completeness we reproduce it here. The326

analysis follows the standard FTRL approach, decomposing the drifted pseudo-regret into penalty327

and stability terms as328

Reg
drift

T = E


T∑

t=1

⟨xt, ℓ̂
obs
t ⟩+ F̄ ∗

t (−L̂obs
t+1)− F̄ ∗

t (−L̂obs
t )︸ ︷︷ ︸

stability

+E


T∑

t=1

F̄ ∗
t (−L̂obs

t )− F̄ ∗
t (−L̂obs

t+1)− ℓt,i∗T︸ ︷︷ ︸
penalty

 .

The penalty term is bounded by the following inequality, derived by Abernethy et al. (2015)329

penalty ≤
T∑

t=2

(Ft−1(xt)− Ft(xt)) + FT (ei∗T )− F1(x1), (12)

where ei∗T represents the unit vector in RK with the i∗T -th element being one and zero elsewhere.330

This leads to the following bound for penalty term331

penalty ≤ O

 T∑
t=2

∑
i ̸=i∗

ηtx
1
2
t,i +

T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK

 , (13)

where we substitute the explicit form of the regularizer into (12) and exploit the properties η−1
t −332

η−1
t−1 = O(ηt), γ−1

t − γ−1
t−1 = O(σtγt/ logK), and x

1
2

t,i∗T
− 1 ≤ 0.333

For the stability term, following a similar analysis as presented by Masoudian et al. (2022, Lemma 5),334

but incorporating implicit exploration terms, for any αt ≤ γ−1
t we obtain335

stability ≤
T∑

t=1

K∑
i=1

2f
′′

t (xt,i)
−1(ℓ̂obst,i − αt)

2.

Let At =
{
s ≤ t : s+ d̂s = t

}
, then due to the choice of skipping threshold, αt =

∑
s∈At

ℓ̄s,t336

satisfies the condition αt ≤ γ−1
t , where ℓ̄s,t =

∑K
i=1 f

′′
t (xt,i)

−1ℓ̂s,i∑K
i=1 f

′′
t (xt,i)−1

=
f
′′
t (xt,Is )

−1ℓ̂s,Is∑K
i=1 f

′′
t (xt,i)−1

. Thus we have337

stability ≤
T∑

t=1

K∑
i=1

2f
′′

t (xt,i)
−1

(∑
s∈At

ℓ̂s,i − ℓ̄s,t

)2

=

T∑
t=1

K∑
i=1

∑
s∈At

2f
′′

t (xt,i)
−1
(
ℓ̂s,i − ℓ̄s,t

)2
︸ ︷︷ ︸

S1

+

T∑
t=1

K∑
i=1

∑
r,s∈At,r ̸=s

2f
′′

t (xt,i)
−1
(
ℓ̂s,i − ℓ̄s,t

)(
ℓ̂r,i − ℓ̄r

)
︸ ︷︷ ︸

S2
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For brevity we define zt,i = f
′′

t (xt,i)
−1 and mt

s,i = max {xs,i, λs,t} for any s ≤ t and i ∈ [K]. We338

begin bounding S1 by replacing definition of loss estimators from (1) and get339

E[S1] =

T∑
t=1

K∑
i=1

∑
s∈At

2E

zt,i(ℓs,Is1(Is = i)

mt
s,i

− zt,Isℓs,Is

mt
s,Is

∑K
j=1 zt,j

)2


≤
T∑

t=1

K∑
i=1

∑
s∈At

2E

zt,i(1(Is = i)

mt
s,i

− zt,Is

mt
s,Is

∑K
j=1 zt,j

)2


=

T∑
t=1

∑
s∈At

2

K∑
i=1

E

[
zt,i

(
1(Is = i)

mt
s,i

2 − zt,Is1(Is = i)

mt
s,im

t
s,Is

∑K
j=1 zt,j

)]
︸ ︷︷ ︸

S1
1

+

T∑
t=1

∑
s∈At

2E

[(
z2t,Is

mt
s,Is

2
(
∑K

j=1 zt,j)
−

K∑
i=1

zt,Iszt,i1(Is = i)

mt
s,im

t
s,Is

∑K
j=1 zt,j

)]
︸ ︷︷ ︸

S2
1

Where the first inequality uses ℓs,Is ≤ 1. We show that S2
1 has negative contribution to S1 by taking340

expectation w.r.t. Is as the following341

S2
1 =

T∑
t=1

∑
s∈At

E

[
K∑
i=1

z2t,ixs,i

mt
s,i

2
(
∑K

j=1 zt,j)
−

K∑
i=1

z2t,ixs,i

mt
s,i

2∑K
j=1 zt,j

]
= 0

Thus we only need to bound S1
1 , for which we take expectation w.r.t. Is and separate i∗ from the342

other arms to get343

S1
1 =

K∑
i=1

E

[
zt,i

(
1(Is = i)

mt
s,i

2 − zt,Is1(Is = i)

mt
s,im

t
s,Is

∑K
j=1 zt,j

)]

≤
∑
i ̸=i∗

E

[
zt,ixs,i

mt
s,i

2

]
+ E

[
zt,i∗xs,i∗

mt
s,i∗

2 −
z2t,i∗xs,i∗

mt
s,i∗

2∑K
j=1 zt,j

]

≤
∑
i ̸=i∗

E
[
4ηtx

1/2
s,i

]
+ E

[
xs,i∗

mt
s,i∗

2 × zt,i∗

(
1− zt,i∗∑K

j=1 zt,j

)]

≤
∑
i ̸=i∗

4E
[
ηtx

1/2
s,i

]
+ E

[
xs,i∗

mt
s,i∗

2 × ηtx
3/2
t,i∗

(
1−

x
3/2
t,i∗

(1− xt,i∗)3/2 + x
3/2
t,i∗

)]

≤
∑
i ̸=i∗

4E
[
ηtx

1/2
s,i

]
+ E

[
ηtxs,i∗x

3/2
t,i∗

mt
s,i∗

2 ×
(
(1− xt,i∗)

3/2

2−1/2

)]

≤
∑
i ̸=i∗

4E
[
ηtx

1/2
s,i

]
+ E

4√2ηt
∑
i ̸=i∗

xt,i


≤
∑
i ̸=i∗

4E
[
ηtx

1/2
s,i

]
+ E

16√2ηt
∑
i ̸=i∗

(xs,i + λs,t)


≤ O

E

ηs ∑
i ̸=i∗

x
1/2
s,i

+ E [Kλs,t]

 ,

where the second inequality uses zt,i = f
′′

t (xt,i)
−1 ≤ ηtx

3/2
t,i along xt,i ≤ mt

s,i from Lemma344

3, the third inequality is due the fact that zt,i∗
(
1− zt,i∗∑K

j=1 zt,j

)
is an increasing function in terms345
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of both zt,i∗ and
∑

i̸=i∗ zt,i and we substitute zt,i∗ ≤ ηtx
3/2
t,i∗ and

∑
j ̸=i∗ zt,j ≤

∑
j ̸=i∗ ηtx

3/2
t,j ≤346

ηt(1 − xt,i∗)
3/2, the fourth inequality is due to (1 − a)3/2 + a3/2 ≤ 2−1/2, the fifth and the sixth347

inequalities rely on Lemma 3, and finally the last inequality is followed by ∀i : xs,i ≤ x
1/2
s,i and that348

ηt ≤ ηs. Combining bounds for S1
1 and S2

1 gives the following bound for S1349

E[S1] ≤ O

 T∑
t=1

∑
i ̸=i∗

ηtE[x1/2
t,i ] +

T∑
t=1

Kλt,t+d̂t

 (14)

For S2, we take expectation with respect to Is, Ir, and randomness of losses, all separately to get350

E[S2] =

T∑
t=1

K∑
i=1

∑
r,s∈At,r ̸=s

2E
[
zt,i

(
ℓ̂s,i − ℓ̄s

)(
ℓ̂r,i − ℓ̄s

)]

=

T∑
t=1

K∑
i=1

∑
r,s∈At,r ̸=s

2E

[
zt,i

(
µixs,i

mt
s,i

−
∑K

j=1 zt,jµjxs,j/m
t
s,j∑K

j=1 zt,j

)(
µixr,i

mt
r,i

−
∑K

j=1 zt,jµjxr,j/m
t
r,j∑K

j=1 zt,j

)]
.

(15)

For simplicity we define ϵts,i = µi − µixs,i

mt
s,i

for any s ≤ t and any i ∈ [K], for which we have the351

following bounds352

0 ≤ ϵts,i ≤
λs,t

mt
s,i

.

We then continue from 15 and bound it as the following353

E[S2]

=

T∑
t=1

∑
r ̸=s

r,s∈At

K∑
i=1

2E

[
zt,i

(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

− ϵts,i +

∑K
j=1 zt,jϵ

t
s,j∑K

j=1 zt,j

)(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

− ϵtr,i +

∑K
j=1 zt,jϵ

t
r,j∑K

j=1 zt,j

)]

≤
T∑

t=1

∑
r ̸=s

r,s∈At

2E


K∑
i=1

zt,i

(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

)2

︸ ︷︷ ︸
S1
2

+

K∑
i=1

zt,iϵ
t
s,iϵ

t
r,i + 2zt,i(ϵ

t
s,i + ϵtr,i)︸ ︷︷ ︸

S2
2

+
(
∑K

i=1 zt,iϵ
t
s,i)(

∑K
i=1 zt,iϵ

t
r,i)∑K

i=1 zt,i︸ ︷︷ ︸
S3
2

 ,

(16)

where the inequality holds because we ignore the negative terms after multiplication and that |(µi −354 ∑K
j=1 zt,jµj∑K
j=1 zt,j

)| ≤ 1. We need to bound each part from (16). We start with S1
2 ,355

S1
2 =

K∑
i=1

zt,i

(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

)2

=

K∑
i=1

zt,iµ
2
i −

(∑K
i=1 zt,iµi

)2
∑K

i=1 zt,i

≤
K∑
i=1

zt,iµ
2
i −

(∑K
i=1 zt,iµi∗

)2
∑K

i=1 zt,i

≤
K∑
i=1

zt,i(µ
2
i − µ2

i∗)

≤
∑
i̸=i∗

2γtxt,i∆i (17)
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We bound S2
2 as356

S2
2 =

K∑
i=1

zt,iϵ
t
s,iϵ

t
r,i + 2zt,i(ϵ

t
s,i + ϵtr,i)

≤
K∑
i=1

zt,i
ϵts,i + ϵtr,i

2
+ 2zt,i(ϵ

t
s,i + ϵtr,i)

≤ 5

2

K∑
i=1

zt,iλs,t

mt
s,i

+
zt,iλr,t

mt
r,i

≤ 5

2
Kγt(λs,t + λr,t), (18)

where the last inequality holds because zt,i ≤ γtxt,i and that xt,i ≤ 4mt
s,i, 4m

t
r,i from Lemma 3.357

It remains to give upper bound for S3
2 as358

S3
2 =

(
∑K

i=1 zt,iϵ
t
s,i)(

∑K
i=1 zt,iϵ

t
r,i)∑K

i=1 zt,i

≤
(
∑K

i=1 zt,iλs,t/m
t
s,i)(

∑K
i=1 zt,iλr,t/m

t
r,i)∑K

i=1 zt,i

≤ 1

2
Kγt(λs,t + λr,t), (19)

where the second inequality rely on zt,i ≤ γtxt,i, λs,t ≤ mt
s,i, λr,t ≤ mt

r,i, and xt,i ≤ 4mt
s,i, xt,i ≤359

4mt
r,i from Lemma 3. It is suffices to plug bounds in (17), (18), and (19) to obtain360

E[S2] ≤
T∑

t=1

∑
i ̸=i∗

4∆iγtE[xt,i]υt(υt − 1) + 6

T∑
t=1

Kγt+d̂t
(υt+d̂t

− 1)λt,t+d̂t

≤
T∑

t=1

∑
i ̸=i∗

∑
s∈At

4∆iγtE[xs,i + λs,t](υt − 1) + 6

T∑
t=1

Kγt+d̂t
(υt+d̂t

− 1)λt,t+d̂t

≤
T∑

t=1

∑
i ̸=i∗

∑
s∈At

4∆iγtE[xs,i](υt − 1) + 10

T∑
t=1

Kγt+d̂t
(υt+d̂t

− 1)λt,t+d̂t

≤ O

 T∑
t=1

∑
i ̸=i∗

γt+d̂t
∆iE[xt,i](υt+d̂t

− 1) +K

T∑
t=1

λt,t+d̂t

 , (20)

where the third inequality uses Lemma 3 and the last inequality holds because of the skipping that361

ensures γt+d̂t
(υt+d̂t

− 1) ≤ 1. Now, it is sufficient to combine the bounds for S1 and S2 in (14) and362

(20) and get363

E[stability] ≤ O

 T∑
t=1

∑
i̸=i∗

ηtE[x1/2
t,i ] +

T∑
t=1

∑
i ̸=i∗

γt+d̂t
E[xt,i](υt+d̂t

− 1) +K

T∑
t=1

λt,t+d̂t

 .

(21)
Combining the stability bound from (21) and the penalty bound from (13) concludes the proof.364

B Proof of the Drift Control Lemma365

In this section we provide a proof of Lemma 3. We start with a few auxiliary results, and then prove366

the lemma.367

B.1 Auxiliary results for the proof of the key lemma368

For the proof we use two facts and a lemma from Masoudian et al. (2022), and a new lemma. Recall369

that ft(x) = −2η−1
t

√
x+ γ−1

t x(log x− 1).370
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Fact 7. (Masoudian et al., 2022, Fact 15) f
′

t (x) is a concave function.371

Fact 8. (Masoudian et al., 2022, Fact 16) f
′′

t (x)
−1 is a convex function.372

Lemma 9. (Masoudian et al., 2022, Lemma 17) Fix t and s with t ≥ s, and assume that there exists α,373

such that xt,i ≤ αmax(xs,i, λs,t) for all i ∈ [K], and let f(x) =
(
−2η−1

t

√
x+ γ−1

t x(log x− 1)
)
,374

then we have the following inequality375 ∑K
j=1 f

′′
(xt,j)

−1ℓ̂s,j∑K
j=1 f

′′(xt,j)−1
≤ 2α(K − 1)

1
3 .

Lemma 10. If t > s and (t− s) ≤ dtmax, then376

dtmax ≤
√
2dsmax,

which is equivalent to Dt ≤ 2Ds.377

Proof. It suffices to prove that Dt ≤ 2Ds, which is equivalent to proving that (Dt −Ds) ≤ 1
2Dt. We378

have:379

Dt −Ds =

t∑
r=s+1

σ̂r ≤ (t− s)dtmax ≤
(
dtmax

)2
=

Dt

49K
2
3 logK

≤ Dt

2
,

where the first inequality holds because due to skipping, for all r ≤ t we have σ̂r ≤ dtmax, and
(t− s) ≤ dtmax.

B.2 Proof of the Drift Control Lemma380

Now we are ready to provide a proof of Lemma 3. Similar to the analysis of Masoudian et al. (2022),381

the proof relies on induction on valid pairs (t, s), where a pair (t, s) is considered valid if s ≤ t382

and (t− s) ≤ dtmax. The induction step for pair (t, s) involves proving that xt,i ≤ 4max(xs,i, λs,t)383

for all i ∈ [K]. To establish this, we use the induction assumption for all valid pairs (t′, s′) such384

that s′, t′ < t, as well as all valid pairs (t′, s′), such that t′ = t and s < s′ ≤ t. The induction base385

encompasses all pairs (t′, t′) for all t′ ∈ [T ], where the statement xt′,i ≤ 4xt′,i holds trivially.386

To control xt,i

max(xs,i,λs,t)
we first introduce an auxiliary variable x̃ = F̄ ∗

s (−L̂obs
t−1). We then address387

the problem of drift control by breaking it down into two sub-problems:388

1. xt,i

max(x̃i,λs,t)
≤ 2: the drift due to change of regularizer,389

2. x̃i

xs,i
≤ 2: the drift due to loss shift.390

Deviation induced by the change of regularizer391

The regularizer at round r is defined as392

Fr(x) =

K∑
i=1

fr(xi) =

K∑
i=1

(
−2η−1

r

√
xi + γ−1

r xi(log xi − 1)
)
.

We have xt = ∇F̄ ∗
t (−L̂obs

t−1) and x̃ = ∇F̄ ∗
s (−L̂obs

t−1). According to the KKT conditions, there exist393

Lagrange multipliers µ and µ̃, such that for all i:394

f
′

s(x̃i) = −L̂obs
t−1,i + µ̃,

f
′

t (xt,i) = −L̂obs
t−1,i + µ.

We also know that there exists an index j, such that x̃j ≥ xt,j . This leads to the following inequality:395

−L̂obs
t−1,j + µ = f

′

t (xt,j) ≤ f
′

s(xt,j) ≤ f
′

s(x̃j) = −L̂obs
t−1,j + µ̃,
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where the first inequality holds because the learning rates are decreasing, and the second inequality396

is due to the fact that f
′

s(x) is increasing. This implies that µ ≤ µ̃, which gives us the following397

inequality for all i:398

f
′

t (xt,i) = − 1

ηt
√
xt,i

+
log(xt,i)

γt
≤ − 1

ηs
√
x̃i

+
log(x̃i)

γs
= f

′

s(x̃i).

Thus, we have two cases, either − 1
ηt

√
xt,i

≤ − 1
ηs

√
x̃i

or log(xt,i)
γt

≤ log(x̃i)
γs

.399

Case i: If − 1
ηt

√
xt,i

≤ − 1
ηs

√
x̃i

holds, then we have xt,i

x̃i
≤ η2

s

η2
t
= t

s . On the other hand, we have400

t− s ≤ dtmax =

√ ∑t
r=1 σ̂r

K3/2 logK
≤

√
t2/2

K3/2 logK
≤ t

2
,

where the second inequality holds because trivially σ̂r ≤ r. This implies that xt,i

x̃i
≤ 2.401

Case ii: If log(xt,i)
γt

≤ log(x̃i)
γs

, it implies that xt,i ≤ x̃
γt
γs
i . Using x̃i ≤ max(x̃i, λs,t), we get402

xt,i ≤ max(x̃i, λs,t)
γt
γs

= max(x̃i, λs,t)×max(x̃i, λs,t)
γt
γs

−1

≤ max(x̃i, λs,t)× λ
γt
γs

−1

s,t

= max(x̃i, λs,t)× λ
−

√
Dt−

√
Ds√

Dt

s,t

= max(x̃i, λs,t)× e
Dt

Dt−Ds
×

√
Dt−

√
Ds√

Dt

= max(x̃i, λs,t)× e

√
Dt

(
√

Dt+
√

Ds) ≤ max(x̃i, λs,t)× e

1

1+
√

1
2 ≤ max(x̃i, λs,t)× 2.

Therefore, in both cases we obtain403

xt,i ≤ 2max(x̃i, λs,t). (22)

Deviation Induced by the Loss Shift404

The initial steps of the proof of this part are the same as in Masoudian et al. (2022). However, for the405

sake of completeness, we restate them here.406

Since we have xs = ∇F̄ ∗
s (−L̂obs

s−1) and x̃ = ∇F̄ ∗
s (−L̂obs

t−1), they both share the same regularizer407

Fs(x) =
∑K

i=1 fs(xi). For brevity, we drop s from fs(x). By the KKT conditions ∃µ, µ̃ s.t. ∀i:408

f
′
(xs,i) = −L̂obs

s−1,i + µ,

f
′
(x̃i) = −L̂obs

t−1,i + µ̃.

Let ℓ̃ = L̂obs
t−1 − L̂obs

s−1, then by the concavity of f
′
(x) from Fact 7, we have409

(xs,i − x̃i)f
′′
(xs,i) ≤ f

′
(xs,i)− f

′
(x̃i)︸ ︷︷ ︸

µ−µ̃+ℓ̃i

≤ (xs,i − x̃i)f
′′
(x̃i). (23)

Since f
′′
(xs,i) ≥ 0, from the left side of (23) we get xs,i − x̃i ≤ f

′′
(xs,i)

−1
(
µ− µ̃+ ℓ̃i

)
. Taking410

summation over all i and using the fact that both vectors xs and x̃ are probability vectors, we have411

0 =

K∑
i=1

(xs,i − x̃i) ≤
K∑
i=1

f
′′
(xs,i)

−1
(
µ− µ̃+ ℓ̃i

)
,

⇒ µ̃− µ ≤
∑K

i=1 f
′′
(xs,i)

−1ℓ̃i∑K
i=1 f

′′(xs,i)−1
. (24)
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Combining the right hand sides of (23) and (24) gives412

(x̃i − xs,i)f
′′
(x̃i) ≤ µ̃− µ− ℓ̃i ≤

∑K
j=1 f

′′
(xs,j)

−1ℓ̃j∑K
j=1, f

′′(xs,j)−1
,

and by rearrangement we get413

x̃i ≤ xs,i + f
′′
(x̃i)

−1 ×
∑K

j=1 f
′′
(xs,j)

−1ℓ̃j∑K
j=1 f

′′(xs,j)−1

≤ xs,i + γsx̃i ×
∑K

j=1 f
′′
(xs,j)

−1ℓ̃j∑K
j=1 f

′′(xs,j)−1
, (25)

where the last inequality holds because f
′′
(x̃i)

−1 =
(
η−1
s

1
2 x̃

−3/2
i + γ−1

s x̃−1
i

)−1

. The next414

step for bounding x̃i is to bound
∑K

j=1 f
′′
(xs,j)

−1ℓ̃j∑K
j=1 f ′′ (xs,j)−1 in (25), where ℓ̃j =

∑
r∈A ℓ̂r,j and415

A =
{
r : s ≤ r + d̂r < t

}
.416

417

If there exists r ∈ A, such that r > s and 4max(xr,i, λr,r+d̂r
) ≤ xs,i, then combining it with418

the induction assumption for (r + d̂r, r), where we have xr+d̂r,i
≤ 4max(xr,i, λr,r+d̂r

), leads to419

xr+d̂r,i
≤ xs,i. On the other hand, by the induction assumption for pair (r + d̂r, t), we have420

xt,i ≤ 4max(xr+d̂r,i
, λr+d̂r,t

).

So using xr+d̂r,i
≤ xs,i and λr+d̂r,t

≤ λs,t we can derive xt,i ≤ 4max(xs,i, λs,t). This inequality421

satisfies the condition we wanted to prove in the drift lemma. Therefore, we assume that for all r ∈ A422

we have either r ≤ s or xs,i ≤ 4max(xr,i, λr,r+d̂r
). If r ≤ s, using the the induction assumption for423

(s, r) together with the fact that λr,s ≤ λr,r+d̂r
, results in xs,i ≤ 4max(xr,i, λr,s). Consequently, in424

either case, the following inequality holds for all r ∈ A425

xs,i ≤ 4max(xr,i, λr,r+d̂r
). (26)

Thus, inequality in (26) satisfies the condition of Lemma 9, and for all r ∈ A we get:426 ∑K
j=1 f

′′
(xs,j)

−1ℓ̂r,j∑K
j=1 f

′′(xs,j)−1
≤ 8(K − 1)

1
3 . (27)

We proceed by summing both sides of the inequality (27) over all r ∈ A and obtain427 ∑K
j=1 f

′′
(xs,j)

−1ℓ̃j∑K
j=1 f ′′ (xs,j)−1 ≤ 4|A|(K − 1)

1
3 . Now it suffices to plug this result into (25):428

x̃i ≤ xs,i + 8|A|γsx̃i(K − 1)
1
3 ⇒

x̃i ≤ xs,i ×
(

1

1− 8|A|γs(K − 1)1/3

)
(28)

≤ xs,i ×
(

1

1− 24γsdsmax(K − 1)1/3

)
≤ xs,i ×

(
1

1− 1/2

)
= 2xs,i, (29)

where the third inequality uses |A| ≤ dsmax + t − s ≤ dtmax + dsmax, and that dtmax ≤ 2dsmax by429

Lemma 10, and for the last inequality we use the definitions of γs and dsmax.430

Combining (29) and (22) completes the induction step.431
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C Self-Bounding Analysis432

In this section we show the details of how to apply self-bounding analysis to bound the right hand433

side of (5).434

We start from (5) and decompose it as follows435

RegT ≤ E

a
T∑

t=1

∑
i̸=i∗

ηtx
1/2
t,i︸ ︷︷ ︸

A

+b

T∑
t=1

∑
i ̸=i∗

γt+dt(υt+dt − 1)xt,i∆i︸ ︷︷ ︸
B

+c

T∑
t=2

K∑
i=1

σ̂tγtxt,i log(1/xt,i)

logK︸ ︷︷ ︸
C


+O

(
K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
+ σmax + S∗

)
︸ ︷︷ ︸

D

.

We rewrite the pseudo-regret as RegT = 4RegT − 3RegT , and then based on the decomposition436

above we have437

RegT ≤ E
[
4aA−RegT

]
+ E

[
4bB −RegT

]
+ E

[
4cC −RegT

]
+ 4D. (30)

Masoudian et al. (2022) provide the following three lemmas that give the bounds for the first three438

terms in (30).439

Lemma 11. (Masoudian et al., 2022, Lemma 6) For any a ≥ 0, we have:440

4aA−RegT ≤
∑
i ̸=i∗

4a2

∆i
log(T + 1) + 1. (31)

Lemma 12. (Masoudian et al., 2022, Lemma 7) Let υmax = maxt∈[T ] υt, then for any b ≥ 0:441

4bB −RegT ≤ 64b2υmax logK. (32)

It is evident that υmax ≤ σmax, so the bound in Lemma 12 is dominated by O(Kσmax) term in the442

regret bound.443

Lemma 13. (Masoudian et al., 2022, Lemma 8) For any c ≥ 0:444

4cC −RegT ≤
∑
i ̸=i∗

128c2σmax

∆i logK
. (33)

By plugging (31),(32),(33) into (30) we get the desired bound.445

D A Proof of Lemma 4446

First we provide two facts and two auxiliary lemmas.447

Lemma 14. For any t we have448

2Dt ≥
t∑

s=1

d̂s.

Proof. We show that for any t ∈ [T ] we have
∑t

s=1 d̂s −Dt ≤ Dt:449

t∑
s=1

d̂s −Dt =
∑

(s≤t)∧(s+d̂s>t)

(d̂s − σ̂s)

≤
∑

(s≤t)∧(s+d̂s>t)

d̂s

≤
(
dtmax

)2
=

Dt

49K
2
3 logK

≤ Dt,

18



where the second inequality holds because d̂s ≤ dtmax, and the total number of steps that satisfy
(s ≤ t)∧ (s+ d̂s > t) is less than the skipping threshold at time t, which is again dtmax. Rearranging
the inequality completes the proof.

Lemma 15 ((Orabona, 2022, Lemma 4.13)). Let a0 ≥ 0 and f : [0; +∞) → [0; +∞) be a450

nonincreasing function. Then451

T∑
t=1

atf

(
a0 +

t∑
i=1

ai

)
≤
∫ ∑T

t=0 at

a0

f(x)dx.

Fact 16. For any x ≥ 0, we have e−x ≤ 1
x .452

Fact 17. For any x ≥ 1, we have e−x ≤ 1
x log2(x)

.453

Proof of Lemma 4. We have two summations as454

T∑
t=1

e
−

D
t+d̂t

D
t+d̂t

−Dt +

T∑
t=1

e
−

D
t+σt

max+d̂t
D

t+σt
max+d̂t

−Dt ,

where we show an upper bound of O(σ̂max) for each of them.455

Bounding the First Summation: Let T0 be the time satisfying
√
DT0

= σ̂max

K1/3 log(K)
, then using456

Facts 16 and 17 we have457

T∑
t=1

e
−

D
t+d̂t

D
t+d̂t

−Dt ≤
T0∑
t=1

Dt+d̂t
−Dt

Dt+d̂t︸ ︷︷ ︸
A

+

T∑
t=T0+1

Dt+d̂t
−Dt

Dt+d̂t
log2

( D
t+d̂t

D
t+d̂t

−Dt

)
︸ ︷︷ ︸

B

.

For A we give the following bound458

A =

T0∑
t=1

t+d̂t∑
s=t+1

σ̂s

Dt+d̂t

=

T0∑
s=1

s−1∑
t=0

σ̂s1(t+ d̂t ≥ s)

Dt+d̂t

≤
T0∑
s=1

σ̂2
s

Ds

≤
T0∑
s=1

σ̂s

√
Ds

K1/3 log(K)Ds

=

T0∑
s=1

σ̂s

K1/3 log(K)
√
Ds

≤ O

( √
DT0

K1/3 log(K)

)
= O

(
σ̂max

K2/3 log2(K)

)
,

where the second equality is by swapping the summations, the first inequality holds because Dt+d̂t
≥459

Ds, the third inequality uses σ̂s ≤ dsmax ≤
√
Ds

K1/3 logK
, and the last inequality uses Lemma 15.460
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The bound for B is as follows461

B =

T∑
t=T0+1

t+d̂t∑
s=t+1

σ̂s

Dt+d̂t
log2

( D
t+d̂t

D
t+d̂t

−Dt

) ≤
T∑

t=T0+1

t+d̂t∑
s=t+1

σ̂s

Dt+d̂t
log2

(
7K1/3 log(K)D

t+d̂t

σ̂max

√
D

t+d̂t

)
=

T∑
s=T0+1

s−1∑
t=T0+1

σ̂s1(t+ d̂t ≥ s)

Dt+d̂t
log2

(√
7K1/3 log(K)D

t+d̂t

σ̂max

)

=

T∑
s=T0+1

s−1∑
t=T0+1

σ̂s1(t+ d̂t ≥ s)

4Dt+d̂t
log2

(
49K2/3 log2(K)D

t+d̂t

σ̂2
max

)
≤

T∑
s=T0+1

σ̂2
s

4Ds log
2
(
49K2/3 log2(K) Ds

σ̂2
max

)
≤ σ̂max

T∑
s=T0+1

σ̂s

4Ds log
2
(

49K2/3 log2(K)Ds

σ̂2
max

)
≤ σ̂max

∫ DT

DT0

1

4x log2( 49K
2/3 log2(K)x
σ̂2
max

)

= σ̂max
−1

4 log(49K
2/3 log2(K)x
σ̂2
max

)

∣∣∣∣DT

DT0

= O(σ̂max),

where the first inequality follows by σ̂s ≤ σ̂max and our skipping procedure that ensures d̂t ≤ dtmax ≤462 √
D

t+d̂t

K1/3 logK
, the second equality is by swapping the summations, the second inequality follows by463

Dt+d̂t
≥ Ds and

∑s−1
t=1 1(t+ d̂t ≥ s) = σ̂s, the last inequality follows by Lemma 15 , and the last464

equality uses
∫

1
x log2(x/σ̂2

max)
dx = −1

log(x/σ̂2
max)

.465

Bound the Second Summation: The bound for the second summation follows the same approach,466

but it requires additional care due to existence of σt
max in it. Let T0 to be the time satisfying467 √

DT0 = σ̂max

K1/3 log(K)
, then using Facts 16 and 17 we have468

T∑
t=1

e
−

D
t+σt

max+d̂t
D

t+σt
max+d̂t

−Dt ≤
T0∑
t=1

Dt+σt
max+d̂t

−Dt

Dt+σt
max+d̂t︸ ︷︷ ︸

A

+

T∑
t=T0+1

Dt+σt
max+d̂t

−Dt

Dt+σt
max+d̂t

log2
(

D
t+σt

max+d̂t

D
t+σt

max+d̂t
−Dt

)
︸ ︷︷ ︸

B

.

For A we give the following bound469
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A =

T0∑
t=1

e
−

D
t+σt

max+d̂t
D

t+σt
max+d̂t

−Dt ≤
T0∑
t=1

Dt+σt
max+d̂t

−Dt

Dt+σt
max+d̂t

=

T0∑
t=1

t+σt
max+d̂t∑

s=t+1

σ̂s

Dt+σt
max+d̂t

≤
T0∑
s=1

s−1∑
t=0

σ̂s1(t+ σt
max + d̂t ≥ s)

Ds

≤
T0∑
s=1

(2σs
max + σ̂s−σs

max
)σ̂s

Ds

≤
T0∑
s=1

3
√
Dsσ̂s

K1/3 log(K)Ds

=

T0∑
s=1

3σ̂s

K1/3 log(K)
√
Ds

≤ O

( √
DT0

K1/3 log(K)

)
= O(

σ̂max

K2/3 log2(K)
),

where the first inequality is by Fact 16, the second inequality holds by swapping the summations and470

that Dt+σt
max+d̂t

≥ Ds, third inequality use the following derivation471

1(t+ σt
max + d̂t ≥ s) ≤ 1(t+ d̂t ≥ s) + 1(s > t+ d̂t ≥ s− σt

max)

≤ 1(t+ d̂t ≥ s) + 1(t ∈ [s− σt
max, s− 1]) + 1(t < s− σt

max ∧ t+ d̂t ≥ s− σt
max),

(34)

the third equality is by swapping the summations, the third inequality uses σ̂s ≤ dsmax ≤
√
Ds

K1/3 logK
,472

and finally the last inequality uses Lemma 15.473
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The bound for B is as follows474

B =

T∑
t=T0+1

∑t+σt
max+d̂t

s=t+1 σ̂s

Dt+σt
max+d̂t

log2
(

D
t+σt

max+d̂t∑t+σt
max+d̂t

s=t+1 σ̂s

)

≤
T∑

t=T0+1

t+σt
max+d̂t∑

s=t+1

σ̂s

Dt+σt
max+d̂t

log2

(
7K1/3 log(K)D

t+σt
max+d̂t

2σ̂max

√
D

t+σt
max+d̂t

)

=

T∑
s=T0+1

s−1∑
t=T0+1

σ̂s1(t+ σt
max + d̂t ≥ s)

Dt+σt
max+d̂t

log2

(
3K1/3 log(K)

√
D

t+σt
max+d̂t

σ̂max

)

=

T∑
s=T0+1

s−1∑
t=T0+1

4σ̂s1(t+ σt
max + d̂t ≥ s)

Dt+σt
max+d̂t

log2
(

9K2/3 log2(K)D
t+σt

max+d̂t

σ̂2
max

)
≤

T∑
s=T0+1

4(2σs
max + σ̂s−σs

max
)σ̂s

Ds log
2
(

Ds

4σ̂2
max

)
≤ σ̂max

T∑
s=T0+1

12σ̂s

Ds log
2
(

9K2/3 log2(K)Ds

σ̂2
max

)
≤ σ̂max

∫ DT

DT0

12

x log2( 9K
2/3 log2(K)x

σ̂2
max

)

= σ̂max
−12

log( 9K
2/3 log2(K)x

σ̂2
max

)

∣∣∣∣DT

DT0

= O(σ̂max),

where the first inequality is due to our skipping procedure that ensures max
{
σt
max, d̂t

}
≤ dtmax ≤√

Dt+σt
max+d̂t

, the second equality is by swapping the summations, the second inequality follows

by Dt+d̂t
≥ Ds and (34), the last inequality follows by Lemma 15, and the last equality uses∫

1
x log2(x/σ̂2

max)
dx = −1

log(x/σ̂2
max)

.

E A proof of Lemma 5475

Proof. We use the term free round to refer to a round r such that υnew
r is zero. By applying induction476

on the time step t, we show that if the algorithm is currently at time t and intends to rearrange the υt477

arrivals, there exist υt free rounds in the interval [t, t+ σt
max − σ̂t + υt] to which the algorithm can478

push the arrivals. This ensures that the arrival from round s, will be rearranged to round π(s) ≥ s+d̂s,479

such that π(s)− (s+ d̂s) ≤ σt
max. To this end, we assume the induction assumption holds for all480

r < t, and then proceed with induction step for t.481

Induction Base:482

The induction base corresponds to the first arrival time, denoted as t0. At this time step, all υt0483

arrivals can be rearranged to the free rounds in the interval [t0, t0 + υt0 − 1], which is a subset of484

[t0, t0 + σt0
max − σ̂t0 + υt0 − 1]. Therefore, the induction base holds.485

Induction step:486

Assume that we are at round t, and our aim is to rearrange the arrivals of round t. We define t1 as487

the last occupied round, where t1 ≥ t. So it suffices to prove t1 − t ≤ σt
max − σ̂t. We first note that488

since the algorithm is greedy, all rounds t, t+ 1, . . . , t1 − 1 must also be occupied by some arrivals489

from the past.490
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Let t0 < t be the first round where one of its arrivals has been rearranged to t, and let υ
′

t0 be491

the number of arrivals at time t0 that are rearranged to some rounds before t. Then by induction492

assumption we know493

t− t0 ≤ σt0
max − σ̂t0 + υ

′

t0 + 1 = σt0
max −

t0−1∑
r=1

1(r + d̂r ≥ t0) + υ
′

t0 + 1. (35)

On the other hand, by the choice of t0, each occupied round t, t + 1, . . . , t1 must be occupied by494

exactly one arrival among the arrivals of rounds t0, . . . , t− 1, except for the υ
′

t arrivals of t0 that are495

rearranged to some rounds before t. So we have496

t1 − t+ 1 ≤
t−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1)− υ
′

t0

=

t0−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1) +

t−1∑
r=t0

1(t0 ≤ r + d̂r ≤ t− 1)− υ
′

t0

=

t0−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1) + t− t0 −
t−1∑
r=t0

1(r + d̂r ≥ t)− υ
′

t0 ,

where the second equality holds because
∑t−1

r=t0
1(r + d̂r ≥ t0) = t − t0. We use (35) to bound497

t− t0 in the above inequality and get498

t1 − t ≤ σt0
max +

t0−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1)−
t0−1∑
r=1

1(r + d̂r ≥ t0)−
t−1∑
r=t0

1(r + d̂r ≥ t)

= σt0
max −

t0−1∑
r=1

1(r + d̂r ≥ t)−
t−1∑
r=t0

1(r + d̂r ≥ t)

= σt0
max −

t−1∑
r=1

1(r + d̂r ≥ t) ≤ σt
max − σ̂t, (36)

where the last inequality follows by the fact that {σr
max}r∈[T ] is a non-decreasing sequence. So if the

algorithm rearranges the υt arrivals at round t to rounds t1+1, . . . , t1+υt, then, using the inequality
(36), we can conclude that these rounds fall within the interval [t, t+ σt

max − σ̂t + υt].

F Adversarial bounds with dmax cannot benefit from skipping499

In this section we show that adversarial regret bounds that involve terms that are linear in dmax, such500

as the bounds of Masoudian et al. (2022), cannot benefit from skipping. We prove the following501

lemma.502

Lemma 18. √
D ≤ min

S

(
|S|+

√
DS̄

)
+ dmax.

Proof. For any split of the rounds [T ] into S and S̄ we have503

D = DS̄ +DS ≤ DS̄ + |S|dmax ≤ DS̄ + |S|2 + d2max.

Thus504 √
D ≤

√
DS̄ + |S|2 + d2max ≤ |S|+

√
DS̄ + dmax,

and since the above holds for any S, we obtain the statement of the lemma.

We remind that skipping allows to replace a term of order
√
D by a term of order minS

(
|S|+

√
DS̄
)

505

(for simplicity we ignore factors dependent on K). Thus, it may potentially replace a bound506

of order
√
D + dmax by a bound of order minS

(
|S|+

√
DS̄
)
+ dmax, but since by the lemma507

minS
(
|S|+

√
DS̄
)
+ dmax = Ω(

√
D), this would not improve the order of the bound.508
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G Details of the Adversarial Analysis509

The only difference between our algorithm and the algorithm of Zimmert and Seldin (2020) is the510

implicit exploration and the slightly modified skipping rule. Let ℓt be the original loss sequence,511

then the adversary can create an adaptive sequence ℓ̃t that forces the player to play according to the512

implicit exploration rule by simply down-scaling all the losses by513

ℓ̃ti =
xtiℓti

max
{
xt,i, λt,t+d̂t

} .

Our regret bound decomposes now into514

RegT = max
i∗T

E

[
T∑

t=1

⟨xt, ℓt⟩ − ℓt,i∗T

]

≤ max
i∗T

E

[
T∑

t=1

〈
xt, ℓ̃t

〉
− ℓ̃t,i∗T

]
+ E

[
T∑

t=1

〈
xt, ℓt − ℓ̃t

〉]
.

For the second term we have515

T∑
t=1

〈
xt, ℓt − ℓ̃t

〉
≤

K∑
i=1

T∑
t=1

(1− xti

xti + λt,t+d̂t

)xti ≤ K

T∑
t=1

λt,t+d̂t
,

which can be controlled via Lemma 4.516

The first term is bounded by Zimmert and Seldin (2020, Theorem 3) (since the player plays their517

algorithm on the modified loss sequence) by518

max
i∗T

E

[
T∑

t=1

⟨xt, ℓt⟩ − ℓt,i∗T

]
≤ 4

√
KT +

T∑
t=1

γtσ̂t + γ−1
T logK + S∗

≤ 4
√
KT +

T∑
t=1

σ̂t

√
logK

7
√
Dt

+ 7
√
DT logK + S∗

= 4
√
KT +

√
logK

T∑
t=1

Dt −Dt−1

7
√
Dt

+ 7
√

DT logK + S∗

≤ 4
√
KT +

2
√
logK

7

T∑
t=1

√
Dt −

√
Dt−1 + 7

√
DT logK + S∗

= 4
√
KT +

51

7

√
DT logK + S∗

≤ 4
√
KT +

51

7
min
S⊆[T ]

{
|S|+

√
DS̄ logK

}
+ S∗,

where the first equality uses the definition of γt, the third inequality follows by ∀a, b > 0 : a−b√
a

≤519

2(
√
a−

√
b), and the last inequality uses the following lemma520

Lemma 19. The skipping technique guarantees the following bound521 √
DTK

2
3 logK ≤ min

S⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}
.

Combining the bounds on the first and the second terms provides the regret bound in Section 5.2. It522

only remains to provide a proof for Lemma 19.523

Proof of Lemma 19. For any t ∈ [T ] we have d̂t ≤
√
DT /(49K

2
3 log(K)), therefore for any524

R ⊂ [T ]:525 ∑
t∈[T ]\R

dt ≥
∑

t∈[T ]\R

d̂t ≥ DT − |R|
√
DT /(49K

2
3 log(K))
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Hence we can dereive the following lower bound,526

min
R⊆[T ]

|R|+
√ ∑

s∈[T ]\R

dsK
2
3 log(K) ≥ min

r∈
[
0,

√
49DTK

2
3 log(K)

] r +
√
DTK

2
3 log(K)− 1

7
r

√
DTK

2
3 log(K)

≥
√

DTK
2
3 log(K),

where the second inequality uses the concavity in r.527

H A Bound on S∗
528

Next, we reason about the nature of skips. The following lemma is an adaptation of Zimmert and529

Seldin (2020, Lemma 5) to our skipping threshold. To this end we provide two lemmas and then530

conclude then proof.531

Lemma 20. Algorithm 1 will not skip more than 1 point at a time.532

Proof. We prove the lemma by contradiction. Assume that s1, s2 are both deactivated at time

t. W.l.o.g. let s2 ≤ s1 − 1. Skipping of s1 at time t means t − s1 ≥
√
Dt/(K

2
3 log(K)) ≥√

Dt−1/(K
2
3 log(K)). At the same time we assumed t − 1 − s2 ≥ t − s1, which means that s2

would have been deactivated at round t− 1 or earlier.

Recall that d̂t is the contribution of a timestep t to the sum DT . Let (t1, . . . , tS∗) be an indexing of S533

and c = 49K
2
3 log(K). We bound the number of skips by534

S∗ ≤ 2cd̂t∗S . (37)

The above bound together with the fact that incurred delay d̂t∗S must be less than the the skipping535

threshold and the maximal delay dmax give us536

S∗ ≤ O
(
K

2
3 logKd̂t∗S

)
≤ O

(
min

{
dmaxK

2
3 logK,

√
DTK

2
3 logK

})
≤ O

(
min

{
dmaxK

2
3 logK, min

S⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}})
,

where the last inequality follows by Lemma 19.

Proof of bound (37). By Lemma 20 we skip at most one outstanding observation per round. Thus,537

we have that538

d̂tm ≥
√
Dtm+d̂tm

/c ≥

√√√√ m∑
i=1

d̂ti/c =

√
d̂tm +

∑m−1
i=1 d̂ti√

c
.

By solving the quadratic inequality in d̂tm we obtain539

d̂tm ≥
1 +

√
1 + 4c

∑m−1
i=1 d̂ti

2c
.

Now we prove by induction that d̂tm ≥ m
2c . The induction base holds since d̂t1 = 1. For the inductive540

step we have541

d̂tm ≥
1 +

√
1 + 4c

∑m−1
i=1 d̂ti

2c
≥

1 +
√

1 +m(m− 1)

2c
≥ m

2c
.

Then the induction step is satisfied.
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