
Generative Verifiers:
Reward Modeling as Next-Token Prediction

Anonymous Author(s)
Affiliation
Address
email

Abstract

Verifiers or reward models are often used to enhance the reasoning performance1

of large language models (LLMs). A common approach is the Best-of-N method,2

where N candidate solutions generated by the LLM are ranked by a verifier, and3

the best one is selected. While LLM-based verifiers are typically trained as dis-4

criminative classifiers to score solutions, they do not utilize the text generation5

capabilities of pretrained LLMs. To overcome this limitation, we instead propose6

training verifiers using the ubiquitous next-token prediction objective, jointly on7

verification and solution generation. Compared to standard verifiers, such gen-8

erative verifiers (GenRM) can benefit from several advantages of LLMs: they9

integrate seamlessly with instruction tuning, enable chain-of-thought reasoning,10

and can utilize additional inference-time compute via majority voting for better11

verification. We demonstrate that when using Gemma-based verifiers on algorith-12

mic and grade-school math reasoning tasks, GenRM outperforms discriminative13

verifiers and LLM-as-a-Judge, showing a 16 − 64% improvement in the number14

of problems solved with Best-of-N. Furthermore, we show that GenRM scales15

favorably across dataset size, model capacity, and inference-time compute.16

1 Introduction17

5%

10%

15%

20%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-3
2)

Last Letter Concat

20%

40%

60%

(B
es

t-o
f-3

2)

Word Sorting

75%

80%

85%

90%

(B
es

t-o
f-1

6)

Grade-School Math (GSM8K)
Self-Consistency LLM-as-a-Judge Discriminative RM GenRM GenRM-CoT

Figure 1: Comparing GenRM with standard verification approaches on several reasoning tasks, in terms
of Best-of-N performance. By recasting reward modeling as next-token prediction, GenRM outperforms other
approaches to improve Best-of-N performance. The horizontal dotted line corresponds to direct generation
performance (Best-of-1). GenRM leverages the generation capabilities of LLMs, enabling a finetuned verifier
model to effectively utilize chain-of-thought and majority-voting at inference time to identify reasoning errors.

While large language models (LLMs) demonstrate remarkable capabilities, they often confidently18

make logical and factual mistakes [Zhang et al., 2023]. These mistakes pose a significant challenge19

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Problem: Tim decides to cancel his cable subscription and get streaming services. He gets Netflix for $10
a month. Hulu and Disney Plus normally cost $10 a month each but he saves 20% for bundling. How much
money does he save by cancelling his $60 cable package?

Solution: Tim pays $60 for cable. He gets Netflix for 10 and the bundle of Hulu and Disney Plus costs $10
* 80% = $8. So he pays $10 + $8 = $18 for Netflix and the bundle. Now he saves $60 - $18 = $42. The
answer is 42.

Discriminative RM correctness score: 0.999

GenRM-CoT: Let’s verify step by step.
· · ·
Step 3. **The bundle of Hulu and Disney Plus costs $10 * 80% = $8.** (Incorrect)
- Expected Answer: The bundle of Hulu and Disney Plus costs $10 + $10 = $20. With the 20% discount,
the total cost is $20 * 0.8 = $16. · · ·
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.0015

Figure 2: Example using generative verifiers on GSM8K test. LLM-generated solutions often sound con-
vincing even when they are wrong, making verification a challenging task. Here, the solution is incorrect
because it has ignored the word ‘each’ in the problem. While the discriminative RM fails to recognize this
subtle mistake in the solution, our GenRM-CoT verifier reliably detects the error. This is because GenRM-CoT
was trained with next-token prediction on synthetic chain-of-thought rationales, enabling it to explicitly reason
about the solution. The full verification output can be found in Table E.12.

for reasoning problems, where a single mistake can invalidate the entire solution. A common strat-20

egy to address this issue is Best-of-N [Charniak and Johnson, 2005, Cobbe et al., 2021]: the LLM21

generates N candidate solutions for a given problem, and a learned reward model, referred to as a22

“verifier”, ranks these solutions and picks the most suitable one. The effectiveness of this strategy23

hinges on how accurate the verifier is, making it crucial to identify better approaches for training24

verifiers.25

On reasoning domains, LLM-based verifiers are typically trained as discriminative reward mod-26

els (RMs) to assign numerical scores to candidate solutions, which is then used to classify them as27

correct or incorrect [Cobbe et al., 2021, Lightman et al., 2023, Wang et al., 2023]. However, this28

scoring approach does not utilize the text-generation capabilities LLMs are fundamentally designed29

for. As a result, discriminative RMs miss out on the inherent strengths of generative LLMs, such as30

unified instruction tuning [Chung et al., 2022], chain-of-thought reasoning [Wei et al., 2022], and31

utilizing additional inference-time computation for better performance [Wang et al., 2022, Brown32

et al., 2024]. While LLM-as-a-Judge [Zheng et al., 2024], which simply prompts off-the-shelf gen-33

erative LLMs, also offer the above advantages, it often underperforms trained LLMs-based verifiers,34

especially on reasoning.35

In this work, we propose training verifiers with next-token prediction, which we call GenRM, to36

leverage the text generation capabilities of LLMs (Figure 2). Concretely, to produce a numerical37

score for a solution, the verifier now uses a prompt such as ‘Is the answer correct?’, and represents38

the score as the probability of a single text token (e.g., ‘Yes’ or ‘No’) under the context and the39

prompt. GenRM naturally supports CoT reasoning [Wei et al., 2022]: it can be trained to reason40

explicitly by generating a verbalized rationale before predicting correctness using ‘Yes’ or ‘No’ to-41

ken (Figure 3), assuming rationales are available during training. We can further boost verification42

accuracy of CoT verifiers using majority voting [Wang et al., 2022]: sampling multiple CoT ratio-43

nales (votes) and calculating the average score of the ‘Yes’ token across all samples, resulting in a44

favorable use of more test-time computation. Moreover, GenRM’s next-token prediction training en-45

ables unifying solution generation with verification, which has been difficult [Hosseini et al., 2024],46

potentially improving verification through positive knowledge transfer from solution generation.47

GenRM outperforms discriminative RMs, LLM-as-a-Judge, and self-consistency on algorithmic48

string manipulation and math reasoning tasks (Figure 1), namely Last Letter Concat [Wei et al.,49

2022], Word Sorting from Big-Bench Hard [Suzgun et al., 2022], and GSM8K [Cobbe et al., 2021].50

Best-of-N performance with GenRM-CoT further improves when using majority-voting, nearly51

matching performance with oracle verifier on algorithmic reasoning tasks. On GSM8K (Figure 1,52

right), when using a Gemma-9B GenRM-CoT model to verify the outputs of Gemini 1.0 Pro, we53

observe a 20% improvement in terms of the number of problems solved (73% → 92.8%), surpass-54

ing GPT-4 and Gemini 1.5 Pro. Moreover, we find that generative verifiers exhibit scales favorably55

2

“Let’s verify step by step.”

GenRM

Finetuned Verifier
Problem

Solution

“Is the answer correct (Yes/No)?” Yes

No

Other tokens

GenRM-CoT

Finetuned VerifierProblem

Solution

Token Probability

Verification CoT1

…

Verification CoTN

No

Yes

Yes

0.4

0.2

0.9

0.8

Average

r

r

Figure 3: An illustration of generative verifiers, namely GenRM and GenRM-CoT. Given a question and a
candidate solution, GenRM directly finetunes an LLM to answer the question ‘Is the answer correct (Yes/No)?’
via SFT on the next-token response corresponding to either ‘Yes’ or ‘No’. During inference, the verifier score is
obtained by extracting the probability of the ‘Yes’ token (4). In comparison, GenRM-CoT finetunes a LLM to
produce verification chain-of-thought (CoT) rationale before yielding the final Yes/No token. At test-time, we
sample multiple CoT rationales and use majority voting to compute the average probability of ‘Yes’, enabling
GenRM-CoT to utilize additional inference-compute for better verification.

as we increase dataset size as well as model capacity. Furthermore, GenRM-CoT also outperforms56

LLM-as-a-Judge as we scale inference-time compute by sampling multiple verification rationales57

for majority voting. Overall, these results suggest that generative verifiers hold significant potential58

for improving the reasoning capabilities of LLMs.59

2 Preliminaries60

An autoregressive language model generates an output sequence y = (y1, y2, . . . , yT) given a input61

context x (e.g., math problem) by predicting tokens one at a time, based on the previously gener-62

ated tokens. Assuming that the language model is parameterized by θ, the conditional probability63

distribution of generating a sequence y given context x is64

pθ(y | x) =
T∏

t=1

pθ(yt | x, y<t), (1)

with the convention y<1 = ∅ and y<t = (y1, y2, . . . , yt−1). For ease of notation, we define pθ(yt |65

x) := pθ(yt | y<t,x). For a vocabulary size M , the probability of predicting the t-th token yt,66

pθ(yt | x), is determined using a softmax with temperature γ on logit scores z of all the tokens:67

pθ(yt | x) = exp(zt/γ)∑M
i=1 exp(zi/γ)

, where zt = logitθ(yt | x,y<t). Higher values of γ introduce more68

randomness, while setting temperature τ = 0 makes the output deterministic, which corresponds to69

greedy decoding.70

Next-token prediction is the typical approach for pre-training and fine-tuning LLMs. In particular,71

supervised fine-tuning (SFT) minimizes the cross-entropy loss between the model’s predicted next72

token and the actual target token in a given sequence. Given a dataset D = {(x, y)} of input context73

x and target response y, the SFT loss is given by:74

LSFT(θ,D) = −E(x,y)∼D

 |y|∑
t=1

log pθ(yt | x,y<t)

 . (2)

Best-of-N is a widely-used approach to improve the reasoning performance of LLMs [Cobbe et al.,75

2021, Lightman et al., 2023]. Specifically, given a test problem, we sample N candidate solutions76

from a generator LLM. These candidates are then scored using a learned verifier or reward model,77

and the highest-scoring solution is selected as the final answer. A better verifier increases the chance78

of selecting the correct solution, improving test accuracy.79

Discriminative Verifiers. The prevalent approach of training verifiers for reasoning domains is to80

fine-tune an LLM as a classifier on a dataset of correct and incorrect solutions generated from a81

3

fixed LLM, using the binary cross-entropy loss. To do so, these verifiers directly assign a numerical82

score rθ(x,y) ∈ [0, 1] to estimate the probability that a solution y is correct for a problem x. As83

such, these verifiers do not utilize the text generation the capabilities of LLMs. Given a reward-84

modeling (RM) dataset DRM = Dincorrect
⋃

Dcorrect, we train discriminative RMs as follows:85

LDiscriminative-RM(θ,DRM) =− E(x,y+)∼Dcorrect

[
log rθ(x,y

+)
]
− E(x,y−)∼Dincorrect

[
log(1− rθ(x,y

−))
]
,

(3)
where rθ(x,y) = sigmoid(zcls), and zcls = logitθ(cls | y,x)

where y+ are correct and y− are incorrect solutions, and cls corresponds to a special vocabulary86

token. In this work, we always use a balanced data mixture between correct (Dcorrect) and incor-87

rect (Dincorrect) problem-solution pairs.88

3 GenRM: Verification as Next-Token Prediction89

Discriminative LLM-based verifiers (3) do not utilize the text generation capabilities of pretrained90

LLMs. To address this issue, we propose training verifiers or that can generate text, which we call91

GenRM, using standard next-token prediction (2). To do so, GenRM represents solution correctness92

using the LLM’s probability distribution over tokens, instead of predicting a separate numerical93

score. This keeps the generation abilities of GenRM intact as the verification decision is just an-94

other token, while also enabling several advantages that come for “free” with LLMs such as unified95

training for solution generation and verification, chain-of-thought reasoning, and inference-time96

computation.97

3.1 Direct Verifier98

In its simplest form, GenRM predicts whether a solution is correct using a single ‘Yes’ or ‘No’99

token (Figure 3, top). This can be done by simply maximizing log pθ(‘Yes’ | (x,y+)) for correct100

solutions y+ and log pθ(‘No’ | (x,y−)) for incorrect solutions y−. To do so, we minimize the SFT101

loss in (2) on the dataset DDirect containing problem-solution pairs as input and a single ‘Yes‘ or102

‘No’ token as target:103

DDirect = {(x,y+, I), ‘Yes’}
⋃

{(x,y−, I), ‘No’} , I = ‘Is the answer correct (Yes/No)?’

At inference, we use the likelihood of the ‘Yes’ token as the verifier’s score for re-ranking solutions:104

rDirect(x,y) = pθ(Yes | x,y, I). (4)

This score takes into account the verifier’s confidence about its correctness prediction, which re-105

duces the chance of being miscalibrated and wrong at test-time when using a binary ‘Yes’ or ‘No’106

prediction.107

3.2 Unifying Generation and Verification108

GenRM seamlessly integrates reward modelling, which distinguishes between correct and incorrect109

solutions, with SFT for generating correct solutions. This can be done by simply changing the data110

mixture in the SFT loss (2) to include both verification and generation tasks. Given a verification111

dataset Dverify, which can be DDirect or DCoT (discussed below) of problems-solution pairs with112

correctness tokens (optionally with CoT rationales), GenRM minimizes the loss:113

LGenRM(θ,Dverify) = LSFT(θ,Dverify) + λLSFT(θ,Dcorrect) , (5)

where λ > 0 is a hyperparameter that controls the data mixture ratio between solution verifica-114

tion (Dverify) and generating correct solutions (Dcorrect). This unified training can improve verifier115

and generation performance via positive transfer between these two related tasks: how to generate a116

correct solution, and whether a solution is correct. By default, we train GenRM verifiers using the117

unified loss in (5).118

4

3.3 Chain-of-Thought Verifiers (GenRM-CoT)119

Since verification often involves complex reasoning, generative verifiers can naturally benefit from120

CoT reasoning [Wei et al., 2022]. Specifically, we can generate intermediate reasoning steps or121

critique (CoT) before making a decision about the solution correctness, which may identify subtle122

reasoning errors missed by direct verifiers (Figure 3, bottom). To train CoT verifiers, we can min-123

imize the SFT loss LGenRM on the dataset DCoT containing problem-solution pairs as inputs, and124

corresponding verification rationales vCoT appended with a final question I and ‘Yes’ or ‘No’ token125

as targets:126

DCoT = {
(
x,y+, ICoT

)
, (vCoT, I, ‘Yes’)}

⋃
{
(
x,y−, ICoT

)
, (vCoT, I, ‘No’)} , ICoT = ‘Let’s verify step by step.’

Notably, these rationales can either be human-generated or LLM-generated, both of which we ex-127

plore in this work. During inference, we first generate a CoT rationale vCoT from GenRM-CoT and128

then use the probability of ‘Yes’ for assigning the correctness score:129

rCoT(x,y) = pθ(Yes | x,y, ICoT,vCoT, I), where vCoT ∼ pθ(· | x,y, ICoT), (6)

Compared to (4) that directly uses the instruction I to produce a score, we can see that the above CoT130

reward additionally conditions on ICoT and self-generated vCoT before getting a score via instruction131

I.132

Inference-time Compute for CoT verifier When sampling verification CoTs, the generative ver-133

ifier may use different reasoning paths and yield different correctness probabilities for the same134

problem-solution pair. As such, we would like to marginalize out the intermediate reasoning paths135

to select the most consistent correctness answer [Wang et al., 2022]. To do so, we can use majority136

voting where we first generate K verification CoT rationales, and average the CoT-verifier score for137

these rationales:138

rMajVote@K(x,y) =
1

K

K∑
i=1

pθ

(
Yes | x,y, ICoT,v

(i)
CoT, I

)
, where v

(i)
CoT ∼ pθ(· | x,y, ICoT)

(7)
Since individual verification rationales from CoT verifiers can have reasoning errors, majority vot-139

ing can mitigate the impact of such errors by averaging correctness scores across multiple rationales.140

Importantly, this means that GenRM-CoT can leverage additional inference-time compute to im-141

prove its accuracy, which discriminative verifiers cannot do. Unless otherwise specified, we report142

GenRM-CoT performance based on majority voting with 32 votes, that is, K = 32 in (7).143

Synthetic Verification Rationales for CoT Verifier. Verifying LLM solutions with human-144

generated rationales can become increasingly expensive and challenging as LLMs surpass human145

reasoning abilities. To address this challenge, we explore using synthetically-generated rationales146

on GSM8K. One naive approach is to simply use the ‘Let’s verify step by step’ prompt given a147

problem-solution pair, and filter the generated rationales based on whether they correctly verify the148

correctness of a solution. However, such rationales are often of poor quality due to 50% accuracy149

from random guessing.150

Instead, we use reference-guided grading [Zheng et al., 2024] to improve the quality of synthetic151

rationales. Specifically, we provide a reference solution in addition to the problem and solution to152

verify (see Table C.2), making it easier for an LLM to point out any reasoning error in the provided153

solution. Here, a reference solution is defined as any model-generated solution that manages to arrive154

at the correct final answer. Note that reference-guided grading can only be used during training, as155

we do not have reference solutions for test problems.156

4 Experiments157

The goal of our experiments is to demonstrate the efficacy of next-token prediction compared to158

other approaches for training verifiers. To this end, we compare GenRM and standard verifiers on a159

number of reasoning problems with the goal of answering the following research questions:160

• How does GenRM compare to standard discriminative verifiers in reasoning domains?161

• Does unified training of GenRM improve generation and verification performance?162

5

Problem: Carol spends 4 hours writing a song, half that much time recording it, and 90 minutes editing it.
What percentage of her total work time did she spend editing?

Solution: Half of 4 hours is 2 hours. So the time spent recording is 2 hours. Add the editing time of 90
minutes and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours. That means she spent (90 / 7.5)
* 100 = 12% of the total time editing. The answer is 12.

Discriminative RM correctness score: 0.8414

GenRM-CoT: Let’s verify step by step.
· · ·
Step 3: That means she spent (90 / 7.5) * 100 = 12% of the total time editing.
Expected Answer: Incorrect. The editing time should be in hours, so it should be (1.5 / 7.5) * 100 = 20%.

Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.2498

Figure 4: An example where GenRM-CoT catches a subtle mistake that the discriminative verifier is unable
to catch. The candidate solution did not convert 90 minutes into 1.5 hours before dividing it by 7.5. However,
the discriminative verifier was not able to detect this mistake likely because the solution does still appear to
produce a valid-sounding percentage 90/7.5 = 12. Our proposed GenRM-CoT model is able to identify this
mistake using step-by-step generative verification. The full verification output can be found in Table E.11.

1 2 4 8 16 32
Number of Solutions (N)

5%

10%

15%

20%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
) Last Letter Concat

1 2 4 8 16 32
Number of Solutions (N)

20%

40%

60%

Word Sorting

1 2 4 8 16
Number of Solutions (N)

75%

80%

85%

90%

95%

Grade-School Math (GSM8K)

Pass@N (Oracle)
Self-Consistency

LLM-as-a-Judge
Discriminative RM

GenRM
GenRM-CoT

Figure 5: Comparing generative verifiers with other approaches. GenRM generally outperforms other
methods, and more closely matches the Best-of-N performance with oracle verifier (Pass@N). Moreover,
GenRM with majority voting is able to effectively utilize chain-of-thought reasoning and test-time compute to
further improve over direct GenRM verifier.

• Can GenRM effectively utilize CoT reasoning and test-time compute to improve its perfor-163

mance?164

• How does GenRM scale with data and model size?165

Tasks and Data Generation. We focus on the following reasoning tasks (more details in Ap-166

pendix C):167

• Last Letter Concatenation [Wei et al., 2022]: Given a list of words, the task is to concatenate168

the last letters of each word (for instance, ”Noah Paul Elisha Rebecca” → ”hlaa”). We train169

verifiers on lists of lengths 2 − 4, and evaluate the verifier on the out-of-distribution (OOD)170

setting of length 6.171

• Word Sorting [Suzgun et al., 2022] Given a list of words, sort them in alphabetical order. For a172

sorting task, verification is clearly easier than generating the correct solution. Similar to the last173

letter concatenation task, we train verifiers on up to 4-words, and evaluate length-generalization174

performance on 5 word examples.175

• GSM8K [Cobbe et al., 2021] is a widely-used dataset to evaluate grade-school math reasoning176

capabilities of LLMs. For training, we use at most 16 correct and 16 incorrect solutions per177

problem. We evaluate the verifier performance on 16 solutions per problem in the test set.178

6

1 2 4 8 16 32
Sampled CoT Rationales (K)

80%

85%

90%

%
 G

SM
8K

 P
ro

bl
em

s S
ol

ve
d

(B
es

t-o
f-1

6)

Gemma-2B

1 2 4 8 16 32
Sampled CoT Rationales (K)

Gemma-7B

1 2 4 8 16 32
Sampled CoT Rationales (K)

Gemma-9B
LLM-as-a-Judge (MajVote@K) GenRM-CoT (MajVote@K) GenRM-CoT (Greedy)

Figure 6: Scaling Inference-time Compute for Verification. By posing reward modeling as next-token predic-
tion, GenRM can utilize the powerful toolbox from generative LLMs, such as Chain-of-Thought and Majority
Voting, to turn additional test-time compute into higher Best-of-N accuracy. The more capable the base model,
the more effective inference-time compute scaling seems to become. Here, the horizontal line corresponds to
performance of GenRM-CoT verifier with greedy decoding.

Baselines. We compare GenRM to the following standard approaches for verification:179

• Discriminative (standard) RM (ORM) [Cobbe et al., 2021]: The prevalent approach for train-180

ing verifiers for test-time re-ranking on reasoning tasks, as discussed in §2, serves as our main181

baseline.182

• Self-consistency [Wang et al., 2022]: A simple approach to use test-time compute without ver-183

ifiers: sample multiple solutions from the LLM generator and pick the most common answer.184

• LLM-as-a-Judge [Zheng et al., 2024]: This approach uses an off-the-shelf pretrained LLM for185

verification. To do so, we use a CoT prompt to produce 32 verification rationales that is used186

for correctness prediction and pick the majority vote correctness answer.187

Evaluation protocol. Following prior work [Cobbe et al., 2021, Lightman et al., 2023], we pri-188

marily use Best-of-N performance (in terms of the percentage of problems solved) of a fixed LLM189

(generator) (§2) with learned verifiers, and report average performance on the test set. Best-of-N190

evaluates what fraction of solutions chosen by the verifier are correct. For some results, we also191

report RM accuracy on the test set or a held-out validation set, which measures whether the verifier192

accurately classifies incorrect and correct solutions. While these two metrics are often correlated,193

RM accuracy only evaluates the verifier’s point-wise accuracy, while Best-of-N evaluates its group-194

wise ranking performance.195

Models. For training discriminative RMs and GenRM, we use open-weights Gemma models [Team196

et al., 2024], specifically Gemma-2B for algorithmic tasks, and Gemma 2B, 7B, and 9B for GSM8K.197

For solution generation as well as LLM-as-a-Judge, we use Gemma 2B for algorithmic tasks and198

Gemini 1.0 Pro [Team et al., 2023] for GSM8K.199

Hyperparameters. By default, all GenRM experiments use unified training for verification with200

solution generation (5), with λ = 1/3 for algorithmic tasks and λ = 1/4 for GSM8K. We use the201

label ‘Verification Only’ to indicate GenRMor GenRM-CoT verifiers trained using only verification202

data (λ = 0). See Appendix Appendix D for more details.203

Verification CoT Rationale Generation. For training rationales, we generated ground-truth ra-204

tionales for word sorting and last letter concatenation algorithmically, as shown in Table C.1. On205

GSM8K, we generated rationales using Gemini 1.0 Pro with reference-guided grading [Zheng et al.,206

2024], with the prompt outlined in Table C.2.207

4.1 Comparing GenRM with Prior Verification Approaches208

GenRM, which directly predicts Yes/No token for verification, can match or outperform the discrim-209

inative RM and other approaches on all the three tasks, as shown in Figure 5. This shows that the210

next-token-prediction loss allows GenRM to tap into the capabilities of pretrained Gemma models211

more effectively.212

CoT Reasoning Improves Verification. GenRM-CoT, which combines chain-of-thought with ma-213

jority voting, further improves the performance over GenRM.214

7

10%

12%

15%

18%

20%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-3
2)

Last Letter Concat

40%

60%

(B
es

t-o
f-3

2)

Word Sorting

88%

90%

92%

(B
es

t-o
f-1

6)

GSM8K
GenRM (Verification Only) GenRM GenRM-CoT (Verification Only) GenRM-CoT

Figure 7: SFT on correct solutions enhances verification performance, both for GenRM that directly pre-
dicts Yes/No, and GenRM-CoT that uses verification CoT rationales, across all tasks that we consider. Here,
‘Verification Only’ corresponds to training GenRM or GenRM-CoT only on verification data, by setting λ = 0
in (5).

In particular, on the two algorithmic tasks with oracle verification CoTs, GenRM-CoT closely215

matches the oracle verifier performance (Pass@N). On GSM8K, GenRM-CoT consistently out-216

performs all other methods, even though the training CoT rationales (generated with Gemini 1.0217

Pro) may contain errors. Qualitatively, GenRM-CoT is able to detect subtle reasoning errors that are218

missed by discriminative verifiers (see Figure 2, A.1,4).219

5 Related Work220

Reward models (RMs) and verifiers. Conventionally, RMs and verifiers are trained as discrim-221

inative models via binary classification: given a prompt and a corresponding solution or a pair of222

solutions), the model is either trained to predict the correctness of the solution [Cobbe et al., 2021,223

Saunders et al., 2022, Lightman et al., 2023, Wang et al., 2023, Uesato et al., 2022, Luo et al., 2024,224

Yu et al., 2024] or a preference between the two solutions [Stiennon et al., 2020, Nakano et al.,225

2021]. Concretely, the RM or verifier directly produces a numerical continuous-valued score, which226

is then plugged into a classification objective (3). As such, discriminative verifiers do not utilize227

the text generation capabilities of LLMs. In contrast to discriminative RMs, GenRM does not train228

RMs that output a numerical score from a special logit, but rather represent the correctness decision229

using the log probability of ‘Yes’ and ‘No’ tokens under special instructions. Posing verification230

as generating “yet another token” allows it to tap better into the generation capabilities of LLMs,231

by making it straightforward to employ CoT reasoning and additional inference-time compute for232

better verification.233

LLM-as-a-Judge for verification. Another line of work that poses verification as next-token pre-234

diction simply prompts off-the-shelf LLMs to act as a verifier when provided with a rubric and a235

template for grading [Zheng et al., 2024, Bai et al., 2022, Kim et al., 2023, Ling et al., 2024], but236

without any specific training for the same. Perhaps unsurprisingly, we find in our experiments that237

using substantially more powerful LLMs (Gemini 1.0 Pro) as a judge is substantially worse than238

our trained GenRM (using weaker Gemma models), highlighting the necessity of training genera-239

tive verifiers. More generally, even the strongest proprietary LLMs to date, such as GPT-4 [Achiam240

et al., 2023] and Gemini [Team et al., 2024b], fall behind trained RMs on popular leaderboards, such241

as RewardBench [Lambert et al., 2024], and this gap is much larger for reasoning problems. While242

Agarwal et al. [2024] utilized many-shot prompting on an off-the-shelf LLM to obtain a “Yes/No”243

verifier, our work focuses on training generative verifiers and also leverages CoT rationales and244

test-time compute.245

6 Conclusion & Future Work246

In this paper, we have introduced Generative Verifiers (GenRM), which recast verification as next-247

token prediction in LLM reasoning domains. GenRM is a more performant alternative to discrim-248

inative reward models, and unlocks the use of powerful tools, such as chain-of-thought reasoning249

and majority voting for better verification. GenRM also unifies generation and verification into a250

single LLM, and demonstrates that such a unification benefits both generation and verification. Fu-251

ture work includes extending the generative verification framework to a broader range of tasks, and252

studying how generative verifiers can be integrated into existing LLM self-improvement algorithms.253

8

References254

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,255

S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.256

R. Agarwal, A. Singh, L. M. Zhang, B. Bohnet, S. Chan, A. Anand, Z. Abbas, A. Nova, J. D.257

Co-Reyes, E. Chu, et al. Many-shot in-context learning. arXiv preprint arXiv:2404.11018, 2024.258

Z. Ankner, M. Paul, B. Cui, J. D. Chang, and P. Ammanabrolu. Critique-out-loud reward models.259

arXiv preprint arXiv:2408.11791, 2024.260

Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirho-261

seini, C. McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint262

arXiv:2212.08073, 2022.263

B. Brown, J. Juravsky, R. Ehrlich, R. Clark, Q. V. Le, C. Ré, and A. Mirhoseini. Large language264

monkeys: Scaling inference compute with repeated sampling. arXiv preprint arXiv:2407.21787,265

2024.266

E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discriminative reranking.267

In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics268

(ACL’05), pages 173–180, 2005.269

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. De-270

hghani, S. Brahma, et al. Scaling instruction-finetuned language models. arXiv preprint271

arXiv:2210.11416, 2022.272

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,273

J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint274

arXiv:2110.14168, 2021.275

A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and R. Agarwal. V-star: Training276

verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024.277

S. Kim, J. Shin, Y. Cho, J. Jang, S. Longpre, H. Lee, S. Yun, S. Shin, S. Kim, J. Thorne, et al.278

Prometheus: Inducing fine-grained evaluation capability in language models. In The Twelfth279

International Conference on Learning Representations, 2023.280

D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.281

N. Lambert, V. Pyatkin, J. Morrison, L. Miranda, B. Y. Lin, K. Chandu, N. Dziri, S. Kumar, T. Zick,282

Y. Choi, et al. Rewardbench: Evaluating reward models for language modeling. arXiv preprint283

arXiv:2403.13787, 2024.284

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,285

I. Sutskever, and K. Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050, 2023.286

Z. Ling, Y. Fang, X. Li, Z. Huang, M. Lee, R. Memisevic, and H. Su. Deductive verification of287

chain-of-thought reasoning. Advances in Neural Information Processing Systems, 36, 2024.288

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint289

arXiv:1711.05101, 2017.290

L. Luo, Y. Liu, R. Liu, S. Phatale, H. Lara, Y. Li, L. Shu, Y. Zhu, L. Meng, J. Sun, et al. Improve291

mathematical reasoning in language models by automated process supervision. arXiv preprint292

arXiv:2406.06592, 2024.293

N. McAleese, R. M. Pokorny, J. F. C. Uribe, E. Nitishinskaya, M. Trebacz, and J. Leike. Llm critics294

help catch llm bugs. arXiv preprint arXiv:2407.00215, 2024.295

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saun-296

ders, et al. Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint297

arXiv:2112.09332, 2021.298

9

A. Pal, D. Karkhanis, S. Dooley, M. Roberts, S. Naidu, and C. White. Smaug: Fixing failure modes299

of preference optimisation with dpo-positive. arXiv preprint arXiv:2402.13228, 2024.300

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. Weston. Iterative reasoning preference301

optimization. arXiv preprint arXiv:2404.19733, 2024.302

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference303

optimization: Your language model is secretly a reward model. Advances in Neural Information304

Processing Systems, 36, 2024.305

A. Roberts, H. W. Chung, A. Levskaya, G. Mishra, J. Bradbury, D. Andor, S. Narang, B. Lester,306

C. Gaffney, A. Mohiuddin, C. Hawthorne, A. Lewkowycz, A. Salcianu, M. van Zee, J. Austin,307

S. Goodman, L. B. Soares, H. Hu, S. Tsvyashchenko, A. Chowdhery, J. Bastings, J. Bulian,308

X. Garcia, J. Ni, A. Chen, K. Kenealy, J. H. Clark, S. Lee, D. Garrette, J. Lee-Thorp, C. Raffel,309

N. Shazeer, M. Ritter, M. Bosma, A. Passos, J. Maitin-Shepard, N. Fiedel, M. Omernick, B. Saeta,310

R. Sepassi, A. Spiridonov, J. Newlan, and A. Gesmundo. Scaling up models and data with t5x and311

seqio. arXiv preprint arXiv:2203.17189, 2022. URL https://arxiv.org/abs/2203.17189.312

W. Saunders, C. Yeh, J. Wu, S. Bills, L. Ouyang, J. Ward, and J. Leike. Self-critiquing models for313

assisting human evaluators. arXiv preprint arXiv:2206.05802, 2022.314

A. Setlur, S. Garg, X. Geng, N. Garg, V. Smith, and A. Kumar. Rl on incorrect synthetic data scales315

the efficiency of llm math reasoning by eight-fold. arXiv preprint arXiv:2406.14532, 2024.316

N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.317

Christiano. Learning to summarize with human feedback. Advances in Neural Information Pro-318

cessing Systems, 33:3008–3021, 2020.319

M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le,320

E. H. Chi, D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve321

them. arXiv preprint arXiv:2210.09261, 2022.322

G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.323

Dai, A. Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv preprint324

arXiv:2312.11805, 2023.325

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière, M. S.326

Kale, J. Love, et al. Gemma: Open models based on gemini research and technology. arXiv327

preprint arXiv:2403.08295, 2024a.328

G. Team, M. Reid, N. Savinov, D. Teplyashin, T. Lillicrap, J.-b. Alayrac, R. Soricut, A. Lazaridou,329

O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding across millions330

of tokens of context. arXiv e-prints, pages arXiv–2403, 2024b.331

G. Team M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard,332

B. Shahriari, A. Ramé, et al. Gemma 2: Improving open language models at a practical size.333

arXiv preprint arXiv:2408.00118, 2024.334

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and I. Hig-335

gins. Solving math word problems with process-and outcome-based feedback. arXiv preprint336

arXiv:2211.14275, 2022.337

P. Wang, L. Li, Z. Shao, R. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-shepherd: A label-338

free step-by-step verifier for llms in mathematical reasoning. arXiv preprint arXiv:2312.08935,339

2023.340

T. Wang, I. Kulikov, O. Golovneva, P. Yu, W. Yuan, J. Dwivedi-Yu, R. Y. Pang, M. Fazel-Zarandi,341

J. Weston, and X. Li. Self-taught evaluators. arXiv preprint arXiv:2408.02666, 2024.342

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou.343

Self-consistency improves chain of thought reasoning in language models. arXiv preprint344

arXiv:2203.11171, 2022.345

10

https://arxiv.org/abs/2203.17189

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-346

thought prompting elicits reasoning in large language models. Advances in neural information347

processing systems, 35:24824–24837, 2022.348

T. Wu, W. Yuan, O. Golovneva, J. Xu, Y. Tian, J. Jiao, J. Weston, and S. Sukhbaatar. Meta-349

rewarding language models: Self-improving alignment with llm-as-a-meta-judge. arXiv preprint350

arXiv:2407.19594, 2024.351

R. Yang, R. Ding, Y. Lin, H. Zhang, and T. Zhang. Regularizing hidden states enables learning352

generalizable reward model for llms. arXiv preprint arXiv:2406.10216, 2024.353

Z. Ye, F. Greenlee-Scott, M. Bartolo, P. Blunsom, J. A. Campos, and M. Gallé. Improving reward354

models with synthetic critiques. arXiv preprint arXiv:2405.20850, 2024a.355

Z. Ye, F. Greenlee-Scott, M. Bartolo, P. Blunsom, J. A. Campos, and M. Gallé. Improving reward356

models with synthetic critiques. arXiv preprint arXiv:2405.20850, 2024b.357

F. Yu, A. Gao, and B. Wang. Ovm, outcome-supervised value models for planning in mathematical358

reasoning. In Findings of the Association for Computational Linguistics: NAACL 2024, pages359

858–875, 2024.360

W. Yuan, R. Y. Pang, K. Cho, S. Sukhbaatar, J. Xu, and J. Weston. Self-rewarding language models.361

arXiv preprint arXiv:2401.10020, 2024.362

Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et al.363

Siren’s song in the ai ocean: a survey on hallucination in large language models. arXiv preprint364

arXiv:2309.01219, 2023.365

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,366

et al. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information367

Processing Systems, 36, 2024.368

11

Problem: Digimon had its 20th anniversary. When it came out John was twice as old as Jim. If John is 28
how old is Jim?

Solution: Let Jim’s age be x when Digimon came out. That means John’s age is 2x when Digimon came
out.
20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current age - 20
years).
We know that 2x - 20 = 28 (since John’s current age is 28)
2x = 48
x = 24
So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44 years old. The
answer is 44.

Discriminative RM score: 0.9778

GenRM-CoT: Let’s verify step by step.
· · ·
Step 2: 20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current age
- 20 years). (Correct)
· · ·
Step 6: So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44 years
old. (Incorrect)
Expected Answer:
Since John was twice as old as Jim when Digimon came out 20 years ago, and John is 28 now, we can
calculate Jim’s age. Let Jim’s age 20 years ago be x. Then we know that 2x = 28 - 20 = 8, so x = 4.
Therefore, Jim’s age now is 4 + 20 = 24. The answer is 24.
· · ·
Verification: Is the solution correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.0000

Figure A.1: What happens when GenRM does not catch the mistake in its first pass? At the end of the step-
by-step verification, GenRM-CoT tends to output a correct/incorrect token summarizing if the final answer
seems wrong, similar to a direct GenRM that only predicts Yes/No. If GenRM deems the final answer incorrect,
it will attempt to solve the problem again using a reasoning path different from the solution. In the example
above, even though the step-by-step verification fails to find any mistake, GenRM gives the problem another try
and correctly verifies the solution. Full verification output in Figure E.1. This behavior emerges from training
on synthetic rationales generated using the prompting format shown in Table C.2.

Appendices369

A Additional Experiments370

A.1 Unifying Generation and Verification371

Unifying solution generation with verification, as done by GenRM using the next-token-prediction372

objective, consistently improves verification performance across all tasks, as illustrated in Figure 7.373

This improvement is observed for both direct and CoT-based generative verifiers, suggesting that374

teaching the verifier to imitate correct solutions generally helps.375

Notably, incorporating CoT verification data into the generator’s training mix leads to better solu-376

tion generation performance for the GenRM-CoT verifier itself, as evidenced in Figure C.1 by the377

improved Best-of-N scores with the oracle verifier (Pass@N). This suggests that teaching a gen-378

erator to perform verification based on next-token prediction can deepen its understanding of the379

generation process itself. Overall, the above results indicate the unifying solution generation and380

verification is mutually beneficial.381

A.2 Scaling Data, Model Size, and Inference-time Compute382

Scaling Test-Time Compute with GenRM-CoT can be done by sampling multiple CoTs and con-383

duct majority voting, as described in (7). As shown in Figure 6, GenRM-CoT verifier’s performance384

scales gracefully with greater number of votes at test time, under all three Gemma scales (2B, 7B,385

12

2B 7B 9B
Parameter Count (Gemma)

87.5%

90.0%

92.5%

%
 P

ro
bl

em
s S

ol
ve

d
 (B

es
t-o

f-1
6)

GSM8K: Model Scaling

2B 7B 9B
Parameter Count (Gemma)

70.0%

75.0%

80.0%

RM
 A

cc
ur

ac
y

(Te
st

) GSM8K: Model Scaling

1 2 4 8 16
Number of Solutions (N)

80%

90%

%
 o

f P
ro

bl
em

s S
ol

ve
d Model Scaling w/ GenRM-CoT

2B
7B
9B
pass@N

GenRM GenRM-CoT

Figure A.2: Model Scaling for Generative Verifiers. On GSM8K, we scale model capacity using Gemma
[Team et al., 2024a] 2B. 7B, 9B, and observe positive scaling trends both for GenRM (direct) and GenRM-
CoT, both for Best-of-N performance as well as reward modeling accuracy on the test set.

1 2 4
88%

89%

90%

91%

92%

RM
 A

cc
ur

ac
y

Gemma-7B

1 2 4
Training CoT rationales Per Solution

85%

86%

87%

88%

89%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-1
6)

Gemma-7B
GSM8K: Scaling Number of Rationales

8 16 32

85%

86%

87%

88%

89%

RM
 A

cc
ur

ac
y

Gemma-7B

8 16 32
Training Solutions Per Problem

85%

86%

87%

88%

89%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-1
6)

Gemma-7B
GSM8K: Scaling Number of Solutions

Figure A.3: Data scaling for GenRM-CoT on GSM8K. We observe that both the RM accuracy and Best-of-N
performance improve as we scale up the number of rationales per solution and solutions per problem. When
adding more solutions, we use 4 rationales per solution. Here, we compute GenRM-CoT scores with CoT
rationales generated using greedy decoding, as discussed in (6).

9B), outperforming greedy decoding performance within 4 votes. Across model scales, the finetuned386

GenRM-CoT verifier outperforms LLM-as-a-Judge, which also utilizes the same CoT approach and387

number of majority votes, but prompts a more capable Gemini 1.0 Pro model than Gemma models.388

Scaling model size. In Figure A.2, we show that the performance of generative verifiers scales up389

positively with an increase in model capacity. The model scaling experiments use the fixed dataset390

(32 solutions per problem, and for CoT GenRM, 4 rationales per solution). The results show that391

bigger models are able to learn more from the same data, which matches what we expect from392

scaling model parameter counts under the next-token prediction loss.393

Data scaling for CoT verifiers. GenRM-CoT allows for an additional axis of data scaling, which394

is absent in standard verifiers: scaling the number of rationales per solution. On GSM8K, we find395

that using multiple rationales per solution has a substantial effect on the performance of generative396

verifiers. We suspect that this is because model-generated, synthetic rationales are noisy in this case,397

such that training on multiple rationales per solution and the associated “ensembling” effect prevents398

the training procedure from overfitting to this noise and spurious correlations. See Figure A.3 for399

detailed comparisons. Both RM Accuracy and Best-of-N Accuracy scales positively on both data400

axis, with the number of rationales per solution having a bigger effect.401

Data scaling for direct GenRM. GenRM trained on verification only data still outperforms stan-402

dard verifiers as we increase the number of solutions per problem on GSM8K (Figure A.4, left),403

demonstrating the effectiveness of casting verification as a next-token prediction problem. Across all404

data scales, unified training with solution generation data further boosts the performance of GenRM405

verifiers, as already discussed in §A.1. Moreover, the optimal loss coefficient for solution genera-406

tion data in GenRM follows an inverted U-shape: adding too little or too much negatively impacts407

verification, while intermediate values yield the best results (Figure A.4, right).408

13

8 16 32
Solutions Per Problem

85%

90%
%

 o
f P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-1
6)

Scaling Training Data

0.0 0.5 1.0
Generation Data Fraction ()

88%

89%

90%

91%

Impact of on Verifier

8 Solutions
32 Solutions

Discriminative RM GenRM (Verification, = 0) GenRM

Figure A.4: Data efficiency for GenRM vs a standard verifier. Overall
we observe a positive but moderate scaling trend for all methods, with
GenRM consistently outperforming the discriminative verifier in all data
regimes. In addition, we find that adding a solution generation loss (λ >
0) can further help GenRM, with λ = 1/4 being a good value for GSM.

1 2 4 8 16
Number of Solutions (N)

80%

90%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
)

GenRM-CoT: Synthetic
Rationale Quality on GSM8K

Reference Guidance
No Guidance
Oracle (pass@N)

Figure A.5: Using reference guid-
ance in the prompt for synthetic
rationale generation is crucial for
GenRM-CoT to perform well.

A.3 Impact of Synthetic Rationale Quality409

Our results on GSM8K results indicate that GenRM-CoT verifier can outperform discriminative410

and direct GenRM verifiers even without human-written rationales, highlighting the potential of411

LLM-generated rationales. However, the quality of these synthetic rationales does matter, as shown412

in Figure A.5. Using reference-guided grading during rationale generation significantly improves413

performance (91.7% with guidance vs. 87.8% without for Gemma-7B verifiers), indicating that414

LLMs are better at identifying reasoning errors when they have a reference solution for comparison.415

Importantly, achieving our result does not require a more capable model for generating verification416

rationales: we use the same model (Gemini 1.0 Pro) to generate both solutions to verify and synthetic417

rationales in the training data.418

B Additional Related Work419

Using CoTs for reward models. Prior works have also considered using critiques or CoT to extract420

preference and verification signals [Yuan et al., 2024, Wu et al., 2024, Wang et al., 2024, Ye et al.,421

2024a]; in contrast to these prior works, GenRM utilizes model-generated CoT directly for training422

the verifier. Upon inference, a GenRM produces its own CoTs, which it then uses to make deci-423

sions on correctness, unlike other work that simply uses CoTs from a separate (and highly-capable)424

model [Ye et al., 2024b]. Compared to [McAleese et al., 2024] which assumes access to high-quality425

data from humans to train discriminative RMs for generating code critiques, we show that GenRM426

can be trained from purely synthetic, model-generated critiques.427

Concurrent work [Ankner et al., 2024] trains a model to produce response critiques, which are then428

passed as input into a reward modelling head, separate from the base LLM. Unlike GenRM which429

uses next-token prediction, their RM head is trained discriminatively akin to standard RMs. While430

this approach allows them to leverage CoTs and inference-time computation, it does not allow them431

to unify solution generation and verification together as a result of a discriminative RM head, that432

GenRM seamlessly enables (Section A.1). Moreover, our results show that even using GenRM to433

produce a single verification token outperforms standard RMs even without CoT or inference-time434

compute, which can potentially improve the results in this concurrent work (Figure A.4, Left).435

Unified generation and verification. One of the hallmark properties of GenRM is that the very436

same generative verifier can be co-trained with a generation objective (5): when given a problem,437

the model is trained to produce a solution, whereas when given a problem and a candidate solution,438

it is trained to verify this candidate. This is related to DPO [Rafailov et al., 2024] and its application439

to learning verifiers in reasoning [Hosseini et al., 2024], which aims to unify generation (policy)440

and verification (reward models) by representing the reward implicitly using the logits of a policy441

and training the policy with a reward-modelling loss. For reasoning, this type of model tying has442

been shown to exhibit erroneous extrapolation and a degradation in learned representations, which443

prior work has attempted to address with additional techniques [Pang et al., 2024, Setlur et al., 2024,444

Pal et al., 2024, Yang et al., 2024]. Of these, while the approach of Yang et al. [2024] trains an445

14

21 23

Number of Solutions (N)

0%

20%

40%

60%

80%

Be
st

-o
f-N

 (O
ra

cle
 V

er
ifi

er
) Last Letter Concat (= 1/3)

21 23

Number of Solutions (N)

20%

40%

60%

80%
Word Sorting (= 1/3)

21 23

Number of Solutions (N)

70%

80%

90%

GSM8K (= 1/4)

Base LLM SFT (Generation) GenRM-CoT (Verification + Generation)

Figure C.1: Unifying generation and verification boosts GenRM’s generation performance. Compared to
SFT only on correct solutions, jointly training on generation data and CoT verification data results in improved
Best-of-N performance (with oracle verifier) for the generator. Furthermore, we observe that the generation
performance of GenRM-CoT exhibits more improvement on algorithmic tasks than on GSM8K, likely because
those tasks use ground truth verification rationales while GSM relies on synthetic LLM-generated rationales,
which may be inaccurate.

reward model with an auxiliary generative SFT loss, note that this loss is applied on a separate head446

for regularization purposes and is discarded after training; unlike GenRM no text is produced when447

querying the RM.448

Unlike DPO, our unification approach is distinct: GenRM treats verification as next-token pre-449

diction, allowing the same model to be trained on both verification and policy tasks using their450

respective prompts. This eliminates the need for separate reward modeling or loss modifications, of-451

fering greater flexibility for practitioners to combine various reward and generation objectives. For452

example, while Hosseini et al. [2024] struggled to obtain a DPO verifier that can generate correct453

solutions, the GenRM-CoT verifier has better generation performance compared to SFT only on454

correct solutions (Figure 7).455

C Training Data Generation for Verifiers456

• Last Letter Concatenation: To generate the training data, for each length {2, 3, 4}, we457

generate 350 problem queries by randomly sampling from the set of words in original458

training set; for each problem query, we generate 128 attempts from Gemma-2B [Team459

et al., 2024a] model. This gives us a total of about 50K training data points after de-460

duplication. We train verifiers on examples of lengths {2, 3, 4} (here the length refers to461

how many words are in the input list), and evaluate the verifier performance on length 6.462

We use the format in Table C.1 to algorithmically generate ground-truth verification CoT463

for training.464

• Word Sorting: We train verifiers on a dataset comprised of {2, 3, 4} words in each exam-465

ple, and evaluate the performance on length 5. For each length, we generate 4096 lists of466

words as the problem queries; for each problem, we generate 64 attempts from Gemma-467

2B. After de-duplication and filtering out invalid responses, we have a total of about 100K468

training data points. We also algorithmically generate ground-truth verification CoT for469

training (see Table C.1).470

• Grade School Math: We follow the original train/test split and use 1.3K problems for471

test, 128 problems for validation, and about 7.2K problems for training. We generate 50472

solutions per problem, and randomly sample at max 16 correct solutions and 16 incorrect473

solutions per problem as the training set.474

D Hyper-parameters for Verifier Training475

GenRM verifiers We finetune Gemma-based language models. After doing a sweep of learning476

rates (LR), we find that an LR of [2e− 6, 1e− 6, 5e− 7] works well for our tasks considered (with477

LR=2e−6 generally being the best). We use a weight decay of 1e−2, and do not apply any dropout.478

15

Problem Solution to Verify
Last Letter
Concatenation

Task: take the last letters of each words and
concatenate them.
Q: Jacob , Vivian

A: Let’s think step by step.
J a c o b -¿ b (List so far: [b])
V i v i a n -¿ n (List so far: [b n])
The answer is: b n

Let’s verify step by step.
The given answer is: b , n. The input is: Jacob , Vivian.
Is the length of the final answer the same as the number of input words? Yes
Is ‘b’ the last letter of ‘J a c o b’? Yes
Is ‘n’ the last letter of ‘V i v i a n’? Yes
Is the final answer correct? Yes
Word Sorting Task: sort a list of words alphabetically.

Q: cell, apple, courage
A: Let’s think step by step.
Identify the alphabetical locations of 1st let-
ters:
cell -¿ c: 3. apple -¿ a: 1. courage -¿ c: 3.
We need to sort the numbers: 3, 1, 3
Sorting the numbers: 1 ¡ 3 = 3
The answer is: apple, courage, cell

Let’s verify step by step.
The given answer is: apple, courage, cell. The input is: cell, apple, courage.
Does the final answer contain the same words as the original input? Yes
Are ‘a p p l e’, ‘c o u r a g e’ in the correct order? Yes
Are ‘c o u r a g e’, ‘c e l l’ in the correct order? No
Is the answer correct? No

Table C.1: Algorithmic reasoning tasks that we consider. In thes tasks, we can generate ground-truth verifi-
cation chain-of-thoughts as the training data for a generative verifier. Those synthetic tasks help us understand
whether a generative verifier can outperform a discriminative verifier in the ideal scenario where there is no
noise in the verification CoT training data.

Prompt for Generating Synthetic Rationales for CoT Verifier on GSM
You are a math teacher. Grade the Solution, verifying correctness step by step.
Use Expected Answer to find any erroneous step in the Solution.
At the end of the Solution verification, when you give your final grade, write
it in the form "Verification: Is the answer correct (Yes/No)? X", where X is
either Yes or No.
Question: {problem}
Solution: {solution}
Expected Answer: {a solution that arrives at the correct answer}

Table C.2: We use model-generated rationales as CoT training data on GSM with the above prompt. When
generating the training data for rationales, we show the model another model-generated solution that arrives at
the correct answer, which is privileged information that does not exist at test time. Our method does not require
a more capable model for the rationales compared to the solutions: we use the same model to generate solutions
and synthetic rationales in the training data.

We use the Adam optimizer [Kingma, 2014] with decoupled weight decay [Loshchilov and Hutter,479

2017] and a gradient norm clipping of 1.0. We use a linear warmup of 1000 gradient steps, and480

a cosine decay schedule that decays to 10% of the peak learning rate towards the end of training.481

We finetune for 200K steps with a batch size of 128, and use seqio [Roberts et al., 2022] library to482

create data mixtures. We pick the best checkpoint based on validation accuracy of verification on483

held out problems and solutions. We always use data balancing between 50% correct solutions and484

50% incorrect solutions in training.485

Discriminative RMs We finetune Gemma-based discriminative RMs by using a special token’s486

logit for classification. We chose the best performing ORM on our validation sets by launching487

a large sweep over learning rates [1e − 7, 5e − 7, 1e − 6, 2e − 6, 3e − 6, 5e − 6], weight decay488

[1e−3, 1e−2, 1e−1] and dropouts [1e−3, 1e−2, 4e−2]. We also schedule the learning rate with489

a linear ramp up and a cosine decay. We then pick the best model according to validation accuracy of490

verification on held out problems and solutions. We always use data balancing between 50% correct491

solutions and 50% incorrect solutions in training.492

16

E Examples of verification rationales generated by GenRM-CoT on GSM8K493

Example of on Grade School Math
Question: In a 60-item quiz, 40% of the questions are easy, and the rest are equally divided as average and
difficult questions. If Aries is sure to get 75% of the easy questions, and half of the average and difficult
questions correctly, how many points is she sure to get?

Answer: 40% of 60 items are easy questions, so there are 60 * 40 / 100 = 24 easy questions. Aries is sure
to get 75% of those, so she will get 24 * 75 / 100 = 18 easy questions correct. The rest of the questions
are equally divided as average and difficult questions. So, there are (60 - 24) / 2 = 18 average and difficult
questions each. Aries is sure to get half of those correct, so she will get 18 * 50 / 100 = 9 average and
difficult questions correct. In total, she is sure to get 18 + 9 = 27 questions correct. Each question is worth
one point, so she is sure to get 27 points. The answer is 27.

Discriminative RM score: 0.6107

GenRM-CoT: Let’s verify step by step.
¡b¿Step 1:¡/b¿
40% of 60 items are easy questions, so there are 60 * 40 / 100 = 24 easy questions.
¡b¿Expected Answer:¡/b¿
40% of 60 = 24 easy questions.
¡b¿Verification:¡/b¿ Correct

¡b¿Step 2:¡/b¿
Aries is sure to get 75% of those, so she will get 24 * 75 / 100 = 18 easy questions correct.
¡b¿Expected Answer:¡/b¿
75% of 24 = 18 easy questions.
¡b¿Verification:¡/b¿ Correct

¡b¿Step 3:¡/b¿
The rest of the questions are equally divided as average and difficult questions. So, there are (60 - 24) / 2 =
18 average and difficult questions each.
¡b¿Expected Answer:¡/b¿
(60 - 24) / 2 = 18 average and difficult questions each.
¡b¿Verification:¡/b¿ Correct

¡b¿Step 4:¡/b¿
Aries is sure to get half of those correct, so she will get 18 * 50 / 100 = 9 average and difficult questions
correct.
¡b¿Expected Answer:¡/b¿
50% of (60 - 24) = 18 average and difficult questions.
¡b¿Verification:¡/b¿ Erroneous

¡b¿Step 5:¡/b¿
In total, she is sure to get 18 + 9 = 27 questions correct. Each question is worth one point, so she is sure to
get 27 points. The answer is 27.
¡b¿Expected Answer:¡/b¿
18 easy + 9 average + 9 difficult = 36 total correct questions.
¡b¿Verification:¡/b¿ Erroneous

¡b¿Final Grade:¡/b¿
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.1151

Table E.1: GenRM CoT Example 1

17

Example of GenRM-CoT on Grade School Math
Question: Sandy wants to lose as much weight as Joey does but needs 4 weeks to lose the same amount of
weight that Joey loses in a single week. If Joey loses 8 pounds in 4 weeks, how many weeks will it take
Sandy to lose the same amount of weight?

Answer: Since Joey loses 8 pounds in 4 weeks, Sandy will take 4 times as long to lose the same amount of
weight. That means she will take 4 * 4 = 16 weeks. The answer is 16.

Discriminative RM score: 0.0399

GenRM-CoT: Let’s verify step by step.
Solution Verification:

Step 1:
Solution: Since Joey loses 8 pounds in 4 weeks, Sandy will take 4 times as long to lose the same amount
of weight.
Expected Answer: We are given that Sandy needs 4 weeks for what Joey does in 1 week. Therefore, we
can multiply the time Joey takes by 4 to find out how much time Sandy will take.

Grade: Correct

Step 2:
Solution: That means she will take 4 * 4 = 16 weeks.
Expected Answer: So, we have 4 * 4 = 16 weeks.

Grade: Correct

Final Grade:
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.5131

Table E.2: GenRM CoT Example 2

Example of GenRM-CoT on Grade School Math
Question: Rory is retrieving tennis balls from the court after a tennis match. In the first of three sets, he
had to retrieve four more balls than in the second set. In the third set, he retrieved half as many balls as in
the second. He retrieved 19 tennis balls in all. How many tennis balls did he retrieve in the first set of the
match?

Answer: Let the number of balls retrieved in the second set be x. In the first set, he retrieved four more, so
he retrieved x + 4 balls. In the third set, he retrieved half as many, which would be x / 2. Since he retrieved
19 balls in all, we have:

x + x + 4 + x / 2 = 19
3x / 2 + 4 = 19
3x + 8 = 38
3x = 30
x = 10

So, he retrieved 10 balls in the second set. In the first set, he retrieved x + 4 = 10 + 4 = 14 tennis
balls. The answer is 14.

Discriminative RM score: 0.9413

GenRM-CoT: Let’s verify step by step.
(See next page · · ·)

Table E.3: GenRM CoT Example 3

18

Example of GenRM-CoT on Grade School Math
· · · Continued
GenRM-CoT: Let’s verify step by step.
Step 1:
Solution: Let the number of balls retrieved in the second set be x.
Expected Answer: Let the number of balls in the second set be x.
Verification: Yes

Step 2:
Solution: In the first set, he retrieved four more, so he retrieved x + 4 balls.
Expected Answer: Then in the first set he had to retrieve x + 4 balls.
Verification: Yes

Step 3:
Solution: In the third set, he retrieved half as many, which would be x / 2.
Expected Answer: In the third set he retrieved half as many as in the second set, that is x/2.
Verification: Yes

Step 4:
Solution: Since he retrieved 19 balls in all, we have:
x + x + 4 + x / 2 = 19
Expected Answer: In all, this should add up to 19. Therefore, x + x + 4 + x/2 = 19.
Verification: Yes

Step 5:
Solution: 3x / 2 + 4 = 19
Expected Answer: Simplifying this equation: 2.5x + 4 = 19
Verification: No

Step 6:
Solution: 3x + 8 = 38
Expected Answer: 2.5x = 15
Verification: No

Step 7:
Solution: 3x = 30
Expected Answer: x = 6
Verification: No

Step 8:
Solution: x = 10
Expected Answer: Therefore, the number of balls in the first set was x + 4 = 6 + 4 = 10.
Verification: No

Final Answer:
Solution: The answer is 14.
Expected Answer: The answer is 10.
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.3267

Table E.4: GenRM CoT Example 3 (Continued)

19

Example of GenRM-CoT on Grade School Math
Question: When the water is cold Ray swims a mile in 16 minutes. When the water is warm Ray swims a
mile in 2 minutes more than twice as long. How much longer does Ray take to swim 3 miles on a hot day
than a cold day?

Answer: When the water is warm Ray swims a mile in 2 minutes more than twice as long as when the
water is cold. This means he takes 2 + 2 * 16 = 2 + 32 = 34 minutes to swim a mile on a hot day.

To swim 3 miles on a hot day he will take 3 * 34 = 102 minutes. On a cold day he takes 16 * 3 = 48 minutes
to swim 3 miles.

The difference in time is 102 - 48 = 54 minutes. The answer is 54.

Discriminative RM score: 0.2452

GenRM-CoT: Let’s verify step by step.
Verification:

1. ”When the water is warm Ray swims a mile in 2 minutes more than twice as long as when the water is
cold.”
- This step is correct.

2. ”This means he takes 2 + 2 * 16 = 2 + 32 = 34 minutes to swim a mile on a hot day.”
- This step is correct.

3. ”To swim 3 miles on a hot day he will take 3 * 34 = 102 minutes.”
- This step is correct.

4. ”On a cold day he takes 16 * 3 = 48 minutes to swim 3 miles.”
- This step is correct.

5. ”The difference in time is 102 - 48 = 54 minutes.”
- This step is correct.

6. ”The answer is 54.”
- This step is correct.

Expected Answer:
- The expected answer is also 54 minutes.

Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.9963

Table E.5: GenRM CoT Example 4

20

Example of GenRM-CoT on Grade School Math
Question: The ice cream parlor was offering a deal, buy 2 scoops of ice cream, get 1 scoop free. Each
scoop cost $1.50. If Erin had $6.00, how many scoops of ice cream should she buy?

Answer: Erin had $6.00. First, she should buy 2 scoops of ice cream. Since each scoop costs $1.50, she
will spend 2 * $1.50 = $3.00 on the two scoops. After that, she can get 1 scoop free. Since the third scoop
was free, she will not spend anything on the third scoop. So, she can afford three scoops. The answer is 3.

Discriminative RM score: 0.9973

GenRM-CoT: Let’s verify step by step.
Solution Verification:
Step 1: Erin had $6.00. (Correct)
Step 2: She bought 2 scoops of ice cream at $1.50 each, spending $3.00. (Correct)
Step 3: She received 1 scoop free. (Correct)
Step 4: She can afford three scoops. (Incorrect)
Step 5: The answer is 3. (Incorrect)
Expected Answer:
Step 1: Erin had $6.00. (Correct)
Step 2: She can buy 6/$1.50 = 4 scoops of ice cream. (Correct)
Step 3: She will get 2 free scoops for buying 2. (Correct)
Step 4: She will get a total of 4 + 2 = 6 scoops. (Correct)
Step 5: The answer is 4. (Correct)
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0487

Table E.6: GenRM CoT Example 5

21

Example of GenRM-CoT on Grade School Math
Question: Cherrie wants to buy Christmas gifts for her 5 friends. 2 of her friends want 5 gifts and the other
3 friends want 2 gifts for themselves. Cherrie goes ahead and buys them and decides to further surprise
them by getting 10 more random gifts. How many gifts did Cherrie buy in total?

Answer: 2 of her friends want 5 gifts each. So, they want 2 * 5 = 10 gifts. 3 other friends want 2 gifts each.
So, they want 3 * 2 = 6 gifts. Add those 6 gifts to the 10 gifts from the beginning, that’s 16 gifts. Now,
Cherrie decided to buy 10 more gifts, so in total she bought 16 + 10 = 26 gifts. The answer is 26.

Discriminative RM score: 0.1710

GenRM-CoT: Let’s verify step by step.
¡b¿Verification:¡/b¿

¡b¿Step 1:¡/b¿
Solution: 2 of her friends want 5 gifts each. So, they want 2 * 5 = 10 gifts.
Expected Answer: Cherrie has 5 friends. 2 of them want 5 gifts, so in total they want 2 * 5 = 10 gifts.

¡b¿Verification:¡/b¿ This step is correct.

¡b¿Step 2:¡/b¿
Solution: 3 other friends want 2 gifts each. So, they want 3 * 2 = 6 gifts.
Expected Answer: The other 3 friends want 2 gifts each, so in total they want 3 * 2 = 6 gifts.

¡b¿Verification:¡/b¿ This step is correct.

¡b¿Step 3:¡/b¿
Solution: Add those 6 gifts to the 10 gifts from the beginning, that’s 16 gifts.
Expected Answer: So in total, she needs to buy 10 + 6 = 16 gifts for her friends.

¡b¿Verification:¡/b¿ This step is correct.

¡b¿Step 4:¡/b¿
Solution: Now, Cherrie decided to buy 10 more gifts, so in total she bought 16 + 10 = 26 gifts.
Expected Answer: On top of that, she wants to get 10 more random gifts. Therefore, in total she needs to
buy 16 + 10 = 26 gifts.

¡b¿Verification:¡/b¿ This step is correct.

¡b¿Final Grade:¡/b¿
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.8017

Table E.7: GenRM CoT Example 6

22

Example of GenRM-CoT on Grade School Math
Question: Juan wants to add croissants to his bakery menu. It takes 1/4 pound of butter to make 1 dozen
croissants. He wants to start with making 4 dozen a day for a week. How many pounds of butter will he
need to make these croissants?

Answer: 1 dozen is equal to 12 croissants. He wants to make 4 dozen a day, which is 4 * 12 = 48 croissants.
He wants to make this number of croissants for a week, which is 7 days. That means in total he needs to
make 48 * 7 = 336 croissants. It takes 1/4 pound of butter to make 1 dozen croissants. So in total he will
need 336 / 12 = 28 pounds of butter. The answer is 28.

Discriminative RM score: 0.9999

GenRM-CoT: Let’s verify step by step.
Solution Verification

Step 1: 1 dozen is equal to 12 croissants.
Expected Answer: Correct.

Step 2: He wants to make 4 dozen a day, which is 4 * 12 = 48 croissants.
Expected Answer: Correct.

Step 3: He wants to make this number of croissants for a week, which is 7 days. That means in total he
needs to make 48 * 7 = 336 croissants.
Expected Answer: Correct.

Step 4: It takes 1/4 pound of butter to make 1 dozen croissants. So in total he will need 336 / 12 = 28
pounds of butter.
Expected Answer: Incorrect. The correct calculation should be 336 / 12 * 1/4 = 7 pounds of butter.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0000

Table E.8: GenRM CoT Example 7

23

Example of GenRM-CoT on Grade School Math
Question: Susan earns $5 every 10 minutes for an online task she does. If she works between 8 a.m. and
11 a.m. and pauses in between for half an hour, how much money does she earn for the online task?

Answer: It is from 8 am to 11 am, which is 3 hours. However, she pauses for 30 minutes or half an hour.
So she works for 2.5 hours. Every 10 minutes, she earns $5. The number of 10-minute periods in 2.5 hours
can be found by dividing 2.5 by 1/10. That is 2.5 / (1/10) = 25. She earns $5 every 10 minutes. So in 25
periods, she earns 25 * $5 = $125. The answer is $125.

Discriminative RM score: 0.9920

GenRM-CoT: Let’s verify step by step.

Step 1:
Solution: It is from 8 am to 11 am, which is 3 hours.
Expected Answer: It is from 8 am to 11 am, which is 3 hours.

Verification: The step is correct.

Step 2:
Solution: However, she pauses for 30 minutes or half an hour. So she works for 2.5 hours.
Expected Answer: She pauses for half an hour, which is 1/2 hour. This means she works for 3 - 1/2 = 2.5
hours.

Verification: The step is correct.

Step 3:
Solution: Every 10 minutes, she earns $5. The number of 10-minute periods in 2.5 hours can be found by
dividing 2.5 by 1/10. That is 2.5 / (1/10) = 25.
Expected Answer: Since she earns $5 every 10 minutes, we can find the number of 10-minute periods in
2.5 hours using the formula 2.5 * 60 / 10 = 15.

Verification: The step is incorrect. The correct number of 10-minute periods should be 15, not 25.

Step 4:
Solution: She earns $5 every 10 minutes. So in 25 periods, she earns 25 * $5 = $125. The answer is $125.
Expected Answer: Now we can find the amount she earns by multiplying the number of periods by the
amount she earns each period: 15 * $5 = $75. The answer is $75.

Verification: The step is incorrect. The amount she earns should be $75, not $125.

Final Grade:
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.3926

Table E.9: GenRM CoT Example 8

24

Example of GenRM-CoT on Grade School Math
Question: Mark is a copy-editor. He edits an equal number of sentences each week for two different
publishers, who each pay him a different rate per sentence. Publisher B pays Mark twice what Publisher
A pays. Mark edits a total number of 1000 sentences each week, and Publisher A pays him 5 cents per
sentence. How much does Mark make in a week, in cents?

Answer: Mark edits a total number of 1000 sentences each week. Since Publisher A pays Mark 5 cents
per sentence, Mark makes 1000 * 5 = $50 for Publisher A. However, Publisher B pays Mark twice what
Publisher A pays, so Mark makes 2 * $50 = $100 for Publisher B. In total, Mark makes $50 + $100 = $150
each week. In cents, this is 150 * 100 = 15000 cents. The answer is 15000.

Discriminative RM score: 0.9907

GenRM-CoT: Let’s verify step by step.
Verification:

Step 1:
Solution: Mark edits a total number of 1000 sentences each week.
Expected Answer: Mark edits a total of 1000 sentences each week.
This step is correct.

Step 2:
Solution: Since Publisher A pays Mark 5 cents per sentence, Mark makes 1000 * 5 = $50 for Publisher A.
Expected Answer: We know that Publisher A pays him 5 cents per sentence, so for 500 sentences he makes
5 * 500 = 2500 cents.
This step is incorrect.

Step 3:
Solution: However, Publisher B pays Mark twice what Publisher A pays, so Mark makes 2 * $50 = $100
for Publisher B.
Expected Answer: Publisher B pays him twice as much, so he makes 2 * 2500 = 5000 cents for the 500
sentences from Publisher B.
This step is incorrect.

Step 4:
Solution: In total, Mark makes $50 + $100 = $150 each week.
Expected Answer: In total he makes 2500 + 5000 = 7500 cents.
This step is incorrect.

Step 5:
Solution: In cents, this is 150 * 100 = 15000 cents.
Expected Answer: The answer is 7500.
This step is incorrect.

Final Grade:
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.4293

Table E.10: GenRM CoT Example 9

25

Example of GenRM-CoT on Grade School Math
Question: Carol spends 4 hours writing a song, half that much time recording it, and 90 minutes editing it.
What percentage of her total work time did she spend editing?

Answer: Half of 4 hours is 2 hours. So the time spent recording is 2 hours. Add the editing time of 90
minutes and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours. That means she spent (90 / 7.5)
* 100 = 12% of the total time editing. The answer is 12.

Discriminative RM score: 0.8414

GenRM-CoT: Let’s verify step by step.
Verification:

Step 1: Half of 4 hours is 2 hours.
Expected Answer: Correct.

Step 2: Add the editing time of 90 minutes and the total time for the entire project is 4 + 2 + 1.5 = 7.5
hours.
Expected Answer: Incorrect. The editing time should be converted to hours first: 90 minutes = 90 / 60 =
1.5 hours. Then, the total time is 4 + 2 + 1.5 = 7.5 hours.

Step 3: That means she spent (90 / 7.5) * 100 = 12% of the total time editing.
Expected Answer: Incorrect. The editing time should be in hours, so it should be (1.5 / 7.5) * 100 = 20%.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.2498

Table E.11: GenRM CoT Example 10

26

Example of GenRM-CoT on Grade School Math
Question: Tim decides to cancel his cable subscription and get streaming services. He gets Netflix for $10
a month. Hulu and Disney Plus normally cost $10 a month each but he saves 20% for bundling. How much
money does he save by cancelling his $60 cable package?

Answer: Tim pays $60 for cable. He gets Netflix for$10 and the bundle of Hulu and Disney Plus costs $10
* 80% = $8. So he pays $10 + $8 = $18 for Netflix and the bundle. Now he saves $60 - $18 = $42 compared
to the cable package. The answer is 42.

Discriminative RM score: 0.9999

GenRM-CoT: Let’s verify step by step.
Verification:

1. **Tim pays $60 for cable.** (Correct)

2. **He gets Netflix for $10.** (Correct)

3. **The bundle of Hulu and Disney Plus costs $10 * 80% = $8.** (Incorrect)
- Expected Answer: The bundle of Hulu and Disney Plus costs $10 + $10 = $20. With the 20% discount,
the total cost is $20 * 0.8 = $16.

4. **So he pays $10 + $8 = $18 for Netflix and the bundle.** (Incorrect)
- Expected Answer: So he pays $10 + $16 = $26 for Netflix and the bundle.

5. **Now he saves $60 - $18 = $42 compared to the cable package.** (Incorrect)
- Expected Answer: Now he saves $60 - $26 = $34 compared to the cable package.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0015

Table E.12: GenRM CoT Example 11

27

Example of GenRM-CoT on Grade School Math
Problem: Digimon had its 20th anniversary. When it came out John was twice as old as Jim. If John is 28
now how old is Jim?
Solution: Let Jim’s age be x when Digimon came out. That means John’s age is 2x when Digimon came out.

20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current age
- 20 years).

We know that 2x - 20 = 28 (since John’s current age is 28)

2x = 48
x = 24

So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44 years
old.
The answer is 44.

Discriminative RM score: 0.9778

GenRM-CoT: Let’s verify step by step.
Solution Verification:

1. Let Jim’s age be x when Digimon came out. That means John’s age is 2x when Digimon came
out. (Correct)

2. 20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current
age - 20 years). (Correct)

3. We know that 2x - 20 = 28 (since John’s current age is 28) (Correct)

4. 2x = 48 (Correct)

5. x = 24 (Correct)

6. So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44
years old. (Incorrect)

Expected Answer:

Since John was twice as old as Jim when Digimon came out 20 years ago, and John is 28 now, we
can calculate Jim’s age. Let Jim’s age 20 years ago be x. Then we know that 2x = 28 - 20 = 8, so x = 4.
Therefore, Jim’s age now is 4 + 20 = 24. The answer is 24.

Erroneous Step in the Solution:

The erroneous step in the Solution is step 6, where it concludes that Jim is 44 years old now. Ac-
cording to the Expected Answer, Jim should be 24 years old now.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0000

Figure E.1: GenRM CoT Example 12

28

	Introduction
	Preliminaries
	GenRM: Verification as Next-Token Prediction
	Direct Verifier
	Unifying Generation and Verification
	Chain-of-Thought Verifiers (GenRM-CoT)

	Experiments
	Comparing GenRM with Prior Verification Approaches

	Related Work
	Conclusion & Future Work
	Additional Experiments
	Unifying Generation and Verification
	Scaling Data, Model Size, and Inference-time Compute
	Impact of Synthetic Rationale Quality

	Additional Related Work
	Training Data Generation for Verifiers
	Hyper-parameters for Verifier Training
	Examples of verification rationales generated by GenRM-CoT on GSM8K

