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Abstract

Current image fusion methods struggle with real-world composite degradations and
lack the flexibility to accommodate user-specific needs. To address this, we propose
ControlFusion, a controllable fusion network guided by language-vision prompts
that adaptively mitigates composite degradations. On the one hand, we construct a
degraded imaging model based on physical mechanisms, such as the Retinex the-
ory and atmospheric scattering principle, to simulate composite degradations and
provide a data foundation for addressing realistic degradations. On the other hand,
we devise a prompt-modulated restoration and fusion network that dynamically en-
hances features according to degradation prompts, enabling adaptability to varying
degradation levels. To support user-specific preferences in visual quality, a text en-
coder is incorporated to embed user-defined degradation types and levels as degrada-
tion prompts. Moreover, a spatial-frequency collaborative visual adapter is designed
to autonomously perceive degradations from source images, thereby reducing com-
plete reliance on user instructions. Extensive experiments demonstrate that Control-
Fusion outperforms SOTA fusion methods in fusion quality and degradation han-
dling, particularly under real-world and compound degradations. The source code is
publicly available at https://github.com/Linfeng-Tang/ControlFusion.

1 Introduction

Image fusion is a crucial technique in image processing. By effectively leveraging complementary
information from multiple sources, the limitations associated with information collection by single-
modal sensors can be significantly mitigated [41]. Among the research areas in this field, infrared-
visible image fusion (IVIF) has garnered considerable attention. IVIF integrates essential thermal
information from infrared (IR) images with the intricate texture details from visible (VI) images,
offering a richer and more complete depiction of the scene [46]. By harmonizing diverse information
and producing visually striking results, IVIF has found extensive applications in areas such as security
surveillance [47], military detection [22], scene understanding [44], and assisted driving [1], etc.

Recently, IVIF has emerged as a focal point of research, leading to rapid advancements in related
methods. Based on the adopted network architectures, these methods can be categorized into
convolutional neural network-based [29, 51], autoencoder-based [10, 11], generative adversarial
network-based [19, 15], Transformer-based [20, 45], and diffusion model-based [50, 32] methods.
In addition, from a functional perspective, they can be grouped into visual-oriented [29, 51], joint
registration-fusion [27, 37], semantic-driven [28, 16], and degradation-robust [31, 42, 43] schemes.
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Figure 1: Comparison across real-world, composite degradation, and varying degradation levels.

Notably, although degradation-robust schemes can mitigate degradation to some extent, certain
limitations exist. First, existing restoration-fusion methods often adopt simplistic strategies for
training data construction, overlooking the domain gap between simulated data and realistic images,
which hampers their generalizability in practical scenarios, as illustrated in Fig. 1 (I). Second, they
are tailored for specific or single types of degradation, making them ineffective in handling more
complex composite degradations, as illustrated in Fig. 1 (II). Finally, as shown in Fig. 1 (III), existing
methods lack degradation level modeling, causing a sharp decline in performance as degradation
intensifies. Moreover, they lack flexibility to adapt fusion results to diverse user preferences.

To overcome these limitations, we propose a versatile and controllable fusion model based on
language-vision prompts, termed ControlFusion. On the one hand, we introduced a physics-driven
degradation imaging model that differs from existing approaches by simultaneously simulating
degradation processes for both visible and infrared modalities with high precision. This model not
only effectively narrows the gap between synthetic data and real-world images but also provides
crucial data support for addressing complex multi-modal composite degradation challenges. On
the other hand, we develop a prompt-modulated image restoration and fusion network to generate
high-quality fusion results. The prompt-modulated module enables our network to dynamically
adjust feature distribution based on degradation characteristics (which can be specified by users),
achieving robust feature enhancement. This also allows our method to respond to diverse user
requirements. Furthermore, we devise a spatial-frequency visual adapter that combines frequency-
domain degradation priors to directly extract degradation cues from degraded inputs, eliminating the
heavy reliance on user instructions, as customizing prompts for each scene is time-consuming and
labor-intensive. As shown in Fig. 1, benefiting from the aforementioned designs, our method excels
in handling both real-world and composite degradation scenarios and can flexibly respond to user
needs. In summary, our main contributions are as follows:

• We propose ControlFusion, a versatile image restoration and fusion framework that uniformly
models diverse degradation types and degrees, using textual and visual prompts as a medium.
Specifically, its controllability enables it to respond to user-specific customization needs.
• A spatial-frequency visual adapter is devised to integrate frequency characteristics and directly
extract text-aligned degradation prompts from visual images, enabling automated deployment.
• A physics-driven imaging model is developed, integrating physical mechanisms such as the Retinex
theory and atmospheric scattering principle to bridge the gap between synthetic data and real-world
images, while taking into account the degradation simulation of infrared-visible dual modalities.

2 Related Work

Image Fusion. Earlier visual-oriented fusion approaches primarily concentrated on merging comple-
mentary information from multiple modalities and improving visual fidelity. The mainstream network
architectures primarily include CNN-based [14, 48], AE-based [11, 49], GAN-based [19, 15], Trans-
formers [20] and diffusion models [50]. Furthermore, several schemes including joint registration and
fusion [33, 37], semantic-driven [28, 15], and degradation-robust [39, 42, 38] methods, are proposed
to broaden the practical applications of image fusion. For instance, Tang et al. [30] and Liu et al. [17]
developed corresponding solutions for illumination distortions and noise interference, respectively.
In addition, [39] proposed a image restoration and fusion network to address various degradations.
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However, it fails to handle mixed degradations and struggles to generalize to real-world scenarios.
In particular, it relies on tedious manual efforts to customize text prompts for each scene, hindering
large-scale automated deployment.

Image Restoration with Vision-Language Models. With the advancement of deep learning toward
multimodal integration, the image restoration field has progressively evolved into a new paradigm of
text-driven schemes. CLIP [25] establishes visual-textual semantic representation alignment through
dual-stream Transformer encoders pre-trained on 400 million image-text pairs. This framework
lays the foundation for the widespread adoption of Prompt Engineering in computer vision. Recent
studies integrate CLIP encoders with textual user instructions, proposing generalized restoration
frameworks including PromptIR [23], AutoDIR [8], and InstructIR [2], which effectively handle
diverse degradation types. Moreover, SPIRE [24] further introduces fine-grained textual restoration
cues by quantifying degradation severity levels and supplementing semantic information for precision
restoration. To eliminate reliance on manual guidance, Luo et al. [18] developed DA-CLIP by
fine-tuning CLIP on mixed-degradation datasets, enabling degradation-aware embeddings to facilitate
distortion handling. However, existing unified restoration methods are primarily designed for natural
images, which exhibit notable limitations when processing multimodal images (e.g., infrared-visible).

3 Physics-driven Degraded Imaging Model

Due to the differences in the imaging mechanisms of infrared and visible, the types of degradation
they face also vary. To tackle the complex and variable degradation challenges, we propose a
physics-driven imaging model for infrared and visible images aimed at reducing the domain gap
between simulated data and real-world imagery. Infrared (IR) images usually suffer from sensor-
related interference, such as stripe noise and low contrast. While Visible (VI) images are typically
degraded by illumination conditions (low light, over-exposure), weather (rain, haze), and sensor-
related issues (noise, blur). Given a clear image Im(m ∈ {ir, vi}), the proposed imaging model can
be mathematically represented as:

Dm = Ps (Pw (Pi (Im))) , (1)

where Dm is the corresponding degraded image, and Pi, Pw, and Ps represent illumination-, weather-,
and sensor-related distortions, respectively.

Sensor-related Distortions. Sensor-related distortions encompass various types of noise, motion blur,
and contrast degradation. Contrast degradation and stripe noise of infrared images can be modeled as:

Ds
ir = Ps(Iir) = α · Iir + 1Hn⊤, (2)

where α is a constant less than 1 for contrast reduction, 1H ∈ RH is an all-ones column vector and
n ∈ RW represents the column-wise Gaussian noise vector sampled from N (0, ϵ2) with ϵ ∈ [1, 15].
Moreover, Gaussian noise and motion blur in source images can be modeled as:

Ds
m = Ps(Im) = Im ∗K(N, θ) +N (0, σ2), (3)

where N (0, σ2) represents Gaussian noise with σ ∈ [5, 20]. ∗ denotes convolution with a blur
kernel K(N, θ) = 1

NRθ(δc ⊗ 1N ) constructed by rotating an impulse δc ⊗ 1N with random angle
Rθ (θ ∈ [10, 80]), using 1

N to normalize the kernel energy. Here, N ∈ [3, 12] controls the blur level.

Illumination-related Distortions. Following the theoretical framework of Retinex, the formation of
illumination-degraded images Di

vi is mathematically modeled as:

Di
vi = Pi(Ivi) =

Ivi

L · Lγ , (4)

where L is the illumination map estimated by LIME [5]. γ ∈ [0.5, 3] controls the illumination level.

Weather-related Distortions. According to the methodologies in [21, 12], we employ the following
formula to simulate weather-related degradations (i.e. rain and haze):

Dw
vi = Pw(Ivi) = Ivi · t+A(1− t) +R, (5)

where t and A denote the transmission map and atmospheric light, respectively. And t is defined
by the exponential decay of light, expressed as t = e−βd(x), where the haze density coefficient
β ∈ [0.5, 2.0]. d(x) refers to the scene depth, estimated by DepthAnything-V2 [40]. Besides, A is
constrained within [0.3, 0.9] for realistic simulation.
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Figure 2: The overall framework of our controllable image fusion network.

Based on Eq. (1), we construct a multi-modal composite Degradation Dataset with four Levels
(DDL-12), comprising 12 distinct degradations. We selecte 2, 050 high-quality clear images from
RoadScene [36], LLVIP [7], and MSRS [29] datasets. Subsequently, the degraded imaging model
is employed to synthesize degraded images with 12 types and 4 levels of degradation. Finally, the
DDL-12 dataset contains approximately 48, 000 training image pairs and 4, 800 test image pairs.

4 Methodology

4.1 Problem Formulation

Given two source images Iir ∈ RH×W×1 and Ivi ∈ RH×W×3, the typical fusion paradigm employs
a network Nf to synthesize the fused image If , expressed as: If = Nf (Iir, Ivi). However, in
complex scenarios, source images usually suffer from degradation interference, thus the advanced
fusion paradigm must take both image restoration and fusion into account. While the concatenation
approach is straightforward, it does not model recovery and fusion as an end-to-end optimization
process, yielding suboptimal outcomes. As illustrated in Fig. 2, we propose a controllable paradigm
that couples restoration and fusion with degradation prompts, termed ControlFusion, to overcome
this limitation. On the one hand, the coupled approach enhances task synergy. On the other hand,
leveraging degradation prompts to modulate the restoration and fusion process enables the network to
adapt to diverse degradation distributions while meeting user-specific customization requirements.
The proposed restoration and fusion paradigm can be defined as: If = Nrf (Iir, Ivi, p | Ω), where
Nrf is a restoration and fusion network, P denotes degradation prompts, and Ω indicates the
degradation set. Our ControlFusion employs a two-stage optimization protocol. Stage I aligns textual
prompts with visual embedding, while Stage II optimizes the overall framework.

4.2 Stage I: Textual-Visual Prompts Alignment

Spatial-Frequency Collaborative Visual Adapter. To achieve unified multimodal degradation
representation, we first employ text semantics for explicit degradation modeling. Using a pre-
trained CLIP [25] text encoder Et, the user instruction Tinstr is converted into text embedding:
ptext = Et(Tinstr). However, text-dependent models limit deployment flexibility. We therefore
develop a spatial-frequency collaborative visual adapter (SFVA) to extract visual embeddings directly
from images while maintaining semantic alignment with ptext.

As shown in Fig. 3, degraded images exhibit distinct spectral characteristics, indicating frequency
features contain rich degradation priors. Our SFVA contains dual branches: In the frequency branch,
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Figure 3: The visualization of various types of degradation in the spatial and frequency domains.

Fast Fourier Transform (FFT) and CNN extract frequency features:

Fm
fre =

∑W−1
x=0

∑H−1
y=0 Dm(x, y)e−j2π(ux

W + vy
H ), Ffre = Linear

(
Conv

(
[F ir

fre, F
vi
fre]

))
, (6)

where [·, ·] denotes channel-wise concatenation. The spatial branch employs cropping/downsampling
augmentation and CNN to extract spatial features Fspa.

The fused visual embedding pvis is obtained through concatenation and linear projection of Ffre

and Fspa. To ensure semantic consistency between visual/text embeddings, we apply MSE loss Lmse

and cosine similarity loss Lcos:

LI = λ1 ∥pvis − ptext∥2︸ ︷︷ ︸
Lmse

+λ2 (1−
pvis · ptext

∥pvis∥∥ptext∥
)︸ ︷︷ ︸

Lcos

, (7)

where λ1 and λ2 balance loss components. This design enables automatic degradation-aware
adaptation while preserving text-aligned semantics.

4.3 Stage II: Prompt-modulated Restoration and Fusion

4.3.1 Network Architectures

Feature Encoding and Fusion Layer. As shown Fig. 2, we devise the hierarchical transformer-based
encoders to extract multi-scale feature representations from degraded infrared (Dir) and visible (Dvi)
images separately, which is formulated as:{Fir, Fvi} = Eir(Dir), Evi(Dvi), where Eir and Evi are
infrared and visible image encoders.

Furthermore, to achieve comprehensive cross-modal feature integration, we design the intra-domain
fusion unit, where the cross-attention (CR-ATT) mechanism is employed to facilitate interaction
between features across modalities. Specifically, the linear transformation functions Fqkv

ir and Fqkv
vi

project Fir and Fvi into their corresponding Q, K, and V , expressed as:

{Qir,Kir, Vir} = Fqkv
ir (Fir), {Qvi,Kvi, Vvi} = Fqkv

vi (Fvi). (8)

Subsequently, we swap the queries Q of complementary modalities to promote spatial interaction:

F ir
f =softmax

(QviKir√
dk

)
Vir, F

vi
f =softmax

(QirKvi√
dk

)
Vvi, (9)

where dk is scaling factor. We concatenate F ir
f and F vi

f to get fusion features: Ff = [F ir
f , F vi

f ].

Prompt-modulated Module and Image Decoder. To dynamically adapt fusion feature distri-
butions to degradation patterns and degrees, we propose a Prompt-Modulated Module (PMM)
for robust feature enhancement. First, sequential MLPs (Φp) derive distributional optimization
parameters:[γp, βp] = Φp(p), where p ∈ {pvis, ptext}. Then, γp and βp are applied for feature scaling
and bias shifting in a residual manner:F̂f = (1 + γp)⊙ Ff + βp, where ⊙ denotes the Hadamard
product, and F̂f indicates enhanced features incorporating degradation prompts. We further deploy
a series of Transformer-based decoder Df with the self-attention to progressively reconstruct the
fused image If = Df (F̂f ). In particular, PMM and Df are tightly coupled in a multi-stage process,
effectively incorporating fusion features and degradation prompts to synthesize the desired image.
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4.3.2 Loss Functions

Following the typical fusion paradigm [20], we introduce the intensity loss, structural similarity
(SSIM) loss, maximum gradient loss, and color consistency loss to constrain the training of Stage II.

The intensity loss Lint maximizes the target prominence of fusion results, defined as:

Lint =
1

HW ∥If −max(Ihqir , I
hq
vi )∥1, (10)

where Ihqir and Ihqvi are the high-quality source images.

The structural similarity loss Lssim ensures the fused image maintains structural consistency with the
high-quality source images, preserving essential structural information, and is formulated as:

Lssim = 2− (SSIM(If , I
hq
ir ) + SSIM(If , I

hq
vi )). (11)

The maximum gradient loss Lgrad maximizes the retention of key edge information from both source
images, generating fusion results with clearer textures, formulated as:

Lgrad = 1
HW ∥∇If −max(∇Ihqir ,∇Ihqvi )∥1, (12)

where ∇ denotes the Sobel operator. Moreover, the color consistency loss Lcolor ensures that the
fusion results maintain color consistency with the visible image. We convert the image to YCbCr
space and minimize the distance between the Cb and Cr channels, expressed as:

Lcolor = 1
HW ∥FCbCr(If )−FCbCr(I

hq
vi )∥1, (13)

where FCbCr denotes the transfer function of RGB to CbCr.

Finally, the total loss LII for Stage II is the weighted sum of the aforementioned losses:
LII = αint · Lint + αssim · Lssim + αgrad · Lgrad + αcolor · Lcolor, (14)

where αint, αssim, αgrad, and αcolor are hyper-parameters.

5 Experiments

5.1 Implementation and Experimental Configurations

Our image restoration and fusion network is built on a four-stage encoder–decoder architecture, with
channel dimensions increasing from 48 to 384, specifically configured as [48, 96, 192, 384]. The
model is trained on the proposed DDL-12 dataset. During training, 224× 224 patches are randomly
cropped as inputs, with a batch size of 12 over 100 epochs. Optimization is performed using AdamW,
starting with a learning rate of 1× 10−3 and decayed to 1× 10−5 via a cosine annealing schedule.
For the loss configuration, λ1 and λ2 are set with a weight ratio of 1 : 3, and αint, αssim, αgrad, and
αcolor are assigned values of 8 : 1 : 10 : 12, respectively.

We introduce text prompts to enable the unified network to effectively handle diverse and complex
degradations. Each prompt specifies the affected modality, the degradation type, and its severity,
enabling user-controllable flexibility. For example, a typical prompt for a single degradation is:
We are performing infrared and visible image fusion, where the modality suffers from a grade-
severity degradation type. For composite degradations, we extend this template to specify multiple
modality–degradation pairs, e.g., We are performing infrared and visible image fusion. Please handle
a grade-severity-A degradation type-A in the modality-A, and a grade-severity-B degradation type-B
in the modality-B. Details of the prompt construction paradigm are provided in the Appendix.

We compare our method with seven SOTA fusion methods, i.e., DDFM [50], DRMF [31], EMMA
[51], LRRNet [11], SegMiF [16], Text-IF [39], and Text-DiFuse [42]. Firstly, we evaluate the fusion
performance on four widely used datasets, i.e., MSRS [29], LLVIP [7], RoadScene [35], and FMB
[16]. The test set sizes for MSRS, LLVIP, RoadScene, and FMB are 361, 50, 50, and 50, respectively.
Four metrics, i.e., EN, SD, VIF, and Qabf , are used to quantify fusion performance. Additionally, we
evaluate the restoration and fusion performance across various degradations, including low-contrast,
random noise, and stripe noise in infrared images (IR), as well as blur, rain, over-exposure, and
low light in visible images (VI). Additionally, we evaluate its effectiveness in handling composite
degradation scenarios. Each degradation scenario includes 100 image pairs from DDL-12 dataset.
We use CLIP-IQA [34], MUSIQ [9], TReS [3], EN, and SD to quantify both restoration and fusion
performance. All experiments are conducted on NVIDIA RTX 4090 GPUs with an Intel(R) Xeon(R)
Platinum 8180 CPU (2.50 GHz) using the PyTorch framework.
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Table 1: Quantitative comparison results on typical fusion datasets. The best and second-best results
are highlighted in Red and Purple.

MSRS LLVIP RoadScene FMB
Methods EN SD VIF Qabf EN SD VIF Qabf EN SD VIF Qabf EN SD VIF Qabf

DDFM 6.431 47.815 0.844 0.643 6.914 48.556 0.693 0.517 6.994 47.094 0.775 0.595 6.426 40.597 0.495 0.442
DRMF 6.268 45.117 0.669 0.550 6.901 50.736 0.786 0.626 6.231 44.221 0.728 0.527 6.842 41.816 0.578 0.372
EMMA 6.747 52.753 0.886 0.605 6.366 47.065 0.743 0.547 6.959 46.749 0.698 0.664 6.788 38.174 0.542 0.436
LRRNet 6.761 49.574 0.713 0.667 6.191 48.336 0.864 0.575 7.185 46.400 0.756 0.658 6.432 48.154 0.501 0.368
SegMiF 7.006 57.073 0.764 0.586 7.260 45.892 0.539 0.459 6.736 48.975 0.629 0.584 6.363 47.398 0.539 0.482
Text-IF 6.619 55.881 0.753 0.656 6.364 49.868 0.859 0.566 6.836 47.596 0.634 0.609 7.397 47.726 0.568 0.528
Text-DiFuse 6.990 56.698 0.850 0.603 7.546 55.725 0.883 0.659 6.826 50.230 0.683 0.662 6.888 49.558 0.793 0.653
ControlFusion 7.340 60.360 0.927 0.718 7.354 56.631 0.968 0.738 7.421 51.759 0.817 0.711 7.036 50.905 0.872 0.730

Table 2: Quantitative comparison results under different degradation scenarios with pre-enhancement.
VI (Blur) VI (Rain) VI (Low light, LL) VI (Over-exposure, OE)

Methods CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS SD

DDFM 0.141 39.421 39.047 35.411 0.191 38.836 46.285 36.376 0.156 39.495 41.782 31.759 0.143 43.167 43.440 32.099
DRMF 0.128 40.739 40.968 40.722 0.174 48.164 48.565 41.174 0.143 41.428 37.947 38.287 0.190 48.334 42.582 44.256
EMMA 0.131 43.472 41.744 42.553 0.138 45.824 44.916 43.378 0.158 39.674 44.827 40.857 0.180 46.731 47.616 40.242
LRRNet 0.163 42.981 37.268 45.389 0.185 43.291 41.891 46.285 0.164 40.486 34.836 41.639 0.160 42.548 48.414 42.190
SegMiF 0.152 43.005 43.516 44.000 0.195 40.528 49.094 44.274 0.177 44.073 48.376 44.829 0.166 49.132 38.019 38.484
Text-IF 0.164 44.801 46.542 48.401 0.164 41.287 47.380 49.298 0.163 41.096 49.174 47.257 0.172 40.298 45.599 47.330
Text-DiFuse 0.172 44.958 47.699 46.376 0.173 39.243 50.017 47.297 0.192 46.734 50.126 49.883 0.183 39.095 49.596 50.279
ControlFusion 0.184 47.849 50.240 50.287 0.196 52.319 52.465 50.901 0.183 48.420 51.072 53.787 0.191 50.301 52.961 54.218

VI (Rain and Haze, RH) IR (Low-contrast, LC) IR (Random noise, RN) IR (Stripe noise, SN)
Methods CLIP-IQA MUSIQ TReS EN CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS EN CLIP-IQA MUSIQ TReS EN

DDFM 0.158 43.119 44.095 6.897 0.172 44.490 44.545 37.452 0.186 34.059 32.807 6.029 0.209 48.479 32.377 6.399
DRMF 0.171 45.524 43.693 6.230 0.208 43.982 45.561 40.315 0.192 44.617 44.085 5.744 0.187 44.714 43.650 6.354
EMMA 0.169 39.092 46.046 6.517 0.154 48.724 43.113 53.861 0.172 39.666 44.466 6.184 0.153 42.802 44.239 6.382
LRRNet 0.170 48.571 48.973 7.363 0.151 48.718 45.266 51.605 0.158 48.274 37.090 7.295 0.137 46.511 36.610 7.702
SegMiF 0.147 46.139 45.019 7.281 0.160 44.659 51.427 44.448 0.180 42.664 39.496 6.669 0.169 49.887 39.247 6.855
Text-IF 0.178 50.568 50.271 6.956 0.187 49.299 49.266 47.032 0.169 46.647 48.491 6.256 0.161 49.019 47.755 6.085
Text-DiFuse 0.175 52.788 53.073 7.470 0.165 50.092 51.715 39.429 0.203 49.278 49.479 6.982 0.194 51.762 49.288 7.089
ControlFusion 0.189 54.287 54.465 7.891 0.196 51.986 52.846 57.827 0.189 50.711 51.668 7.724 0.200 50.097 50.264 7.619

VI (OE) and IR (LC) VI(Low light and Noise, LN) VI (RH) and IR (RN) VI (LL) and IR (SN)
Methods CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS EN CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS EN

DDFM 0.168 43.814 41.894 36.095 0.172 48.293 31.791 6.298 0.151 33.440 32.134 37.342 0.189 36.433 42.630 5.776
DRMF 0.184 42.399 39.374 40.847 0.201 44.363 43.063 5.875 0.174 43.663 43.858 37.997 0.142 38.241 41.049 5.280
EMMA 0.130 39.892 42.076 43.362 0.174 42.201 43.382 5.838 0.165 39.146 44.458 51.205 0.130 37.367 43.888 6.318
LRRNet 0.136 47.209 42.636 46.684 0.144 46.386 35.779 7.306 0.128 47.954 36.831 49.917 0.154 38.426 35.970 7.007
SegMiF 0.114 44.021 42.256 33.647 0.136 49.178 38.570 5.819 0.147 42.354 39.156 31.717 0.151 41.287 37.079 6.767
Text-IF 0.174 48.808 47.998 48.848 0.217 48.100 47.510 5.204 0.158 45.821 47.626 46.543 0.140 41.429 46.220 5.525
Text-DiFuse 0.131 49.021 50.980 47.640 0.185 50.775 48.610 6.440 0.181 48.645 48.937 38.808 0.161 47.734 48.448 6.738
ControlFusion 0.187 50.479 50.298 50.955 0.225 49.333 49.513 7.111 0.179 50.107 51.091 55.417 0.167 50.632 48.971 7.055

5.2 Fusion Performance Comparison

Comparison without Pre-enhancement. Table 1 summarizes the quantitative assessment across
benchmark datasets. Notably, our method attains SOTA performance in SD, VIF, and Qabf metrics,
showcasing its exceptional ability to maintain structural integrity and edge details. The EN metric
remains competitive, indicating that our fusion results encapsulate abundant information.

Comparison with Pre-enhancement. For a fair comparison, we exclusively use the visual prompts
to characterize degradation in the quantitative comparison. Meanwhile, we employ several SOTA
image restoration algorithms as preprocessing steps to address specific degradations. Specifically,
OneRestore [6] is used for weather-related degradations, Instruct-IR [2] for illumination-related
degradations, and DA-CLIP [18] and WDNN [4] for sensor-related degradations. For composite
degradations, we select the best-performing method from these algorithms.

The quantitative results in Tab. 2 show that ControlFusion achieves superior CLIP-IQA, MUSIQ, and
TReS scores across most degradation scenarios, demonstrating a strong capability in degradation
mitigation and complementary context aggregation. Additionally, no-reference fusion metrics (SD,
EN) show that ControlFusion performs on par with SOTA image fusion methods. Qualitative compar-
isons in Fig. 4 indicate that ControlFusion not only excels in addressing single-modal degradation
but also effectively tackles more challenging single- and multi-modal composite degradations. In
particular, when rain and haze coexist in the visible image, ControlFusion successfully perceives
these degradations and eliminates their effects. In multi-modal composite degradation scenarios, it
leverages degradation prompts to adjust the distribution of fusion features, achieving high-quality
restoration and fusion. Extensive experiments demonstrate that ControlFusion exhibits significant
advantages in complex degradation scenarios.
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Figure 4: Visualization of fusion results under different degradation scenarios.
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Figure 5: Generalization results under real-world degradation scenarios.

5.3 Extended Experiments

Table 3: Quantitative comparison on MSRS nighttime scenes
and AWMM-100k with real-world weather degradations.

MSRS (Nighttime) AWMM-100k (Weather Degradations)
Methods CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS SD
DDFM 0.104 25.034 19.404 33.935 0.227 41.919 53.858 36.010
DRMF 0.102 27.518 16.052 46.718 0.232 50.054 56.671 39.735
EMMA 0.087 26.713 18.511 42.659 0.253 47.161 49.722 40.398
LRRNet 0.098 27.042 16.909 42.692 0.192 46.751 50.707 37.190
SegMiF 0.093 27.405 21.079 44.315 0.257 50.712 54.310 33.311
Text-IF 0.101 28.155 20.640 49.752 0.213 45.633 51.747 32.086
Text-DiFuse 0.116 28.620 18.967 43.728 0.233 46.901 57.708 41.530
ControlFusion 0.141 28.457 21.607 52.933 0.280 57.513 60.302 44.244

Real-world Generalization. As
shown in Tab. 3, we report compar-
ative results on nighttime scenes from
MSRS and the real weather-degraded
benchmark AWMM-100k [13]. Our
method achieves the best perfor-
mance on CLIP-IQA, TRes, and SD,
while slightly trailing Text-DiFuse on
MUSIQ . On AWMM-100k, our ap-
proach consistently outperforms com-
peting methods across all evaluation metrics under real-world weather degradation conditions.

In addition to quantitative comparisons, Fig. 5 presents visual examples demonstrating our method’s
strong generalization ability in removing composite degradations in real scenes. The top image shows
typical data collected by our multimodal sensors under challenging low-light and noisy conditions,
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Figure 6: Fusion results with various level prompts.

Table 4: Computational efficiency of image restoration and fusion algorithms on 640×480 resolution.

Image Restoration Image Fusion
Methods Parm.(M) Flops(G) Time(s) Methods Parm.(M) Flops(G) Time(s) Methods Parm.(M) Flops(G) Time(s)
InstructIR 15.94 151.54 0.038 DDFM∗ 552.70 5220.50 34.511 SegMiF∗ 45.64 707.39 0.371
DA-CLIP 295.19 1214.55 13.578 DRMF 5.05 121.10 0.842 Text-IF 152.44 1518.90 0.157
WDNN 0.01 1.11 0.004 EMMA∗ 1.52 41.54 0.048 Text-DiFuse 157.35 4872.00 12.903
OneRestore 18.12 114.56 0.024 LRRNet∗ 0.05 14.17 0.096 ControlFusion 182.54 1622.00 0.183

while the bottom image illustrates the robustness of our method in handling extremely low-light
scenarios. Additional qualitative results are provided in the Appendix.

Flexible Degree Control. We employ numerical values to quantify the severity of degradation in
design, where higher numbers indicate more severe degradation, enabling precise continuous control.
It should be noted that while only four anchor points (1, 4, 7, and 10) were used during training,
the model demonstrates remarkable generalization capability to intermediate degrees during testing,
owing to the inherent encoding characteristics of CLIP. As shown in Fig. 6, with degradation level
prompts, our ControlFusion can adapt to varying degrees of degradation and deliver satisfactory
fusion results. Moreover, fusion results generated using adjacent degradation-level prompts exhibit
subtle yet perceptible differences, allowing users to obtain customized outcomes through their specific
prompts. More visualization results are presented in the Appendix.

Computational Efficiency. Table 4 details the computational costs for various methods. While
standalone fusion models such as EMMA, LRRNet, and SegMiF, which are marked with ∗, appear
more lightweight, they necessitate a separate, computationally intensive restoration stage to form
a practical pipeline. When the overhead of this two-stage process is factored in, the efficiency
advantages of our unified model becomes evident. Moreover, our model’s efficiency remains highly
competitive with other joint restoration-fusion approaches like DRMF, Text-DiFuse, and Text-IF.

Table 5: Quantitative comparison of object detection.
Methods Prec. Recall AP@0.50 AP@0.75 mAP@0.5:0.95
DDFM 0.947 0.848 0.911 0.655 0.592
DRMF 0.958 0.851 0.937 0.672 0.607
EMMA 0.942 0.872 0.927 0.647 0.598
LRRNet 0.939 0.878 0.933 0.672 0.608
SegMiF 0.965 0.896 0.931 0.690 0.603
Text-IF 0.959 0.892 0.939 0.655 0.601
Text-DiFuse 0.961 0.885 0.941 0.656 0.606
ControlFusion 0.971 0.889 0.949 0.685 0.609

Object Detection. We evaluate object
detection performance on LLVIP to
assess the fusion quality, using the re-
trained YOLOv8 [26]. Quantitative
results are presented in Tab. 5. Our
results enable the detector to identify
all pedestrians with higher confidence,
achieving the highest mAP@0.5-0.95.
Visualizations are in the Appendix.
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Figure 7: Visual results of ablation studies under degradation scenarios.

Table 6: Quantitative results of the ablation studies.

VI(LL & Noise) VI(OE) and IR(LC) VI (RH) and IR(Noise)
Configs CLIP-IQA MUSIQ TReS EN CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS SD

I 0.132 42.424 42.839 4.788 0.166 41.983 42.841 39.917 0.147 43.619 47.932 48.935
II 0.152 45.582 45.358 5.855 0.151 43.646 42.002 39.208 0.167 47.862 45.007 44.347
III 0.154 46.571 44.495 5.013 0.155 44.286 44.561 42.068 0.156 43.007 43.816 41.544
IV 0.129 38.960 41.310 5.414 0.172 41.743 39.125 38.748 0.118 48.882 46.245 45.910
V 0.173 45.281 46.291 6.279 0.181 45.386 47.519 46.860 0.149 46.714 48.094 46.950

Ours 0.225 49.333 49.513 7.111 0.187 50.479 50.298 50.955 0.179 50.107 51.091 55.417

Ablation Studies. To verify the effectiveness of components, we conduct detailed ablation studies,
involves: (I) w/o Lcolor, (II) w/o Lgrad, (III) w/o Lint, (IV) w/o PMM, and (V) w/o frequency
branch. As shown in Fig. 7, removing any loss or module significantly impacts the fusion quality.
Specifically, without Lcolor, color distortion occurs, while removing Lgrad leads to the loss of
essential texture information. Excluding Lint fails to highlight thermal targets, and removing PMM
diminishes the ability to address composite degradation. Additionally, removing the frequency branch
from SFVA causes visual prompt confusion. The t-SNE results further validate the importance of
frequency priors. The quantitative results in Tab. 6 also confirm that each design element is crucial
for enhancing fusion performance.

Discussions and Limitations. To mitigate the gap between simulated and real-world data, our
method constructs training samples using the degradation imaging model. An alternative strategy is
test-time adaptation, in which part of the model is fine-tuned on the test set to better accommodate
new data distributions. It should be noted that the degradation imaging model is specifically designed
for infrared and visible image fusion and is difficult to generalize to other fusion tasks, such as
medical image fusion and multi-focus image fusion.

6 Conclusion

This work proposes a controllable framework for image restoration and fusion leveraging language-
visual prompts. Initially, we develop a physics-driven degraded imaging model to bridge the domain
gap between synthetic data and real-world images, providing a solid foundation for addressing
composite degradations. Moreover, we devise a prompt-modulated network that adaptively adjusts
the fusion feature distribution, enabling robust feature enhancement based on degradation prompts.
Prompts can either come from text instructions to support user-defined control or be extracted from
source images using a spatial-frequency visual adapter embedded with frequency priors, facilitating
automated deployment. Extensive experiments demonstrate that our method excels in handling
real-world and composite degradations, showing strong robustness across various degradation levels.
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has fully disclosed all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will open access to the code after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper does not include error bars or formal statistical significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resource for experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics, ensuring ethical standards are upheld throughout the study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed, providing a comprehensive evaluation of the study’s
broader implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited,
and the license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in the paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Prompt Design Details

We provide additional details of the prompt construction paradigm to complement the main text.

Prompt components. Each prompt specifies three key components: (i) the affected modality (infrared
or visible), (ii) the degradation type (e.g., rain, haze, low-light, overexposure, random noise, stripe
noise, low-contrast, etc.), and (iii) the severity level (an integer from 1 to 10).

Severity levels. To characterize degradation severity, we define a scale from 1 to 10, with representa-
tive anchor points as follows:

• Level 1: barely perceptible degradation,
• Level 4: degradation begins to interfere with human scene understanding,
• Level 7: degradation severely hinders human perception of the scene,
• Level 10: most useful information is completely obscured.

Intermediate levels can be interpolated between these anchor points.

Prompt templates. A typical template for a single degradation is structured as: We are performing
infrared and visible image fusion, where the modality suffers from a grade-severity degradation type.

For composite degradations, two extensions are designed: 1) We are performing infrared and visible
image fusion. Please handle a grade-severity-A degradation type-A in the modality-A, and a grade-
severity-B degradation type-B in the modality-B; 2) We are performing infrared and visible image
fusion. Please address level-severity degradation type-A and degradation type-B in the modality.

These templates flexibly represent both intra- and inter-modal combinations. For instance, an
instantiation could be: We are performing infrared and visible image fusion. Please handle a grade-6
low-light in the visible modality, and a grade-8 stripe noise in the infrared modality.

Linguistic diversity. To enhance robustness, we curated over 100 unique textual formulations
for each task and its associated parameters. This prompt rephrasing strategy augments linguistic
variability and improves the model’s generalization to diverse prompt styles during inference.

Additionally, when users are uncertain about severity, the proposed SFVA module can automatically
perceive both degradation type and severity from the input. This design balances user-controllable
flexibility with automated practicality.

A.2 Visual Embedding versus Textual Embedding

From Fig. 8, we can find that both visual and textual prompts assist Nrf in restoring the scene
illumination. Besides, the residual plots between the two are not obvious, which indicates that our
SFVA successfully captures the type and extent of degradation.This capability is crucial for automatic
deployment, as it allows the model to adaptively adjust its restoration strategy with fewer manual
lintervention or hyperparameters tuning for different degradation scenarios.

(d) Textual prompt(c) Visual prompt(b) Visible (Low light)(a) Infrared (e) Residual map

Textual prompt: This is infrared and visible image fusion task with the visible image suffers from grad #4 low-light issue

Figure 8: Comparison of visual and textual embedding.

A.3 Flexible Degree Control

In order to verify the effectiveness of the proposed flexible degree control, we perform different
degrees of prompts on a pair of low-light images. The results are shown in Fig. 9 (b). We splice all
the results to obtain images with continuously changing brightness in different regions, and count the
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(a) Inputs (b) Stitching result (c) Average brightness variation

level=1 level=3 level=4

level=7 level=8 level=9 level=10

level=5

level=6

level=2

(d) Visualization results of  different degradation levels

Figure 9: Fusion results with various level prompts.

brightness of the same region of these images. The results are shown in Fig. 9 (c). This shows that
our degree control achieves fine-grained regulation.

A.4 Real-world Generalization

We conduct comprehensive experiments on the FMB dataset under various composite degradation
scenarios. Notably, these test data are collected from real-world environments and represent degrada-
tion patterns not encountered in the training set. During evaluation, we rely exclusively on visual
prompts automatically extracted from the input images, demonstrating our method’s ability to handle
unseen degradation conditions without manual intervention, as shown in Fig. 10.

A.5 Effect of Severity Level Granularity

To ensure our model learns to discern fine-grained degradation severity, we train it on a dense set of
four anchor degradation levels (1&4&7&10) from the DDL-12 dataset. This design is supported by a
comparative analysis against models trained on sparser subsets of only two levels, specifically the
moderate pair (4&7) or the extreme pair (1&10). As shown in Tab. 7, these sparser training regimes
lead to a notable drop in generalization performance on real-world scenarios, particularly when only
the extreme levels (1&10) are used. These results indicate the importance of dense sampling of
training levels for robust generalization.

Table 7: Comparison of models trained with varying degradation levels on real-world datasets.

LLVIP FMB
Level numbers CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ TReS SD

2 (1&10) 0.320 53.498 61.889 54.665 0.192 52.839 63.115 50.122
2 (4&7) 0.332 55.364 64.382 55.742 0.207 52.771 63.328 50.429

4 (1&4&7&10) 0.347 55.890 65.014 56.657 0.208 53.034 63.704 51.707

A.6 Object Detection

As illustrated in Fig. 11, our fusion method achieves superior object detection performance with
consistently high confidence scores. Notably, the detector successfully identifies all pedestrians in
challenging scenarios, including heavily occluded cases where other methods fail. These results
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(a) Infrared (b) Visible (d) ControlFusion(c) Text-DiFuse

Figure 10: Real-world composite degradation scenario testing.

(a) Infrared (b) DDFM (c) DRMF (d) EMMA (e) LRRNet

(f) Visible (g) SegMiF (h) Text-IF (i) Text-DiFuse (j) ControlFusion

Figure 11: Visualization results of target detection.

quantitatively validate the effectiveness of our approach in preserving and enhancing critical visual
information through the fusion process, particularly for small and obscured targets. The improved
detection performance further confirms that our method maintains both thermal signatures and texture
details essential for downstream vision tasks.

A.7 Model Complexity Analysis

As demonstrated in Fig. 7 and Tab. 6, both CLIP and SFVA (i.e., visual–text prompt alignment)
yield substantial improvements in restoration and fusion performance. We analyze the computational
cost of these components in Tab. 8. Although CLIP accounts for a significant number of parameters
(102M, 55.9% of the total), they are frozen during training and thus introduce no training overhead.
In terms of inference cost, CLIP and SFVA are responsible for a modest 0.81% and 7.5% of the total
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Table 8: Overhead of individual components. Percentages indicate the relative share in the full model.

Components Parm. (M) FLOPs (G) Time (s)
CLIP-L/14@336px 102.00 (55.88%) 13.088 (0.81%) 0.0120 (6.55%)
SFVA 15.27 (8.37%) 122.32 (7.54%) 0.0067 (3.66%)
Full Model 182.54 1622.00 0.1833

FLOPs, respectively, and their combined runtime constitutes a small fraction of the total. Overall,
both components offer a compelling trade-off, delivering notable performance gains for a moderate
computational expense.
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