
Towards Low-Resource Automatic Program Repair with Meta-Learning
and Pretrained Language Models

Weishi Wang12, Yue Wang1∗, Steven C.H. Hoi1, Shafiq Joty12

1Salesforce AI Research
2Nanyang Technological University, Singapore

{weishi.wang,wang.y,sjoty,shoi}@salesforce.com

Abstract

Automatic program repair (APR) has gained
increasing attention as an essential technique in
software development to reduce manual debug-
ging efforts and boost developers’ productivity.
Recent advances in deep learning (DL) based
models have demonstrated promising results
by learning from large-scale bug-fix examples
in a data-driven manner. However, in practical
scenarios, software bugs have an imbalanced
distribution, and the fixing knowledge learned
by APR models often only capture the patterns
of frequent error types, making it inapplica-
ble to handle the rare error types. To address
this limitation, we investigate a novel task of
low-resource APR, and propose Meta-APR, a
new meta-learning framework integrated with
code pretrained language models to generate
fixes for low-resource bugs with limited train-
ing samples. Our Meta-APR learns better error-
specific knowledge from high-resource bugs
through efficient first-order meta-learning opti-
mization, which allows for a faster adaptation
to the target low-resource bugs. Besides, while
we adopt CodeT5, a pretrained code-aware
encoder-decoder Transformer, as the backbone
model for Meta-APR, it is a model-agnostic
framework that can be integrated with any neu-
ral models. Extensive experimental results on
three benchmarks in various programming lan-
guages verify the superiority of our method
over existing DL-based APR approaches.

1 Introduction

Program repair is critical to improving the pro-
ductivity and stability of software development.
However, it is resource-consuming and cost-
prohibitive (Weiß et al., 2007; Planning, 2002; Jør-
gensen and Shepperd, 2007). A reliable automatic
program repair (APR) system is thus crucial to re-
duce manual debugging efforts and development
time (Gazzola et al., 2019; Winter et al., 2023).

*Corresponding author: wang.y@salesforce.com.

First-order Optimization

θ′ θ

θ = θ + β(θ′ - θ)

Support Set

Encoder Decoder

θ

High-Resource Meta-Training

Inner Loop

Outer Loop

Low-Resource Adaptation

θ

θ

θ

Low-Resource APR

changes = payload.get("changes", {})
for change in changes:
 commits=target.get("commits",[])

Buggy code commits=change.get("commits",[])

Figure 1: Illustration of our Meta-APR framework with
CodeT5 for low-resource error-specific automatic pro-
gram repair. We first meta-train the CodeT5 with high-
resource bugs (), where the backbone model is updated
via gradient descent with respect to θ. After that, Meta-
APR is finetuned on the target low-resource bugs (▲,▲)
using few-shot examples (10, 50, 100).

With the advances in deep learning (DL) mod-
els (Vaswani et al., 2017) and accessibility to
large code corpora (Tufano et al., 2019; Lu et al.,
2021), neural approaches to APR have achieved
remarkable performance via exploiting existing
code patches (Chen et al., 2021b; Zhu et al., 2021).
These models are typically trained and evaluated
on datasets that comprise a mix of various error
types, which are diverse in nature: they vary in
terms of the number of bug-fix pairs per error type,
and are typically imbalanced. Moreover, the perfor-
mance gaps across different error types are tremen-
dous (Berabi et al., 2021), which can significantly
impair the APR models’ performance.

These observations motivate us to consider the
idea: rather than training the model jointly on all
error types, could we train a model that is quickly
adaptable to any low-resource error-specific APR
task? Inspired by the success of meta-learning
on low-resource NLP tasks like machine transla-

tion (Gu et al., 2018; Park et al., 2021) and dialogue
generation (Mi et al., 2019; Lin et al., 2021), in this
work, we drive pioneering efforts in formalizing
low-resource APR, and propose an effective meta-
learning framework that utilizes a code pretrained
model to enhance APR performance.

Low-resource APR formulation: Unlike tradi-
tional APR approaches that jointly learn a model
from a mix of error types, our formulation consid-
ers each rare error type as a low-resource target
task. Accordingly, we create datasets specifically
to support the evaluation of low-resource error-
specific APR, based on three practical APR bench-
marks in various programming languages: TFix in
JavaScript (Berabi et al., 2021), ManySStuBs4J in
Java (Karampatsis and Sutton, 2020), and TSSB-
3M in Python (Richter and Wehrheim, 2022).
We observe diverse and imbalanced error type
distributions in these benchmarks, e.g., TFix,
ManySStuBs4J, and TSSB-3M respectively have
31, 8, and 9 error types that are of low-resource1

along with 21, 6, and 14 high-resource error types.
Meta learning for low-resource APR: To bet-

ter address the task distribution issue while adapt-
ing the model to low-resource (synonymously, few-
shot) tasks, we propose a novel meta-learning ap-
proach integrated with pretrained code language
models. To the best of our knowledge, this is
the first work to study the low-resource error-
specific APR. We build Meta-APR with a code-
aware pretrained encoder-decoder Transformer
model CodeT5 (Wang et al., 2021) and an efficient
first-order meta-learning algorithm Reptile (Nichol
et al., 2018) for the challenging low-resource APR
tasks. Fig. 1 illustrates the overview of our Meta-
APR approach. Specifically, we first meta-train a
CodeT5-based APR model on high-resource bug-
fix pairs to learn a better model initialization that
captures error-specific knowledge, which enables
faster adaptation to the target low-resource bugs
via finetuning on few-shot examples. In our experi-
ments, we show that Meta-APR effectively aligns
the representations between high-resource and low-
resource bugs so that they have a closer distance in
the representation vector space.

We extensively evaluate Meta-APR on three cu-
rated low-resource multilingual APR benchmarks
with different degrees of low-resource settings, i.e.
different numbers of training samples (10, 50, 100).

1We select low-resource scenarios based on the number of
examples per error type for each dataset.

We show that Meta-APR significantly outperforms
the standard transfer-learning method in all settings.
As our Meta-APR is a model-agnostic framework
that can be integrated with any other DL models,
we compare its performance when integrated with
other pretrained models like UniXcoder (Guo et al.,
2022). Our results demonstrate that Meta-APR con-
sistently enhances performance. Further analysis
confirms that Meta-APR is a more robust and ef-
fective approach in fixing bugs with various buggy
patch lengths and error types.

We further compare with closed-sourced lan-
guage models such as ChatGPT (OpenAI) in fix-
ing these low-resource bugs. We find Meta-APR
achieves much better performance than ChatGPT
under zero-shot/few-shot settings. Besides, we ob-
serve that ChatGPT often predicts “no bugs”, which
is probably because it does not well capture the fix-
ing patterns of these low-resource bugs due to their
data scarcity issue.

2 Related Work

Automatic Program Repair (APR) Recently,
there is a growing body of APR research that aims
to automate the rectification of software defects
with less human intervention. In general, conven-
tional APR approaches can be divided into three
categories (Zhang et al., 2023, 2022), which are 1)
heuristic-based (Goues et al., 2012; Qi et al., 2014;
Jiang et al., 2018), 2) constraint-based (Martinez
and Monperrus, 2018; Nguyen et al., 2013; Xuan
et al., 2017), 3) template-based approaches (Liu
et al., 2019; Koyuncu et al., 2020).

Besides, learning-based approaches (Chen et al.,
2021b; Lutellier et al., 2020; Jiang et al., 2021)
have shown to achieve promising results by learn-
ing the fix patterns from previous bug-fix pairs in
an end-to-end manner. Motivated by the success
of Neural Machine Translation (NMT) in the NLP
domain, one notable learning-based APR method
is formulated as a sequence-to-sequence genera-
tion problem (Tufano et al., 2019), which aims to
translate a buggy code into its correct version. This
technique is further enhanced by using pretrained
models such as T5 (Raffel et al., 2020) in Berabi
et al. (2021). In this work, we propose to exploit a
pretrained code-aware CodeT5 (Wang et al., 2021)
following Bui et al. (2022); Wang et al. (2023a).

Meta-Learning for Low-Resource Tasks Meta-
learning has been well studied for few-shot learning
as a learning-to-learn approach, which attempts to

learn new concepts based on past experiences (Ben-
gio et al., 2013; Vilalta and Drissi, 2002). Recently,
optimization-based techniques yield substantial im-
provement in many low-resource NLP tasks (Zhao
et al., 2022). Among them, Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) has been
widely used to tackle low-resource NLP tasks such
as machine translation (Gu et al., 2018; Park et al.,
2021), dialogue generation (Mi et al., 2019; Lin
et al., 2021), and text-to-speech alignment (Lux
and Vu, 2022). MAML has shown exceptional effi-
cacy in learning a good parameter initialization for
a fast adaption with limited resources.

Recently, meta-learning approaches have been
adapted to solve low-resource software intelligence
tasks such as code summarization (Rauf et al.,
2022; Xie et al., 2022), and code search (Chai et al.,
2022). To the best of our knowledge, we are the
first to formulate the low-resource error-specific
APR task based on the error type distributions
and investigate the effectiveness of meta-learning
methods. In addition, unlike prior approaches that
mostly use the second-order meta-learning algo-
rithm MAML, we exploit a more efficient first-
order meta-learning method Reptile (Nichol et al.,
2018). In the ablation studies, we show that it out-
performs MAML in various low-resource settings.

Programming Language Models Inspired by
the success of pretrained language models (LMs)
such as BERT (Devlin et al., 2019), GPT (Rad-
ford et al., 2018), and T5 (Raffel et al., 2020)
in NLP tasks, there are many recent attempts for
code pretrained models that can be classified as
three categories: 1) Encoder-only approaches like
CodeBERT (Feng et al., 2020) and GraphCode-
BERT (Guo et al., 2021); 2) Decoder-only methods
such as CodeGPT (Lu et al., 2021); and 3) Encoder-
decoder models like CodeT5 (Wang et al., 2021;
Le et al., 2022; Wang et al., 2023b). Besides, UniX-
coder (Guo et al., 2022) adopts a UniLM-like archi-
tecture (Dong et al., 2019) with various attention
masks. Recent studies further explore the use of
very large LMs such as Codex (Chen et al., 2021a)
for APR tasks (Prenner and Robbes, 2021; Joshi
et al., 2022) in a zero-shot/few-shot setting, where
there is still a clear gap between Codex and the
domain-specific finetuning methods.

3 Approach

Fig. 1 illustrates the overview of our proposed
Meta-APR, a meta-learning framework that lever-

Algorithm 1: Meta-Training for APR
Require: A set of high-resource error types

Th = {T1, T2, . . . , Tn}, ∀Ti ∈ Th it pairs
with associated bug-fix pairs that
Di = {(Bj , Fj)}|Di|

j=1 , a APR model fθ ,
inner loop learning rate α, outer loop
learning rate β, meta update step sizeM

Initialize: Initialize θ from the APR model fθ
Output: Optimal meta-trained APR model fθ
while not done do
Dh = ∅.
forall T ∈ Th do

Append the training dataset of T into Dh

end
Randomly divide the merged training dataset Dh

into batches Bs

forall Bs do
Obtain Bsupport

s and Bquerry
s as in §3.1

Evaluate the inner loop cross entropy loss
Linner(fθ,Bsupport

s)
Update error-specific model parameters with

gradient descent:
θ′ = θ − α∇θLinner(fθ,Bsupport

s)
if current step i modM = 0 then

Update global model parameters with
estimation: θ ← θ + β(θ′ − θ)

end
Evaluate the inner loop cross entropy loss
Linner(fθ,Bquerry

s)
end

end

ages a code pretrained model for low-resource
error-specific APR. We first formulate the task of
low-resource error-specific APR in §3.1. Then,
we describe our error-specific meta-APR dataset
creation in §3.2 and our Meta-APR method in §3.3.

3.1 Task Formulation

Assume that we have a set of error types T =
{T1, T2, . . . , Tn}. For each error type Ti, it as-
sociates with a collection of bug-fix pairs Di =

{(Bj , Fj)}|Di|
j=1, where (Bj , Fj) denotes the j-th

bug-fix pair. For the error types in T, we define
their resourceness based on the total number of
bug-fix pairs |Di|. Considering the actual data dis-
tribution across three benchmarks, we select an em-
pirical cutoff value of 1000 instances. This thresh-
old value is established to identify an error type
as low-resource if it has less than 1000 samples.
Otherwise, we treat it as high-resource.

Formally, our proposed framework com-
prises a neural sequence-to-sequence (seq2seq)
model (Sutskever et al., 2014) fθ as a base APR
model. Given a set of error-specific bug-fix pairs
Di = {(Bj , Fj)}|Di|

j=1, fθ generates Fj based on Bj

return mapCb(err, memo);
 -}.bind(this)
 -}.bind(this), waterCb);

 +});
 +}, waterCb);

 }.bind(this),

return mapCb(err, memo);
 }.bind(this)
 }.bind(this), waterCb);
 }.bind(this),

return mapCb(err, memo);
 });

 }, waterCb);
 }.bind(this),

P
at

ch
 d

if
fe

re
n

ce
T

F
M

et
a-

A
P

R
E

T no-extra-bind

(a) TFix (JavaScript)

SWAP_BOOLEAN_LITERAL

try (LockedInodePath inodePath =
mInodeTree.lockFullInodePath
 (entry.getId(),
InodeTree.LockMode.WRITE))
{
- setAttributeInternal(inodePath,

false, entry.getOpTimeMs(), options);
+ setAttributeInternal(inodePath,

true, entry.getOpTimeMs(), options);
 }}

setAttributeInternal(inodePath,
false, entry.getOpTimeMs(), options);

setAttributeInternal(inodePath, true,
entry.getOpTimeMs(), options);

(b) ManySStuBs4J (Java)

SAME_FUNCTION_WRONG_CALLER

class PushEventHook(BaseEventHook):
changes =

self.payload.get("push",
{}).get('changes', [])

for change in filter(None,
changes):

- commits =
target.get("commits", [])

+ commits =
change.get("commits", [])

if not commits:
continue

commits = target.get("commits", [])

commits = change.get("commits", [])

(c) TSSB-3M (Python)

Figure 2: Bug fix examples on three low-resource error-specific APR tasks from one particular error type (ET),
where our Meta-APR successfully fixes bugs while the transfer-learning (TF) approach fails to do so.

in an autoregressive manner. Formally,

P (Fj |Bj , fθ) =
N∏
k=1

P (Fj,k|Bj , Fj,1 : Fj,k−1, fθ)

where Fj,1 : Fj,k−1 is the previous sequence at k-th
token with N denoting the total number of tokens
in the target sequence Fj .

During the meta-training stage, we ran-
domly sample a batch of bug-fix pairs Bs =

{(Bs, Fs)}|Bs|
s=1 from high-resource error types.

Each batch Bs is further divided into Bsupports and
Bquerys equally. Then, we apply the first-order meta-
learning algorithm Reptile (Nichol et al., 2018)
to update fθ via gradient descent. After that, the
model fθ is finetuned on a low-resource error type
with few-shot examples. The underlying idea
of Meta-APR is to meta-train a model on high-
resource error types such that it is quickly adapt-
able to low-resource types with few-shot examples.

3.2 Low-resource APR Dataset Construction

As there are no available low-resource APR bench-
marks for evaluation, we curate three low-resource
APR datasets in various low-resource settings from
three existing APR benchmarks with error type an-
notations, which are TFix in JavaScript (Berabi
et al., 2021), ManySStuBs4J in Java (Karampat-
sis and Sutton, 2020), and TSSB-3M in Python
(Richter and Wehrheim, 2022). As mentioned
in §3.1, we define the low-resource error types

based on the actual counts of its associated bug-
fix pairs (< 1000). To construct more challenging
low-resource scenarios, we randomly select 10, 50,
and 100 samples from each low-resource error type.
Following the common practice (Gao et al., 2021),
we repeat this few-shot sampling process with five
different random seeds (13, 21, 42, 87, and 100).
For evaluation, we report the averaged results over
the five seeds to rule out the random noises.

3.3 Model-Agnostic Meta-APR Framework

Base APR Model CodeT5 (Wang et al., 2021)
is a unified code-aware encoder-decoder Trans-
former model pretrained from large-scale source
code corpus in eight different programming lan-
guages. CodeT5 has been shown to achieve SoTA
performance in many code understanding and gen-
eration tasks such as defect detection and program
refinement. In this work, we propose to adapt
CodeT5 as the base model of our Meta-APR to
leverage its better code understanding capability.

High-Resource APR Meta-Training During the
meta-training phase, each mini-batch of data simu-
lates the low-resource scenarios. In our Meta-APR
approach, we iterate through a set of high-resource
error types as a private training task to update
fθ. We first merge all high-resource error-specific
training dataset as Dtrain

h , and randomly segment
Dtrain

h into N batches {B1,B2, . . . ,BN} equally.
Then, each Bs is further split into Bsupports and
Bquerys to form a local error-specific meta-learning

task to update the global APR model fθ using gra-
dient descent:

θ′ = θ − α∇θL(fθ,Bsupports)

θ ← θ + β(θ′ − θ)

where θ is the global model parameters, and θ′ is
the local error-specific model parameters, α and
β denote the learning rate of the inner loop and
outer loop respectively, L denotes the cross en-
tropy loss function. The error-specific local gradi-
ents are grouped by everyM steps to update the
global APR model parameters θ. The meta-training
procedure of our Meta-APR is summarized in Al-
gorithm 1. In the low-resource setting, we set the
size of support and query sets to 10 and we lever-
age support sets for the inner loop update. The
query sets are used to track the meta-loss and not
involved in parameter updating.

Low-Resource APR Adaptation After the meta-
training, we adapt Meta-APR to the target low-
resource APR tasks via directly finetuning the
meta-learned global APR model on few-shot train-
ing samples. Such meta-learned APR model is
expected to capture error-specific knowledge by
providing a better model initialization, which en-
ables faster adaptation to fix low-resource bugs.
In finetuning, the objective is to minimize the
cross-entropy loss between model predictions and
ground-truth fixes.

4 Experimental Setup

4.1 Error-Specific APR Dataset

ManySStuBs4J (Karampatsis and Sutton, 2020)
has small and large versions comprising 10,231 and
63,923 bug-fix pairs respectively in Java. It is orga-
nized at the level of the single statement changes
for each bug-fix pair. We consider ManySStuBs4J
large with 14 error types in this work.

TFix (Berabi et al., 2021) is a large-scale pro-
gram repair dataset that consists of a ground
truth repair code patch for each buggy patch in
JavaScript. It focuses on syntax and stylistic errors
from open-source GitHub commits, which com-
prise 104,804 bug-fix pairs. Among them, 52 error
types are detected by a static analyzer ESLint 2 (Tó-
masdóttir et al., 2020).

2https://eslint.org/

Benchmark
High-resource Low-resource

#Error #Train #Error Few-shots #Test

ManySStuBs4J 6 20,225 8 (0,10,50,100) 569
TFix 21 75,998 31 (0,10,50,100) 1,087
TSSB-3M 14 66,384 9 (0,10,50,100) 538

Table 1: Data statistics of 3 error-specific low-resource
APR benchmarks. During low-resource finetuning, we
randomly sample (10,50,100) shots for each error type
to construct various low-resource settings.

TSSB-3M (Richter and Wehrheim, 2022) is a
dataset of over 3 million isolated single statement
bug fixes across 23 error types. Each bug fix is as-
sociated with a commit in an open-sourced Python
project that does not modify source code in other
files or statements. We randomly down-sample by
10% for each error type.

To facilitate future research in this new
field, we release our curated error-specific low-
resource APR datasets at https://github.com/
wang-weishi/Meta-APR. See Appendix A.1 for
more detailed statistics.

Data Preprocessing As discussed in §3.2, we
process all three benchmarks to create high-
resource and low-resource APR tasks based on the
number of bug-fix in each error type. The data
statistics are reported in Table 1. We further pro-
vide bug-fix examples for each benchmark in Fig. 2.
To prepare the source input to Meta-APR, we fol-
low Berabi et al. (2021) to combine error type, error
message, and error context into a single piece of
text in the following format:

fix {error type} {error message} {error context}

where error context consists of the given localized
error line and its two neighboring code lines to
form a buggy code patch. The corresponding fixed
line is used as the target sequence.

4.2 Metrics and Baselines

Metrics Following the common practice (Berabi
et al., 2021), we use the Exact Match (EM) accu-
racy to measure the APR performance. Specifically,
EM requires the prediction to be identical to the
ground-truth fix, which can reflect how well model
predictions are aligned with historic correct fixes
from human developers. EM is commonly utilized
to uphold correctness standards, especially in cases
where static analyzers or unit tests are not available.

https://eslint.org/
https://github.com/wang-weishi/Meta-APR
https://github.com/wang-weishi/Meta-APR

Baselines We compare Meta-APR with three
learning settings: 1) only finetuning on low-
resource bugs; 2) transfer-learning from high-
resource to low-resource bugs; and 3) multi-task
learning on both high-resource and low-resource
bugs with or without upsampling strategies. Specif-
ically, for the transfer-learning baseline, we first
finetune the model on the high-resource training
data and then have another stage of finetuning on
the low-resource training data. Under the multi-
task learning setting, we jointly finetune our models
on a mix of both high-resource and low-resource
training data.

Besides, we compare with other code pre-
trained models as the backbone model, which in-
clude encoder-only CodeBERT (Feng et al., 2020),
decoder-only UniXcoder (Guo et al., 2022), and
encoder-decoder CodeT5 (Wang et al., 2021). For
our Meta-APR method, we perform two abla-
tion studies by replacing either the Reptile meta-
learning approach to MAML or replacing the back-
bone model CodeT5 into UniXcoder to verify the
effectiveness of our design choices.

4.3 Implementation Details

We implement Meta-APR based on the deep learn-
ing framework PyTorch3. We employ CodeT5-
base4 with 220M parameters as our backbone
model. All of our experiments are conducted on
a single NVIDIA A100-40GB GPU. We use the
library Higher (Grefenstette et al., 2019) to meta-
train the model on high-resource error types for 50
epochs with a batch size of 10, where the first 5
instances work as the support set and the remaining
5 instances are query set. For inner loop gradient
updates, we use the SGD optimizer with an inner
loop learning rate α of 1e-4. For the global gradi-
ent updates, we use the AdamW (Loshchilov and
Hutter, 2019) optimizer and set the outer loop learn-
ing rate β to 5e-5. Moreover, in the meta-training
stage, we warm up the first 1000 steps with a linear
decay. The meta update step sizeM is set to 150,
20, 150 for TFix, ManySStuBs4J, and TSSB-3M
respectively. For low-resource APR adaptation, we
finetune the meta-trained model for 50 epochs on
low-resource error types with a batch size of 25 and
a learning rate of 5e-5. For testing, we select the
checkpoint which has the best EM on a held-out
validation set.

3https://pytorch.org/
4https://github.com/salesforce/CodeT5/

Method Shot = 100 Shot = 50 Shot = 10 Shot = 0

Low-resource finetuning
CodeBERT 6.43 3.64 0.14 0.00
UniXcoder 42.28 33.25 18.24 0.00
CodeT5 42.74 36.10 9.24 0.00

Transfer-learning
CodeBERT 43.34 37.08 34.02 15.82
UniXcoder 53.43 47.66 34.87 18.10
CodeT5 55.22 49.91 38.49 18.28

Multi-task learning
CodeT5 53.78 46.75 35.85 -
CodeT5 + upsampling 58.98 52.73 41.09 -

Meta-learning
Meta-APR 59.44 54.34 42.04 22.50
→MAML 58.10 53.00 41.69 23.02
→UniXcoder 54.48 48.22 36.77 19.68

Table 2: Results on low-resource ManySStuBs4J.

Method Shot = 100 Shot = 50 Shot = 10 Shot = 0

Low-resource finetuning
CodeBERT 4.91 3.05 0.00 0.00
UniXcoder 33.79 28.14 16.39 0.00
CodeT5 35.61 29.07 13.05 0.00

Transfer-learning
CodeBERT 26.06 21.89 10.89 3.35
UniXcoder 40.15 35.28 24.98 15.80
CodeT5 46.91 43.05 31.23 13.57

Multi-task learning
CodeT5 46.47 41.26 30.30 -
CodeT5 + upsampling 46.84 41.38 29.41 -

Meta-learning
Meta-APR 47.77 44.83 35.28 24.72
→MAML 47.03 44.09 34.95 20.82
→UniXcoder 40.85 35.58 25.58 15.61

Table 3: Results on low-resource TSSB-3M.

5 Experimental Results and Analysis

In this section, we compare Meta-APR with other
code pretrained models in different training settings
on a set of our curated low-resource error-specific
APR tasks from three benchmarks (§5.1), followed
by a detailed analysis on the effects of different er-
ror types and token length (§5.2), and a pilot study
to compare with a closed-sourced large language
model such as ChatGPT in fixing these challenging
low-resource bugs (§5.3).

5.1 Low-Resource APR Performance

Tables 2 to 4 present the results of exact match
(EM) accuracies on ManySStuBs4J, TSSB-3M,
and TFix benchmarks respectively at different low-
resource settings. We can observe that Meta-APR
consistently outperforms other baselines in various
few-shot settings across 3 benchmarks in different
programming languages. Among different mod-
els, we find that CodeT5 achieves consistent per-
formance gains over CodeBERT and UniXcoder
in most cases, demonstrating that it can serve as

https://pytorch.org/
https://github.com/salesforce/CodeT5/

Method Shot = 100 Shot = 50 Shot = 10 Shot = 0

Low-resource finetuning
CodeBERT 13.15 1.75 0.13 0.00
UniXcoder 45.11 41.53 27.51 0.00
CodeT5 45.85 40.18 24.58 0.09

Transfer-learning
CodeBERT 42.80 38.86 26.66 16.38
UniXcoder 46.64 44.89 32.75 18.31
CodeT5 51.02 46.46 34.26 21.44

Multi-task learning
CodeT5 50.60 47.29 34.41 -
CodeT5 + upsampling 51.39 47.58 36.28 -

Meta-learning
Meta-APR 51.63 48.06 39.50 24.38
→MAML 50.56 47.38 37.09 21.71
→UniXcoder 47.45 44.98 34.37 17.66

Table 4: Results on low-resource TFix.

a better backbone model for APR tasks with an
encoder-decoder architecture.

Among different learning paradigms, we find
that transfer-learning from high-resource to low-
resource bugs and multi-task learning on both
bugs yield much better results compared to di-
rectly finetuning on low-resource bugs, validating
our assumption that low-resource APR can benefit
from the bug-fixing knowledge learned from high-
resource bug-fix data. These two approaches gener-
ally exhibit comparable performance across differ-
ent benchmarks, and the upsampling strategy often
proves to be helpful in multi-task learning. Over-
all, our Meta-APR further improves the adaptation
from high-resource to low-resource bugs, thereby
leading to superior APR performance. Notably, the
performance gain of Meta-APR over other learning
paradigms becomes more significant when there
are fewer or even no low-resource training samples
available. This implies that Meta-APR is able to
learn a better model initialization that captures the
error-specific knowledge, thereby enabling faster
adaptation to the target low-resource error types.

Ablation Study We consider two variants of
Meta-APR to verify the design choices in our
proposed framework, where “→MAML” means
that we replace the first-order meta-learning algo-
rithm with a second-order meta-learning approach
MAML, and “→UniXcoder” means that we change
the backbone model CodeT5 to UniXcoder. From
the results, we find that both CodeT5 and the first-
order meta-learning algorithm are important in en-
hancing low-resource APR performance, observed
by a consistent performance drop from these two
variants in most settings across 3 benchmarks. Note
that our Meta-APR’s first-order meta-learning is

20 40 60 80 100 120 140 160
Number of tokens

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Exact Match
Meta-APR Correct
Meta-APR Wrong

(a)

<50 (36) 50~75 (161) 75~100 (159) 100~125 (119) 125~150 (56) >150 (38)
Number of tokens

0

10

20

30

40

50

60

70

Ex
ac

t M
at

ch
 S

co
re

 (%
)

Fine-tuning Transfer-learning Meta-APR

(b)

Figure 3: (a): cumulative fraction of programs by num-
ber of tokens in the source buggy patch, grouped by
whether Meta-APR can have a correct fix. (b): distri-
bution of correct fix over number of tokens for low-
resource finetuning and transfer-learning from high-
resource to low-resource bugs and our Meta-APR.

also more efficient than MAML’s second-order
meta-learning approach.

5.2 Further Analysis

We proceed to analyze the model predictions to
better understand our Meta-APR behaves in fixing
various bugs compared to other approaches. All
results in this section are under a 100-shot setting.

Effect of Bug Sequence Length We analyze how
Meta-APR performs in fixing low-resource bugs
with varying numbers of bug tokens. Fig. 3a shows
the cumulative fractions of bugs by their number of
tokens, grouped based on the Meta-APR repair out-
come (EM). Comparing the blue and orange lines,
we observe that the blue one is consistently above
the orange one, and if we select a fixed cumulative
fraction based on the y-axis, the blue line (correct
fixes) will have fewer tokens (i.e. shorter) than
the orange one (wrong fixes), indicating the bugs
successfully fixed by Meta-APR tend to be shorter
than the ones that are incorrectly fixed. We further
compare Meta-APR with other training strategies,
based on the same backbone model of CodeT5, in
fixing bugs with various lengths in Fig. 3b. We

A (89) B (109) C (97) D (63) E (121) F (12) G (41) H (37)
Error Type

0

20

40

60

80

100

Ex
ac

t M
at

ch
 S

co
re

 (%
)

Fine-tuning Transfer-learning Meta-APR

Figure 4: Distribution of correct fix on 9 low-resource
error types from ManySStuBs4J. Number of bugs for
each type is included in the parentheses at the x-axis.
The details of error type A-H can be found in Table 5.

(a) Transfer-learning 2-D embedding plot (b) Meta-APR 2-D embedding plot

Figure 5: 2-D visualization of embeddings for high-
resource bugs (blue) and low-resource bugs (red).

observe a monotonous performance decline when
the bug sequence length increases for all models,
suggesting that shorter bugs are easier to be fixed
which might be due to their limited complexity.

Effect of Error Type We further analyze how
Meta-APR performs in addressing various error
types. Fig. 4 presents a breakdown of results by
error type for ManySStuBs4J, where we can find
a notable variance in performance across different
error types. For instance, Meta-APR achieves more
than 50% EM score on types A, C, and E, while
it achieves around 10% more EM score on type
B. Overall, we observe that Meta-APR is a more
robust APR method, consistently outperforming
other finetuning strategies. Interestingly, finetuning
only on low-resource bugs achieves comparable
performance to Meta-APR in fixing bug type F
(add throws exception) and G (delete throws excep-
tion). These bugs relate to the decision to add or
remove a ‘throws’ clause in a function declaration,
implying that such error types comprise easy-to-fix
bugs and require only a few training samples.

Representation Visualization To understand
how Meta-APR learns a better model initializa-

In
pu

t P
ro

m
pt

//code context:
class ClientTestCase(unittest.TestCase):
 self.assertTrue(isinstance(models, dict))
 keys = list(models.keys())
 self.assertTrue(len(keys) > 3)
 self.assertIn(keys, "ak135f_5s")
 # Check random key.
 self.assertEqual(models["ak135f_5s"]["item"],"components")
//buggy line:
 self.assertIn(keys, "ak135f_5s")
//fix the buggy line:

 self.assertIn("ak135f_5s" , keys) ChatGPT Output

Figure 6: One example of low-resource TSSB-3M.

tion through error-specific meta-training compared
to the default transfer-learning approach, we visu-
alize the embeddings of both high-resource and
low-resource bugs after the high-resource finetun-
ing from transfer-learning and Meta-APR in Fig. 5.
We observe that Meta-APR can better align the
representations between high-resource and low-
resource bugs so that they are distributed in a
closer distance in the embedding vector space, en-
abling faster adaptation from high-resource to low-
resource bugs with limited training samples.

Case Study We provide 3 qualitative examples
from our multilingual low-resource APR bench-
marks in Fig. 2. We find that our Meta-APR is able
to fix the bugs using various fix operations such as
deletions, boolean conversion, and identifier renam-
ing, while the standard transfer-learning approach
fails to fix bugs by simply copying the buggy line
as the fixed line. This indicates Meta-APR can
enable faster and better adaptation to low-resource
APR scenarios.

5.3 Comparison with ChatGPT

Recent studies (Prenner and Robbes, 2021; Joshi
et al., 2022) have shown that large language models
(LLMs) are capable of bug fixing in zero-shot/few-
shot settings. In order to investigate their perfor-
mance in fixing challenging low-resource bugs, we
use ChatGPT (GPT-3.5-Turbo5) and evaluate it on
80 randomly sampled test bug-fix pairs for each
benchmark. As illustrated in Fig. 6, we construct
the zero-shot prompt to provide the code context
and its buggy line, together with an instruction “fix
the buggy line:”. Besides, we randomly select one
bug-fix pair from the same error type to design the
one-shot prompt for in-context learning.

We report the comparison results in Fig. 7. We
observe that Meta-APR significantly surpasses
ChatGPT in both zero-shot/one-shot settings across
3 tasks. This shows that ChatGPT is still lim-

5https://chat.openai.com/chat

https://chat.openai.com/chat

ManySStuBs4J TFix TSSB-3M0

10

20

30

40

50

Nu
m

be
r o

f c
or

re
ct

 fi
x

13

5

16
11

19

12

51

39 39

ChatGPT Zero-shot ChatGPT One-shot Meta-APR

Figure 7: Evaluation results of correct fixes on a subset
of 80 bugs from the test data across three benchmarks.

ited to handle the challenging low-resource bugs
as it did not see much such bug-fix data during
training due to the data scarcity issue. Addition-
ally, we find that the one-shot example is not al-
ways beneficial for low-resource APR and might
introduce some noises compared to zero-shot set-
ting. It substantially improves the performance
on TFix but leads to some performance degrades
on ManySStuBs4J and TSSB-3M. By inspecting
the predictions, we find that ChatGPT often pre-
dicts “no bugs” as it might require more semantic
information for decision-making. Besides, Chat-
GPT performs pretty well in fixing bugs related to
syntax errors such as the error type of “no unsafe
negation”, which is to fix the bug by simply adding
parentheses to an expression after a negation oper-
ator. This is probably due to the fact that ChatGPT
has been pretrained on a large-scale code corpus
and can understand the program syntax well.

6 Conclusion

In this work, we present Meta-APR, a simple yet
effective framework that extends CodeT5 with
meta-learning for low-resource APR. It is a model-
agnostic framework that can be integrated with any
learning-based models. To the best of our knowl-
edge, we are the first to investigate APR in the low-
resource setting and curate error-specific datasets
in different low-resource degrees from three APR
benchmarks in Python, Java, and JavaScript. Com-
prehensive experiments have verified the superior-
ity of Meta-APR over other learning strategies with
various code pretrained models. More analysis
shows that Meta-APR can better align the represen-
tations of high-resource and low-resource bugs, and
fix bugs with various sequence lengths and error
types. A pilot comparison with ChatGPT further
shows that our Meta-APR is still more capable of
fixing these challenging low-resource bugs.

Limitations

As we are the first to investigate the low-resource
APR tasks, we curated 3 datasets with different
low-resource degrees (i.e., shot=10/50/100) from
existing APR benchmarks to support our study.
Such data construction will have a data quality de-
pendency issue from those original APR datasets.
Besides, the low-resource sub-sampling may in-
troduce some randomness issues. To mitigate this
issue, we performed multiple rounds of random
sampling with different seeds and reported the av-
erage results. Furthermore, to evaluate the APR
performance, we employ exact match scores as
the metric to compare the predicted fixes with the
ground-truth fixes written by developers, which
might fail to capture other correct fixes with differ-
ent formats and styles.

Ethics Statement

Our work complies with ACL Ethics Policy. In
this work, we construct our datasets using pub-
licly available APR benchmarks, which are widely
used to examine the program repair performance.
We provide detailed procedures to create our low-
resource APR datasets and provide proper citations
to their source benchmarks. We will publicly re-
lease our curated datasets with the same licenses as
their source datasets. As an APR tool, one potential
risk of Meta-APR is that the predicted fixes from
Meta-APR cannot be guaranteed to be correct, and
directly adopting them without manual checking
could cause security risks to the software develop-
ment. We suggest that all the fixes should have a
manual check from experts before real adoption.

References
Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and

Jan Gescei. 2013. On the optimization of a synap-
tic learning rule. In Optimality in Biological and
Artificial Networks?, pages 281–303. Routledge.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Mar-
tin T. Vechev. 2021. Tfix: Learning to fix coding
errors with a text-to-text transformer. In Proceed-
ings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 780–791. PMLR.

Nghi Bui, Yue Wang, and Steven C. H. Hoi. 2022.
Detect-localize-repair: A unified framework for learn-
ing to debug with codet5. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,

http://proceedings.mlr.press/v139/berabi21a.html
http://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.18653/v1/2022.findings-emnlp.57
https://doi.org/10.18653/v1/2022.findings-emnlp.57

Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 812–823. Association for Computational
Linguistics.

Yitian Chai, Hongyu Zhang, Beijun Shen, and Xiaodong
Gu. 2022. Cross-domain deep code search with few-
shot meta learning. CoRR, abs/2201.00150.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-
Noël Pouchet, Denys Poshyvanyk, and Martin Mon-
perrus. 2021b. Sequencer: Sequence-to-sequence
learning for end-to-end program repair. IEEE Trans.
Software Eng., 47(9):1943–1959.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
13042–13054.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020

of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1126–1135. PMLR.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
3816–3830. Association for Computational Linguis-
tics.

Luca Gazzola, Daniela Micucci, and Leonardo Mariani.
2019. Automatic software repair: A survey. IEEE
Trans. Software Eng., 45(1):34–67.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest,
and Westley Weimer. 2012. Genprog: A generic
method for automatic software repair. IEEE Trans.
Software Eng., 38(1):54–72.

Edward Grefenstette, Brandon Amos, Denis Yarats,
Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chin-
tala. 2019. Generalized inner loop meta-learning.
CoRR, abs/1910.01727.

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li,
and Kyunghyun Cho. 2018. Meta-learning for low-
resource neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 3622–3631.
Association for Computational Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 7212–7225. Association for Computa-
tional Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao,
and Xiangqun Chen. 2018. Shaping program repair

http://arxiv.org/abs/2201.00150
http://arxiv.org/abs/2201.00150
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
http://arxiv.org/abs/1910.01727
https://doi.org/10.18653/v1/d18-1398
https://doi.org/10.18653/v1/d18-1398
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1145/3213846.3213871

space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2018, Amsterdam, The Netherlands, July 16-21, 2018,
pages 298–309. ACM.

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021.
CURE: code-aware neural machine translation for
automatic program repair. In 43rd IEEE/ACM Inter-
national Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 1161–
1173. IEEE.

Magne Jørgensen and Martin J. Shepperd. 2007. A
systematic review of software development cost esti-
mation studies. IEEE Trans. Software Eng., 33(1):33–
53.

Harshit Joshi, José Pablo Cambronero Sánchez, Sumit
Gulwani, Vu Le, Ivan Radicek, and Gust Verbruggen.
2022. Repair is nearly generation: Multilingual pro-
gram repair with llms. CoRR, abs/2208.11640.

Rafael-Michael Karampatsis and Charles Sutton. 2020.
How often do single-statement bugs occur?: The
manysstubs4j dataset. In MSR ’20: 17th Interna-
tional Conference on Mining Software Repositories,
Seoul, Republic of Korea, 29-30 June, 2020, pages
573–577. ACM.

Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dong-
sun Kim, Jacques Klein, Martin Monperrus, and
Yves Le Traon. 2020. Fixminer: Mining relevant
fix patterns for automated program repair. Empir.
Softw. Eng., 25(3):1980–2024.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu-Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. In NeurIPS.

Shuai Lin, Pan Zhou, Xiaodan Liang, Jianheng Tang,
Ruihui Zhao, Ziliang Chen, and Liang Lin. 2021.
Graph-evolving meta-learning for low-resource med-
ical dialogue generation. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 13362–13370. AAAI Press.

Kui Liu, Anil Koyuncu, Dongsun Kim, and
Tegawendé F. Bissyandé. 2019. Tbar: revisiting
template-based automated program repair. In Pro-
ceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019, pages 31–42.
ACM.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR (Poster). Open-
Review.net.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang,
Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut:
combining context-aware neural translation models
using ensemble for program repair. In ISSTA ’20:
29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Virtual Event, USA,
July 18-22, 2020, pages 101–114. ACM.

Florian Lux and Ngoc Thang Vu. 2022. Language-
agnostic meta-learning for low-resource text-to-
speech with articulatory features. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
6858–6868. Association for Computational Linguis-
tics.

Matias Martinez and Martin Monperrus. 2018. Ultra-
large repair search space with automatically mined
templates: The cardumen mode of astor. In
Search-Based Software Engineering - 10th Interna-
tional Symposium, SSBSE 2018, Montpellier, France,
September 8-9, 2018, Proceedings, volume 11036
of Lecture Notes in Computer Science, pages 65–86.
Springer.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Falt-
ings. 2019. Meta-learning for low-resource natural
language generation in task-oriented dialogue sys-
tems. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, pages
3151–3157. ijcai.org.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roy-
choudhury, and Satish Chandra. 2013. Semfix: pro-
gram repair via semantic analysis. In 35th Inter-
national Conference on Software Engineering, ICSE

’13, San Francisco, CA, USA, May 18-26, 2013, pages
772–781. IEEE Computer Society.

Alex Nichol, Joshua Achiam, and John Schulman. 2018.
On first-order meta-learning algorithms. CoRR,
abs/1803.02999.

OpenAI. Chatgpt. 2022.

Cheonbok Park, Yunwon Tae, Taehee Kim, Soy-
oung Yang, Mohammad Azam Khan, Lucy Park,
and Jaegul Choo. 2021. Unsupervised neural ma-
chine translation for low-resource domains via meta-
learning. In Proceedings of the 59th Annual Meeting

https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.48550/arXiv.2208.11640
https://doi.org/10.48550/arXiv.2208.11640
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1007/s10664-019-09780-z
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
https://ojs.aaai.org/index.php/AAAI/article/view/17577
https://ojs.aaai.org/index.php/AAAI/article/view/17577
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.18653/v1/2022.acl-long.472
https://doi.org/10.18653/v1/2022.acl-long.472
https://doi.org/10.18653/v1/2022.acl-long.472
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.24963/ijcai.2019/437
https://doi.org/10.24963/ijcai.2019/437
https://doi.org/10.24963/ijcai.2019/437
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ICSE.2013.6606623
http://arxiv.org/abs/1803.02999
https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/2021.acl-long.225
https://doi.org/10.18653/v1/2021.acl-long.225
https://doi.org/10.18653/v1/2021.acl-long.225

of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
2888–2901. Association for Computational Linguis-
tics.

Strategic Planning. 2002. The economic impacts of in-
adequate infrastructure for software testing. National
Institute of Standards and Technology, page 1.

Julian Aron Prenner and Romain Robbes. 2021. Auto-
matic program repair with openai’s codex: Evaluat-
ing quixbugs. CoRR, abs/2111.03922.

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and
Chengsong Wang. 2014. The strength of random
search on automated program repair. In 36th Inter-
national Conference on Software Engineering, ICSE

’14, Hyderabad, India - May 31 - June 07, 2014,
pages 254–265. ACM.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Moiz Rauf, Sebastian Padó, and Michael Pradel. 2022.
Meta learning for code summarization. CoRR,
abs/2201.08310.

Cedric Richter and Heike Wehrheim. 2022. TSSB-3M:
mining single statement bugs at massive scale. In
19th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2022, Pittsburgh, PA,
USA, May 23-24, 2022, pages 418–422. ACM.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Kristín Fjóla Tómasdóttir, Mauricio Finavaro Aniche,
and Arie van Deursen. 2020. The adoption of
javascript linters in practice: A case study on eslint.
IEEE Trans. Software Eng., 46(8):863–891.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine transla-
tion. ACM Trans. Softw. Eng. Methodol., 28(4):19:1–
19:29.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Ricardo Vilalta and Youssef Drissi. 2002. A perspective
view and survey of meta-learning. Artif. Intell. Rev.,
18(2):77–95.

Weishi Wang, Yue Wang, Shafiq Joty, and Steven C. H.
Hoi. 2023a. Rap-gen: Retrieval-augmented patch
generation with codet5 for automatic program repair.
CoRR, abs/2309.06057.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023b. Codet5+: Open code large language mod-
els for code understanding and generation. CoRR,
abs/2305.07922.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Cathrin Weiß, Rahul Premraj, Thomas Zimmermann,
and Andreas Zeller. 2007. How long will it take
to fix this bug? In Fourth International Workshop
on Mining Software Repositories, MSR 2007 (ICSE
Workshop), Minneapolis, MN, USA, May 19-20, 2007,
Proceedings, page 1. IEEE Computer Society.

Emily Winter, Vesna Nowack, David Bowes, Steve
Counsell, Tracy Hall, Sæmundur Óskar Haraldsson,
and John R. Woodward. 2023. Let’s talk with devel-
opers, not about developers: A review of automatic
program repair research. IEEE Trans. Software Eng.,
49(1):419–436.

Rui Xie, Tianxiang Hu, Wei Ye, and Shikun Zhang.
2022. Low-resources project-specific code summa-
rization. In 37th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022, pages
68:1–68:12. ACM.

Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime
Clement, Sebastian R. Lamelas Marcote, Thomas
Durieux, Daniel Le Berre, and Martin Monperrus.
2017. Nopol: Automatic repair of conditional state-
ment bugs in java programs. IEEE Trans. Software
Eng., 43(1):34–55.

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong
Sun, and Zhenyu Chen. 2023. A survey of
learning-based automated program repair. CoRR,
abs/2301.03270.

Quanjun Zhang, Yuan Zhao, Weisong Sun, Chunrong
Fang, Ziyuan Wang, and Lingming Zhang. 2022.
Program repair: Automated vs. manual. CoRR,
abs/2203.05166.

Yingxiu Zhao, Zhiliang Tian, Huaxiu Yao, Yinhe Zheng,
Dongkyu Lee, Yiping Song, Jian Sun, and Nevin L.

http://arxiv.org/abs/2111.03922
http://arxiv.org/abs/2111.03922
http://arxiv.org/abs/2111.03922
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2201.08310
https://doi.org/10.1145/3524842.3528505
https://doi.org/10.1145/3524842.3528505
https://doi.org/10.1109/TSE.2018.2871058
https://doi.org/10.1109/TSE.2018.2871058
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1023/A:1019956318069
https://doi.org/10.1023/A:1019956318069
https://doi.org/10.48550/arXiv.2309.06057
https://doi.org/10.48550/arXiv.2309.06057
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1109/MSR.2007.13
https://doi.org/10.1109/MSR.2007.13
https://doi.org/10.1109/TSE.2022.3152089
https://doi.org/10.1109/TSE.2022.3152089
https://doi.org/10.1109/TSE.2022.3152089
https://doi.org/10.1145/3551349.3556909
https://doi.org/10.1145/3551349.3556909
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.48550/arXiv.2301.03270
https://doi.org/10.48550/arXiv.2301.03270
https://doi.org/10.48550/arXiv.2203.05166

Zhang. 2022. Improving meta-learning for low-
resource text classification and generation via mem-
ory imitation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 583–595. Associa-
tion for Computational Linguistics.

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang,
Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021.
A syntax-guided edit decoder for neural program
repair. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, pages 341–353. ACM.

A Appendix

A.1 More Dataset Statistics
We provide the detailed statistics of our curated
low-resource APR benchmarks in Table 5, Table 6,
and Table 7 for ManySStuBs4J, TSSB, and TFix
respectively. We can observe a very imbalanced
error type distribution across these benchmarks.

https://doi.org/10.18653/v1/2022.acl-long.44
https://doi.org/10.18653/v1/2022.acl-long.44
https://doi.org/10.18653/v1/2022.acl-long.44
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3468264.3468544

Error Type Train Valid Test All

High-resource

CHANGE_IDENTIFIER 10,175 1,250 1,250 12,675
OVERLOAD_METHOD_MORE_ARGS 2,734 338 339 3,411
CHANGE_NUMERAL 2,694 336 336 3,366
CHANGE_MODIFIER 2,580 322 322 3,224
MORE_SPECIFIC_IF 1,028 128 128 1,284
CHANGE_OPERATOR 1,014 126 127 1,267

Low-resource

LESS_SPECIFIC_IF (E) 968 121 121 1,210
SWAP_BOOLEAN_LITERAL (B) 871 109 109 1,089
OVERLOAD_METHOD_DELETED_ARGS (C) 790 98 97 985
CHANGE_CALLER_IN_FUNCTION_CALL (A) 712 89 89 890
CHANGE_UNARY_OPERATOR (D) 511 64 63 638
DELETE_THROWS_EXCEPTION (G) 328 41 41 410
SWAP_ARGUMENTS (H) 304 38 37 379
ADD_THROWS_EXCEPTION (F) 98 12 12 122

Table 5: Statistics of ManySStuBs4J benchmark.

Error Type Train Valid Test All

High-resource

SINGLE_STMT 24,346 3,044 3,043 30,433
CHANGE_STRING_LITERAL 14,285 1,786 1,785 17,856
CHANGE_IDENTIFIER_USED 5,035 630 629 6,294
CHANGE_BINARY_OPERAND 3,434 430 429 4,293
SAME_FUNCTION_MORE_ARGS 3,061 383 383 3,827
WRONG_FUNCTION_NAME 2,813 352 351 3,516
CHANGE_NUMERIC_LITERAL 2,480 310 310 3,100
ADD_FUNCTION_AROUND_EXPRESSION 2,318 290 290 2,898
CHANGE_ATTRIBUTE_USED 2,206 276 276 2,758
SINGLE_TOKEN 1,895 237 237 2,369
ADD_METHOD_CALL 1,290 161 161 1,612
MORE_SPECIFIC_IF 1,101 138 137 1,376
ADD_ELEMENTS_TO_ITERABLE 1,070 134 133 1,337
SAME_FUNCTION_LESS_ARGS 1,050 131 131 1,312

Low-resource

CHANGE_BOOLEAN_LITERAL 907 114 113 1,134
ADD_ATTRIBUTE_ACCESS 716 90 89 895
CHANGE_BINARY_OPERATOR 681 85 85 851
SAME_FUNCTION_WRONG_CALLER 558 70 70 698
CHANGE_KEYWORD_ARGUMENT_USED 470 59 59 588
LESS_SPECIFIC_IF 382 48 48 478
CHANGE_UNARY_OPERATOR 318 40 40 398
SAME_FUNCTION_SWAP_ARGS 150 18 19 187
CHANGE_CONSTANT_TYPE 118 15 15 148

Table 6: Statistics of TSSB benchmark.

Error Type Train Valid Test All

High-resource

no-invalid-this 13,101 1,456 1,609 16,166
no-undef 8,614 958 1,064 10,636
no-unused-vars 6,289 699 777 7,765
comma-style 5,180 576 639 6,395
no-redeclare 5,167 575 639 6,381
no-extra-semi 4,834 537 598 5,969
no-unreachable 3,826 426 473 4,725
prefer-rest-params 3,675 405 454 4,534
no-debugger 3,372 375 417 4,164
no-throw-literal 3,300 367 408 4,075
guard-for-in 2,616 291 324 3,231
no-console 2,484 276 307 3,067
no-useless-escape 2,364 263 293 2,920
prefer-spread 2,001 221 244 2,466
no-dupe-keys 1,765 197 219 2,181
no-empty 1,665 184 206 2,055
no-process-exit 1,225 137 152 1,514
no-cond-assign 1,194 132 146 1,472
no-extra-boolean-cast 1,180 132 146 1,458
generator-star-spacing 1,130 126 140 1,396
no-constant-condition 1,016 112 123 1,251

Low-resource

no-array-constructor 793 89 98 980
no-inner-declarations 671 75 84 830
no-fallthrough 601 67 75 743
no-case-declarations 584 66 73 723
no-extra-bind 547 59 68 674
no-self-assign 494 55 61 610
valid-typeof 436 49 54 539
constructor-super 375 42 47 464
no-new-object 360 41 45 446
no-caller 360 41 45 446
no-extend-native 358 40 45 443
require-yield 347 39 43 429
no-unsafe-negation 342 38 43 423
no-this-before-super 333 38 42 413
no-new-wrappers 291 33 36 360
no-global-assign 257 29 32 318
no-const-assign 224 25 28 277
no-sparse-arrays 191 22 24 237
getter-return 163 19 21 203
no-duplicate-case 157 18 20 195
no-unused-labels 151 17 19 187
no-empty-pattern 144 16 18 178
no-func-assign 118 14 15 147
no-dupe-class-members 94 11 12 117
no-class-assign 89 10 12 111
use-isnan 56 7 8 71
no-unsafe-finally 50 6 7 63
for-direction 40 5 5 50
no-ex-assign 32 4 4 40
no-compare-neg-zero 9 2 2 13
no-new-symbol 18 1 1 10

Table 7: Statistics of TFix benchmark.

