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Abstract

In human pedagogy, teachers and students can interact adaptively to maximize
communication efficiency. The teacher adjusts her teaching method for different
students, and the student, after getting familiar with the teacher’s instruction
mechanism, can infer the teacher’s intention to learn faster. Recently, the benefits
of integrating this cooperative pedagogy into machine concept learning in discrete
spaces have been proved by multiple works. However, how cooperative pedagogy
can facilitate machine parameter learning hasn’t been thoroughly studied. In this
paper, we propose a gradient optimization based teacher-aware learner who can
incorporate teacher’s cooperative intention into the likelihood function and learn
provably faster compared with the naive learning algorithms used in previous
machine teaching works. We give theoretical proof that the iterative teacher-aware
learning (ITAL) process leads to local and global improvements. We then validate
our algorithms with extensive experiments on various tasks including regression,
classification, and inverse reinforcement learning using synthetic and real data. We
also show the advantage of modeling teacher-awareness when agents are learning
from human teachers.

1 Introduction

Cooperative pedagogy is invoked across language, cognitive development, cultural anthropology, and
robotics to explain people’s ability to effectively transmit information and accumulate knowledge [[19}
64]. As the usage of artificial intelligence and machine learning based systems ratchets up, it is
foreseeable that extensive human-computer and agent-agent pedagogical scenarios will occur in the
near future [49]. However, there is still a distance away from robots being able to directly teach
or learn from humans as efficiently and effectively as humans do. One of the many difficulties is
that machine learning and teaching are now usually studied in single-agent frameworks. Most of
the prevailing machine learning methods focus on the improvement of individual learners and the
explanations of how knowledge is obtained focus entirely on each learner’s unilateral experiences,
either passive observations from a Markov decision process [43}155]], random samples from a data
distribution [52| 29], responses of active queries provided by an oracle [3} 53], or demonstrations
from an expert [4]].
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Such machine learning framework is diametrically distinctive from human education, in whose
context, learning often occurs sequentially instead of in batch, and from intentional messages given
by a pedagogical teacher rather than random data from a fixed sampling process [62]]. Recently, the
advantage of pedagogical teachers over randomly sampled data or optimal task completion trajectories
from experts has been shown in machine teaching 10,70} 71} 40,1844} 11} 12] and in learning from
demonstration (LfD) [27,31]]. Nonetheless, compared with human pedagogy, these works still lack a
sophisticated student model that can accommodate the teacher’s cooperation into his learning and acts
differently than learning from passive data. Machine teaching algorithms model a cooperative teacher
giving instructions in the format of data examples for continuous parameter [10, 70,71} 40], Bayesian
concept [18}44] or version space learning [[11}[12], but seldom do they consider how learners may
interpret differently between the data picked intentionally by the teacher and sampled randomly from
the world. Standard LfD takes in demonstrations from an (approximately-) optimal expert to learn the
underlying reward function [4]]. Hadfield-Menell et al. [27], Ho et al. [31}132]] shows the advantage of
using pedagogical rather than optimal demonstrations, yet, in either case, the learners are not aware
of the teacher . Shafto et al. [54], Yang et al. [[68], Wang et al. [62,64] move one step further and
proposed recursive cooperative inference models having both the teacher and the student reasoning
each other, an ability known as theory of mind (ToM) [50l |8]]. The first work modeled and predicted
human behavior while the latter three managed to integrate ToM into machine learning. Despite the
theoretical contribution, their approach [68, 62| 64] is confined to Bayesian concept learning with
finite hypothesis space, in which the Sinkhorn scaling [57] is tractable. It is unclear how to apply
their algorithms to settings involving continuous hypothesis spaces, such as learning neural networks.

In this paper, we study how to integrate the cooperative essence of pedagogy into machine parameter
learning and propose a teacher-aware learner who learns significantly faster than a naive learner,
given an iterative machine teacher [40, |41]. The learner estimates the teacher’s data selection
process with distribution and corrects his likelihood function with this estimation to accommodate
the teacher’s intention. Maximizing the new likelihood enables the learner to utilize both explicit
information from the selected data and implicit information suggested by the pedagogical context.
We theoretically proved the improvement brought by the learner’s teacher awareness and justified
our results with various experiments. We believe that our work can provide insights into both
human-machine interactions, such as online education, and machine-machine communications, such
as ad-hoc teamwork [9]].

Our main contributions are i) modeling teacher-awareness for generic gradient optimization based
parameter learning; ii) theoretically proving the improvement guaranteed by the teacher-aware
learner over the naive learner under mild assumptions; iii) empirically illustrating the advantage of
teacher-awareness learner when interacting with both machine and human teachers.

2 Related Work

Machine Teaching Our work is related to machine teaching as we used an iterative machine
teacher in our framework. Machine teaching [[70} 71} 40, 49]] solves the problem of constructing an
optimal (usually minimal) dataset according to a target concept such that a student model can learn
the target concept based on this dataset. Most of the machine teaching algorithms consider a batch
setting, where the teacher designs a minimal dataset and provides it to a learning algorithm in one
shot [10} 70,47} 71} [11]. Tterative machine teaching has also been studied, where the teacher gives
out data iteratively and checks the learner’s status before selecting the next data 34,16, 40, 41} 43,
but previous works didn’t consider teacher-aware learners. There are also works applying machine
teaching to inverse reinforcement learning (IRL) and LD [4} 10} 27,1311 132, 28]]. Our IRL experiments
are different from those works as our data are provided iteratively and sequentially. Also, our learner
is aware of the teacher’s intention. Ho et al. [31,132] integrated Bayesian rule in LfD to model mutual
reasoning between the teacher and the learner, but they mainly used their model to explain human
data. A theoretical study of the teaching-complexity of the teacher-aware learners was presented
in [[73117] where the teacher and the learner are aware of their cooperation. Their analysis mainly
attends to version-space learners which maintain all hypotheses consistent with the training data, and
cannot be applied to hypothesis selection via optimization, such as learning parameters.

Peltola et al. [49] studied machine teaching for an active sequential multi-arm bandit learner. Although
they also have a helpful teacher and a teacher-aware learner, their problem setting is different from
ours. First, in every round of multi-arm bandit, the learner can actively choose an arm to pull, and



then the teacher provides feedback for that arm, while in our cases, the data batch in each round is
sampled randomly and independently from the learner’s current status. Second, as the teacher can
only give binary (success or not) feedback to the learner, the counterfactual reasoning required for
pedagogy is significantly simplified. Besides, they required that the same feature representation for
the arms is shared between the teacher and the learner. Also, the learner doesn’t have to know the
underlying parameter exactly to perform well in multi-arm bandit games, while in most of our cases,
the learner tries to match the teacher’s model exactly. Fisac et al. [20] used similar formulation to
model cooperative value alignment within a human-robot team. They assumed the human knows
the robot’s value function during interactions, and parameters to be aligned are sparse and low
dimensional.

Learning to Teach Sharing the same goal as machine teaching, learning to teach (L2T) also seeks a
teaching algorithm to improve the learning efficiency of AI. While machine teaching usually models
the question as an optimization problem and solves for a closed-form teaching algorithm, works in
L2T tend to train the teaching model in the process of the teacher-student interaction with gradient
based optimization [[67] or reinforcement learning (RL) algorithms [19]. Nevertheless, these works
also focus mainly on the teacher algorithm and assume teacher-unaware learners. In some tasks,
typically when the student aims to learn a concept in a discrete space, the teacher can track the
learner’s status by modeling his belief over the concept [54]. As the beliefs within the learner’s
mind are not usually known by the teacher, the teaching process can be modeled as a partially
observable Markov decision process (POMDP) [46], solving the optimal policy of which returns a
teaching algorithm [51}65]]. From the teacher’s perspective, the unknown part of the environment
is the learner’s belief, a probability distribution over the concept space, so she has to form another
belief over the learner’s belief. The intractable modeling of belief over continuous variables usually
requires approximation methods such as particle filters [51, [65] to solve, restricting the scope of
these algorithms to naive learners and relatively simple learning tasks. Interactive POMDP [23166],
a probabilistic multi-agent model, can also be used to model cooperative pedagogy with recursive
teacher-learner reasoning. However, the nested belief over belief also suffers from intractability and is
hard to scale up. If the concept space of the learner is continuous by itself, such as high dimensional
continuous parameter spaces in our case, handling the belief over belief becomes difficult.

Cooperative Bayesian Inference Shafto et al. [54] studies human pedagogy with examples using
Bayesian learning models. The cooperative inference [68| 63 64] in machine learning also formalizes
full recursive reasoning from the perspectives of both the teacher and the learner. Distinctive
from their concept learning settings, in this paper, we focus on parameter learning, in which the
student has intractable posterior distribution and learns via gradient-based optimization. In addition,
[54. 168 163 164] only consider the problem of a single interaction between the teacher and learner.
Wang et al. [62] proposed a sequential cooperative Bayesian inference algorithm and showed its
performance advantage over naive Bayesian learner analytically and empirically. Nevertheless, they
were still discussing concept learning with finite and usually small data and hypothesis sets. The
Sinkhorn scaling [30, 162} 164] becomes infeasible when dealing with continuous parameter learning.

Pragmatics Reasoning Our work is inspired by the study of pragmatics (how context contributes to
the meaning) [26, [27]] and ToM [50, 18]. The rational speech act (RSA) model raised by Golland et al.
[24] and developed in [22] 54} 25 2] accommodates the idea of using not only the utterance but also
the selection of the utterance to understand the speaker. Previous works in these areas are mainly
from human action interpretation [21 160} 36], language emergence [[69, 35]], linguistics [33} 2} [13]
and cognitive science [25} 8] perspectives. To our knowledge, our work is the first to relate pedagogy
and recursive reasoning to generic parameter learning and shows a provable improvement. Shafto
et al. [54] proposed computational models for more diverse concept spaces, but mainly focus on
modeling and predicting human behaviors.

3 Background

Finding the optimal way of teaching parameters has been a challenging problem because of the
continuous state space and long horizon planning. One common framework is machine teaching [70,
71]. Here, we adopt an iterative variation of machine teaching [40], consisting of three entities:
the learner, the teacher and the world. The world is defined as a parameter w*, fixed and known
only by the teacher. Given a model y = h(z;w) parameterized by w, the world is defined as

*

w* = argming,cq By, y)~p(a,y) [[(A(7;w), y)], where P(x,y) is the data distribution in standard



machine learning. Here, [ and h can vary across tasks, eg. [ can be squared loss for regression,
cross-entropy for classification, and negative log-likelihood for IRL [5} 42]. In this paper, we assume
[ to be a convex function and h(x;w) = h({z,w)). h can be an identity function for linear regression
and softmax function for classification. Thus, we can omit / in the loss function and write I ({z,w), y)
for short. [ and h are common knowledge of the teacher and the learner.

Representation: The teacher represents an example as (z,y) while the student represents the same
example as (Z, §) (typically y = ¢ and we use y when there is no ambiguity). The representation
x € X and & € X can be different but deterministically related by an unknown mapping, & = G(z).
Suppose the teacher and the learner use model h((z,w)) and h({Z, v')) respectively, then w* and v*
are very likely in different spaces too. This is a common scenario when the teacher and the learner
are a human and a robot, or two robots from different factories. As the representation of examples
can be complex, such as features extracted by deep neural networks [45} 52} 29]], using a linear model
h doesn’t impinge the expressive power of the overall model. In the rest of the paper, we use w for
the teacher’s parameter and v for the learner’s if they are from different spaces. Otherwise, we use w
for both of them. We use x to refer to an example and its teacher representation. We use & for its
learner representation. Also, we don’t specify the choice of G. Our only assumption about the teacher
and the learner’s representation will be discussed in Theorem T]

Teacher: In general, the teacher can only communicate with the learner via examples. This restriction
doesn’t impinge the generality of the machine teaching framework, as the format of the data can
be generic, such as demonstration used in the IRL [72, (5, 161} 142]. In this paper, data are provided
iteratively. We use x* to denote the example used in the ¢-th iteration. The teacher aims to provide
examples iteratively so that the student parameter v converges to its optimum v* as fast as possible.
Since the teacher doesn’t know v* or v*, we let the learner provide some feedback to her in each
iteration so that she can track the pedagogy progress (details in Section [4.T)).

Learner: The learner has an initial parameter ©/° before learning. At time ¢, he has learning rate
1. The learning algorithms for teacher-unaware learners are often simple. For iterative gradient
based optimization, the learner usually uses stochastic gradient descent [40, 141119, 167]. Suppose the
learner receives (x?, y') from the teacher, his iterative update is:

81(<5st, vi=hy, yt)
ovt—1

vt =t oy,

(D

Mutual knowledge: We limit the mutual knowledge between the teacher and the learner, otherwise,
the mutual reasoning between the two can theoretically become an infinite recursion. In this paper,
we consider a teacher who assumes a naive learner using Eq. (I to update his model. Meanwhile,
the learner knows the teacher selects data deliberately instead of randomly (detailed in the next
section). If we define a naive learner as having level-0 recursive reasoning, then the teacher and
the teacher-aware learner have level-1 and level-2 recursive reasoning respectively. This level of
recursion is very close to human cognitive capability [[14} [15] and was also adopted by [49].

To summarize, the loss function [, the model h, and the naive learner update function are common
knowledge to the teacher and the learner. w* and the teaching mechanism are only known by the
teacher, while »* and the learning mechanism, i.e. how to update ©* given data, are only known by
the learner. He knows the teacher intentionally selects helpful data according to her estimation of
himself, and the teacher assumes that the learner learns following Eq. (I). For our teacher-aware
learner, this assumption is inaccurate, but we’ll show how the proposed learner can learn much faster
than a naive learner.

4 Teacher-Aware Learning

4.1 Cooperative Teacher

We first define the teacher whom the learner should be aware of. Let’s consider a teacher using the
same feature representation as the learner and knowing his parameter in each iteration. [40] termed
this kind of teacher as the omniscient teacher, who, in the ¢—th iteration, greedily chooses example



from a data batch D' = {(x;,v;) ~ P(z,y)}:
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The expression after arg max in Eq. (2) is defined as the teaching volume TV« (z, y|w?), which
represents the learner’s progress in this iteration. It is a trade-off between the difficulty and the
usefulness of an example [see 40, sec. 4.1]. Notice that the teacher has no control over D?, which is
sampled from the data distribution P or from a large dataset. She only selects the best example from
Dt. Given D! with a mild batch size, e.g. 20, the arg max in Eq. (2) can be exactly calculated.

Lessard et al. [38] has proved that, for an omniscient teacher, teaching greedily is sub-optimal.
Yet, their findings cannot be directly applied to more practical teaching scenarios. Thus, we keep
leveraging the greedy heuristic to model our cooperative teacher and generalize it to a non-omniscient
teacher who doesn’t fully know the learner in every iteration.

Suppose the teacher neither knows the learner’s /=1 nor v* and they use different feature representa-

tions of the data. To teach cooperatively, she has to imitate the learner’s model in her own feature
space and use w* to guide the teaching. This can be done approximately if, in every round, the
learner gives the inner products of '~ ! and the data to the teacher as feedback. Given the convexity
ol t—1
- W*a M> Z l(<$, wt_1>a y) - l(<$, W*>a y)
w
Now, Eq. (2) can be approximated by inner products between the model parameter and the data [40].
Denote the learner’s feedback as o, = (Z,v'71),V(x,y) € D', = G(z), then the teacher will
teach as following:

of the loss function [, we have:<wt_

Ollaz,y) ?
Oay,

arg max (—n? +2n; (I, y) —l(<w>w*>,y)))- 3)

(z,y)eD? 2

It has been shown that cooperative teachers using Eq. (3) can substantially speed up the learning of a
standard SGD learner [40]]. Nonetheless, only having a cooperative teacher doesn’t provide us the
most effective interaction between the two agents, as the learner doesn’t exploit the fact that the data
come from a helpful teacher [54]. In the next section, we introduce a teacher-aware learner.

4.2 Teacher-Aware Learner

Now we propose a learner who integrates teacher’s pedagogy into his parameter updating process.
Suppose we have a distribution p(z, y|v* = v) x exp(—I({Z,v),y)), denoted as p,(z,y). Then,
applying gradient descent to [({Z,v),y) is equivalent to maximizing log p, (z,y) wrt. v. Hence,
a learner updating parameters with Eq. (I)) can be considered as performing maximum likelihood
estimation (MLE) when the data are randomly sampled from P(z, y).

Nonetheless, in the machine teaching framework, data are no longer randomly sampled from P (z, y).
A teacher-aware learner should rectify his updating rule by considering teacher’s helpfulness. Given
the dataset D? at time ¢, the learner can postulate that the teacher is more likely to choose the example
she thinks helpful following p(x, y|v* = v,v'~1, D), denoted as ¢, (x, y|v'~1, D?) for short:

eXp(ﬁtﬁ,,(gE’ ylvt=1))
Torreon CHRTY o 1)

am%;zwwwz+%4M@W“5w)—“@W%”) ©)

q(z,yl' =, D" = ,B: >0, 4)

with 1/“‘\/,,(33, y|1/t_1) = —nf

The Boltzmann noisy rationality model [7] indicates that the teacher samples data according to the
soft-max of their approximation of the teaching volumes, calculated wrt. her »* and the inner product
feedback from the learner. Although, in practice, this estimation is usually different from the teacher’s
actual example selection distribution, which is a hard-max, corresponding to 5; — oo, maximizing it
wrt. v can still improve the learning.



The learner now wants to learn a v, which not only makes y* more likely to be the correct label of
2%, but also (x!, y') more likely to be chosen from D?. Intuitively, given all data in D? are coherent
with the true distribution, the teacher gives (z%;y*) but not other examples. With what v can the
probability of this selection be maximized? So, at every time ¢, the student maximizes p, (z¢, y*) and
¢ (2, yt |y =1, DY) wrt. v simultaneously. We can still use gradient descent. Omit y when there is

no confusion. Denote g, (v) = %J)y) then we have (derivation in supplementary Section :

_ oz, vt=1),y)  0logq, (', y")

t _ o t—1 _ 9 9 _ v 9

v=r nt( ovt—1 ov l/:l/‘_l)
=" =g (V1) = 287 (900 (V1) = Barg oy [0V 7)]). (6)

Notice that v*~1 is a constant in g, (2!, y*|v* =1, D) and the optimization is wrt. v, which is treated as
v* in the calculation. The gradient is computed at v = v*~1. This is equivalent to maximizing a new
log-likelihood function log (p, (z*, y")q, («*, y*|v*~*, D)), an approximation of the log probability
that (x?, y*) being sampled in D* and then being selected by the teacher given v* = v. The product is
an approximation of p((zf,y"), D!|v*~!, 1* = 1) because the sampling of data in D' except (z', y")
is regarded as deterministic. When 5; = 0, i.e. the learner thinks the teacher uniformly samples data,
and Eq. (6) becomes regular SGD.

An interpretation of the benefits brought by Eq. (6) is that the learner not only learns from the literal
meaning of the example selected by the teacher (the second term), but also compares that example
with “also-rans” in D? (the third term), forming a context incorporating additional information.
This is a prevailing phenomenon in human communication, as messages often convey both literal
meanings and pragmatic (contributed by the context) meanings [60, 58, 69]. In other words, we can
acquire not only explicit information from what others said but also implicit information from what
others didn’t say. When the message space is finite and known, exact computations of the implicit
information becomes tractable. Therefore, in scenarios like human-robot interactions, where robots
usually provide predefined user interfaces with a fixed choice of instructions, our algorithm can easily
conduct counterfactual reasoning by comparing the user’s selected instruction with the others and
deliver faster learning than only using the selected one. In Section[5.2] our experiment with humans
as the teacher illustrates such an advantage.

One nuance is that if we use v~ as the v in Eq. (), the second term of the teaching volume will
5~ o, t—1
be 0. Thus, to better approximate v*, in practice, we plug in v/~ — ntw. That is, the

vt—
learner first updates '~ ! just like a naive learner. Then he calculates the gradient of log g, wrt. the
new v and does an additional gradient descent corresponding to the last term in Eq. (). Also, in
supervised learning settings, the teacher needs to provide labels of the whole dataset for the learner to
calculate the expectation. This is a mild requirement easy to be satisfied in practice. In the iterative
process, D? is a mini-batch sampled from a large dataset with a small batch size, say 20 examples.
Thus, Ey~q, [92 (V)] can be calculated exactly, and, compared with the standard mini-batch gradient
descent, the only additional information needed from the teacher is the index of (x¢,y:). In fact,
we can further relax this condition by letting the learner estimate E, .4, (¢, ()] with only a subset

Dt C D?. In our experiments, we show that with only one random unchosen example provided, i.e.
|Dt| = 1, the teacher-aware learner outperforms the naive learner. See Algorithm (1{for details.

We now prove the teacher-aware learner can always perform better than a naive learner given proper
conditions.

Theorem 1 (Local Improvement). Denote o' = v'=1 — n,g,«(v'~1). For a specific loss function
I, given the same learning status v'*~' and a teacher following Eq. , suppose xt satisfies that

at itself maximizes TV 5 (x,y|v*~"). Denote &t as the x € D* which achieves the second largest
TV 5¢(x,y|v'=1). Suppose that ||g. (') |2 < G for any x € Dt If (0t — v*, gui (#1) — gz (71)) > 0,
then with large enough By, the teacher-aware learner using Eq. (6) is guaranteed to make no smaller
progress than a naive learner using Eq. (I)).

One intuition for the assumption is that the best example selected by the teacher does bring more
benefits to the learner than the other examples do. Suppose we have D¢ = ¥ — 1;gz¢(0%), then
moving from 2% to v follows 7, (gz: (%) — g« (#%)). The assumption (7¢ — v*, g« (%) — gz¢ (7)) =
(v* =1, gzt (0') — gt (0')) > 0 simply suggests that updating with z* gives the learner an advantage
over updating with #*. The advantage points to v* (the two vectors v* — o and gz (7!) — g« (%)
form an acute angle).
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Algorithm 1: Iterative Teacher-Aware Learning

Input: Data distribution D, teacher parameter w*, learning rate 7, teacher estimation scale [3;

Result: v(7)

Randomly initialize student model (°) ~ Uniform(NN); Set ¢ = 1 and 7T as the maximum
iteration number;

while t < T do
Teacher gets data batch D ~ D
Learner reports o, = (v(*=1), %) for all z € D to the teacher
Teacher selects data for time ¢:
2
Ol(aq, *
(zt,yt) = arg MaX(, e pt < —n? E;“sz)ch + 21 (l(az,y) — l((w , T, y)))
Learner uses the selected data (Z¢, 4*) and D! to calculate
R B Ft =1y ot
P = (=1 _p 2 , L )
N al((zt, oMy yt al((z,0M)y,
(&) = p) _ Qﬂtn?( (<x8;)(t) )y°) E(ﬂ?,y)’\*qﬁ(t) (&,y|v(¢=1 DY) |:4(<2ﬁ(t) ) Zl):| )
exp (Btﬁ,;m z,yly¢-D Dt )
where g, (&, y[v"=1), D) = /5 )
Z(m’,y')eDt exp (BtTVﬂ(t) (f/,yl‘lj(tfl),Dt))
with TV ) (2, y|vt=1, D) defined in Eq. .
t=t+1
end

Corollary 2 (Global Improvement). Under the same condition of Theorem suppose that
|o1({z, u),y)/@u”% and 1({(Z,v),y) are L-Lipschitz for x with any v. Suppose the sample set

Dt satisfies that for any x € D", there exists ' € D' such that |2’ — x| < €/(TL(n? + 4n,)) for
any t, where T' is the total number of iterations. Then if the inequality

s ="l = s TV, (gln) < oo = v 3= max TVoe(@ploe) ()

holds for any vy, vy that satisfy ||vy —v*||3 < ||lvo —v*||3, then with the same parameter initialization,
learning rate and a teacher following Eq. (3), a teacher-aware learner can always converge not
slower than a naive learner up to € error.

To guarantee that ||2" — z||2 < €/(T'L(n? + 4n,)) for any x € D, we need the subset D' C D to be
‘uniform distributed’ on D. To achieve this goal, we can uniformly sample point € D and let D*
to be the set of these points. It is easy to verify that the ‘uniform distributed’ property holds with
high probability when | D?| is large enough. Meanwhile, Eq. (7)) in Corollary is defined as teaching
monotonicity in Liu et al. [40], and they proved that the squared loss satisfies teaching monotonicity
given a dataset D = {z € R? ||z|| < R} [see 40, proposition 3]. The main difference between
Eq. (7) and that in Liu et al. [40] is that Eq. (7) works for the non-omniscient teacher setting, while
Liu et al. [40] focuses on the omniscient teacher setting. Detailed proofs of the theories can be found
in Section[A] of our supplementary.

S Experiments

5.1 Machine Teacher

To justify the effectiveness of ITAL, we compared it with iterative machine teaching (IMT) with a
naive learner on regression, classification, and IRL tasks. The coverage of squared loss, cross-entropy
loss, and negative log-likelihood proves the robustness of our algorithm on various selections of
I. For regression tasks, we measured the performance using the difference between ||w® — w*||2
and the mean squared loss of the test set. For the classification task, we measured the difference,
the cross-entropy loss, and the classification accuracy of the test set. For online IRL problems, we
measured the parameter difference, the total variance between the teacher’s and the learner’s policies,
and the average rewards achieved by the learner. The feature dimension of the teachers can be
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Figure 1: Fig. Fig. Cooperative teacher results. Our method always gives a substantial
improvement over IMT, showing the effect of teacher-awareness. Within 2000 steps, ITAL already
show convergence, while a naive learner only learns to a limited extent in most tasks. Fig. In the
top plot, the height of each bar represents the decrease of the L.2-distance between the learner’s reward
parameter and the ground-truth parameter. In the bottom, the height represents the accumulated
reward. Paired t-tests were conducted between Human (Machine) ITAL & IMT respectively.

different from that of the learners in some experiments. In Fig.[I] we show the results of the teacher
having a smaller feature dimension than the learner does. We show the opposite in the supplementary
Section [B] Batch means the learner uses all the data in the mini-batch to calculate the mean gradient.
SGD means the learner randomly selects an example in the mini-batch to calculate the gradient.

ITAL-Ms represent our algorithm with M indicates |ﬁt\ The mini-batch D? is randomly sampled
at every step with batch size 20. The learning rate is 1e-3 for all the experiments. (3, is in the scale
of 1e4, varying for different settings. We grid search g, starting from 1e4 and use the largest one
inducing Eq. (@) that is no longer a delta function. We ran each experiment with 20 different random
seeds to calculate the mean and its standard error, shown in Fig. m

It can be seen that using the full mini-batch gives almost identical learning performance as using
only one random sample from it. IMT has noticeable but limited improvements comparing with
Batch and SGD, suggesting not necessarily substantial advantage brought by the helpful teacher.
ITAL, on the other hand, significantly outperforms all other baselines, even with only 2 data points
as the approximation of the full mini-batch. The learner modeled by these baselines only learns
from the examples, but when the examples are no longer acquired randomly but from an intentional
teacher, the example selection of the teacher also conveys a large amount of information. In particular,
the teacher-aware learner can absorb information from not only the selected examples but also the
unselected ones. As the learner has access to more unselected examples, he has a better approximation
of the teaching process and learns more efficiently. Additional experimental details can be found in
supplementary Section

5.1.1 Supervised Learning

Linear Models on Synthetic Data: In these experiments, we explored the convergence of our
method in linear regression and multinomial logistic regression. For linear regression, we randomly
generated a M-dimensional vector and a bias term as the w*, and X € RV*(4+1) aq the training
set, with the last column being all 1s. The labels are Y = Xw?*. For the classification task, we
randomly generated K points in the d-dimensional space, each of which is used as the mean of a
normal distribution. Then we sampled N/K points from each Gaussian distribution together as the



training data. The labels are the indices of these distributions. With these data, we trained a logistic
regression model using Scikit-learn [48]], and used the coefficients as the teacher’s w*. We used a
random orthogonal projection matrix to generate the teacher’s feature space from student’s. At every
step, a subset of the training data is randomly selected as the mini-batch. The data points in that
mini-batch along with their labels and the index of the data selected by the teacher are sent to the
student. Details of the data generation can be found in supplementary Section[B.1]

Linear Classifiers on Natural Image Datasets: We further evaluated our teacher-aware learner on
image datasets, CIFAR-10 [37]] and Tiny ImageNet [1] (an adaptation of ImageNet [16] used in
Stanford 231n with 200 classes and 500 images in each class). In these experiments, the teacher tried
to teach the parameters of the last fully connected (FC) layer in a convolutional neural network (CNN)
trained on the dataset. We trained 3 baseline CNNs independently to do CIFAR-10 10-class and
ImageNet 200-class classification. All of them achieved reasonable accuracy (> 82% for CIFAR-10
and > 58% top-1, > 85% top-5 for ImageNet). For CIFAR-10, we trained three different types of
CNNs, CNN-6/9/12. For ImageNet we used VGG-13/16/19 [56]. The features fed into the last FC
layers are extracted to be the teaching dataset. The learner’s feature is from CNN-9/VGG-16 and
we set the teacher as either CNN-6/12 or VGG-13/19. Details about CIFAR-10 and Tiny ImageNet
experiments are in and Section [B.4]respectively.

Linear Regression for Equation Simplification: In this experiment, we learned a linear value
function that can be used to guide action selections. Given polynomial equations with fraction
coefficients and unmerged terms, we want to simplify them into cleaner forms with all the terms
merged correctly, all the coefficients rescaled to integers without common factors larger than 1 and
all the terms sorted by the descending power. For example, equation — %ny + %xy = — 7y + x Y
will be simplified to —252%y + 10zy + 63> = 0. We defined a set of equation editing actions and a
set of simplification rules. For a given equation, we applied the rules, recorded every editing action,
and collected a simplifying trajectory. With all the trajectories of the training equations, we trained
a value function by assuming that the value monotonically increases in each trajectory. Then the
teacher tried to teach the student this value function. We used three different feature dimensions:
40D, 45D, and 50D. The learner always used 45D, and the teacher used 40D or 50D. Details can be
found in Section[B.3]

5.1.2 Online Inverse Reinforcement Learning

In this experiment, we changed from labeled data in standard supervised learning to demonstrations
in IRL. The learner wanted to learn the parameter for a linear reward function (s, w*) so that the
likelihood of the demonstrations is maximized [5} 61, 42]. One challenge is that the max function in
Bellman equations [59]] is non-differentiable. Thus, we approximated max with soft-max, namely:

max(ag, ..., ay) w with k controlling the level of approximation and leveraged

the online Bellman gradlent 1terat10n [39]. The IRL environment is an 8 x8 map, with a randomly
generated reward assigned to each grid. If we encode each grid using a one-hot vector, then the
reward parameter is a 64D vector with the i-th entry corresponding to the reward of the ¢-th grid.
The agent can go up, down, left, or right in each grid. All demonstrations are in the format of (s, a),
where s indicates a grid and a an action demonstrated in that grid. The teacher uses a shuffled map
encoding. For instance, if the first grid is [1, 0, ..., 0] to the learner, then it became [0, ..., 0, 1,0, ...] to
the teacher. Details are included in Section[B.6l

5.1.3 Adversarial Teacher

In addition to the cooperative setting that we assumed throughout the discussion above, we also
explored if the learner can still learn given an adversarial teacher. An adversarial teacher doesn’t
mean that she gives fake data to the student, but she uses arg min in Eq. (@) instead of using arg max.
That is, she always chooses the least helpful data for the learner. Hence, a learner, being aware of
this unhelpful pedagogy, will adjust Eq. accordingly by using 5; < 0. We redid all previous
experiments with an adversarial teacher and showed that our learner can still learn effectively given an
adversarial teacher, while a naive learner barely improves (see Fig.[I4]in Section[B.7). This experiment
justifies the universal utility of modeling the teacher’s intention regardless of the informativeness of
the teaching examples.



5.2 Human Teacher

In the previous section, we showed that teacher-awareness substantially accelerates learning, given
a machine teacher. In this section, we further investigate if our teacher-aware learner can show an
advantage in scenarios where humans play the role of the cooperative teacher. We hypothesize that
despite the discrepancy between the pedagogical pattern of human and machine teachers, our learner
can still benefit from his teacher-awareness modeled with Eq. (4).

We conducted a proof-of-concept human study with a similar but simplified version of the IRL
experiments in Section[5.1.2] To better suit human participants, we first change the maps from 8 x 8
to 5 x 5. Second, instead of assigning random continuous rewards to the grids, we color them with
white, blue, and red, representing neutral, bad, and good tiles. In each teaching session, a participant
is given one of the five reward maps as the ground truth and a randomly initialized learner to be
taught. Then, the participant will be asked to teach the learner about the ground truth reward in each
grid by providing (s, a) examples as in Section In each time step, we construct the examples
by randomly sampling a set of 10 grids and drawing an arrow on each sampled grid indicating which
direction the learner should go to if in that grid. The human teacher is asked to choose the most
helpful arrow given the learner’s current reward map. The map configurations are in Fig. [15]in
Section[B.8] A similar map setup for reward teaching was used by Ho et al. [31]]. Every participant
will teach both the naive and the teacher-aware learner about the same map. We then run a paired
sample t-test to compare the learning effect of the two types of learners. We show the improvement
of the L2-distance between the learner’s reward parameters and the ground-truth reward parameters
and the accumulated reward in Fig.[Tg} Comparison of policy total variance and learning curves are
included in Section [B.§]of the supplementary.

For all maps, the ITAL method has a significant (p-value ~ 0) advantage over its IMT counterparts.
The human ITALs all perform worse than machine ITALs. This is as expected as we directly reuse
the machine teacher model to simulate humans. There is no guarantee that all the participants follow
the same teaching pattern as the machine teacher, or even have a consistent teaching pattern at all.
Yet, we still manage to grasp human cooperation to some extent. To illustrate the influence of the
teacher model, we also teach the ITAL learner with a random teacher, who samples the example
uniformly every time and is not cooperative at all. As shown in Fig.[Ig this combination doesn’t
benefit the learner, because the mismatch between the imagined cooperative teacher and the actual
random teacher will very likely introduce over-interpretation of the examples. To summary, these
results justify that human teachers do have cooperative (contrary to uniform) pedagogy patterns and
the current teacher-aware model can take advantage of them. Finding a comprehensive and accurate
human-robot communication model will be an open question for future works.

6 Discussion and Conclusions

Pedagogy has a profound cognitive science background, but it hasn’t received much attention in
machine learning works until recently. In this paper, we integrate pedagogy with parameter learning
and propose a teacher-aware learning algorithm. Our algorithm changes the model update step for the
gradient learner to accommodate the intention of the teacher. We provide theoretical and empirical
evidence to justify the advantage of the teacher-aware learner over the naive learner.

To be aware of the teacher, the learner needs an accurate estimation of the teaching model. In many
cases, such a model is not directly accessible, e.g. when there is a human-in-the-loop. In this paper,
we model the teacher in a heuristic manner. Our human study proved the generality of this model,
especially when the learner only assumes a sub-optimal teacher with Boltzmann rationality. In future
work, a more advanced teacher model should be investigated, acquired through task-specific data
and/or interactions between the agents. Another limitation of our work is that, in our current setting,
the learner’s feedback is restricted to be inner products. A more generic message space can be
leveraged to develop comprehensive learning as a bidirectional communication platform. We believe
our work illustrates the promising benefits of accommodating human pedagogy into machine learning
algorithms and approaching learning as a multi-agent problem.
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