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Abstract
Root causal analysis seeks to identify the set of initial perturbations that induce an unwanted out-
come. In prior work, we defined sample-specific root causes of disease using exogenous error
terms that predict a diagnosis in a structural equation model. We rigorously quantified predictiv-
ity using Shapley values. However, the associated algorithms for inferring root causes assume no
latent confounding. We relax this assumption by permitting confounding among the predictors.
We then introduce a corresponding procedure called Extract Errors with Latents (EEL) for recov-
ering the error terms up to contamination by other error terms lying on certain paths under the
linear non-Gaussian acyclic model. EEL also identifies the smallest sets of dependent errors for
fast computation of the Shapley values. The algorithm bypasses the hard problem of estimating the
underlying causal graph in both cases. Experiments highlight the superior accuracy and robustness
of EEL relative to its predecessors.
Keywords: causal inference, root cause, confounding, LiNGAM

1. Introduction

Causal inference refers to the process of inferring causal relations from data. Most scientists identify
causal relations by conducting randomized controlled trials (RCTs). RCTs nevertheless do not
distinguish between a cause and a root cause of disease, or the initial perturbation to an otherwise
healthy system that ultimately induces a diagnostic label. Identifying root causes is critical for
(a) understanding disease mechanisms and (b) discovering drug targets that eliminate disease at its
onset in a biological pathway.

Consider for example the directed graph in Figure 1 (a), where vertices in X represent random
variables and directed edges their direct causal relations; we haveXi → Xj whenXi directly causes
Xj . The lightning bolt in the figure denotes an exogenous perturbation of the root cause X2, such
as a virus, mutation or physical injury. This perturbation in turn affects many downstream variables,
such as {X3, X4}, ultimately causing symptoms {X5, X6} and physicians to label a patient with
a diagnosis D = 1 indicating disease. The causes of D include X1, . . . , X6, but we only seek to
identify the root cause X2 that may lie arbitrarily far upstream from D in the general case.

Identifying root causes is further complicated by the existence of complex disease, where each
patient may have multiple root causes, and root causes may differ between patients even within the
same diagnostic category. The disease may also only affect certain tissues or cells in the body. We
therefore more specifically seek to identify sample-specific root causes, where a sample may denote
an arbitrary unit of granularity such as a patient, tissue or cell. Identifying sample-specific root
causes has the potential to help experimentalists rapidly identify interventions that target the very
beginnings of disease unique to each patient.

The above intuitive idea of a sample-specific root cause nevertheless lacks a rigorous mathe-
matical definition. This in turn hinders the development of principled algorithms designed for their
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Figure 1: The lightning bolt in (a) denotes an exogenous perturbation of X2 that eventually affects
many downstream variables and causes a diagnosis D. In (b), we model the lightning bolt as an
intervention of E2 to the value e2 that impacts the values of all of its descendants and ultimately D.

automated detection. As a result, we explicitly defined sample-specific root causes of disease as
the error terms in a structural equation model that predict a diagnostic label in prior work (Strobl
and Lasko, 2022a). We quantified predictivity using Shapley values. We also proposed methods to
directly extract these error terms both in the linear and non-linear settings via regression residuals
(Strobl and Lasko, 2022a,b). The methods do not require knowledge about the underlying graph
and achieve sample efficiency by bypassing the hard problem of causal graph recovery (Chickering
et al., 2004). These algorithms however rely on the unreasonable assumption that the dataset contain
no unobserved confounders, which we relax in this paper by permitting confounding between the
variables in X .

We specifically make the following contributions in this paper:

• We introduce a strategy for identifying sample-specific root causes with confounding by
extracting the error terms up to contamination by other error terms lying on certain paths.

• We propose an algorithm called Extract Errors with Latents (EEL) that recovers the above
error terms and computes an undirected graph summarizing their statistical dependencies.

• We use the graph to efficiently compute Shapley values of the error terms by averaging
over small neighborhoods of dependence.

Experiments in Section 7 highlight the superiority of EEL relative to existing methods in the pres-
ence of confounding.

2. Structural Equation Models

We can formalize causal inference under the framework of structural equation models (SEMs). An
SEM over a set of p random variables X refers to a set of deterministic equations in the following
form:

Xi = fi(Pa(Xi), Ei), ∀Xi ∈X.

where E denotes a random vector of p mutually independent error terms, and Pa(Xi) ⊆ X the
parents, or direct causes, of Xi. We can equivalently set the equality sign in the above equation to
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algorithmic assignment← in order to emphasize that interventions on Pa(Xi) induce changes in the
marginal probability distribution of Xi.

We can associate an SEM with a directed graph G containing at most one directed edge between
any two variables in X . We have Xi → Xj , when there exists a direct causal relation from Xi ∈
Pa(Xj) to Xj . We always have Ei → Xi in G but only draw the vertices in E and their outgoing
edges when informative. We use the notation PaG(Xj) to emphasize the underlying graph G. A
directed path is sequence of adjacent directed edges. Xi is an ancestor of Xj , and Xj a descendant
of Xi, if a directed path exists from Xi to Xj or Xi = Xj . A directed acyclic graph (DAG)
corresponds to a directed graph without cycles, where Xi is an ancestor of Xj and Xj → Xi with
Xi ̸= Xj . A vertex Xj is a collider on a path if we have Xi → Xj ← Xk on the path. Two
vertices Xi and Xj are d-connected given W \ {Xi, Xj} when there exists a path between Xi and
Xj such that every collider has a descendant in W and no non-collider is in W . The two vertices
are likewise d-separated when they are not d-connected.

An SEM with an associated DAG G can admit a density that factorizes according to the graph:

p(X) =

p∏
i=1

p(Xi|PaG(Xi)).

The above factorization implies that, if Xi and Xj are d-separated given W in G, then the two ver-
tices are also conditionally independent given W , which we denote by Xi ⊥⊥ Xj |W for shorthand
(Lauritzen et al., 1990). D-separation faithfulness refers to the converse: if Xi ⊥⊥ Xj |W , then Xi

and Xj are d-separated given W .
In this paper, we focus on linear SEMs with an associated DAG:

Xi =

p∑
j=1

Xjβji + Ei, ∀Xi ∈X, (1)

comprised of a set of linear equations with coefficient matrix β where βji ̸= 0 if and only if
Xj ∈ PaG(Xi). We assume E(X) = 0 without loss of generality. The equations more specifically
follow a Linear Non-Gaussian Acyclic Model (LiNGAM) when each error term is continuous non-
Gaussian (Shimizu et al., 2006).

Most existing methods also assume that we observe all of the variables in X . We relax this
assumption by dividing X into a set of q observed variables O and a set ofm latent – or unobserved
– common causes L. We can always write the following:

Oi =

q∑
j=1

Ojβji +
m∑
k=1

Lkγki + Ei, ∀Oi ∈ O. (2)

Each Lk must have at least two children, or else we can accommodate Lk into Ei. Without loss
of generality, we may also assume that T = L ∪E denotes a set of mutually independent random
variables with no parents (Hoyer et al., 2008). We refer to Equation (2) as the canonical form.

We can write Equation (2) in matrix notation:

O = Oβ +Lγ +E.

Re-arranging terms yields:

O = (Lγ +E)(I − β)−1 = Eλ+Lγλ = T θ
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where λ = (I − β)−1 is assumed to exist and θ = [λ; γλ]. Notice that T is now ordered such that
Tj = Ej if j ≤ q. The entry θji quantifies the total effect of the latent variable or error term Tj on
Oi.

3. Sample-Specific Root Causes

We consider LiNGAM over X and introduce an additional label D representing a diagnosis; we
haveD = 1 for samples deemed to have a disease, andD = 0 for healthy controls. We then assume
a DAG over X ∪D such that D is a terminal vertex, or a vertex without descendants, and linked to
X via a logistic function:

Assumption 1. D is a terminal vertex such that P(D|X) = logistic(Xβ·D + α).

This is a reasonable assumption because a scientist who seeks to identify the causes of D will
likely use datasets containing measurements of the non-descendants of the diagnosis, such as gene
expression levels, clinical laboratory values or imaging. The logistic link also provides a natural
extension of LiNGAM to handle a noisy binary variable.

We model a sample-specific perturbation first affecting the root cause Xi ∈ X as a change in
the value of its error term Ei. We may write the following for any healthy control:

Xi =

p∑
j=1

Xjβji + ẽi, (3)

where we have set the value of Ei in Equation (1) to ẽi. Suppose however that an exogenous
perturbation – such as a virus, mutation or physical injury – changes the value of Ei from ẽi to
ei. This intervention in turn effects the value of Xi and all of its downstream effects, ultimately
changing the probability of developing disease D = 1 (Figure 1 (b)).

We can quantify the change in the probability of developing disease using logistic regression.
We in particular consider:

f(E) = ln
[
P(D = 1|E)

P(D = 0|E)

]
= Eθ·D + α,

where the last equality follows by Assumption 1. Let v(W ) denote the conditional expectation of
the logistic regression model E(f(E)|W ), initially where W = ∅. We then measure the change in
probability when intervening on Ei via the following difference:

γEiW = v(Ei,W )︸ ︷︷ ︸
(a)

− v(W )︸ ︷︷ ︸
(b)

(4)

We have γeiW > 0 when Ei = ei increases the probability that D = 1 because (a) is larger than
(b).

Expression (4) unfortunately only quantifies the effect of Ei on D in isolation. We however
also want to quantify the joint effect of Ei in conjunction with the other error terms in E \Ei when
W ̸= ∅. We therefore average over all possible combinations of the errors as follows:

Si =
1

p

∑
W⊆(E\Ei)

1(p−1
|W |

)
︸ ︷︷ ︸

Average over all possible combinations of E\Ei

γEiW . (5)
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The quantity corresponds precisely to the well-known Shapley value which, as the reader may recall,
is the only value satisfying the linearity, efficiency, symmetry and null player properties (see e.g.,
(Lundberg and Lee, 2017; Štrumbelj and Kononenko, 2014)). Note that the Shapley “value” is
actually a random variable, but we call it a value based on tradition.

The following result holds:

Proposition 1. Under LINGAM over X and Assumption 1, the Shapley value Si corresponds to the
sample-specific total effect of Ei on D: Si = EiθiD.1

The proof follows directly from Corollary 1 of (Lundberg and Lee, 2017). This justifies the follow-
ing definition of a sample-specific root cause:

Definition 1. Xi ∈ AncG(D) is a sample-specific root cause of disease if Si = si > 0.

In other words, a sample-specific root cause of disease is a variable associated with an error term that
increases the probability that D = 1 as quantified by the Shapley value Si > 0. We do not consider
Si ≤ 0 because Ei decreases the probability that D = 1 (or likewise increases the probability that
D = 0) when Si < 0. Similarly, Ei has no effect on increasing or decreasing the probability that
D = 1 when Si = 0. We have thus arrived at a concise definition of a sample-specific root cause as
a variable associated with a positive Shapley value of its error.

4. Inducing Paths & Terms

The definition of a sample-specific root cause implies that we must develop methods that can accu-
rately extract the error terms in order to compute the Shapley value. We however cannot identify the
error terms E exactly when confounding exists. Consider for example the graph shown in Figure 2,
where we cannot partial out L1 from O1 and O2 because L1 is unobserved.

We can however identify the error terms up to connection by directed inducing paths:

Definition 2. A directed inducing path to Oi is a path between Oi and Tj ∈ T (possibly i = j)
where every collider is an ancestor of Oi and every non-collider is in L.

All colliders are directed to Oi. We only consider directed inducing paths starting from the error
terms or latent variables to Oi. We provide an example in Figure 2. Any error term incident on or
latent variable lying on a directed inducing path to Oi also has a directed inducing path to Oi. Only
Ei lies on a directed inducing path to Oi in the unconfounded setting, but more error terms may
lie on the path when confounding exists. Finally, the above definition corresponds to the directed
analogue of an (undirected) inducing path utilized in constraint-based search with latent variables,
where every collider is an ancestor of either endpoint Oi or Tj (or both) (Spirtes et al., 2000).

The following result elucidates the limits of error term recovery when assessing statistical
independence with regression residuals. Consider the ideal scenario where we have access to
Fj = Ej +

∑
Lk∈PaG(Oj)∩L Lkγkj for each Oj ∈ O, which we collect into the set F . The no-

tation ROiW denotes the residuals of Oi when linearly regressed on W ⊆ F \ Fi.

Lemma 1. Under LiNGAM and d-separation faithfulness, if some entry in W ⊆ F \Fi corresponds
to an observed vertex lying on a directed inducing path to Oi, then ROiW ̸⊥⊥ Fj for some Fj ∈W .

1. If D = Xβ·D + ED is terminal and continuous, then we arrive at the same result when γEiW = E(D|Ei,W ) −
E(D|W ). We focus on a binary target because this is the most common situation encountered by far.
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We delegate proofs to Appendix 9.4. The latent common causes lying on a directed inducing path
to Oi thus ensure that we cannot partial out the error terms incident on the path from Oi in general,
even if we identified all entries in F \ Fi.

We instead focus on identifying the error terms up to connection by a directed inducing path.
Specifically, let Ci ⊆ T denote the set of error terms and latent variables lying on any directed
inducing path to Oi. We consider:

E∗
i = CiθCii, (6)

for each Oi ∈ O. For example, E∗
1 = L1γ11 + E1 and E∗

2 = E1β12 + L1(γ12 + γ11β12) + E2

in Figure 2. This generalizes the unconfounded setting where E∗
i = EiθCii = Ei because we

have Ci = Ei and θEii = 1 in this case. We call the set E∗ the inducing terms. The variable
E∗

i represents a corrupted estimate of the original error term Ei in the sense that E∗
i is a linear

combination of Ei and a small set of error terms and latent variables ancestral to Oi.

5. Extracting Inducing Terms

We now design an algorithm that identifies the inducing terms from the joint distribution of O,
without access to the ground truth DAG. We specifically build upon the DirectLiNGAM and EE
algorithms explicated in Appendices 9.1 and 9.2 to handle cases where L ̸= ∅.

We identify the inducing term of Oj by regressing out as many of its ancestors in T \ Ej as
possible. Let W denote a set of arbitrary linear combinations of error terms and latent variables in
a minimal set S ⊆ T . We have:

Proposition 2. Under LiNGAM, Wi is independent of the residuals ROjW for all Wi ∈W if and
only if Oj can be written as a linear function of W plus a linear function of T \ S. Thus, the
residuals are a linear function of T \ S.

The above proposition suggests that we should design an algorithm that iteratively replaces Oj

with ROjW because ROjW depends on a fewer number of members in T . We can also partial out
ancestors by performing a series of univariate and multivariate regressions, progressively increasing
the conditioning set size of W . We partial out W from Oj once we find a large enough W such
that ROjW ⊥⊥ Oi for all Oi ∈W .

Extract Errors with Latents (EEL) summarized in Algorithm 1 repeats the above procedure for
eachOj ∈ O. EEL proceeds just like EE but with additional steps highlighted in gray for increasing
the conditioning set size. The algorithm first instantiates a complete undirected graph G over O in
Line 1. The graph represents the statistical dependencies between the vertices in each iteration of
the algorithm; G is not the DAG G. The notation AdjG(Oj) refers the observed variables adjacent
to Oj in G. The variable l denotes the size of the set W . EEL gradually increases l until it finds a
set W ⊆ AdjG(Oj) where ROjW ⊥⊥ Oi for all Oi ∈W in Line 9. EEL then partials out W from
Oj and removes the corresponding adjacencies from G in Lines 14-15. The algorithm finally resets
the size of W in Line 16 by assigning l ← 0. This ensures that EEL proceeds with a fresh search
after partialing out W from Oj .

EEL recovers the inducing terms in the oracle setting. We first require a new definition:

Definition 3. A confounding path of Oi is a path between Tj ∈ T and Ok (possibly i = j = k)
where every collider is an ancestor of Oi and every non-collider is in L.
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O1
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Figure 2: Example where we cannot recover E1 and E2 exactly. Also, E1, L1, E2 and O1 each lie
on a directed inducing path to O2.

Algorithm 1 Extract Errors with Latents (EEL)
Input: O
Output: E∗,G

1: G ← complete undirected graph over O
2: l← 0
3: repeat
4: l = l + 1
5: Y ← ∅
6: for all Oj s.t. |AdjG(Oj)| ≥ l do
7: repeat
8: Choose a new W ⊆ AdjG(Oj) s.t. |W | = l
9: if ROjW ⊥⊥ Oi, ∀Oi ∈W then

10: Y ←W ;break
11: end if
12: until all W ⊆ AdjG(Oj) with |W | = l have been considered
13: if Y ̸= ∅ then
14: Partial out Y from Oj

15: Remove Y from AdjG(Oj)
16: l← 0; break
17: end if
18: end for
19: until all vertices satisfy |AdjG(Oj)| < l
20: E∗ ← O

A directed inducing path to Oi must end at Oi, whereas a confounding path of Oi may not end at
Oi. We now formally have:

Theorem 1. Under LiNGAM and d-separation faithfulness, if at most d observed variables lie on a
confounding path of any member of O, then EEL with l ≤ d recovers the inducing terms E∗.

EEL thus partials out variables at each iteration and then discovers all inducing terms by only search-
ing over subsets of variables adjacent in G. In contrast, algorithms that discover causal structure in
the confounded setting, such as the FCI, do not partial out variables but must search over an often
much larger set of variables that lie on sequences of (undirected) inducing paths (Spirtes et al., 2000;
Zhang, 2008).

We must of course perform the necessary regressions and independence tests with n samples
in practice. We assume that the independence test requires O(nlog(n)) time (Even-Zohar, 2020;
Even-Zohar and Leng, 2021) and consider the standard O(n2d + d3) complexity of linear regres-
sion. The outer and innermost loops of EEL iterate over at most

∑d
k=1

(
q−1
k

)
combinations with an
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independence oracle, and the second loop over at most q variables. EEL therefore depends poly-
nomially on the number of variables q because O(q

∑d
k=1

(
q−1
k

)
) = O(qd+1). We conclude that

EEL theoretically takes O(qd+1n2d) time in the oracle setting. However, the independence tests
take longer than linear regression in practice due to the existence of highly optimized linear algebra
libraries, so EEL runs in O(qd+1nlog(n)) time for realistic sample sizes.

6. Causal & Predictive Contributions

We want to quantify the sample-specific total effect of Ei on D, but EEL can only recover the
inducing terms E∗ when confounding exists. The variable E∗

i is a linear combination of Ei and
some of the error terms and latent variables that are ancestors of Oi per Equation (6). The sample-
specific total effect of E∗

i can therefore lie far from that of Ei. Even worse, the abstract quantity E∗
i

may not correspond to any real-world entity that we can manipulate in practice.
We instead seek a unified variable importance measure that (1) identifies the sample-specific

total effects of the error terms when possible and (2) otherwise corresponds to a measure of predic-
tivity rather than causality. The output of EEL must also clearly indicate when (1) or (2) holds.

We in particular consider the following Shapley value as a natural generalization of Equation
(5), where we have replaced E with E∗:

S∗
i =

1

q

∑
W⊆(E∗\E∗

i )

1(q−1
|W |

)γE∗
i W

. (7)

We can gain a deeper understanding of S∗
i using the undirected graph G provided by EEL.

EEL instantiates the graph G over O in Line 1, but the graph summarizes the dependence rela-
tions between the inducing terms E∗ when EEL terminates. We can construct the final form of G
using the sets Ci with the following procedure:

1. Instantiate an empty graph G over E∗;

2. Draw an undirected edge between E∗
i and E∗

j if and only if Ci ∩Cj ̸= ∅ for all pairs {Oi, Oj}.

By construction:

Proposition 3. Two inducing terms are adjacent in G if and only if they involve a common error
term or latent variable.

The graph G therefore implies only small groups of dependent inducing terms. Let B∗
i denote the

inducing terms with corresponding vertices adjacent to E∗
i in G. Consider:

ψk =
q(|B∗

i |−1
k

)
|B∗

i |
.

Let δ denote the vector of coefficients obtained by logistically regressing D on E∗ so that E∗
i δi =

(CiθCii)δi. Then:

Theorem 2. The following relation holds under a linear model: γE∗
i W

= E∗
i δi − E(E∗

i |V )δi,
where W ⊆ (E∗ \ E∗

i ) and V = (B∗
i \ E∗

i ) ∩W , so that:

S∗
i = E∗

i δi −
δi
q

∑
V ⊆(B∗

i \E∗
i )

ψ|V |E(E∗
i |V ). (8)
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In other words, S∗
i = E∗

i δi = EiθiD when G has no adjacencies because E∗
i = Ei and δi = θiD.

S∗
i thus corresponds to Si when Oi has no adjacencies in G and to a measure of predictivity when
Oi has adjacencies in G. Furthermore, S∗ is a unified measure still uniquely satisfying the linearity,
efficiency, symmetry and null player properties.

The above result also implies that we can compute the Shapley value using subsets of B∗
i \ E∗

i

rather than subsets of the much larger set E∗ \E∗
i in Equation (7). We estimate the expectations in

Equation (8) quickly even when q is large, so long as |B∗
i | is small (e.g., |B∗

i | ≤ 10).
If |B∗

i | is also large, then we estimate S∗
i by Monte Carlo, where we sample the error terms with

probabilities obeying the Shapley weights. We first sample K with probability P(K) = 1/|B∗
i |.

We then sample a set V by choosing a random subset of B∗
i \E∗

i with size K = k; in other words,
we sample V with probability 1/

(|B∗
i |−1
k

)
uniformly. We do not need to resort to Monte Carlo for

the vast majority of cases because G is sparse in practice.

7. Experiments

We compared EEL against the following algorithms representing the state of the art:

2. Root Causal Inference (RCI): extracts error terms from the top-down by regressing on root ver-
tices using a localized version of DirectLiNGAM and then computes Shapley values (Strobl and
Lasko, 2022a).

3. Generalized Root Causal Inference (GRCI): extracts error terms from the bottom-up by regress-
ing on parents of sink vertices and then computes Shapley values (Strobl and Lasko, 2022b).

4. Independent Component Analysis (ICA): performs ICA to extract the independent error terms
and ranks variables according to a random forest permutation measure (Lasko and Mesa, 2019).

5. Root Causal Analysis of Outliers (RCAO): defines root causes according to an outlier score
and computes Shapley values using the outlier scores and an estimated DAG (Budhathoki et al.,
2022b).

6. Model Substitution (MS): re-samples the underlying DAG after substituting causal conditionals
in an estimated DAG (Budhathoki et al., 2021).

No existing method accounts for latent variables besides EEL. See Appendix 9.3 for a comprehen-
sive review of related work. We fixed the Type I error rate of EEL to 0.05 and estimated the Shapley
values using MARS regression (Friedman, 1991). We further standardized the data to prevent gam-
ing of the marginal variances (Reisach et al., 2021).

We do not have access to the ground truth Shapley values due to the unknown conditional expec-
tations in Equation (8). We therefore approximated the conditional expectations to high accuracy by
training a committee of ten Linear Model Trees (Quinlan et al., 1992) – a different model class than
MARS – on a sample of one hundred thousand ground truth inducing terms. We otherwise used the
ground truth inducing terms, total causal effects and dependence graph G to compute Equation (8)
for each Oi ∈ O.

Reproducibility. All code and data for reproducing experimental results are available at
https://github.com/ericstrobl/EEL.
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7.1. Synthetic Data

7.1.1. DATA GENERATION

We generated linear structural equation models using the following procedure. We first created
a DAG with p = 15 variables and an expected neighborhood size of two by creating a random
adjacency matrix with independent realizations from a Bernoulli(2/(p−1)) distribution in the upper
triangle portion of the matrix. We then permuted the variable ordering. We chose D uniformly
from the set of vertices without children and at least one parent. We selected 0, 10 or 20% of the
vertices as unobserved confounders provided each had at least two observed children not including
D and no parents. We then replaced the ones in the matrix by independent realizations of a uniform
distribution on [−1,−0.25] ∪ [0.25, 1]. We chose the distribution of each error term by uniformly
sampling from the following set of possibilities: the t-distribution with five degrees of freedom, the
chi-square distribution with three degrees of freedom, and the uniform distribution on −1 to 1. We
finally drew instantiations ofD according to a Bernoulli random variable with probabilities obeying
a logistic function per Assumption 1. We repeated the above procedure 120 times for sample sizes
of one, ten and one hundred thousand and latent variables of 0, 10 and 20%. We therefore generated
a total of 120× 3× 3 = 1080 independent datasets.

7.1.2. EVALUATION CRITERIA

The output of the five algorithms differ, but we can convert the output of each algorithm to a ranked
list of variables. The top ranked variables should correspond to the true root causes with the largest
Shapley values. We therefore first compared the algorithms using rank biased overlap (RBO),
a well-established measure designed to compare two ranked lists of potentially differing lengths
(Webber et al., 2010):

1

n

n∑
k=1

rk∑
i=1

s̃ki |R̂k
1:i ∩Rk

1:i|/i,

where ski denotes the true Shapley value of the variable Oi for sample k, s̃ki =
ski∑rk
i=1 s

k
i

the Shapley

values normalized to sum to one, and rk the total number of root causes for sample k. The notation
Rk

1:i refers to the first i variables in the ranking Rk for sample k. RBO increases monotonically
with depth and weighs top ranks more heavily. The metric equals one when the top ranks coincide
exactly with the true sample-specific root causes sorted in decreasing order by Shapley values, and
zero when no overlap exists. Higher is therefore better.

We also compared the algorithms using the traditional mean squared error (MSE) to the true
Shapley values:

1

nq

n∑
k=1

q∑
i=1

(ŝki − ski )2.

where lower is better. If an algorithm only outputs Shapley values for a subset of variables, then we
set the estimated Shapley values to zero for the excluded subset.

7.1.3. RESULTS

We summarize the RBO results for the synthetic data in Table 2. Bolded values denote the best
performance in each row according to one-sided paired t-tests at a Bonferroni corrected threshold of
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l n EEL RCI GRCI ICA RCAO MS
1,000 0.850 0.918 0.883 0.713 0.652 0.662

0% 10,000 0.962 0.975 0.971 0.779 0.669 0.673
100,000 0.980 0.993 0.992 0.796 0.669 0.670
1,000 0.806 0.859 0.826 0.678 0.574 0.579

10% 10,000 0.931 0.904 0.890 0.738 0.595 0.596
100,000 0.961 0.910 0.899 0.756 0.595 0.592
1,000 0.781 0.784 0.763 0.624 0.479 0.500

20% 10,000 0.892 0.806 0.796 0.677 0.507 0.519
100,000 0.938 0.811 0.800 0.695 0.508 0.517

Table 1: RBO results with the synthetic data. EEL achieved the highest
mean RBO values with larger sample sizes as highlighted in gray.

0.05/6, since we compared a total of six algorithms. We present tables summarizing the MSE and
timing results in Appendix 9.5. RBO and MSE results were similar.

EEL achieved the best performance in terms of both RBO and MSE with confounding once
sample sizes reached ten thousand. The margin continued to widen with increasing sample size
and confounding degree. EEL outperformed the second best algorithm by a 15.6% margin with
n = 100, 000 and l = 20%. EEL therefore requires a sizable number of samples in order to achieve
state of the art performance.

EEL underperformed both RCI and GRCI without confounding. The margin however was small,
and we cannot expect EEL to outperform algorithms explicitly designed for the unconfounded case.
For example, RCI exploits certain local properties in unconfounded LiNGAM to significantly re-
duce the search space. We conclude that EEL remains competitive when no latent common causes
exist.

7.2. Real Data

7.2.1. DIABETES

We ran the algorithms on a real clinical dataset to identify patient-specific root causes of diabetes.
The dataset contains measurements of 8 variables related to the metabolic system among 768 pa-
tients of Pima Indian ancestry (Smith et al., 1988).2 Diabetes is a well-studied disease, so we asked
a physician to generate the ground truth causal graph shown in the Appendix. We derived the val-
ues of the error terms via linear regression on the parents. We chose one to two latent variables
uniformly at random from age and the diabetes pedigree function. The target is a binary diagnostic
label of diabetes.

We summarize the results as averaged over 200 bootstrapped datasets in Figure 3 (a) with al-
gorithms sorted in decreasing order according to mean RBO value. EEL outperformed its nearest
competitor by a 10.7 point RBO margin. EEL also achieved a 57.8% reduction in the MSE. Both
results were significant at a Bonferroni corrected threshold of 0.05/6 by paired t-tests. The algo-
rithm completed in 9.2 seconds on average. We conclude that EEL achieves the best performance
in this dataset.

2. https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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(a) (b)

Figure 3: RBO and MSE results for the (a) diabetes and (b) flow cytometry datasets. Error bars
denote 95% confidence intervals. EEL again achieved the highest RBO and lowest MSE in both
datasets.

7.2.2. FLOW CYTOMETRY

We next ran the algorithms on a real flow cytometry dataset to identify cell-specific root causes.
The dataset from (Sachs et al., 2005) contains measurements of 11 phosphoproteins and phospho-
lipids from 7466 primary human immune system cells across 9 experimental conditions.3 We log-
transformed the data and standardized the samples in each experimental condition as recommended
in (Ramsey and Andrews, 2018). We again derived the values of the error terms via linear regression
on parents using the ground truth causal graph. We chose one to three latent variables uniformly
at random from the options PKA, PKC and PIP3. We passed the mean of one to three observed
variables, also chosen uniformly at random, through a logistic function for the binary target. We
finally repeated the above process 200 times on bootstrapped samples.

We summarize the results in Figure 3 (b). EEL outperformed all other algorithms by at least an
8.3 point margin according to RBO. EEL similarly achieved a 59.3% reduction of the MSE from its
nearest competitor. The algorithm took 64.6 seconds on average. We conclude that both real dataset
results mimic those seen with the synthetic data.

8. Conclusion

We presented a novel algorithm called EEL that recovers the error terms of a structural equation
model up to directed inducing paths. EEL also returns a sparse graph G summarizing the statistical
dependencies between the recovered terms. We used the graph to quickly compute Shapley values,
a unified measure corresponding to the sample-specific total effect when the inducing term E∗

i cor-
responds to its associated error term Ei. Experiments demonstrated considerable improvements in
accuracy relative to existing methods. We conclude that the combination of EEL and Shapley val-
ues offers a principled framework for performing sample-specific root causal inference with latent
variables.

3. https://arxiv.org/src/1805.03108v1/anc/data.txt
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9. Appendix

9.1. DirectLiNGAM

The DirectLiNGAM (DL) algorithm is a well-known method for estimating the error terms assum-
ing LiNGAM and no confounding where X = O (Shimizu et al., 2011). We will build upon DL
in the next section, so we require a deep understanding of the algorithm’s inner workings. More ac-
curate and much faster variants of DL exist (Strobl and Lasko, 2022a), but we present the simplest
version here to emphasize general concepts rather than algorithmic details.

DL capitalizes on the following result:

Proposition 4. (Shimizu et al., 2011) Under LiNGAM and no confounding, Oi is independent of the
residuals ROjOi for all Oj ∈ (O \ Oi) if and only if Oi = Ei. Moreover, partialing out Oi = Ei

from O \Oi generates another LiNGAM model.

All error terms correspond to root vertices, or vertices without ancestors. The algorithm therefore
extracts an error term in each iteration by performing a series of univariate regressions to identify a
root vertex. Partialing out the root vertex then recovers another LiNGAM model with a new set of
root vertices, so DL repeats the process until it recovers all error terms.

We summarize DL in more detail in Algorithm 2. The algorithm calls FindRoot in Line 3,
which we in turn summarize in Algorithm 3. FindRoot regresses each variable Oi ∈ O onto
each variable Oj ∈ (O \ Oi). The algorithm then determines whether the residuals ROjOi and
Oi are independent in Line 5, then vice versa in Line 6, using the independence measure Iij ; the
non-negative measure equals zero if and only if independence holds (Hyvärinen and Smith, 2013).
FindRoot finally identifies the variableOi most independent of its residuals in Line 9, thus bypassing
the need for formal hypothesis testing with a predetermined Type I error rate. DL then removes Oi

from consideration in Line 4 and replaces each Oj by its residuals ROjOi in Line 5. The algorithm
iterates through this process until all variables in O have been replaced by their error terms. DL
therefore ultimately outputs E as desired.

Algorithm 2 DirectLiNGAM (DL)
Input: O
Output: E

1: U ← O
2: repeat
3: G← FindRoot(O,U )
4: U ← U \G
5: (O \G)← partial out G from O \G
6: until U = ∅
7: E ← O

9.2. Integrating Hypothesis Testing

DL unfortunately carries two main shortcomings:

1. The algorithm finds the variable most independent of its residuals in Line 9 of FindRoot. This
process eliminates the need for hypothesis testing but ultimately slows down the algorithm by
requiring that it check all pairs of variables in U in each iteration.
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Algorithm 3 FindRoot
Input: O,U
Output: root G

1: return U if |U | = 1
2: T = 0|U |
3: for i ∈ [|U | − 1] do
4: for j ∈ {i+ 1, . . . , |U |} do
5: Ti = Ti + Iij
6: Tj = Tj + Iji
7: end for
8: end for
9: G← U [argmini Ti]

Algorithm 4 ExtractErrors (EE)
Input: O
Output: E

1: G ← complete undirected graph over O
2: for all Oj s.t. |AdjG(Oj)| > 0 do
3: Y ← ∅
4: repeat
5: Choose a new Oi ∈ AdjG(Oj)
6: if ROjOi ⊥⊥ Oi then
7: Y ← Oi;break
8: end if
9: until all vertices in AdjG(Oj) have been considered

10: if Y ̸= ∅ then
11: Partial out Y from Oj

12: Remove Y from AdjG(Oj)
13: end if
14: end for
15: E ← O

2. DL partials out the effect of each root vertex from all remaining vertices because Equation (1)
implies a linear relation from root vertices to their non-ancestors. We cannot apply this strategy
to the confounded setting because L contains some of the root vertices.

We rectify both of these issues with a new method called Extract Errors (EE) that also assumes no
confounding. EE capitalizes on Lemma 2, a simpler but analogous result to Proposition 4.

We can always find a variable Oi ∈ O where Oi ⊥⊥ ROjW with |W | = 1 in the unconfounded
setting because we observe all root vertices (for instance, W = Oi when Oi is a root vertex). We
therefore set |W | = 1 to focus on univariate regressions. We consider a new algorithm called
Extract Errors (EE) in Algorithm 4. The algorithm first instantiates a complete undirected graph
G over O in Line 1. EE then uses hypothesis testing to identify the variable Oi ∈ AdjG(Oj)
independent of the residuals ROjOi in Line 6. Subsequently, EE partials out Oi from Oj in Line
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11 and eliminates the corresponding adjacency from G in Line 12. The algorithm terminates once
G contains no adjacencies – i.e., once EE partials out all ancestral relationships. The correctness of
EE follows as a corollary of Theorem 1:

Corollary 1. Under LiNGAM and d-separation faithfulness, if no confounding exists, then EEL
with l ≤ 1 recovers the error terms E.

Line 6 represents the key step of EE because it allows the algorithm to select the first Oi

inducing residuals independent of some Oj ∈ (O \ Oi), as opposed to all Oj ∈ (O \ Oi)
like in DL. EE can therefore quickly partial out a variable even if it is not a root vertex in
Line 11. This property will come in handy when we introduce confounders because we may
not observe a root vertex when confounders exist.

9.3. Related Work

EEL is closely related to several lines of work. Lasko and Mesa (2019) proposed a methodology of
extracting the error terms of an SEM using ICA, although the authors did not connect the approach
to causality. We previously proposed methods for identifying sample-specific root causes in the
linear and non-linear settings (Strobl and Lasko, 2022a,b). All of these methods however assume
no confounding, whereas EEL accounts for unobserved variables by recovering inducing terms.

Our work is more broadly related to a suite of root causal analysis methodologies that identify
sample-specific root causes in industrial or healthcare applications (Andersen and Fagerhaug, 2006;
Wu et al., 2008). However, these methods take a painstaking manual approach that either implicitly
or explicitly generates the underlying causal graph. Most strategies also focus on identifying human
errors in man-made systems with well-understood causal processes. We on the other hand focus on
identifying biological errors in nature or, more generally, errors where the underlying causal process
is largely unknown and difficult to understand.

Other computational approaches also exist for identifying root causes, but they again assume
a known or estimated causal graph. For example, a recent paper introduced a method called Root
Causal Analysis of Outliers (RCAO) that considers the root causes of outlier events (Budhathoki
et al., 2022b). RCAO however assumes that the user can recover the error terms even in the con-
founded setting. The algorithm also redraws the values of the error terms and therefore identifies
root causes at the population rather than at the sample-specific level. Finally, RCAO assumes that
the label corresponds to an outlier event with a noiseless cut-off, even though the cut-off score for
a diagnosis is noisy because it depends on the diagnostician in practice. The Model Substitution
(MS) method proposed in (Budhathoki et al., 2021) makes similar assumptions. Another strategy
allows a noisy cut-off score but requires paired rather than more widely available case control data
(Budhathoki et al., 2022a). EEL instead (1) utilizes case control data, (2) discovers the error terms
directly without recovering or accessing the underlying causal graph, (3) identifies root causes at the
sample-specific level and (4) allows a noisy diagnostic label with the logistic link. EEL is therefore
more suitable for the biomedical setting with complex disease.
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9.4. Proofs

Lemma 2. (Darmois-Skitovitch) Suppose we can represent two random variables O1 and O2 as
linear combinations of the mutually independent terms in T :

O1 =

p∑
i=1

Tiθi1 and O2 =

p∑
i=1

Tiθi2.

If some Tj for which θj1θj2 ̸= 0 is non-Gaussian, then O1 and O2 are dependent.

Let W denote a set of arbitrary linear combinations of error terms and latent variables in a
minimal set S ⊆ T for the proposition below.

Proposition 2. Under LiNGAM, Wi is independent of the residuals ROjW for all Wi ∈W if and
only if Oj can be written as a linear function of W plus a linear function of T \ S. Thus, the
residuals are a linear function of T \ S.

Proof. For the forward direction, if Wi ⊥⊥ ROjW for all Wi ∈W , then Wi and ROjW are linear
combinations of non-overlapping subsets of T for all Wi ∈W by Lemma 2 under LiNGAM. This
implies that ROjW is a linear function of T \S, so Oj must be a linear function of W plus a linear
function of T \ S. For the backward direction, if Oj can be written as a linear function of W plus
a linear function of T \ S, then ROjW is a linear function of T \ S only under LiNGAM. Hence
Wi ⊥⊥ ROjW for all Wi ∈W .

Lemma 3. (Strobl, 2019) Under d-separation faithfulness, there exists an inducing path between
Xi and Xj if and only if Xi ̸⊥⊥ Xj |W for all W ⊆ O \ {Xi, Xj}.

Lemma 1. Under LiNGAM and d-separation faithfulness, if some entry in W ⊆ F \Fi corresponds
to an observed vertex lying on a directed inducing path to Oi, then ROiW ̸⊥⊥ Fj for some Fj ∈W .

Proof. Let Fk ∈W denote an entry lying on a directed inducing path to Oi. The directed inducing
path Π must contain at least one non-collider in L, lest Π induce a cycle in the DAG. Let Lr

denote one such non-collider that is also a latent parent of Ok. Let A ⊆ O contain the observed
ancestors of Oi also corresponding to entries in W . For example, A includes Ok because Ok

is an ancestor of Oi, and Fk ∈ W . Note that Ek + Lrγrk is an additive component of Fk and
EkθEki + LrθLri = EkθEki + Lr(γrAθEAi + δ) is an additive component of Oi by d-separation
faithfulness. Assume δ = 0 so that θLri = γLrAθEAi. But then Lr ⊥⊥ Oi|A which contradicts the
fact that Lr ̸⊥⊥ Oi|A by the existence of an inducing path between Lr and Oi according to Lemma
3 under d-separation faithfulness. We thus have δ ̸= 0. But then we cannot partial out all of the
entries in W corresponding to A from Oi, so ROiW ̸⊥⊥ Fj for some Fj ∈W .

Theorem 1. Under LiNGAM and d-separation faithfulness, if at most d observed variables lie on a
confounding path of any member of O, then EEL with l ≤ d recovers the inducing terms E∗.

Proof. We prove the statement by induction. Base: suppose that only one vertex exists in O. Then
E∗

i = Ei = Oi, so EEL terminates with E∗
i = Oi.

Step: suppose that EEL recovers E∗, when there are q variables in O. We need to prove the
statement when there are q + 1 variables in O. Without loss of generality, choose Oq+1 such that
it is either an observed root vertex or a child of only an error term and latent variables so that
Oq+1 = E∗

q+1 = Fq+1. We have two cases for any descendant Ol of Oq+1:

18



EXTRACT ERRORS WITH LATENTS

• Eq+1 lies on a directed inducing path to Ol. EEL cannot partial out Oq+1 from Ol by Line 9 and
Lemma 1.

• Eq+1 does not lie on a directed inducing path to Ol. Consider the largest set U ⊆ L lying on
a confounding path of Ol from Eq+1, where every collider is an ancestor of Ol and every non-
collider is in L (the path may however not end at Ol). The at most d children of U ∪Eq+1 on the
path are all ancestors of Ol. Now place these observed children in Y . Then EEL partials out Y
from Ol in Line 14 when l ≤ d.

We choseOl as an arbitrary descendant ofOq+1, so we may repeat the above process for all descen-
dants of Oq+1.

Next, for each Om that is a child of Oq+1, set Em ← Em + Eq+1β(q+1)m and set γkm ←
γkm + γk(q+1)β(q+1)m for each Lk ∈ Pa(Oq+1) ∩ L. We finally eliminate Oq+1. The conclusion
follows by the inductive hypothesis.

Corollary 1. Under LiNGAM and d-separation faithfulness, if no confounding exists, then EEL
with l ≤ 1 recovers the error terms E.

Proof. At most one observed variable lies on a confounding path of Oi – that is, only Oi itself –
so invoke Theorem 1 with d = 1. Observe further that Ei is the only member of T that lies on a
directed inducing path to any Oi ∈ O. As a result, EEL with l = 1 recovers E∗

i = Ei for any
Oi ∈ O.

Theorem 2. The following relation holds under a linear model: γE∗
i W

= E∗
i δi − E(E∗

i |V )δi,
where W ⊆ (E∗ \ E∗

i ) and V = (B∗
i \ E∗

i ) ∩W , so that:

S∗
i = E∗

i δi −
δi
q

∑
V ⊆(B∗

i \E∗
i )

ψ|V |E(E∗
i |V ).

Proof. We may write the following sequence for γE∗
i W

, where W = (E∗ \ E∗
i ) \W and V =

(B∗
i \ E∗

i ) ∩W :

E[f(E∗)|W ] =

∫
f(W ,w)p(w|W ) dw

=

∫ ( ∑
e∗i∈W

e∗i δi +
∑

E∗
i ∈W

E∗
i δi

)
p(w|W ) dw

=
∑

E∗
i ∈W

δi

∫
e∗i p(e

∗
i |W ) de∗i +

∑
E∗

i ∈W
E∗

i δi

∫
p(W ) dW

=
∑

E∗
i ∈W

δiE(E∗
i |V ) +

∑
E∗

i ∈W
E∗

i δi.

We finally arrive at γE∗
i W

by subtraction:

E[f(E∗)|E∗
i ,W ]− E[f(E∗)|W ] = E∗

i δi − E(E∗
i |V )δi.
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For S∗
i , we multiply (1) the number of sets V ⊆ (B∗

i \ E∗
i ) with |V | = k by (2) the Shapley

weights to obtain: (
|B∗

i | − 1

k

) q−|B∗
i |∑

j=0

(
q − |B∗

i |
j

)
︸ ︷︷ ︸

(1)

1(
q−1
j+k

)︸ ︷︷ ︸
(2)

=
q

|B∗
i |
.

We identify (1) by choosing k elements from B∗
i \ E∗

i and then choosing the remaining elements
from (E∗ \ E∗

i ) ∪ (B∗
i \ E∗

i ). The equality follows by applying the creative telescoping algorithm
(Zeilberger, 1991). We then have:

S∗
i = E∗

i δi −
δi
q

|B∗
i |−1∑
k=0

∑
V ⊆(B∗

i \E∗
i )

|V |=k

ψkE(E∗
i |V ),

whence the conclusion follows.

9.5. Additional Results

We refer to Table 2. EEL never came in first or last in terms of timing. The mean time increased most
notably with sample size but remained within O(nlog(n)) as expected per the complexity analysis
in Section 5. EEL only suffered a modest increase in time with higher degrees of confounding. We
conclude that sample size drove most of the runtime of EEL in our experiments.

9.6. Diabetes Graph

age pedigree

preg BMI

BP

glucose

insulinskin

Figure 4: Insulin also causes glucose, but this introduces a cycle. We hypothesize that the direction
insulin→ glucose is better modeled as a mixture distribution for patients with type II diabetes versus
healthy controls.

20



EXTRACT ERRORS WITH LATENTS

l n EEL RCI GRCI ICA RCAO MS
1,000 0.027 0.008 0.013 0.199 0.566 0.206

0% 10,000 0.002 0.001 0.001 0.193 0.250 0.209
100,000 0.006 0.000 0.000 0.189 0.191 0.209
1,000 0.075 0.050 0.063 0.268 0.686 0.280

10% 10,000 0.010 0.032 0.033 0.260 0.323 0.284
100,000 0.005 0.032 0.035 0.256 0.266 0.286
1,000 0.147 0.159 0.180 0.407 1.015 0.422

20% 10,000 0.047 0.137 0.147 0.399 0.491 0.427
100,000 0.023 0.140 0.142 0.394 0.408 0.432

(a) MSE

l n EEL RCI GRCI ICA RCAO MS
1,000 2.686 0.031 0.228 0.872 2.396 0.611

0% 10,000 14.29 0.238 22.90 13.60 15.12 6.206
100,000 89.21 2.382 160.84 521.0 480.7 48.17
1,000 2.294 0.033 0.193 0.268 2.580 0.588

10% 10,000 14.45 0.280 16.34 0.260 13.56 5.506
100,000 96.68 3.143 93.77 213.7 424.4 41.52
1,000 1.798 0.035 0.131 0.407 2.264 0.521

20% 10,000 13.71 0.306 11.86 0.399 11.91 5.158
100,000 114.2 3.242 79.38 177.7 392.0 36.96

(b) Time in seconds

Table 2: Results with the synthetic datasets in terms of mean (a) MSE and (b) time in seconds. EEL
achieved the lowest MSE mean values with enough samples as highlighted in gray. However, EEL
took more time to complete than RCI.
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