
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A BI-METRIC FRAMEWORK FOR EFFICIENT NEAREST
NEIGHBOR SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a new “bi-metric” framework for designing nearest neighbor data
structures. Our framework assumes two dissimilarity functions: a ground-truth
metric that is accurate but expensive to compute, and a proxy metric that is cheaper
but less accurate. In both theory and practice, we show how to construct data
structures using only the proxy metric such that the query procedure achieves the
accuracy of the expensive metric, while only using a limited number of calls to both
metrics. Our theoretical results instantiate this framework for two popular nearest
neighbor search algorithms: DiskANN and Cover Tree. In both cases we show that,
as long as the proxy metric used to construct the data structure approximates the
ground-truth metric up to a bounded factor, our data structure achieves arbitrarily
good approximation guarantees with respect to the ground-truth metric. On the
empirical side, we apply the framework to the text retrieval problem with two
dissimilarity functions evaluated by ML models with vastly different computational
costs. We observe that for almost all the large data sets in the BEIR benchmark,
our approach achieves a considerably better accuracy-efficiency tradeoff than the
alternatives, such as retrieve-then-rerank.

1 INTRODUCTION

Similarity search is a versatile and popular approach to data retrieval. It assumes that the data items
of interest (text passages, images, etc.) are equipped with a distance function, which for any pair
of items estimates their similarity or dissimilarity Then, given a “query” item, the goal is to return
the data item that is most similar to the query. From the algorithmic perspective, this approach is
formalized as the nearest neighbor search (NN) problem: given a set of n points P in a metric space
(X,D), build a data structure that, given any query point q ∈ X , returns p ∈ P that minimizes
D(p, q) . In many cases, the items are represented by high-dimensional feature vectors and D is
induced by the Euclidean distance between the vectors. In other cases, D(p, q) is computed by a
dedicated procedure given p and q (e.g., by a cross-encoder).

Over the last decade, mapping data items to feature vectors, or estimation of similarity between pairs
of data items, is often done using ML models. (In the context of text retrieval, the first task is achieved
by constructing bi-encoders (Karpukhin et al., 2020; Neelakantan et al., 2022; Gao et al., 2021b;
Wang et al., 2024), while the second task uses cross-encoders (Gao et al., 2021a; Nogueira et al.,
2020; Nogueira & Cho, 2020)). This creates efficiency bottlenecks, as high-accuracy models are often
larger and slower, while cheaper models do not achieve the state-of-the-art accuracy. Furthermore,
high-accuracy models are often proprietary and accessible only through a limited interface at a
monetary cost. This motivates studying “the best of both worlds” solutions which utilize many types
of models to achieve favorable tradeoffs between efficiency, accuracy and flexibility.

One popular method for combining multiple models is based on retrieve-then-rerank (Liu et al.,
2009). It assumes two models: one model evaluating the metric D, which has high accuracy but is
less efficient; and another model computing a “proxy” metric d, which is cheap but less accurate.
The algorithm uses the second model (d) to retrieve a large (say, k = 1000) number of data items
with the highest similarity to the query, and then uses the first model (D) to select the most similar
items. The hyperparameter k controls the tradeoff between the accuracy and efficiency. To improve
the efficiency further, the retrieval of the top-k items is typically accomplished using approximate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

nearest neighbor data structures. Such data structures are constructed for the proxy metric d, so they
remain stable even if the high-accuracy metric D undergoes frequent updates.

Despite its popularity, the retrieve-then-rerank approach suffers from several issues:

1. The overall accuracy is limited by the accuracy of the cheaper model. To illustrate this phenomenon,
suppose that D defines the “true” distance, while d only provides a “C-approximate” distance,
i.e., that the values of d and D for the same pairs of items differ by at most a factor of C > 1.
Then the re-ranking approach can only guarantee that the top reported item is a C-approximation,
namely that its distance to the query is at most C times the distance from the query to its true
nearest neighbor according to D. This occurs because the first stage of the process, using the
proxy d, might not retain the most relevant items.

2. Since the set of the top-k items with respect to the more accurate model depends on the query,
one needs to perform at least a linear scan over all k data items retrieved using the proxy metric d.
This computational cost can be reduced by decreasing k, but at the price of reducing the accuracy.

Our results We show that, in both theory and practice, it is possible to combine cheap and expensive
models to achieve approximate nearest neighbor data structures that inherit the accuracy of expensive
models while significantly reducing the overall computational cost. Specifically, we propose a
bi-metric framework for designing nearest neighbor data structures with the following properties:
(1) The algorithm for creating the data structure uses only the proxy metric d, making it efficient to
construct. (2) The algorithm for answering the nearest neighbor query leverages both models, but
performs only a sub-linear number of evaluations of d and D. (3) The data structure achieves the
accuracy of the expensive model.

For a more formal description of the framework, see Preliminaries (Section 2).

The simplest approach to constructing algorithms that conform to our framework is to construct the
data structure using the proxy metric d, but answer queries using the accurate metric D; we also
propose more complex solutions with better performance. Our approach is quite general, and is
applicable to any approximate nearest neighbor data structure for general metrics. Our theoretical
study analyzes the simple approach when applied to two popular algorithms: DiskANN (Jayaram Sub-
ramanya et al., 2019) and Cover Tree (Beygelzimer et al., 2006), under natural assumptions about the
intrinsic dimensionality of the data, as in Indyk & Xu (2023). Perhaps surprisingly, we show that
despite the fact that only the proxy d is used in the indexing stage, the query answering procedure
essentially retains the accuracy of the ground truth metric D.

Formally, we show the following theorem statement. We use λd to refer to the doubling dimension
with respect to metric d (a measure of intrinsic dimensionality, see Definition 2.2).
Theorem 1.1 (Summary, see Theorems 3.3 and B.3). Given a dataset X of n points, Alg ∈
{DiskANN,Cover Tree}, and a fixed metric d, let SAlg(n, ε, λd) and QAlg(ε, λd) denote the space
and query complexity respectively of the standard datastructure for Alg which reports a 1+ ε nearest
neighbor in X for any query (all for a fixed metric d).

Consider two metrics d and D satisfying Equation 1. Then for any Alg ∈ {DiskANN,Cover Tree},
we can build a corresponding datastructure DAlg on X with the following properties:

1. When constructing DAlg, we only access metric d,
2. The space used by DAlg can be bounded by Õ(SAlg(n, ε/C, λd))

1,
3. Given any query q, DAlg invokes D at most Õ(QAlg(ε/C, λd)) times,
4. DAlg returns a 1 + ε approximate nearest neighbor of q in X under metric D.

The proof of the theorem crucially uses the properties of the underlying graph-based data structures. In
Appendix F we theoretically show that such a result is impossible to achieve for another popular family
of nearest neighbor algorithms based on locality sensitive hashing (and other similar methods). Thus
our work further highlights the power of graph-based methods, both theoretically and empirically.

To demonstrate the practical applicability of the bi-metric framework, we apply it to the text retrieval
problem. Here, the data items are text passages, and the goal is to retrieve a passage from a large

1Õ hides logarithm dependencies in the aspect ratio.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

collection that is most relevant to a query passage. We instantiated our framework with the DiskANN
algorithm. We use a lower-quality “bge-micro-v2” embedding model (AI, 2023) to define the metric
d; the value of d(p, q) is defined by the Euclidean distance between the embeddings of p and q. The
high-quality model D is defined by one of the following two settings: (1) The SFR-Embedding-
Mistral embedding model (Meng et al., 2024), where the metric is defined as the Euclidean distance
between embeddings, and (2) The Gemini-2.0-Flash large language model. Here, we use the fact that
graph-based algorithms for nearest neighbor search do not require the values D(p, q) per se, but only
use comparisons between D(q, p) and D(q, s). We implement these comparisons by querying the
model with a query q and a list of points {p1, p2, ...pn} to obtain their relative order via the model
API, where the list of points is generated by our algorithm.

In all the cases, the complexities of the high-quality model are much higher than that of the low-
quality model. In the first setting, embedding a single passage takes 0.00043 seconds when using
bge-micro-v2 compared to 0.13 seconds when using SFR-Embedding-Mistral, making the second
model >300 times slower. In the second setting, bge-micro-v2 embeddings are computed locally,
while the comparisons involving the high-quality metric require calls to Gemini-2.0-Flash API, at a
cost of roughly 0.01 cents per distance evaluation, amounting to a total of $1000 to reproduce the
experimental results in Figure 2.

We evaluated the retrieval quality of our approach on a benchmark collection of 6 large (i.e., of size
≥ one million) BEIR retrieval data sets Thakur et al. (2021). In each experiment we compared our
algorithm to the standard the re-ranking approach, which retrieves the closest data items to the query
with respect to d and re-ranks using D. We observe that in almost all settings, our approach achieves
a considerably better accuracy-efficiency tradeoff than re-ranking. For example, in Gemini-2.0-Flash
experiments, on average, our algorithm achieves the same retrieval accuracy as re-ranking using only
≈ 200 calls to the Gemini API, compared with ≈ 800 calls by re-ranking, a 4x reduction (Figure 2).

Related Work As described in the introduction, a popular method for utilizing a cheap metric d and
expensive metric D in similarity search is based on "filtering" or “re-ranking”. The idea is to use d to
construct a (long) list of candidate answers, which is then filtered using D. It is a popular approach in
many applications, including recommendation systems (Liu et al., 2022) and computer vision (Zhong
et al., 2017). Due to the popularity of this method, we use it as a baseline in our experiments.

In addition to the re-ranking method, multiple other papers proposed different methods for combining
accurate and cheap metrics to improve similarity search and related problems. We discuss those
papers in more detail below. We note that, with the exception of Moseley et al. (2021); Silwal et al.
(2023); Bateni et al. (2024), those methods do not appear to come with provable correctness or
efficiency guarantees, or generally applicable frameworks (in contrast to the proposal in this paper).
Furthermore, the three aforementioned papers (Moseley et al., 2021; Silwal et al., 2023; Bateni et al.,
2024) focus on various forms of clustering, not on similarity search. The paper Moseley et al. (2021)
is closest to our work, as it uses approximate nearest neighbor as a subroutine when computing the
clustering. However, their algorithm only achieves the (lower) accuracy of the cheaper model, while
our algorithms retains the (higher) accuracy of the expensive one.

There are also several other empirical works on similarity search that combine cheap and expensive
metrics, none of which fully capture our framework to the best of our knowledge. The aforementioned
paper Jayaram Subramanya et al. (2023) describes (in section 3.1) an optimization which uses
the ground truth metric D during the indexing phase, and proxy metric d, obtained via product
quantization Jegou et al. (2010) during the search phase. In contrast, our framework uses D during
the search phase and d during indexing. This difference seems crucial to our ability of providing
strong approximation guarantees for the reported points. In another paper Chen et al. (2023), the
authors use the proxy metric d obtained by “sketching” D during the query answering phase, in order
to prune some points from the search queue without resorting to computing D. However, the data
structure index is still constructed using the expensive metric D, as opposed the proxy metric d as
in our framework, which makes preprocessing more expensive in terms of space and time. Finally,
Morozov & Babenko (2019) present a method for constructing a similarity graph with respect to
an approximate distance function derived from a complex one; during the query phase the graph is
explored using a more complex relevance function. However, their algorithm uses specific proxy
metric derived from the expensive one; in contrast, our framework allows arbitrary distance functions

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

d and D, as long as the distortion C between them is bounded. We discuss further related work
pertaining to graph-based algorithms for similarity search in Appendix A.

2 PRELIMINARIES

Nearest neighbor search We first consider the standard formulation of exact nearest neighbor
search. Here, we are given a set of points P , which is a subset of the set of all points X (e.g.,
X = Rd). In addition, we are given access to a metric function D that, for any pair of points p, q ∈ X
returns the dissimilarity between p and q. The goal of the problem is to build an index structure that,
given a query point q ∈ X , returns p∗ ∈ P such that p∗ = arg minp∈PD(q, p). The formulation is
naturally extended to more general settings, such as:

• (1 + ε)-approximate nearest neighbor search, where the goal is to find any p∗ ∈ P such that
D(q, p∗) ≤ (1 + ε)minp∈P D(q, p).

• k-nearest neighbor search, where the goal is to find the set of k nearest neighbors of q in P with
respect to D. If the algorithm returns a set S′ of size k different than the set S of true k nearest
neighbor, the answer quality is measured via Recall or NDCG score (Järvelin & Kekäläinen, 2002).

Bi-metric framework

In our framework, we assume that we are given two metrics over X:
• The ground truth metric D, which for any pair of points p, q ∈ X returns the “true”

dissimilarity between p and q. The metric D plays the same role as in the standard nearest
neighbor search problem.

• The proxy metric d, which provides a cheap approximation to the ground truth metric.
Objective: return nearest neighbors with respect to the expensive metric D; the metric d is
used as a proxy, in order to minimize the number of calls to the expensive metric D.

Cost model: We assume that the algorithm for constructing the data structure can use
the proxy metric d, but not the ground truth metric D. On the other hand, the algorithm
for answering a query q has access to both metrics. However, the complexity of the query-
answering procedure is measured by counting only the number of evaluations of the expensive
metric D.

As described in the introduction, the above formulation is motivated by the following considerations:

• In many scenarios, evaluating the ground truth metric D can be very expensive, due to factors such
as model size or monetary costs associated with querying proprietary models from industry. For
example, a typical call to Gemini-2.0-Flash costs roughly 0.01 cents per distance evaluation. For
SFR-Embedding-Mistral (Meng et al., 2024), it takes an A100 gpu around 196 hours to compute
the embeddings of 5 million passages from the HotpotQA dataset and these embeddings occupy
83GB of disk storage; meanwhile, using the cheap model bge-micro (AI, 2023), computing these
embeddings only takes 0.62 hours and 7GB of disk storage. (As a comparison, the graph index size
of 5 million points occupies roughly 1GB of disk storage.) Therefore, our cost model for the query
answering procedure only accounts for the number of expensive evaluations.

• In other settings, a cheap proxy metric d can be obtained by approximating the ground truth metric
D, i.e., by using product quantization (Jegou et al., 2010).

• In applications that use similarity search data structures in model training, the metric D can change
after each model update, necessitating re-computing embeddings and the search index over the
entire database. Since this is expensive, some works (e.g., Borgeaud et al. (2022)) freeze the
parts of the model that compute embeddings to avoid the computational cost of updating the data
structure. Our framework offers an alternative approach, where one constructs a stable index for
a proxy d using frozen embeddings, but uses the up-to-date model to compute the ground-truth
metric D when answering nearest neighbor queries.

Design approach: On a high-level, the algorithms studied in this paper follow the same design
pattern. Specifically, we use a graph-based nearest neighbor search algorithm, which uses calls to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a metric as a black box, as a starting point. During preprocessing, the algorithm uses the proxy
metric d. However, during the query phase, the algorithm makes calls to the accurate metric D. We
show that, despite this “metric switch”, the resulting algorithm can report provably accurate nearest
neighbors with respect to the accurate metric D. This basic approach is then modified to achieve better
performance, in theory and in practice. We apply this design approach to two popular graph-based
algorithms: DiskANN and Cover Tree, but in principle any other graph-based algorithm can also
be used. (We choose these two algorithms because both have provable correctness & performance
guarantees, making it possible for us to obtain provable guarantees for our methods as well.)

Assumptions about metrics: Clearly, if the metrics d and D are not related to each other, the data
structure constructed using d alone does not help with the query retrieval. Therefore, we assume that
the two metrics are related through the following definition.

Definition 2.1. Distance function d is a C-approximation2 of D if for all x, y ∈ X , d(x, y) ≤
D(x, y) ≤ C · d(x, y). (1)

For a fixed metric d and any point p ∈ X , radius r > 0, we use B(p, r) to denote the ball with radius
r centered at p, i.e. B(p, r) = {q ∈ X : d(p, q) ≤ r}. In our paper, the notion of doubling-dimension
is central. It is a measure of intrinsic dimensionality of datasets which is popular in analyzing high
dimensional datasets, especially in the context of nearest neighbor search algorithms (Gupta et al.,
2003; Krauthgamer & Lee, 2004; Beygelzimer et al., 2006; Indyk & Naor, 2007; Har-Peled & Kumar,
2013; Narayanan et al., 2021; Indyk & Xu, 2023).

Definition 2.2 (Doubling Dimension). X has doubling dimension λd with respect to metric d if for
any p ∈ X , and radius r > 0, X ∩B(p, 2r) can be covered by at most 2λd balls with radius r.

For a metric d, ∆d is the aspect ratio of the input set: the ratio between the diameter and closest pair.
Note that both Definition 2.1 and 2.2 are only theoretical analysis. Our experimental results verify
the advantage of our bi-metric framework without any assumptions; see Section 4.

3 THEORETICAL ANALYSIS

We instantiate our bi-metric framework for two popular nearest neighbor search algorithms: DiskANN
and Cover Tree. We note that, if we treat the proxy data structure as a black box, we can only guarantee
that it returns a C-approximate nearest neighbor with respect to D. Our theoretical analysis overcomes
this, and shows that calling D a sublinear number of times in the query phase (for DiskANN and
Cover Tree) allows us to obtain arbitrarily accurate neighbors for D.

At a high level, the unifying theme of the algorithms that we analyze is that they both crucially use
the concept of a net: given a parameter r, a r-net is a small subset of the dataset guaranteeing that
every data point is within distance r to the subset in the net. Both algorithms (implicitly or explicitly),
construct nets of various scales r which help route queries to their nearest neighbors in the dataset.
The key insight is that a net of scale r for metric d is also a net under metric D, but with the larger
scale Cr. Thus, if we construct smaller nets for metric d, they can also function as nets for the
expensive metric D. Theoretically, this is where the advantage of our method comes from, but care
must be taken to formalize the intuition.

We remark that the intuition we gave clearly does not generalize for nearest neighbor algorithms
which are fundamentally different, such as locality sensitive hashing. In fact, in Appendix F we
theoretically show that such a result is impossible to achieve for LSH. We present the analysis of
DiskANN below. The analysis of Cover Tree is more complex, and hence deferred to Appendix B.

Preliminaries for DiskANN. First, some helpful background is given. First we only deal with
a single metric d. We first need the notion of an α-shortcut reachability graph. Intuitively, it is an
unweighted graph G where the vertices correspond to points of a dataset X such that nearby points
(geometrically) are close in graph distance. The main analysis of Indyk & Xu (2023) shows that (the
‘slow preprocessing version’ of) DiskANN outputs an α-shortcut reachability graph (Theorem A.1).

2Please see Section 4 and Figure 5 for empirical estimates of C = D/d. For all datasets, C = O(1) for
most pairs, justifying the use of this assumption.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 3.1 (α-shortcut reachability Indyk & Xu (2023)). Let α ≥ 1. We say a graph G = (X,E)
is α-shortcut reachable from a vertex p under a given metric d if for any other vertex q, either
(p, q) ∈ E, or there exists p′ s.t. (p, p′) ∈ E and d(p′, q) · α ≤ d(p, q). We say a graph G is
α-shortcut reachable under metric d if G is α-shortcut reachable from any vertex v ∈ X .

Given an α-reachability graph on dataset X and a query q, Indyk & Xu (2023) show that the greedy
search procedure of Algorithm 1 (given in Appendix A) finds accurate nearest neighbor of q in X .

Theorem 3.2 (Indyk & Xu (2023)). For ε ∈ (0, 1), there exists an Ω(1/ε)-shortcut reachable graph
index for a metric d with max degree Deg ≤ (1/ε)O(λd) log(∆d) (guaranteed by Theorem A.1). For
any query q, Algorithm 1 on this graph index finds a (1+ ε) nearest neighbor of q in X (under metric
d) in S ≤ O(log(∆d)) steps and makes at most S · Deg ≤ (1/ε)O(λd) log(∆d)

2 calls to d.

We are now ready to state the main theorem of this section.

Theorem 3.3. Let QDiskAnn(ε,∆d, λd) = (1/ε)O(λd) log(∆d)
2 denote the query complexity of the

DiskANN data structure3, where we build and search using the same metric d. Consider two metrics d
and D satisfying Equation 1. Suppose we build an C/ε-shortcut reachability graph G using Theorem
A.1 for metric d, but search using metric D in Algorithm 1 for a query q with L = 1. Then:

1. The space used by G is at most n · (C/ε)O(λd) log(∆d).
2. Running Algorithm 1 using D finds a 1 + ε nearest neighbor of q in the dataset X (under D).
3. On any query q, Algorithm 1 invokes D at most QDiskAnn(ε/C,C∆d, λd).

To prove the theorem, we first show that a shortcut reachability graph of d is also a shortcut reachability
graph of D, albeit with slightly different parameters, with a proof in Appendix C.

Lemma 3.4. Suppose metrics d and D satisfy relation (1). Suppose G = (X,E) is α-shortcut
reachable under d for α > C. Then G = (X,E) is an α/C-shortcut reachable under D.

Proof of Theorem 3.3. By Lemma 3.4, the graph G = (X,E) constructed for metric d is also
a O(1/ε) reachable for the other metric D. Then we simply invoke Theorem 3.2 for a (1/ε)-
reachable graph index for metric D with degree limit Deg ≤ (C/ε)O(λd) log(∆d) and the number
of greedy search steps S ≤ O(log(C∆d)). Thus the total number of D distance call bounded by
(C/ε)O(λd) log(C∆d)

2 ≤ QDiskAnn(ε/C,C∆d, λd). This proves the accuracy bound as well as the
number of calls we make to metric D during the greedy search procedure of Algorithm 1. The space
bound follows from Theorem A.1, since G is a C/ε-reachability graph for metric d.

4 EXPERIMENTS

The starting point of our implementation is the DiskANN based algorithm from Theorem 3.3, which
we engineer to optimize performance4. We compare it to two other methods on all large BEIR
retrieval tasks (Thakur et al., 2021), i.e., for datasets with corpus size > 106, see below.

Methods We evaluate the following methods. Q denotes the query budget, i.e., the maximum number
of calls an algorithm can make to D during a query. We vary Q in our experiments.
• Bi-metric (our method): We build a graph index with the cheap distance function d (we discuss our
choice of graph indices in the experiments shortly). Given a query q, we first search for q’s top-Q/2
nearest neighbor under metric d. Then, we start a second-stage search from theQ/2 returned vertices
using distance function D on the same graph index until we reach the quota Q. We report the 10
closest neighbors seen so far by distance function D.
• Bi-metric (baseline): This is the standard retrieve-then-rerank method that is widely popular. We
build a graph index with the cheap distance function d. Given a query q, we first search for q’s top-Q
nearest neighbor under metric d. As explained below, we can assume that empirically the first step
returns the true top-Q nearest neighbors under d. Then, we calculate distance using D for all the Q
returned vertices and report the top-10.

3I.e., the upper bound on the number of calls made to d on any query
4Our experiments are run on 56 AMD EPYC-Rome processors with 400GB of memory and 4 NVIDIA RTX

6000 GPUs. Our experiment in Figure 1 takes roughly 3 days.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• Single metric: This is the standard nearest neighbor search with a single distance function D. We
build the graph index directly with the expensive distance function D. Given a query q, we do a
standard greedy search to get the top-10 closest vertices to q with respect to distance D until we
reach quota Q. We help this method and ignore the large number of D distance calls in the indexing
phase and only count towards the quota in the search phase. Note that this method doesn’t satisfy
our “bi-metric” formulation as it uses an extensive number of D distance calls (Ω(n) calls) in index
construction. However, we implement it for comparison since it represents a natural baseline, if one
does not care about the prohibitively large number of calls made to D during index building.

For both Bi-metric methods (ours and baseline), in the first-stage search under distance d, we
initialize the parameters of the graph index so that empirically, it returns the true nearest neighbors
under distance d. This is done by setting the ‘query length’ parameter L to be 30000 for datasets
with corpus size > 106 (Climate-FEVER (Diggelmann et al., 2020), FEVER (Thorne et al., 2018),
HotpotQA (Yang et al., 2018), MSMARCO (Bajaj et al., 2018), NQ (Kwiatkowski et al., 2019),
DBPedia (Hasibi et al., 2017)). Our choice of L is large enough to ensure that the returned vertices
are almost true nearest neighbors under distance d. For example, the standard parameters used are a
factor of 10 smaller. We also empirically verified that the nearest neighbors returned for d with such
large values of L corroborated with published BEIR benchmark values 5.

Datasets We experiment with all 6 BEIR retrieval datasets of size >106 (Climate-FEVER (Diggel-
mann et al., 2020), FEVER (Thorne et al., 2018), HotpotQA (Yang et al., 2018), MSMARCO (Bajaj
et al., 2018), NQ (Kwiatkowski et al., 2019), DBPedia (Hasibi et al., 2017)). We report the results on
these dataests’ test split, except for MSMARCO where we report the results on its dev split.

Embedding Models We select a highly ranked model “SFR-Embedding-Mistral” as our expensive
model to provide groundtruth metric D. Meanwhile, we select three models on the pareto curve of the
BEIR retrieval size-average score plot to test how our method performs under different model scale
combinations. These three small models are “bge-micro-v2”, “gte-small”, “bge-base-en-v1.5”. Please
refer to Table 1 for details. As described earlier, both metrics d(p, q) and D(p, q) are induced by the
Euclidean distance between the embeddings of p and q using the respective models. The embeddings
defining the proxy metric d are pre-computed and stored during the pre-processing, and then used to
construct the data structure. The embeddings defining the accurate metric D are computed on the fly
during the query processing stage. Specifically, to answer a query q, the algorithm first computes the
embedding f(q) of q. Then, whenever the value of D(q, p) is needed, the algorithm computes f(p)
and evaluates D(p, q) = ∥f(q)− f(p)∥. Thus, the cost of evaluating D(p, q) is equal to the cost of
embedding p. (In other scenarios where D(p, q) is evaluated using a proprietary system over an API
call, the cost is determined by the vendor’s prices and/or the network speed.).

Model Name Embedding Dimension Model Size BEIR Retrieval Score

SFR-Embedding-Mistral (Meng et al., 2024) 4096 7111M 59
bge-base-en-v1.5 (Xiao et al., 2023) 768 109M 53.25

gte-small (Li et al., 2023) 384 33M 49.46
bge-micro-v2 (AI, 2023) 384 17M 42.56

Table 1: Different models used in our experiments
Nearest Neighbor Search Algorithms The search algorithms we employ in our experiments are
DiskANN (Jayaram Subramanya et al., 2019) and NSG (Fu et al., 2019a). We use standard parameter
choices for both; see Appendix E.

Metric Given a fixed expensive distance function quotaQ, we report the accuracy of retrieved results
for different methods. We always insure that all algorithms never use more thanQ expensive distance
computations. Following the BEIR retrieval benchmark, we report the NDCG@10 score. Following
the standard nearest neighbor search algorithm benchmark metric, we also report the Recall@10
score compared to the true nearest neighbor according to the expensive metric D.

4.1 EXPERIMENT RESULTS AND ANALYSIS

Please refer to Figure 1 for our results with d distance function set to “bge-micro-v2” and D set to
“SFR-Embedding-Mistral”, with the underlying graph index being DiskANN. To better focus on the

5from https://huggingface.co/spaces/mteb/leaderboard

7

https://huggingface.co/spaces/mteb/leaderboard

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

convergence speed of different methods toward the “Single metric (limit)” (perfect nearest neighbor
retrieval with respect to D), we cut off the y-axis at a relatively high accuracy, so some curves may
not start from x equals 0 if their accuracy doesn’t reach the threshold. We observe that our method
converges to the optimal accuracy much faster than bi-metric (baseline) and single metric in most
cases. For example for HotpotQA, the NDCG@10 score achieved by the baselines for 8000 calls to
D is comparable to our method, using less than 2000 calls to D, leading to > 4x fewer evaluations of
the expensive model. This leads to substantial time savings. For example, consider our largest data
set HotpotQA. The first stage of the query answering procedure (using d) takes only 0.37s per query
q, while each evaluation of D(p, q) during the second stage takes 0.13s; this translates into roughly
260s per query when 2000 evaluations of D are used. In contrast, the baseline method requires 8000
calls to D, which translates into a cost of roughly 1040s per query.

This means that utilizing the graph index built for the distance function proxy to perform a greedy
search using D is more efficient than naively iterating the returned vertex list to re-rank using D
(baseline). Also note that our method converges faster than “Single metric” in all the datasets. This
phenomenon happens even if “Single metric” is allowed infinite expensive distance function calls
in its indexing phase to build the ground truth graph index. This suggests that the quality of the
underlying graph index is not as important, and the early routing steps in the searching algorithm can
be guided with a cheap distance proxy functions to save expensive distance function calls.

Similar conclusion holds for the recall plot (see Figure 6), where our method has an even larger
advantage over Bi-metric (baseline) and is better than the Single metric in most cases, except FEVER
and HotpotQA. We report the results of using different model pairs, using the NSG algorithm as our
graph index, and measuring Recall@10 in Appendix E. Please see ablation studies in Appendix D.

0 1000 2000 3000 4000 5000 6000 7000 8000

0.72

0.73

0.74

0.75

0.76

0.77

ND
CG

@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 1: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG@10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is DiskANN.

Lastly, we measure the empirical value of C (the relationship between d/D from (1)). For simplicity,
we assumed that d ≤ D ≤ C · d for C ≥ 1 in (1) in our theoretical bounds. This is without loss
of generality by scaling. In practice, we observe that the ratio of distances C := D/d is always
clustered around one. For example, if we use “SFR-Embedding-Mistral” to provide the distance D,
and “bge-micro-v2” to provide the distance d, then for HotpotQA, we empirically found that 99.9%
of 105 randomly sampled pairs satisfy 0.6 ≤ C ≤ 1.5. We observed the same qualitative behavior
for our other datasets; see Figure 5 in Appendix E.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2 APPLICATION TO A LLM-BASED LISTWISE RERANKER

Following the method proposed by Sun et al. (2023), recently, there has been a trend to use LLMs to
re-rank passages. Though the score output by a re-ranker does not meet the definition of a metric,
our algorithm still works in this scenario. We prompt Gemini-2.0-Flash to re-rank different passages
based on their relevance to a search query. We slightly modify the search algorithm (Algorithm 4
in Appendix), as now the re-ranker only returns an order rather than independent relevance scores.
Since querying proprietary models like Gemini-2.0-Flash is expensive, we only use 500 queries
randomly sampled from the query sets. The averaged results for all 6 data sets are in Figure 2. The
results on individual dataset and other experimental details are in Appendix E. We can observe that
our bi-metric framework yields good results in this setting. Our method achieves higher NDCG@10
scores while sending fewer passages to the re-ranker. (The slight perturbation near the end of the
curves is because of the LLM’s occasional mistakes in judging the order of different passages.)

0 200 400 600 800 1000
of D distance calls

0.44

0.46

0.48

0.50

0.52

0.54

ND
CG

@
10

Avg

Bi-metric (our method)
Bi-metric (baseline)

Figure 2: Average results for 6 BEIR Re-
trieval datasets. The x-axis is the number
of passages sent to the reranker. The y-axis
is the NDCG@10 score. The cheap distance
function is provided by “bge-micro-v2”, the
expensive distance comparator is “Gemini-
2.0-Flash”, and the nearest neighbor search
algorithm used is DiskANN.

5 CONCLUSION

We presented a new framework for designing nearest neighbor algorithms that use two metrics: a
ground truth metric D that defines the true nearest neighbors, and a proxy metric d which provides
a cheap but imperfect approximation to the ground truth. Our theoretical results show that, as long
as d approximates D up to some constant C > 1, a nearest neighbor data structure constructed
using the proxy metric d can return nearest neighbors with respect to D up to arbitrarily small
approximation 1 + ε in sub-linear time, as long as the ground truth metric D is used during the query
answering phase. This improves over an approximation of C offered by the standard re-ranking
approach, which retrieves k nearest neighbors with respect to d, and then scans them to retrieve the
true nearest neighbor with respect to D. Experimentally, we show that our method offers an improved
accuracy-efficiency tradeoff in settings where d and D are computed using embeddings or LLMs of
vastly different complexities, for BEIR text retrieval benchmarks.

Our framework requires that the (cheap) proxy metric d provides a “reasonable” approximation to
the (expensive) ground-truth metric D. The practical effectiveness of our approach, as validated by
our empirical results on the BEIR benchmark, suggests that such related metrics are readily available
for real-world datasets. However, the framework’s performance may degrade if the proxy metric is a
poor approximation of the ground truth. We note that this is an inherent limitation of working with a
proxy metric, since in the extreme case d might provide no useful information about D. However,
our theorems always guarantees a 1 + ε approximate solution for any constant C, with query time
depending on C.

Our results hold only for graph-based nearest neighbor data structures, and not for other algorithms
such as LSH. We show that this is a fundamental limitation of LSH itself: in Appendix F, we
theoretically show that LSH-type algorithms cannot take advantage of a proxy metric.

Finally, we recognize that adapting the framework to new domains may require some implementation-
specific adjustments. For example, when applying our method to an LLM-based listwise reranker, we
had to modify the search algorithm to accommodate a relative ordering instead of a strict distance
score. We believe this is a testament to flexibility offered by our framework.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Taylor AI. https://huggingface.co/taylorai/bge-micro-v2, 2023. URL https://huggingface.
co/TaylorAI/bge-micro-v2.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018, pp. 3287–3318. World Scientific, 2018.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Information Systems, 87:101374,
2020. ISSN 0306-4379. doi: https://doi.org/10.1016/j.is.2019.02.006. URL https://www.
sciencedirect.com/science/article/pii/S0306437918303685.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
dataset, 2018.

MohammadHossein Bateni, Prathamesh Dharangutte, Rajesh Jayaram, and Chen Wang. Metric
clustering and MST with strong and weak distance oracles. Conference on Learning Theory, 2024.
URL https://doi.org/10.48550/arXiv.2310.15863.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Proceed-
ings of the 23rd international conference on Machine learning, pp. 97–104, 2006.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh.
Finger: Fast inference for graph-based approximate nearest neighbor search. In Proceedings of the
ACM Web Conference 2023, pp. 3225–3235, 2023.

Kenneth L Clarkson et al. Nearest-neighbor searching and metric space dimensions. Nearest-neighbor
methods for learning and vision: theory and practice, pp. 15–59, 2006.

Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bulian, Massimiliano Ciaramita, and Markus
Leippold. Climate-fever: A dataset for verification of real-world climate claims, 2020.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Nsg : Navigating spread-out graph for
approximate nearest neighbor search. https://github.com/ZJULearning/nsg, 2019a.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search with
the navigating spreading-out graph. Proceedings of the VLDB Endowment, 12(5):461–474, 2019b.

Luyu Gao, Zhuyun Dai, and Jamie Callan. Rethink training of bert rerankers in multi-stage retrieval
pipeline. In Advances in Information Retrieval: 43rd European Conference on IR Research, ECIR
2021, Virtual Event, March 28–April 1, 2021, Proceedings, Part II 43, pp. 280–286. Springer,
2021a.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP
2021, pp. 6894–6910. Association for Computational Linguistics (ACL), 2021b.

Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings, pp. 534–543. IEEE Computer Society,
2003. doi: 10.1109/SFCS.2003.1238226. URL https://doi.org/10.1109/SFCS.2003.
1238226.

Sariel Har-Peled and Nirman Kumar. Approximate nearest neighbor search for low-dimensional
queries. SIAM J. Comput., 42(1):138–159, 2013. doi: 10.1137/110852711. URL https:
//doi.org/10.1137/110852711.

10

https://huggingface.co/TaylorAI/bge-micro-v2
https://huggingface.co/TaylorAI/bge-micro-v2
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://doi.org/10.48550/arXiv.2310.15863
https://github.com/ZJULearning/nsg
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1137/110852711
https://doi.org/10.1137/110852711

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ben Harwood and Tom Drummond. Fanng: Fast approximate nearest neighbour graphs. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5713–5722,
2016.

Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik Bratsberg, Alexander
Kotov, and Jamie Callan. Dbpedia-entity v2: A test collection for entity search. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’17, pp. 1265–1268, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450350228. doi: 10.1145/3077136.3080751. URL https://doi.org/
10.1145/3077136.3080751.

Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms, 3(3):
31, 2007. doi: 10.1145/1273340.1273347. URL https://doi.org/10.1145/1273340.
1273347.

Piotr Indyk and Haike Xu. Worst-case performance of popular approximate nearest neigh-
bor search implementations: Guarantees and limitations. In A. Oh, T. Neumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 66239–66256. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/d0ac28b79816b51124fcc804b2496a36-Paper-Conference.pdf.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422–446, oct 2002. ISSN 1046-8188. doi: 10.1145/582415.582418. URL
https://doi.org/10.1145/582415.582418.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32, 2019.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann. https://github.com/microsoft/DiskANN, 2023.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011. doi:
10.1109/TPAMI.2010.57.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL
https://aclanthology.org/2020.emnlp-main.550.

Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity search.
In J. Ian Munro (ed.), Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pp. 798–807. SIAM,
2004. URL http://dl.acm.org/citation.cfm?id=982792.982913.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

11

https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/1273340.1273347
https://doi.org/10.1145/1273340.1273347
https://proceedings.neurips.cc/paper_files/paper/2023/file/d0ac28b79816b51124fcc804b2496a36-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d0ac28b79816b51124fcc804b2496a36-Paper-Conference.pdf
https://doi.org/10.1145/582415.582418
https://github.com/microsoft/DiskANN
https://aclanthology.org/2020.emnlp-main.550
http://dl.acm.org/citation.cfm?id=982792.982913
https://aclanthology.org/Q19-1026

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Information
Retrieval, 3(3):225–331, 2009.

Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang, and Ruim-
ing Tang. Neural re-ranking in multi-stage recommender systems: A review. arXiv preprint
arXiv:2202.06602, 2022.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine
intelligence, 42(4):824–836, 2018.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-
embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research Blog, 2024.
URL https://blog.salesforceairesearch.com/sfr-embedded-mistral/.

Stanislav Morozov and Artem Babenko. Relevance proximity graphs for fast relevance retrieval.
arXiv preprint arXiv:1908.06887, 2019.

Benjamin Moseley, Sergei Vassilvtiskii, and Yuyan Wang. Hierarchical clustering in general metric
spaces using approximate nearest neighbors. In International Conference on Artificial Intelligence
and Statistics, pp. 2440–2448. PMLR, 2021.

Shyam Narayanan, Sandeep Silwal, Piotr Indyk, and Or Zamir. Randomized dimensionality reduction
for facility location and single-linkage clustering. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 7948–7957.
PMLR, 2021. URL http://proceedings.mlr.press/v139/narayanan21b.html.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris
Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Petroski
Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter
Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training, 2022.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert, 2020.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. Document ranking with a pre-
trained sequence-to-sequence model. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 708–718, 2020.

Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran, and
Seyed Mehran Kazemi. Kwikbucks: Correlation clustering with cheap-weak and expensive-strong
signals. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?
id=p0JSSa1AuV.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. arXiv preprint arXiv:2304.09542, 2023.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A
heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2),
2021. URL https://openreview.net/forum?id=wCu6T5xFjeJ.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-
scale dataset for fact extraction and VERification. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
809–819, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1074. URL https://aclanthology.org/N18-1074.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024.

12

https://blog.salesforceairesearch.com/sfr-embedded-mistral/
http://proceedings.mlr.press/v139/narayanan21b.html
https://openreview.net/forum?id=p0JSSa1AuV
https://openreview.net/forum?id=p0JSSa1AuV
https://openreview.net/forum?id=wCu6T5xFjeJ
https://aclanthology.org/N18-1074

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor search. arXiv preprint
arXiv:2101.12631, 2021.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–2380,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-ranking person re-identification with
k-reciprocal encoding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1318–1327, 2017.

13

https://aclanthology.org/D18-1259

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A FURTHER RELATED WORKS

Graph-based algorithms for similarity search The algorithms studied in this paper rely on
graph-based data structures for (approximate) nearest neighbor search. Such data structures work
for general metrics, which, during the pre-processing, are approximated by carefully constructed
graphs. Given the graph and the query point, the query answering procedure greedily searches the
graph to identify the nearest neighbors. Graph-based algorithms have been extensively studied both
in theory Krauthgamer & Lee (2004); Beygelzimer et al. (2006) and in practice Fu et al. (2019b);
Jayaram Subramanya et al. (2019); Malkov & Yashunin (2018); Harwood & Drummond (2016).
See Clarkson et al. (2006); Wang et al. (2021) for an overview of these lines of research.

Theorem A.1 (Indyk & Xu (2023)). Given a dataset X , α ≥ 1, and fixed metric d the slow
preprocessing DiskANN algorithm (Algorithm 4 in Indyk & Xu (2023)) outputs a α-shortcut reachi-
bility graph G on X as defined in Definition 3.1 (under metric d). The space complexity of G is
n · αO(λd) log(∆d).

Algorithm 1 DiskANN-GreedySearch(q, d, L)

1: Input: Graph index G = (X,E), distance function d, starting point s, query point q, queue
length limit L

2: Output: visited vertex list U
3: A← {s}
4: U ← ∅
5: while A \ U ̸= ∅ do
6: v ← argminv∈A\U d(xv, q)

7: A← A ∪Neighbors(v) ▷ Neighbors in G
8: U ← U ∪ v
9: if |A| > L then

10: A← top L closest vertex to q in A

11: sort U in increasing distance from q
12: return U

B ANALYSIS OF COVER TREE

We now analyze Cover Tree under the bi-metric framework. First, some helpful background is
presented below.

B.0.1 PRELIMINARIES FOR COVER TREE

The notion of a cover is central. We specialize it to the greedy cover used in the Cover Tree
datastructure.

Definition B.1 (Greedy Cover Construction). A r-cover C of a set X given a metric d is defined as
follows. Initially C = ∅. Run the following two steps until X is empty.

1. Pick an arbitrary point x ∈ X and remove B(x, r) ∩X from X .

2. Add x to C.

Note that a cover with radius r satisfies the following two properties: every point in X is within
distance r to some point in C (under the same metric d′), and all points in C are at least distance r
apart from each other.

We now introduce the cover tree datastructure of Beygelzimer et al. (2006). For the data structure, we
create a sequence of covers C−1, C0, Every Ci is a layer in the final Cover Tree T .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Cover Tree Data structure

1: Input: A set X of n points, metric d, real number T ≥ 1.
2: Output: A tree on X
3: procedure COVER-TREE(d, T)
4: WLOG, all distances between points in X under d are in (1,∆] by scaling.
5: C−1 = C0 = X
6: Define Ci as a 2i/T -cover of Ci−1 for any i > 0 under metric d
7: Ci ⊆ Ci−1 for all i > 0.
8: t = O(log(∆T)) ▷ t is the number of levels of T
9: for i = −1 to t do

10: Ci corresponds to tree nodes of T on level i
11: Each p ∈ Ci−1 \ Ci is connected to exactly one p ∈ Ci such that d(p, p′) ≤ 2i/T

12: Return tree T

The following result about the space bound of the datastructure is from Beygelzimer et al. (2006) and
we to Beygelzimer et al. (2006) for more details about the space bound.

Lemma B.2 (Theorem 1 in Beygelzimer et al. (2006)). T takes O(n) space, regardless of the value
of r.

Proof. We use the explicit representation of T (as done in Beygelzimer et al. (2006)), where we
coalesce all nodes in which the only child is a self-child. The underlying idea is simple: the covers
are nested (a smaller scale cover contains all larger scale covers). Thus, a node in the tree has children
that also correspond to the same net point. The explicit representation of the tree simply collapses
all long paths in the tree (since these correspond to the same net point). Thus, every node in this
compressed tree has a parent that represents a different net point and a child that represents a different
net point. This can be used to show that there are O(n) edges in total in the tree, independent of all
other parameters.

We note that it is possible to construct the cover tree data structure of Algorithm 2 in time
2O(λd)n log n, but it is not important to our discussion Beygelzimer et al. (2006).

Now we describe the query procedure. Here, we can query with a metric D that is possibly different
than the metric d used to create T in Algorithm 2.

Algorithm 3 Cover Tree Search

1: Input: Cover tree T associated with point set X , query point q, metric D, accuracy ε ∈ (0, 1).
2: Output: A point p ∈ X
3: procedure COVER-TREE-SEARCH
4: t← number of levels of T
5: Qt ← Ct ▷ We use the covers that define T
6: i← t
7: while i ̸= −1 do
8: Q = {p ∈ Ci−1 : p has a parent in Qi}
9: Qi−1 = {p ∈ Q : D(q, p) ≤ D(q,Q) + 2i}

10: if D(q,Qi−1) ≥ 2i(1 + 1/ε) then
11: Exit the while loop.
12: i← i− 1
13: Return point p ∈ Qi−1 that is closest to q under D

B.0.2 THE MAIN THEOREM

We construct a cover tree T using metric d and T from Equation 1 in Algorithm 2. Upon a query q,
we search for an approximate nearest neighbor in T in Algorithm 3, using metric D instead. Our
main theorem is the following.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem B.3. Let QCoverTree(ε,∆d, λd) = 2O(λd) log(∆d)+ (1/ε)O(λd) denote the query complex-
ity of the standard cover tree datastructure, where we set T = 1 in Algorithm 2 and build and search
using the same metric d. Now consider two metrics d and D satisfying Equation 1. Suppose we
build a cover tree T with metric d by setting T = C in Algorithm 2, but search using metric D in
Algorithm 3. Then the following holds:

1. The space used by T is O(n).

2. Running Algorithm 3 using D finds a 1+ ε approximate nearest neighbor of q in the dataset
X (under metric D).

3. On any query, Algorithm 3 invokes D at most

CO(λd) log(∆d) + (C/ε)O(λd) = Õ(QCoverTree(Ω(ε/C),∆d, λd)).

times.

Two prove Theorem B.3, we need to: (a) argue correctness and (b) bound the number of times
Algorithm 3 calls its input metric D. While both follow from similar analysis as in Beygelzimer
et al. (2006), it is not in a black-box manner since the metric we used to search T in Algorithm 3 is
different than the metric used to build T in Algorithm 2.

We begin with a helpful lemma.

Lemma B.4. For any p ∈ Ci−1, the distance between p and any of its descendants in T is bounded
by 2i under D.

Proof. The proof of the lemma follows from Theorem 2 in Beygelzimer et al. (2006). There,
it is shown that for any p ∈ Ci−1 the distance between p and any descendant p′ is bounded by
d(p, p′) ≤

∑i−1
j=−∞ 2j/T = 2i/T , implying the lemma after we scale by C due to Equation 1 (note

we set T = C in the construction of T in Theorem B.3).

We now argue accuracy.

Theorem B.5. Algorithm 3 returns a 1 + ε-approximate nearest neighbor to query q under D.

Proof. Let p∗ be the true nearest neighbor of query q. Consider the leaf to root path starting from p∗.
We first claim that if Qi contains an ancestor of p∗, then Qi−1 also contains an ancestor qi−1 of p∗.
To show this, note that D(p∗, qi−1) ≤ 2i by Lemma B.4, so we always have

D(q, qi−1) ≤ D(q, p∗) +D(p∗, qi−1) ≤ D(q,Q) + 2i,

meaning qi−1 is included in Qi−1.

When we terminate, either we end on a single node, in which case we return p∗ exactly (from the
above argument), or when D(q,Qi−1) ≥ 2i(1 + 1/ε). In this latter case, we additionally know that

D(q,Qi−1) ≤ D(q, p∗) +D(p∗, Qi−1) ≤ D(q, p∗) + 2i

since an ancestor of p∗ is contained in Qi−1 (namely qi−1 from above). But the exit condition implies

2i(1 + 1/ε) ≤ D(q, p∗) + 2i =⇒ 2i ≤ εD(q, p∗),

which means

D(q,Qi−1) ≤ D(q, p∗) + 2i ≤ D(q, p∗) + εD(q, p∗) = (1 + ε)D(q, p∗),

as desired.

Finally, we bound the query complexity. The following follows from the arguments in Beygelzimer
et al. (2006).

Theorem B.6. The number of calls to D in Algorithm 3 is bounded by CO(λd) · log(∆dC) +
(C/ε)O(λd).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof Sketch. The bound follows from Beygelzimer et al. (2006) but we briefly outline it here. The
query complexity is dominated by the size of the sets Qi−1 in Line 9 as the algorithm proceeds. We
give two ways to bound Qi−1. Before that, note that the points p that make up Qi−1 are in a cover
(under d) by the construction of T , so they are all separated by distance at least Ω(2i/C) (under d).
Let p∗ be the closest point to q in X .

• Bound 1: In the iterations where D(q, p∗) ≤ O(2i), we have the diameter of Qi−1 under D is at
most O(2i) as well. This is because an ancestor qi−1 ∈ Ci−1 of p∗ is in Q of line 8 (see proof of
Theorem B.5), meaning D(q,Q) ≤ O(2i) due to Lemma B.4. Thus, any point p ∈ Qi−1 satisfies
D(q, p) ≤ D(q,Q) + 2i = O(2i). From Equation 1, it follows that the diameter of Qi−1 under
d is also at most O(2i). We know the points in Qi−1 are separated by mutual distance at least
Ω(2i/C) under d, implying that |Qi−1| ≤ CO(λd) in this case by a standard packing argument.
This case can occur at most O(log(∆C)) times, since that is the number of different levels of T .

• Bound 2: Now consider the case where D(q, p∗) ≥ Ω(2i). In this case, we have that the
points in Qi−1 have diameter at most O(2i/ε) from q (under D), due to the condition of line
10. Thus, the diameter is also bounded by O(2i/ε) under d. By a standard packing argument,
this means that |Qi−1| ≤ (C/ε)O(λd), since again Qi−1 are mutually separated by distance at
least Ω(2i/C) under d. However, our goal is to show that the number of iterations where this
bound is relevant is at most O(log(1/ε)). Indeed, we have D(q,Qi−1) ≤ O(2i/ε), meaning
2i ≥ Ω(εD(q,Qi−1)) ≥ Ω(εD(q, p∗)) Since we are decrementing the index i and are in the case
where D(q, p∗) ≥ Ω(2i), this can only happen for O(log(1/ε)) different i’s.

Combining the two bounds proves the theorem.

The proof of Theorem B.3 follows from combining Lemmas B.2 and Theorems B.5 and B.6.

C OMITTED PROOFS FROM THE MAIN BODY

We give the proof of Lemma 3.4

Proof. Let (p, q) be a pair of distinct vertices such that (p, q) ̸∈ E. Then we know that there exists a
(p, p′) ∈ E such that d(p′, q)·α ≤ d(p, q). From relation (1), we have 1

C ·D(p′, q)·α ≤ d(p′, q)·α ≤
d(p, q) ≤ D(p, q), as desired.

D ABLATION STUDIES

We investigate the impact of different components of our experiments in Section 4. All ablation
studies are run on HotpotQA dataset as it is one of the largest and most difficult retrieval dataset
where the performance gaps between different methods are substantial.

Different model pairs Fixing the expensive model as “SFR-Embedding-mistral” (Meng et al.,
2024), we experiment with 2 other cheap models from the BEIR retrieval benchmark: “gte-small”
Li et al. (2023) and “bge-base” Xiao et al. (2023). These models have different sizes/capabilities,
summarized in Table 1. For complete results on all 6 BEIR Retrieval datasets for different cheap
models, we refer to Figures 7, 8, 9, and 10 in Appendix E. Here, we only focus on HotpotQA.

From Figure 3, we can observe that the improvement of our method is most substantial when there is
a large gap between the qualities of the cheap and expensive models. This is not surprising: If the
cheap model has already provided enough accurate distances, simple re-ranking can easily get to the
optimal retrieval results with only a few expensive distance calls. Note that even in the latter case,
our second-stage search method still performs at least as good as re-ranking. Therefore, we believe
that the ideal scenario for our method is a small and efficient model deployed locally, paired with a
remote large model accessed online through API calls to maximize the advantages of our method.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Varying neighbor search algorithms We implement our method with another popular empirical
nearest neighbor search algorithm called NSG (Fu et al., 2019b). We obtain the same qualitative
behavior as DiskANN, with details given in Section E.

0 2000 4000 6000 8000 10000 12000 14000
of D distance calls

0.73

0.74

0.75

0.76

0.77

0.78

ND
CG

@
10

HotpotQA

Single metric
Bi-metric bge-micro (baseline)
Bi-metric bge-micro (our method)
Bi-metric gte-small (baseline)
Bi-metric gte-small (our method)
Bi-metric bge-base (baseline)
Bi-metric bge-base (our method)
Single metric (limit)

Figure 3: HotpotQA test results for different mod-
els as the distance proxy. Blue / skyblue / cyan
curves represent Bi-metric (our method) with bge-
micro / gte-small / bge-base models. Red / rose
/ magenta curves represent Bi-metric (baseline)
with bge-micro / gte-small / bge-base models

0 5000 10000 15000 20000 25000
of D distance calls

0.68

0.70

0.72

0.74

0.76

ND
CG

@
10

HotpotQA

Single metric
Bi-metric (baseline)
Initialize with default starting point
Initialize with top-1
Initialize with top-100
Initialize with top-Q/2
Single metric (limit)

Figure 4: HotpotQA test results for different
search initializations for the second-stage search
of Bi-metric (our method). Blue / purple / brown
/ green curves represent initializing our second-
stage search with top-Q/2, top-100, top-1, or the
default vertex.

Impact of the first stage search In the second-stage search of our method, we start from multiple
points returned by the first-stage search via the cheap distance metric. We investigate how varying
the starting points for the second-stage search impact the final results. We try four different setups:

• Default: We start a standard nearest neighbor search using metric D from the default entry point of
the graph index, which means that we don’t use the first stage search.

• Top-K points retrieved by the first stage search: Suppose our expensive distance calls quota is Q.
We start our second search from the top K points retrieved by the first stage search. We experiment
with the following different choices of K: K1 = 1, K100 = 100, KQ/2 = max(100,Q/2) (note
KQ/2 is the choice we use in Figure 1).

From Figure 4, we observe that utilizing results from the first-stage search helps the second-stage
search to find the nearest neighbor quicker. For comparison, we experiment with initializing the
second-stage search from the default starting point (green), which means that we don’t need the
first-stage search and only use the graph index built from d (cheap distance function). The DiskANN
algorithm still manages to improve as the allowed number of D distance calls increases, but it
converges the slowest compared to all the other methods.

Using multiple starting points further speeds up the second stage search. If we only start with the
top-1 point from the first stage search (brown), its NDCG curve is still worse than Bi-metric (baseline,
red) and Single metric (orange). As we switch to top-100 (purple) or top-Q/2 (blue) starting points,
the NDCG curves increase evidently.

We provide two intuitive explanations for these phenomena. First, the approximation error of the
cheap distance function doesn’t matter that much in the earlier stage of the search, so the first stage
search with the cheap distance function can quickly get to the true ‘local’ neighborhood without
any expensive distance calls, thus saving resources for the second stage search. Second, the ranking
provided by the cheap distance function is not accurate because of its approximation error, so starting
from multiple points should give better results than solely starting from the top few, which also
justifies the advantage of our second-stage search over re-ranking.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E COMPLETE EXPERIMENTAL RESULTS

Parameter choices for Nearest Neighbor Search algorithms The parameter choices for DiskANN
are α = 1.2, l_build = 125, max_outdegree = 64 (the standard choices used in ANN benchmarks
Aumüller et al. (2020)). The parameter choices for NSG are the same as the authors’ choices for
GIST1M dataset (Jégou et al., 2011): K = 400, L = 400, iter = 12, S = 15, R = 100. NSG also
requires building a knn-graph with efanna, where we use the standard parameters: L = 60, R = 70,
C = 500.

Empirical Results We report the empirical results of using different embedding models as distance
proxy, using the NSG algorithm, and measuring Recall@10.

1. We report the results of using “bge-micro-v2” as the distance proxy d and using DiskANN
for building the graph index. See Figure 6 for Recall@10 metric plots.

2. We report the results of using “gte-small” as the distance proxy d and using DiskANN
for building the graph index. See Figure 7 for NDCG@10 metric plots and Figure 8 for
Recall@10 metric plots.

3. We report the results of using “bge-base-en-v1,5” as the distance proxy d and using DiskANN
for building the graph index. See Figure 9 for NDCG@10 metric plots and Figure 10 for
Recall@10 metric plots.

4. We report the results of using “bge-micro-v2" as the distance proxy d and using NSG for
building the graph index. See Figures 11 for NDCG@10 metric plots and 12 for Recall@10
metric plots.

We can see that for all the different cheap distance proxies (“bge-micro-v2” Xiao et al. (2023),
“gte-small” Li et al. (2023), “bge-base-en-v1.5” Xiao et al. (2023)) and both nearest neighbor search
algorithms (DiskANN Jayaram Subramanya et al. (2019) and NSG Fu et al. (2019b)), our method
has better NDCG and Recall results on most datasets. Moreover, naturally the advantage of our
method over Bi-metric (baseline) is larger when there is a large gap between the qualities of the cheap
distance proxy d and the ground truth distance metric D. This makes sense because as their qualities
converge, the cheap proxy alone is enough to retrieve the closest points to a query for the expensive
metric D.

We also report the histograms of empirical C = d/D values using “bge-micro-v2’ as the distance
proxy d in Figure 5. For all 6 datasets, the distance ratio C = d/D concentrates well around 1

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

500

600

Fr
eq

ue
nc

y

HotpotQA

0.8 1.0 1.2 1.4 1.6
0

200

400

600

800

1000

MSMARCO

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0

100

200

300

400

500

FEVER

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Empirical C

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

ClimateFever

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Empirical C

0

100

200

300

400

500

600
DBpedia

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Empirical C

0

200

400

600

800
NQ

Figure 5: Results for 6 BEIR Retrieval datasets. Histograms of C = D/d values, where we use
“bge-micro-v2” as the distance proxy d and “SFR-Embedding-Mistral” as the expensive distance D.

Different nearest neighbor search algorithms We implement our method with another popular
empirical nearest neighbor search algorithm called NSG Fu et al. (2019b). We obtain the same
qualitative behavior as DiskANN. Because the authors’ implementation of NSG only supports ℓ2
distances, we first normalize all the embeddings and search via ℓ2. This may cause some performance

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

drops. Therefore, we are not comparing the results between the DiskANN and NSG algorithms, but
only results from different methods, fixing the graph index. In Figure 11 and 12 in the appendix, we
observe that our method still performs the best compared to Bi-metric (baseline) and single metric in
most cases, demonstrating that our bi-metric framework can be applied to other graph-based nearest
neighbor search algorithms as well.

0 2500 5000 7500 10000 12500 15000 17500 20000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000 12000 14000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 1000 2000 3000 4000 5000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 1000 2000 3000 4000 5000 6000 7000 8000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 1000 2000 3000 4000 5000 6000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 6: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is DiskANN.

Details of the LLM-based listwise reranking experiment Here we provide the details for our
experiments in Section 4.2. Due to the fact that LLMs are better at comparing the relevancy of
different passages than providing independent relevance scores, we need to modify our algorithm to
maintain a list of Ls current best answers. Please see our Algorithm 4. Its difference from Algorithm 1
is that instead of maintaining a priority queue A, in Algorithm 4, A is an ordered list. At each step,
we first append all the unseen neighbors of v to the end of A, and then perform a sequential reranking
in a sliding window way to update the current top passages, similar to the application of listwise
rerank in Sun et al. (2023). In the experiment, we set Ls = 50, w = 10. We start our second stage
search from max(50, Q/2) points retrieved by the first stage search where Q is quota set to be the
maximal number of passages seen by the reranker. Please See Table 2 for our prompt.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

System
Instruction

You are RankGPT, an intelligent assistant that can rank answers based on their
relevancy to the query. I will provide you with 10 passages, each indicated
by number identifier []. Rank the answers based on their relevance to query:
{query}.

Messages

[1] {Passage 1}
[2] {Passage 2}
...
[10] {Passage 10}
Query: {query}. Rank the 10 passages above based on their relevance to the
query. The passages should be listed in descending order using identifiers. The
most relevant passages should be listed first. The output format should be like
[1] >[2] ... >[10]. Only response the ranking results, do not say any word or
explain.

Table 2: Prompt for “Gemini-2.0-Flash” to rerank passages

Algorithm 4 DiskANN-Order-GreedySearch(q, d)

1: Input: Graph index G = (X,E), listwise-reranker D, starting point s, query point q, search list
size Ls, sliding window size w.

2: Output: a sorted vertex list A
3: A← {s} ▷ An ordered list of vertices
4: U ← ∅
5: while A \ U ̸= ∅ do
6: v ← the first vertex in A \ U
7: U ← U ∪ v
8: Append Neighbors(v) \A to the end of A ▷ Neighbors in G
9: for i = |A| to 0 step size −w/2 do

10: Use D to rerank (A[i− w],· · · ,A[i])
11: if |A| > Ls then
12: A← the first Ls vertices in A
13: return A

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000 8000

0.72

0.73

0.74

0.75

0.76

0.77

ND
CG

@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 7: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG@10 score. The cheap model is “gte-small”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is DiskANN.

0 2000 4000 6000 8000 10000 12000 14000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000 12000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 500 1000 1500 2000 2500
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 200 400 600 800 1000 1200 1400
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 8: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@10 score. The cheap model is “gte-small”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is DiskANN.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000 8000

0.73

0.74

0.75

0.76

0.77

0.78

ND
CG

@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 9: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG@10 score. The cheap model is “bge-base-en-v1.5”, the
expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is
DiskANN.

0 2000 4000 6000 8000 10000 12000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 200 400 600 800 1000 1200 1400
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 10: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@10 score. The cheap model is “bge-base-en-v1.5”, the
expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is
DiskANN.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000 8000

0.72

0.73

0.74

0.75

0.76

0.77
ND

CG
@

10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 11: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG@10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is NSG.

0 2500 5000 7500 10000 12500 15000 17500 20000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000 12000 14000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 1000 2000 3000 4000 5000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 1000 2000 3000 4000 5000 6000 7000 8000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 1000 2000 3000 4000 5000 6000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 12: Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is NSG.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

ND
CG

@
10

HotpotQA

0 200 400 600 800 1000

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

MSMARCO

0 200 400 600 800 1000

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86
FEVER

0 200 400 600 800 1000
of D distance calls

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

ND
CG

@
10

ClimateFEVER

0 200 400 600 800 1000
of D distance calls

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

DBPedia

0 200 400 600 800 1000
of D distance calls

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

NQ

Bi-metric (our method) Bi-metric (baseline)

Figure 13: Results for 6 BEIR Retrieval datasets. The x-axis is the number of passages sent to the
reranker. The y-axis is the NDCG@10 score. The cheap distance function is provided by “bge-micro-
v2”, the expensive model distance comparator is “Gemini-2.0-Flash”, and the nearest neighbor search
algorithm used is DiskANN.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F DISCUSSION ON LSH

We give a very simple example, showing that the standard locality sensitive hashing (LSH) algorithm
can be easily ‘tricked’ in our two distance functions setting, even if the distances approximate each
other very well. Thus, locality sensitive hashing cannot be instantiated in the bi-metric framework,
demonstrating the power of graph-based approaches. In fact, our construction extends to a broad
class of algorithms which ‘overfit’ to the coordinates of the vectors. The intuitive idea is that any
algorithm which ‘only looks’ at the coordinates of the query vector during the query phase can be
fooled by fixing the coordinates of the query across the two metrics, but changing the coordinates
of the input dataset slightly. At the core, LSH, as well as many partition based algorithms, can be
abstracted into the following canonical form:

1. Given an input dataset X ⊂ Rd, |X| = n and an input metric, output a function f : Rd → 2[n].
2. Given a query point q ∈ Rd, query f(q) to return a subset of [n].
3. Find the nearest neighbor of q using the input metric among the points in X whose indices are

in f(q). We define the running time of f to be O(|f(q)| · T), where T is the cost to evaluate the
metric. For simplicity, we ignore this factor of T in the subsequent discussion.

The main conceptual difference between the above canonical form and our graph based approach is
that the query is used in ‘one shot’ to return the set f(q) at once. This is problematic when using two
distances in our bi-metric framework since f(q) only depends on d above (the cheap metric), but we
want to find the nearest neighbor with respect to D (the ground truth metric). In contrast, graph based
approaches iteratively and adaptively build such a query set, based on the edges of the index graph
and the corresponding search procedure on the graph. The fact that the query set is a function of both
metrics in graph based search is crucial in avoiding the undesired behavior shown below.

We first note the following trivial observation.

Observation: Let X,X ′ ⊂ Rd, |X| = |X ′| be two datasets with corresponding metrics d and
d′. Suppose we instantiate the above canonical algorithm on X ′ using metric d′ and let f ′ be the
corresponding query function. Let q be a query point for the dataset X and let i∗ be the index of its
nearest neighbor in X with respect to d. If i∗ ̸∈ f ′(q) then we cannot find the nearest neighbor of q
in X by only comparing the distances from q to the points in f ′(q) (even if we evaluate using metric
d on the points in f ′(q)).

Now lets discuss how the standard LSH algorithms fall in the above canonical description. We need
to first specify a family of hash functions H. Then for some suitably chosen parameters k, L ≥ 1,
we repeat the following procedure for i = 1, · · · , L iterations : Independently sample k functions
hi
1, · · ·hi

k ∼ H and group the points by putting all x with the same tuple (hi
1(x), · · · , hi

k(x)) together.
For a query q, retrieve all the points in X with the same tuples (hi

1(q), · · · , hi
k(q)) across all i. This

forms the set f(q). Usually, |f(q)| is determined by the choice ofH, k, L and for different metrics,
researchers carefully choose these parameters to optimize for correctness and running time Andoni
et al. (2018). We do not need these details in constructing the bad example and they can be abstracted
away in our description of the canonical algorithm.

Our simple bad example for LSH is as follows. The dataset is X = {x1, · · · , xn} ⊂ Rd (for d
sufficiently large). It consists of one copy of the first basis vector x1 = e1 and n− 1 copies of the
sum of the first two basis vectors: x2 = · · · = xn = e1 + e2. The ground truth metric D will be
the hamming distance on the vectors in X . The noisy metric d will be the hamming distance on the
corresponding points of a modified version of X . The modified dataset X ′ = {x′

1, · · · , x′
n} is such

that x′
1 is just x1 but we set the last 10 coordinates to all 1’s. For the other x′

i vectors, i ≥ 2, we keep
the same xi, but modify the last 5 coordinates to be all 1’s. We have:

• d approximates D up to a factor of O(1).
• The doubling dimensions of both X ′ and X (under d and D respectively) are O(1).

We let the query vector q be the all 0’s vector (q will be all 0’s with respect to D and d). In X , x1

is the c-approximate nearest neighbor to q for any c < 2. Note this is a setting where our theorems
guarantee the performance of graph based algorithms (Theorems 3.3 and B.3), giving meaningful
sublinear running time. For the rest of the section, we fix the query q = 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Now consider what happens when we use the standard hamming LSH function (H is the set of
coordinate projection functions) and build a datastructure f ′ using the noisy metric. Intuitively, unless
k and L are sufficiently large, we cannot even guarantee with good probability that 1 ∈ f ′(0) (note
this means that the index of the first point is in the set f ′(0)). However if we can guarantee that the
‘correct’ answer is in f ′(0), many irrelevant data points are also very likely to be in f ′(0), implying
|f ′(0)| = Ω(n), i.e. the query time is linear and hence not efficient. This is shown below.
Lemma F.1. Suppose (k, L) such that

Pr(1 ∈ f ′(0)) ≥ 0.01,

i.e. the query is successful with probability at least 1%. With these same parameters, we have
E[|f ′(0)|] = Ω(n).

Proof. A simple calculation shows the following (since our hash functions are sampled from coordi-
nate projections):

Pr
h∼H

(h(x′
1) = h(0)) =

d− 11

d
:= p1 ≤ Pr

h∼H
(h(x′

i) = h(0)) =
d− 7

d
:= p2

for any other i ≥ 2. If we repeat the hashing k times, it is clear that the probability that
(h1(x

′
1), · · · , hk(x

′
1)) = (h1(0), · · · , hk(0)) = pk1 ≤ pk2 . Thus, for any choice of k and L, we

have that for all i ≥ 2,
Pr(1 ∈ f ′(0)) ≤ Pr(i ∈ f ′(0)).

Hence, if k, L is picked such that Pr(1 ∈ f ′(0)) ≥ 0.01, it follows that

E[|f ′(0)|] =
n∑

i=1

Pr(i ∈ f ′(0)) ≥ nPr(1 ∈ f ′(0)) ≥ Ω(n),

as desired.

In conclusion, the above lemma shows that unless the set f ′(q) is very large, which leads to a large
running time for using LSH, it cannot be successfully used for nearest neighbor search with two
metrics, in contrast to our graph based approach. The underlying idea of our bad example clearly
generalizes across any reasonable choice ofH. The proof of the following corollary is identical to
that of Lemma F.1.
Corollary F.2. SupposeH is a family of functions with domain Rd such that Prh∼H(h(x) = h(y))
is a decreasing function of ∥x− y∥2. Consider X and X ′ as defined above. Then if (k, L) are picked
such that

Pr(1 ∈ f ′(0)) ≥ 0.01,

i.e. the query is successful with probability at least 1%. With these same parameters, we have
E[|f ′(0)|] = Ω(n).

The hypothesis onH in Corollary F.2 is quite natural and is satisfied by many natural choices. For
example, the standard Euclidean LSH function class H consists of functions of the form hv(x) =
⌊⟨x, v⟩/a⌋ where v ∼ N (0, 1). A simple calculation shows that Prh∼H(h(x) = h(y)) ∝ ∥x− y∥2
and Corollary F.2 applies.

Upon a closer look, we can even abstract away all the details of LSH and return to the canonical
form described in the beginning of the section. All we require for the bad example to hold is that
Pr(i ∈ f ′(0)) is a decreasing function of ∥x′

i − q∥2 = ∥x′
i∥2.

Corollary F.3. Suppose in our cannonical algorithm description that f ′ is a function such that for
all indices 1 ≤ i ≤ n, Pr(i ∈ f ′(0)) is an decreasing function of ∥x′

i∥2. If

Pr(1 ∈ f ′(0)) ≥ 0.01,

i.e. the query is successful with probability at least 1%, then we also have E[|f ′(0)|] = Ω(n).

G USAGE OF LARGE LANGUAGE MODELS

As mentioned in Section 4.2, we apply an LLM-based reranker in our experiments. We also use
LLMs to polish writing.

27

	Introduction
	Preliminaries
	Theoretical Analysis
	Experiments
	Experiment Results and Analysis
	Application to a LLM-based Listwise Reranker

	Conclusion
	Further Related Works
	Analysis of Cover Tree
	Preliminaries for Cover Tree
	The main theorem

	Omitted Proofs from the Main Body
	Ablation Studies
	Complete Experimental Results
	Discussion on LSH
	Usage of Large Language Models

