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ABSTRACT

We consider the quickest change detection problem where both the parameters of
pre- and post- change distributions are unknown, which prevent the use of classical
simple hypothesis testing. Without additional assumptions, optimal solutions are
not tractable as they rely on some minimax and robust variant of the objective. As
a consequence, change points might be detected too late for practical applications
(in economics, health care or maintenance for instance). Other approaches solve a
relaxed version of the problem through the use of particular probability distributions
or the use of domain knowledge. We tackle this problem in the more complex
Markovian case and we provide a new scalable approximate algorithm with near
optimal performance that runs in O(1).

1 INTRODUCTION

Quickest Change Detection (QCD) problems arise naturally in settings where a latent state controls
observable signals (Basseville et al., 1993). In biology, it is applied in genomic sequencing (Caron
et al., 2012) and in reliable healthcare monitoring (Salem et al., 2014). In industry, it finds application
in faulty machinery detection (Lu et al., 2017; Martí et al., 2015) and in leak surveillance (Wang et al.,
2014). It also has environmental applications such as traffic-related pollutants detection (Carslaw
et al., 2006).

Any autonomous agent designed to interact with the world and achieve multiple goals must be able to
detect relevant changes in the signals it is sensing in order to adapt its behaviour accordingly. This
is particularly true for reinforcement learning based agents in multi-task settings as their policy is
conditioned to some task parameter (Gupta et al., 2018; Teh et al., 2017). In order for the agent to be
truly autonomous, it needs to identify the task at hand according to the environment requirement. For
example, a robot built to assist cooks in the kitchen should be able to recognise the task being executed
(chopping vegetables, cutting meat, ..) without external help to assist them efficiently. Otherwise, the
agent requires a higher intelligence (one of the cooks for instance) to control it (by stating the task to
be executed). In the general case, the current task is unknown and has to be identified sequentially
from external sensory signals. The agent must track the changes as quickly as possible to adapt to its
environment. However, current solutions for the QCD problem when task parameters are unknown,
either do not scale or impose restrictive conditions on the setting. (i.i.d. observations, exponential
family distributions, partial knowledge of the parameters, etc.).

In this paper, we construct a scalable algorithm with similar performances to optimal solutions. For
this purpose, we use the change detection delay under known parameters as a lower bound for the
delay in the unknown case. This improves our estimations of the parameters and thus improves
our change point detection. We consider the case where the data is generated by some Markovian
processes as in reinforcement learning. We assess our algorithm performances on synthetic data
generated using distributions parameterised with neural networks in order to match the complexity
level of real life applications. We also evaluate our algorithm on standard reinforcement learning
environment.

2 QUICKEST CHANGE DETECTION PROBLEMS

Formally, consider a sequence of random observations (Xt) where each Xt belongs to some ob-
servation space X (say, an Euclidean space for simplicity) and is drawn from fθt(.|Xt−1), where

1



Under review as a conference paper at ICLR 2021

the parameter θt belongs to some task parameter space Θ and {fθ, θ ∈ Θ} is a parametric prob-
ability distribution family (non trivial, in the sense that all fθ are different). The main idea is
that, at almost all stages, θt+1 = θt but there are some “change points” where those two param-
eters differ. Let us denote by tk the different change points and, with a slight abuse of notations,
by θk the different values of the parameters. Formally, the data generating process is therefore:
Xt ∼

∑K
k=0 fθk(.|Xt−1)1tk≤.<tk+1

(t).

The overarching objective is to identify as quickly as possible the change points tk and the associated
parameters θk, based on the observations (Xt). Typical procedures propose to tackle iteratively the
simple change point detection problem, and for this reason we will focus mainly on the simpler
setting of a single change point, where K = 2, t0 = 0, t1 = λ and t2 = ∞, where λ is unknown
and must be estimated. For a formal description of the model and the different metrics, we will also
assume that the parameters (θ0, θ1) are drawn from some distribution F over Θ. As a consequence,
the data generating process we consider boils down to the following system 1:

θ0, θ1 ∼ F and
{
Xt+1 ∼ fθ0(.|Xt) if t ≤ λ
Xt+1 ∼ fθ1(.|Xt) if t > λ

. (1)

2.1 CRITERIA DEFINITIONS

As mentioned, the objective is to detect change points as quickly as possible while controlling the
errors. There exist different metrics to evaluate algorithm performances; they basically all minimise
some delay measurements while keeping the rate of type I errors (false positive change detection)
under a certain level. We will describe later on different existing definitions of these criteria (type I
error and delay). In order to evaluate a probability of error and an expected delay, we obviously
need to define relevant probability measures first. Traditionally, there are two antagonistic ways to
construct them: the MIN-MAX and the BAYESIAN settings (Veeravalli & Banerjee, 2014).

First, we denote by Pn (resp. En) the data probability distribution (resp. the expectation) conditioned
to the change point happening at λ = n. This last event happens with some probability µ(λ = n)
– with the notation that bold characters designate random variables–, and we denote by Pµ (resp.
Eµ) the data probability distribution (resp. the expectation), integrated over µ, i.e., for any event
Ω, it holds that Pµ(Ω) =

∑
n µ(λ = n)Pn(Ω). In the following, we describe the major existing

formulations of the QCD problem where the goal is to identify an optimal stopping time τ :

BAYESIAN formulation: In this formulation, the error is the Probability of False Alarms (PFA) with
respect to Pµ. The delay is evaluated as the Average Detection Delay (ADD) with respect to Eµ.

PFA(τ ) = Pµ(τ < λ) and ADD(τ ) = Eµ[(τ − λ)|τ > λ]

In this setting, the goal is to minimise ADD while keeping PFA below a certain level α (as in Shiryaev
formulation (Shiryaev, 1963)). Formally, this rewrites into:

(SHIRYAEV)

{
να = arg minτ∈∆α

ADD(τ )
∆α = {τ : PFA(τ ) < α} (2)

Min-Max formulation: The MIN-MAX formulation disregards prior distribution over the change
point. As a consequence, the error is measured as the False Alarm Rate (FAR) with respect to the
worst case scenario where no change occurs (P∞). As for the delay, two possibilities are studied: the
Worst Average Detection Delay (WADD) and the Conditional Average Detection Delay (CADD).
WADD evaluates this delay with respect to the worst scenario in terms of both the change point and
the observations. CADD is a less pessimistic evaluation as it only considers the worst scenario in
terms of change point. Mathematically they are defined as:

FAR(τ ) = 1
E∞[τ ] and

{
WADD(τ ) = supn esssupXn En[(τ − n)+|Xn]
CADD(τ ) = supnEn[(τ − n)|τ > λ]

where Xn designates all observation up to the nth one. In this setting, the goal is to minimise either
WADD (Lorden formulation (Lorden et al., 1971)); or CADD (Pollak formulation (Pollak, 1985))
while keeping FAR below a certain level α. Formally, these problems are written as follows:

(LORDEN)

{
να = arg minτ∈∆α

WADD(τ )
∆α = {τ : FAR(τ ) < α} and (POLLAK)

{
να = arg minτ∈∆α

CADD(τ )
∆α = {τ : FAR(τ ) < α}

(3)
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3 TEMPORAL WEIGHT REDISTRIBUTION

Under known parameters, optimal solutions for the QCD consist in computing some statistics, denoted
by Sθ0,θ1n along with a threshold Bα. The stopping time να is the first time Sθ0,θ1n exceeds Bα. We
provide a more detailed description in Appendix A.1.

3.1 ASYMPTOTIC BEHAVIOUR OF THE SOLUTION TO THE BAYESIAN FORMULATION

The SHIRYAEV algorithm (Shiryaev, 1963) is asymptotically optimal in the i.i.d. case (Tartakovsky &
Veeravalli, 2005). This result is extended to the non i.i.d. case under the following assumption:

Hypothesis 1 Given fθ0 and fθ1 , there exists q ∈ R and r ∈ N such that for any k ∈ N:

1
n

∑k+n
t=k

fθ1 (Xt+1|Xt)
fθ0 (Xt+1|Xt)

r-quickly−→
n→+∞

q (4)

Under Hypothesis 1, and with exponential or heavy tail prior, the SHIRYAEV algorithm is asymp-
totically optimal (Tartakovsky & Veeravalli, 2005). In addition, the moments of ADD satisfy the
following property for all m ≤ r (Tartakovsky & Veeravalli, 2005):

Eµ[(να − λ)m|τ > λ]
α→0∼ Eµ[(νSα − λ)m]

α→0∼
(
| log(α)|
q+d

)m
(5)

where νSα is the SHIRYAEV algorithm stopping rule and d = − limn→∞ logP(λ > n+ 1)/n. Our
approach to the QCD problem under unknown parameters relies on the asymptotic behaviour from
Equation (5) up to the second order (r = 2). We use it as a lower bound for the detection delay,
providing a natural segmentation to our data when approximating the parameters. We will discuss
this more in details in what follows.

3.2 RATIONAL FOR TEMPORAL WEIGHT REDISTRIBUTION

In the following, we denote the true parameters by θ∗0 and θ∗1 and the corresponding stationary
distributions by Π∗0 and Π∗1 (that are well defined for irreducible Markov Chain). The purpose of this
section is to devise an algorithm learning the parameters θ∗0 and θ∗1 using the asymptotic behaviour of
the detection delay under known parameters. The delay predicted in Equation (5) is a performance
lower bound in our setting (otherwise it would contradict the optimality of the SHIRYAEV algorithm).
Intuitively, the idea is to learn θ∗1 using the last | log(α)|

q+d observation and to learn θ∗0 using previous
observation. This simple technique happens to be efficient and computationally simple.

Parameters optimisation: The optimal Sθ0,θ1t – called the SHIRYAEV statistic – has a specific form
(see Equation (12) in Appendix) and the QCD problem under unknown parameters is equivalent to:

να = arg mint{t|S
θ0,θ1
t > Bα} where

{
θ0 = arg minθ f0(θ, θ1)
θ1 = arg maxθ f1(θ0, θ)

, (6)

and (θ0, θ1) are random initialisation parameters, f0(θ0, θ1) = E0

[
log

fθ1 (Xt+1|Xt)
fθ0 (Xt+1|Xt)

]
, f1(θ0, θ1) =

E1

[
log

fθ1 (Xt+1|Xt)
fθ0 (Xt+1|Xt)

]
, and Ek∈{0,1} is the expectation with respect to the probability distribution

Pk(Xt, Xt+1) = Π∗k(Xt)fθ∗k(Xt+1|Xt). In fact, the solution να to Equation (6) is the optimal
stopping time under the true parameters. This is a consequence of the following Lemma 1:

Lemma 1 θ∗0 and θ∗1 verifies the following for any θ0, θ1:

θ∗0 = arg minθ f0(θ, θ1) and θ∗1 = arg maxθ f1(θ0, θ) (7)

In order to solve the equivalent QCD problem of Equation (6), a good approximation of the functions
f0 and f1 given the observations (Xt)

n
0 is required. This implies the ability to distinguish pre-change

samples from post-change samples and this is precisely why optimal solutions are intractable. They
compute the statistics for any possible change point and consider the worst case scenario. Previous
approximate solutions simplify the setting by using domain knowledge to infer the pre-change
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distribution and by using a sliding window to evaluate the post-change distribution. The window size
w is an irreducible cost in the expected delay.

With known parameters, optimal algorithms have an average detection delay proportional to the error
threshold α and to the inverse of the KL divergence between the pre and post change distributions.
Given the optimal stopping time να, it’s possible to evaluate the posterior distribution of the change
point P(λ = t|να = n), which in turn is a good classifier of the pre and post change observation:

P(Xt ∼ fθ0 |να = n) ∝ P(λ > t|να = n) ; P(Xt ∼ fθ1 |να = n) ∝ P(λ < t|να = n) . (8)

The objective of this section is to exploit this classifier to construct a family of functions that
approximate well f0 and f1. Consider the following family of functions:

fn0 (θ0, θ1) = En0
[

log(
fθ1
fθ0

)(Xτ+1|Xτ )
]

and fn1 (θ0, θ1) = En1
[

log(
fθ1
fθ0

)(Xτ+1|Xτ )
]
,

where both the observations Xt and the indicies τ are random variables. The observations are
generated using Equation (1) with a finite horizon t2. The indicies are sampled with respect to
τ ∼ P(λ > τ |να = n)/

∑t2
i=0P(λ > i|να = n) in En0 while they are sampled with respect to

τ ∼ P(λ < τ |να = n)/
∑t2
i=0P(λ < i|να = n) in En1 .

The family of functions fnk are a re-weighted expectation of the log-likelihood ratio of the observations
using P(λ|να = n). Basically, under the assumption that the optimal detection happens at t = n,
we associate to each observation Xτ a weight proportional to P(λ > τ |να = n) when estimating f0

(and respectively proportional to P(λ < τ |να = n) when estimating f1). In addition, this family of
functions is practical as we can approximate asymptotically P(λ|να = n) using the theoretical delay
behaviour of the SHIRYAEV algorithms presented in Equation (5).

Lemma 2 For any given parameters (θ0, θ1), the following convergences hold:

If λ =∞, then: limn,t2→∞ |fn0 (θ0, θ1)− f0(θ0, θ1)| = limn,t2→∞ |fn1 (θ0, θ1)− f0(θ0, θ1)| = 0

If λ <∞, then: {
limn,t2→∞ |fn0 (θ0, θ1)− f1(θ0, θ1)| = 0
limn,t2→∞ |fn1 (θ0, θ1)− f1(θ0, θ1)| = 0
limt2→∞ |f

να
1 (θ0, θ1)− f1(θ0, θ1)| = 0

For any integer n ∈ N, if t2 = λ+ n, then: limλ,t2→∞ |f
να
0 − f0| = 0.

A major implication of Lemma 2 is that with enough observations, fνα0 and fνα1 will eventually
converge to the functions f0 and f1. In fact, f t0 approaches f0 up to να and then start degrading (as it
ends up converging to f1) whereas f t1 becomes a better and better approximation of f1 around να
and improves asymptotically. As such, we are going to consider the following problem as proxy to
the original QCD problem (Equation (6)).

ν̂α = arg mint{t|S
θt0,θ

t
1

t > Bα} where
{
θt0 = arg minθ f

t
0(θ, θt−1

1 )
θt1 = arg maxθ f

t
1(θt−1

0 , θ)
. (9)

The rational behind this choice is that around the change point, Sθ
t
0,θ

t
1

t converges to Sθ
∗
0 ,θ
∗
1

t . Having
access to a perfect evaluation of the functions f0 and f1 guarantees the fastest possible detection. In
fact, να – the optimal stopping time under known parameters – is a lower bound to the detection
delay in this setting. In practice, only the first t observation are accessible to evaluate f t0 and f t1. This
introduces approximation errors to the estimates θt0 and θt1, thus delaying the detection. However,
this is not detrimental to the evaluation of the stopping time. Indeed:

Before να: θt0 is a good estimator of θ∗0 and θt1 is a bad estimator of θ∗1 . In fact, the fraction of pre-
change observations used to learn θ∗1 is of the order of min(1, λ/t). This helps maintaining
a low log-likelihood ratio (equivalently maintain Sθ

t
0,θ

t
1

t below the cutting threshold), as the
estimation of θ∗1 will converge to a parameter close to θ∗0 .

After να: θt1 is a good approximation of θ∗1 , but θt0 is a noisy estimation of θ∗0 (as post-change
observations are used to learn it). The fraction of the data generated using θ∗1 but used
to learn θ∗0 is proportional to t−να

t . This favours – up to a certain horizon – higher log-

likelihood ratio estimates (equivalently an incremental behaviour of the sequence Sθ
t
0,θ

t
1

t ).
We will discuss further the performance issues of solving Equation (9) in the following.

4



Under review as a conference paper at ICLR 2021

Distribution Approximation: In order to exploit the previously introduced results, we need a good
approximation of P(λ|να = n). If the observation satisfy Hypothesis 1, then the moments of
P(λ|να = n) up to the rth order satisfy Equation (5).

When r =∞, this is equivalent to the Hausdorff moment problem, which admits a unique solution.
The generalised method of moments can be used to approximate this distribution. In the remaining
of this paper, we will restrict ourselves to the case where r = 2. There is an infinite number of
distributions that satisfy Equation (5) in this case; however, given a parametric family, we can compute
analytically a solution of the problem so we consider the Logistic distribution. For a given θ0, θ1,
we approximate P(λ|να = n) with fθ0,θ1n = Logistic(µ, s) where µ = n− | log(α)|

DKL(fθ0 |fθ1 )+d and

s =
√

3 | log(α)|
π(DKL(fθ0 |fθ1 )+d) . Verifying that fθ0,θ1n satisfies Equation (5) for m ≤ 2 is straightforward.

As a consequence, P(τ > t|τ ∼ fθ0,θ1n ) is a fair approximation of P(λ > t|να = n).

Limitations: Solving the problem given by Equation (9) unfortunately yields poor performances for
extreme values of the error threshold α. This is due to a degraded log likelihood estimation both
before λ and as t→∞. In fact, the log-likelihood ratios Lt and L∗t defined as:

Lt(Xt+1|Xt) = log
fθt1
fθt0

(Xt+1|Xt) and L∗t (Xt+1|Xt) = log
fθ∗1
fθ∗0

(Xt+1|Xt),

satisfy the following lemma:

Lemma 3 The log-likelihood ratio Lt and L∗t admit the following asymptotic behaviours:

lim
λ→∞

Eλ[L∗λ] < 0 but Lλ
a.s−→

λ→+∞
0 ; lim

t→∞
Eλ[L∗t |λ <∞] > 0 but Lt

a.s−→
t→+∞

0 (10)

Practically, this means that before the change point, the log likelihood ratio is over-estimated (as
it should be smaller than 0), while after the change point, the log likelihood ratio is eventually
under-estimated (as it should exceed 0). This is a consequence of Lemma 2. In fact, for t � λ
(respectively for t ≤ λ), both functions f t0 and f t1 are approaching f1 (respectively f0). Thus in both
cases θt0 and θt1 converge to the same value. However, combined with the behaviour of f t0 and f t1
around να from Lemma 2, we can expect the Kullback–Leibler (KL) divergence DKL(fθt0‖fθt1) to
converge to 0 before and after the change point while peaking around the optimal stopping time. We
exploit this observation to mitigate the problems highlighted with Lemma 3.

Annealing: The under-estimation of L∗t after the change point is due to the use of post change
observations (drawn from fθ∗1 ) when estimating θ∗0 . In practice, this is particularly problematic when
the error rate must be controlled under a low threshold α (equivalently a high cutting threshold Bα) or
when the pre and post change distributions are very similar. When t approaches the optimal stopping
time (t ≈ να), the minimising argument of f t0 is converging to θ∗0 . As t grows, the approximation
f t0 is degraded, while f t1 is becoming a better approximation, thus θt1 starts converging to θ∗1 . This
leads to an increase in the KL divergence. Our proposition is to keep optimising the version of f t0
that coincides with this increase (which in turn is fνα0 : the best candidate to identify θ∗0). As a fix, we
propose: 1- to shift the probability P(λ > τ |νSα = n) by replacing it with P(λ > τ −∆|νSα = n)
(where ∆ is the ‘delay’ of the detection with respect to the Shiryaev stopping time: (n−νSα )+), and 2-
anneal the optimisation steps of θt0 as the KL divergence increases. These tweaks correct the objective
function used to learn θ∗0 and stop its optimisation when the observations start to deviate from the
learned pre-change distribution. The delay can be formally introduced by replacing f t0 with f t−∆

0 in
Equation (9). In practice, ∆ is a delay heuristic that increases as the KL divergence increases. This
reduces the noise when learning θ∗0 . The second idea is to use a probability p0 = 1−∆ε of executing
a gradient step when learning the pre-change parameter. This anneals the optimisation of θ∗0 .

Penalisation: The over-estimation of L∗t before the change point, is due to the exclusive use of pre
change observation when estimating θ∗1 . This is particularly problematic for application where a high
error threshold is tolerable (equivalently a low cutting threshold for the used statistic). This is also an
issue when the pre and post change distribution are very different. As a solution, we penalise the
log-likelihood using the inverse KL divergence. Before the change point, both parameters converge
to θ∗0 : this means that the KL divergence between the estimated distributions is around 0. Inversely,
after the change point, if the optimisation of θt0 is annealed, the KL divergence between the estimated
parameters must hover around DKL(fθ∗0‖fθ∗1 ). Formally, penalising the log likelihood can be seen as
using L̂t when computing the statistics Sn where L̂t = Lt − c/DKL(fθt0‖fθt1) for some real c > 0.
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We provide in the appendix an ablation analysis as well as experimental proof of the effectiveness of
both annealing and penalisation.

Algorithm: In practice, only the first t observations are available in order to evaluate the param-
eters (θ∗0 , θ

∗
1). Hence, we design a stochastic gradient descent (SGD) based algorithm to solve

Equation (9). Consider the following loss functions, where I is a set of time indices:

Ln0 (I, θ0, θ1) =
∑
t∈I P(τ < t|τ ∼ fθ0,θ1n ) log(

fθ1
fθ0

)(Xt+1|Xt)

Ln1 (I, θ0, θ1) =
∑
t∈I P(τ > t|τ ∼ fθ0,θ1n ) log(

fθ1
fθ0

)(Xt+1|Xt)
(11)

The quantity Ltk is an estimator of f tk using the observations (Xt)t∈I . The rational previously
discussed implies that by re-weighting random samples from the observations we can approximate
the functions fk using the familly of functions f tk.

A good approximation of θt0 and θt1 can be obtained with few SGD steps. These parameters are used
to update the SHIRYAEV or the CUSUM statistic. The change point is declared once the threshold Bα
is exceeded. The proposed procedure is described in Algorithm 1. In addition to the classical SGD
hyper-parameters (number of epochs, gradient step size, momentum, . . . ), we propose to control the
penalisation and the annealing procedure using the coefficients c, ε ≥ 0 respectively.

Algorithm 1 Temporal Weight Redistribution

1: Procedure: TWR(θ0, θ1, (Xt)
t2
t=0, Ne, Bα, ε, c)

2: Initialise S ← 0; θ0, θ1 ← θ0, θ1; ∆← 0; and p0 ← 1
3: for t ∈ [1, t2] do
4: for e ∈ [1, Ne] do
5: Randomly sample I: a set of indices from [0, t]

6: θ0 ← gradient update rule(θ0,∇θ0Lt−∆
0 (I, θ0, θ1)) with probability p0

7: θ1 ← gradient update rule(θ1,−∇θ1Lt1(I, θ0, θ1))
8: end for
9: S ← statistic update rule(S,

fθ1
fθ0

(Xt+1|Xt)− c
DKL(fθ0 |fθ1

)

10: If S > Bα then declare change point and break
11: If DKL(fθ0 |fθ1) > D̄ then ∆← ∆ + 1 and p0 ← p0 − ε
12: D̄ ← t−1

t D̄ + 1
tDKL(fθ0 |fθ1)

13: end for

4 RELATED WORKS

Existing solutions for the QCD problem under known parameters can be extended to the case of
unknown parameters using generalised likelihood ratio (GLR) statistics. For example, an optimal
solution for the Lorden formulation is a generalisation of the CUSUM algorithm using the GLR
statistic for testing the null hypothesis of no change-point, based on (Xi)

n
0 , versus the alternative

hypothesis of a single change-point prior to n. However, given n observation, this solution runs in
O(n2). Others approached the problem from a Bayesian perspective by keeping track of the run
length posterior distribution (the time since the last change point). Since in practice this distribution is
highly peaked, the Bayesian Online Change Point Detection (BOCPD) algorithm (Adams & MacKay,
2007) is namely a good alternative in the i.i.d. setting. In fact by pruning out run lengths with
probabilities below ε or by considering only the K most probable run lengths, the algorithm runs
respectively in O(n/ε) and O(Kn) without critical loss of performance. Extensions of BOCPD
algorithm to the case of non i.i.d observations, namely the Gaussian Process Change Point Models
run inO(n4) (Saatchi et al., 2010). If pruning is applied, the complexity can be reduced toO(nR2/ε)
or O(nKR2) where R is the typical unpruned max run length (Saatchi et al., 2010).

To avoid this complexity issue, multiple approximate solutions that run in O(1) have been proposed
over the years. However, a common practice (Nikiforov, 2000; Li et al., 2009; Unnikrishnan et al.,
2011; Singamasetty et al., 2017; Molloy & Ford, 2018) is to assume that pre-change parameters
are known as this is not a major limitation in many applications (fault detection, quality control...)
where the pre-change corresponds to nominal behaviour of a process and can be characterised offline.
A sub-optimal solution (Nikiforov, 2000) is to track in parallel Sθ0,θ1n over a subset of possible
post-change distributions and consider the worst case scenario. Somewhat Similarly to our approach,
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adaptive algorithms (Li et al., 2009; Singamasetty et al., 2017) attempt to improve this procedure by
tracking Sθ0,θ̄1n where θ̄1 = arg maxθ f1(θ0, θ). Different from proceeding works, our contribution
in this paper is an approximate procedure that can handle the case of unknown pre- and post- change
parameters, runs in O(1), and have near optimal performances.

5 EXPERIMENTAL RESULTS

Detection delay on synthetic data: The distribution family fθ used experimentally to simulate
data given the pre/post change parameters and the previous observations relies on two deep neural
network (φµ, φσ) used to evaluate the parameters of a Gaussian distribution such as: fθ(.|x) =
N (φµ(θ, x), φσ(θ, x)). We compare our algorithm to three other possibilities: the optimal log-
likelihood ratio (an oracle having access to the true parameters), the generalised log-likelihood ratio
(GLR) and the adaptive log-likelihood ratio where the pre change parameters are learned offline (a
fraction of pre-change observations are used to learn θ0).

We also introduce an alternative metric to the average detection delay: the regretted detection delay.
An oracle with access to the true parameters will predict change as fast as the optimal algorithm under
known parameters. In order to put performances into perspective, for a given cutting threshold B, the
regretted average detection delayRB(a) of an algorithm, is the additional delay with respect to the
oracle. If we denote the oracle’s optimal stopping time νB and the algorithm stopping time νaB , then:
RB(a) = Eλ[(νaB − νB)+|νaB ≥ νB ≥ λ]. This formulation of the regret is conditioned to νaB ≥ νB
for the same reason that the measurement of the average detection delay is conditioned to νB ≥ λ.
An algorithm that predicts change faster than the optimal one under known parameters, is over-fitting
the noise in the data to some extent. For this reason, when comparing performances, there is no true
added value in detecting changes faster than the optimal algorithm in the known parameter setting.

Figure 1: Regret as a function of Bα

We evaluate the performances using the SHIRYAEV update
rule for the statistic (solution to the BAYESIAN setting).
We provide in the appendix the analysis using the CUSUM
update rule (solution to the MIN-MAX setting) with the
same conclusions. We evaluate the regretted detection
delay in the case where X = R10, Θ = R10, and (φµ, φσ)
are 5-layer deep, 32-neurons wide neural network. We use
a synthetic example where the KL divergence between pre-
and post- change distribution is DKL(fθ∗0 |fθ∗1 ) = .3. This
allows us to view performances in difficult settings. For
higher KL divergence values, change detection becomes
easier. We provide in the appendix the same analysis for
the case whereDKL(fθ∗0 |fθ∗1 ) = 3. In Figure 1, we provide
the average regret overs 500 simulations. Each simulated
trajectory is 1000 long with a change point at the 500th
observation. We use the full pipeline of our algorithm with
a penalisation coefficient (c = 0.01), and we allow the adaptive algorithm to exploit 10% of the pre
change observations. Our algorithm (the blue curve) achieves comparable performance to the GLR
statistic (without requiring intensive computational resources) and achieves better and more stable
results compared to the adaptive algorithm (without requiring domain knowledge).

Multi-task reinforcement learning: Consider a task space Θ and for each task θ ∈ Θ the
associated Markov decision processMθ = {S,A,P,Rθ, γ} where S is the state space, A is the
action space, P is the environment dynamics, Rθ is the task specific reward function and γ is the
discount factor. We evaluate algorithms using the copycat agent scenario: a main agent is solving a
set of unknown tasks (θi)

K
i=0 and switches from task to task at unknown change points (ti)

K
i=0. We

denote θ∗t =
∑
i θi1ti≤t<ti+1

(t) the task being solved over time. Our goal is to construct a copycat
agent predicting the main agent’s tasks online through the observation of the generated state action
(st, at) ∈ S ×A. This scenario has many different real life applications: Users of any website can be
viewed as optimal agents solving iteratively a set of tasks (listening to sets of music genre, looking
for different types of clothes, ..). The state space corresponds to the different web-pages and the
action space is the set of buttons available to the user. We argue that predicting the task being solved
online is an important feature for behaviour forecasting and content recommendation.
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(a) LLR between fθt0 and fθt1 (b) Prediction error of the task θ∗t

Figure 2: Performance analysis of the copycat problem

In the following let xt = (st, at) denote the observations and let π∗θ denote the optimal pol-
icy of Mθ. The copycat problem is a QCD problem where the observations are drawn from
fθ(xt+1|xt) = P(st+1|st, at)π∗θ(at+1|st+1). However this implies that we have the optimal pol-
icy π∗θ . In practice it is sufficient to either have access to the reward functions Rθ or a set of task
labelled observations. In both cases the problem of learning π∗θ is well studied. WhenRθ is known,
then coupling Hindsight Experience Replay (Andrychowicz et al., 2017) with state of the art RL
algorithms such as Soft Actor Critic (Haarnoja et al., 2018) can solve a wide range of challenging
multi-task problems (Plappert et al., 2018). When a history of observations are available, we can use
generative adversarial inverse reinforcement learning (Ho & Ermon, 2016) or Maximum Entropy
Inverse Reinforcement Learning (Gleave & Habryka, 2018; Yu et al., 2019) to learn π∗θ .

We evaluate our algorithm performances on the FetchReach environment from the gym library. Each
time the main agent achieves the desired goal, a new task is sampled. We run this experiment for
500 time step. Temporal Weight Redistribution (TWR) is used in order to evaluate the tasks online.
Algorithm 1 is easily adapted to the multiple change point setting: each time a change point is
detected, we reinitialise the parameters ∆ and p0 and we set the task parameters to the previous post
change parameters. As such, we use the running estimate θt0 overtime to approximate the main agent
task θ∗t . Experimental results are reported in Figure 2.

We used the TWR algorithm with an annealing parameter ε = 0.1 and a penalisation coefficient
c = 0.01, and the CUSUM statistic with a cutting threshold Bα = 50. We designate the task change
points of the main agent with dashed black lines and the detected change points with a dashed
red lines. On Figure 2a, we observe that the log-likelihood ratio (LLR) log(fθt1/fθt0)(xt) starts
off negative, stabilises around 0 and becomes strictly positive after the actual change point. Once
the change detected, we reset the TWR and the LLR falls down to a negative value. This trend is
consistently reproduced with each new task. The main agent have a small probability of making a
random action, this causes the LLR to peak sometimes before the change point. However this doesn’t
cause the statistic to exceed the threshold Bα. We provide on Figure 2b the estimation error of θ∗t .
The blue curve is the error of the TWR estimate ‖θt0 − θ∗t ‖. As a baseline we estimate the task using
the last 10 observation: θ̂t = arg maxθ

∑10
i=1 log(fθ(xt−i). The error of this estimator ‖θ̂t − θ∗t ‖

is plotted in green. The prediction of the TWR copycat agent are clearly more reliable. Additional
experimental results for the Fetchpush and the PickAndPlace environments as well as an analysis of
the impact of using learned policies when solving the copycat problem are provided in the appendix.

6 CONCLUSION

We studied the QCD problem under unknown parameters for Markovian process. Extending our
techniques to handle higher order Markov chains, (i.e., for some window parameter w > 0, fθ de-
pends of Xt−w:t rather than just the last observation) is trivial, thus covering a wide range of
natural processes. We provide a tractable algorithm with near optimal performances that relies on
the asymptotic behaviour of optimal algorithms in the known parameter case. This mitigates the
performance-cost dilemma providing the best of both worlds: a scalable procedure with low detection
delay. Empirically, we were able to outperform previous approximate procedure (adaptive algorithms)
and approach the performances of prohibitively expensive ones (GLR). Interesting future direction
include taking into account the delay caused by the generalisation error.
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A SOLUTION FOR THE QCD PROBLEM UNDER KNOWN PARAMETERS

In this section, we assume that both the parameters θ0 and θ1 in Equation (1) are known. We present
in the following the main optimality existing results.

Min-Max formulation: In the i.i.d. case (i.e. when fθ(.|x) = fθ(.)), the CUSUM algorithm (Lorden
et al., 1971) is an optimal solution (Moustakides et al., 1986; Ritov, 1990) for the Lorden formu-
lation (3). However, even though strong optimality results hold, optimising WADD is pessimistic.
With the delay criterion base on CADD (Pollak formulation), algorithms based on the SHIRYAEV-
ROBERTS statistic are asymptotically within a constant of the best possible performance (Pollak,
1985; Tartakovsky et al., 2012).
In the non i.i.d. case, state of the art methods (Lai, 1998) are modified versions of the CUSUM
algorithm that converge asymptotically to a lower bound of CADD (and thus a lower bound to
WADD).

Bayesian formulation: The SHIRYAEV algorithm (Shiryaev, 1963) is asymptotically optimal in the
i.i.d. case. This result is extended to the non i.i.d. case under Hypothesis 1 (Tartakovsky & Veeravalli,
2005).

A.1 ALGORITHMS

In this section, we formally introduce the algorithms used to solve the change point problems under
known parameters. A common trait of these algorithms is the computation of a statistic Sθ0,θ1n and
the definition of a cutting threshold Bα. The stopping time να is the first time the statistic exceeds the
threshold. The value Bα is chosen such that PFA (respectively FAR) of the associated stopping time
does not exceed the level α. In the case of the BAYESIAN formulation, the threshold is simplified
into Bα = 1−α

α .

The SHIRYAEV Algorithm: The general formulation of the statistic Sθ0,θ1n , is the likelihood-ratio
of the test of H0 : λ ≤ n versus H1 : λ > n given the observations Xt≤n. In the general case, with a
prior P(λ = k) = πk, this statistic writes as:

Sθ0,θ1n :=

∑
k≤n πk

∏k−1
t=1 fθ0(Xt+1|Xt)

∏n+1
t=k fθ1(Xt+1|Xt)∑

k>n πk
∏n−1
t=1 fθ0(Xt+1|Xt)

(12)

In the case of geometric prior with parameter ρ, the statistic is simplified into:

Sθ0,θ1n = 1
(1−ρ)n

∑n
k=1(1− ρ)k−1

∏n
t=k Lt(θ0, θ1) where Lt(θ0, θ1) =

fθ1 (Xt+1|Xt)
fθ0 (Xt+1|Xt)

The statistic Sθ0,θ1n can be computed recursively under this simplification:

Sθ0,θ10 = 0 and Sθ0,θ1n+1 =
1+Sθ0,θ1n

1−ρ Ln+1(θ0, θ1)

The SHIRYAEV-ROBERT Algorithm: The statistic to be computed in this case can be seen as an
extension of the one in the SHIRYAEV algorithm when ρ = 0. The recursive formulation is indeed:

Sθ0,θ10 = 0 and Sθ0,θ1n+1 = (1 + Sθ0,θ1n )Ln+1(θ0, θ1)

The CUSUM Algorithm: The relevant statistic is defined as: Sθ0,θ1n = maxk≤n
∑n
t=k log(Lt),

and can be computed recursively by:

Sθ0,θ10 = 0 and Sθ0,θ1n+1 = (Sθ0,θ1n + log(Ln+1))+

B R-QUICK CONVERGENCE HYPOTHESIS

Hypothesis 1 is not too restrictive, and r-quick convergence conditions were previously used to estab-
lish the asymptotic optimality of sequential hypothesis tests for general statistical models (Draglia
et al., 1999; Lai, 1976; 1981).
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Figure 3: Annealing the optimisation of θ0

Using the law of large numbers, this hypothesis is satisfied for q = EXt∼fθ1 [
fθ1 (Xt)

fθ0 (Xt)
] in the i.i.d.

case. In the (ergodic) Markovian case, the convergence is achieved for irreducible Markov chains due
to their ergodicity.

However, the speed of convergence of Equation (4), depends on the speed of convergence to the
stationary distribution of the Markov chain. Even though for any r > 0 construction of Markov
chains that satisfy assumption 4 is possible (Draglia et al., 1999), providing a guarantee of this speed
is not a trivial question (Hairer, 2010).

C ALGORITHMIC ANALYSIS

C.1 IMPACT ANALYSIS (ANNEALING AND PENALISATION)

In order to justify experimentally the use of annealing and penalisation to solve the issues highlighted
with Lemma 3, we simulate simple examples where the phenomena are amplified to their extreme.

Annealing: We consider a one dimensional signal. The KL divergence between the pre and post
change distribution is 0.06. As discussed in the paper, the issue is that after the change point we start
using observations from the post change distribution to learn the pre change one. This leads to θt0
and θt1 converging to the post change parameter θ∗1 . In fact, without the annealing procedure, the KL
divergence DKL(fθt0‖fθt1) (the blue curve, in the top right subplot in Figure 3) ends up collapsing to 0.
This has the problematic consequence of slowing down the statistics. In fact, both the SHIRYAEV and
the CUSUM statistics (the blue curves in the lower subplots of Figure 3) start adjacent to the optimal
statistic (in red) and slowly degrade in quality. On the other hand, implementing the annealing
procedure -as described in the paper with a step size ε = 0.01- solves this issue. The KL divergence
(green curve) hovers around the true value and the computed statistics are almost within a constant of
the optimal one.

Penalising: We consider in this case a one dimensional signal with a KL divergence of 2. The
problem we are analysing in this setting is the exclusive use of pre change observations when learning
the parameters before the change point. The optimal log-likelihood ratio (LLR) before the change
point is −2 (the red curve in the top right subplot of Figure 4) while the learned one (in blue) is
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Figure 4: Penalising the Log Likelihood Ratio

around 0. This is due to θt0 and θt1 converging to the pre change parameter θ∗0 . This over-estimation of
the LLR leads to a higher estimate of the SHIRYAEV statistic. In the lower left subplot of Figure 4, we
have an increase of 100 fold compared to the optimal value. Penalising the LLR, using a coefficient
c = 0.01, solves this issue without being detrimental to the post change performance. In fact the
penalised LLR (the green curve) is strictly negative before the change point and has a similar values
to the optimal ones afterwards. The associated SHIRYAEV statistic (the green curve) is less prone to
detect false positives as it has the same behaviour as the optimal one. This safety break (penalisation)
comes with a slight drawback for higher cutting thresholds as it induces an additional delay due to the
penalising component. Interestingly, the CUSUM statistic does not have the same behaviour in this
example. This is explained with the nature of the LORDEN formulation. As it minimises a pessimistic
evaluation of the delay (WADD), the impact of a LLR of 0 is less visible. However, on average, the
same phenomena occurs. This will be observed in the ablation analysis, where on average, there was
no notable differences between the different formulations.

C.2 ABLATION ANALYSIS (ANNEALING AND PENALISATION)

Since the algorithm integrates different ideas to mitigate the issues discussed in the paper, an ablation
study is conducted to understand their contribution. We simulate the case where X = R10, Θ = R10,
and (φµ, φσ) are 5-layer deep, 32-neurons wide neural network. The penalisation coefficient is fixed
to 0.01 and the annealing step is fixed to 0.02. In Figure 5, the regretted detection delay is evaluated
using 500 simulations. We consider a mid-ground complexity case, with a KL divergence of 1.5,
which is a more realistic scenario in real life situations.

We provide the regret with respect to both the optimal performance under known parameters for
both the BAYESIAN setting (SHIRYAEV statistic on the left) and the MIN-MAX setting (CUSUM
statistic on the right). We split the analysis of the curves to three scenarios: The low, the mid and the
high cutting threshold cases. They correspond respectively to 3 categories of risk inclinations levels:
the high, the mid and the low.

The high risk inclination: In the presented case, this correspond to a cutting threshold B smaller
than 1020 in the shiryaev algorithm and than 50 in the CUSUM algorithm. This can be associated
to household applications and relatively simple settings with high reaction time. In this case, the
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simplest version of the algorithm is sufficient to achieve relatively small regret values. In fact, the
green curve (associated to the configuration without annealing) presents a relatively low regret with
respect to the optimal delay.

The low risk inclination: In the presented case, this correspond toB higher than 1050 in the shiryaev
algorithm and than 100 in the cusum algorithm. This can be associated to critical applications where
precision outweighs the benefice of speed such as energy production. In this case, configurations
without annealing (presented in green here) have poor performance. The best configuration is to
perform annealing but without penalisation of the log likelihood.

The intermediate risk inclination: This coincides with the remaining spectrum of cases. For
example, when the application is critical but requires high reaction time, or when the application has
no reaction time constraints but doesn’t require extreme safety measures. In this setting, we observe
that the best performance require some amount of penalisation of the log likelihood. The choice of
the coefficient should be guided by the KL divergence between the pre and post change distributions,
with c = 0 when the change is subtle (small KL).

(a) DKL(fθ∗0 |fθ∗1 ) = 1.5

Figure 5: Ablation analysis of the regret detection delay as a function of the cutting threshold

C.3 DIVERGENCE MEASURES BASED ALGORITHMIC VARIANT

In order to solve the QCD problem under unknown parameters, we propose in this paper to approxi-
mate the log-likelihood ratio L∗t efficiently. We achieved this by optimising a surrogate of the KL
divergence between the estimated parameters (θ0

t , θ
1
t ) and the true parameters (θ∗0 , θ

∗
1). Algorithm 1

devises a theoretically grounded weighting technique that approximates expectations under pre/post
change distributions. For this reason, other divergence measure based loss functions can be used
instead of the proposed ones in Equation 11. In particular, consider the following loss functions:

Ln0 (I, θ0, θ1, g) =
∑
t∈I P(τ < t|τ ∼ fθ0,θ1n )g(

fθ1
fθ0

)(Xt+1|Xt)

Ln1 (I, θ0, θ1, g) =
∑
t∈I P(τ > t|τ ∼ fθ0,θ1n )g(

fθ1
fθ0

)(Xt+1|Xt)

For k ∈ {0, 1}, the loss function Lnk (I, θ0, θ1, g) approximates Ek
[
g(
fθ1
fθ0

)
]
. Under the assumptions

that g is an increasing function with g(1) = 0 and h(x) = x.g(x) is convex, Ln0 becomes a proxy
of the h-divergence measure Dh(fθ∗1‖fθ∗0 ) (respectively Dh(fθ∗0‖fθ∗1 ) for Ln1 ). This formulation is
coherent with the QCD objective as it minimises Lt under the pre-change distribution and maximises
it under the post change distribution and we can use it as a valid change point detection algorithm.
The obtained parameters (θ0

t , θ
1
t ) are the furthest apart with respect to the associated h-divergence.

The KL divergence (associated with g(x) = log(x)) is a natural fit for our setting as it simultaneously
ensures that the evaluated parameters converge to (θ∗0 , θ

∗
1).

We keep using the same hyper-parameters from the ablation analysis in order to asses the ADD of the
TWR algorithm using different divergence measures. The experimental results are reported in Figure
6. In addition to the KL-based version (dark blue curve), we consider the case where g(x) =

√
x− 1

(purple curve) and the case where g(x) = (x− 1). log(x) (cyan curve). We also provide the adaptive
(yellow) and GLR (green) average detection delay as a baseline.
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The KL-divergence based approach provides comparable ADD to the GLR, outperforming both the
adaptive algorithm and the other variant of the TWR.

(a) DKL(fθ∗0 |fθ∗1 ) = 1.5

Figure 6: Regretted average detection delay using different divergence measures

D PROOFS OF TECHNICAL RESULTS

Proof of Lemma 1: We start by observing the following: f0(θ, θ1) = E0

[
log(

fθ1
fθ∗0

)
]

+ E0

[
log(

fθ∗0
fθ

)
]

f1(θ0, θ) = E1

[
log(

fθ∗1
fθ0

)
]
− E1

[
log(

fθ∗1
fθ

)
]

Notice that both quantities E0

[
log(

fθ1
fθ∗0

)
]

and E1

[
log(

fθ∗1
fθ0

)
]

are constants with respect to the param-

eter θ, and that:  E0

[
log(

fθ∗0
fθ

)
]

= DKL(fθ∗0 |fθ)
E1

[
log(

fθ∗1
fθ

)
]

= DKL(fθ∗1 |fθ)

where DKL is the Kullback–Leibler divergence in the i.i.d case and the Kullback–Leibler divergence
rate in the Markov chains case, i.e.

DKL(fθ0 |fθ1) =

{ ∫
x
fθ0(x) log(

fθ0
fθ1

)(x)∫
x

Π0(x)
∫
y
fθ0(y|x) log(

fθ0
fθ1

)(y|x)

When well defined, DKL(fθ0 |fθ1) is strictly positive except when fθ0 = fθ1 . This allows us to
conclude that: {

arg minθ f0(θ, θ1) = arg minθDKL(fθ∗0 |fθ) = θ∗0
arg maxθ f1(θ0, θ) = arg maxθ −DKL(fθ∗1 |fθ) = θ∗1

This concludes the proof of the Lemma.

Proof of Lemma 2: We denote µ0 the initial distribution according to which X0 is sampled and µt
the distribution of Xt. We re-write the functions fnk as:

fn0 (θ0, θ1) =
∑t2
t=0

P(t<λ|να=n)∑t2
i=0 P(i<λ|να=n)

E0,t[log(
fθ1
fθ0

)(X|Xp)]

fn1 (θ0, θ1) =
∑t2
t=0

P(t>λ|να=n)∑t2
i=0 P(i>λ|να=n)

E1,t[log(
fθ1
fθ0

)(X|Xp)]

where Ek,t is taken with respect to (Xp, X) ∼ µt(Xp)× (fθ∗0 (X|Xp)1t<λ + fθ∗1 (X|Xp)1t>λ).
It’s important to notice for what follows that P(t < λ|να = n) (respectively P(t > λ|να = n)) is
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decreasing (increasing) with respect to t. We also highlight that for any finite set I , we have the
following: ∑

t∈I
P(t<λ|να=n)∑t2
i=0 P(i<λ|να=n)

n,t2→∞−−−−−→ 0∑
t∈I

P(t>λ|να=n)∑t2
i=0 P(i>λ|να=n)

n,t2→∞−−−−−→ 0

Consider the case where λ =∞. As Xt is a irreducible Markov chain, we have that

||Π∗0 − µt||T.V
t→∞−−−→ 0

where ||.||T.V is the total variation norm. This means that for any small value ε > 0, there exist T > 0
such that:

∀t ≥ T ||Π∗0 − µt||T.V ≤ ε
Thus, as the observation Xt are bounded, we have for any continuous function f , there exist Tε > 0

such that:
∀t ≥ Tε |Ek,t[f(X|Xp)]− E0[f(X|Xp)]| ≤ ε

This implies that when λ =∞ then f∞0 and f∞1 converges to f0. In fact for any ε, there exist N and
T2 such that for all n > N :

∀t2 ≥ T2

∑
t<Tε

P(t>λ|να=n)∑t2
i=0 P(i>λ|να=n)

≤ ε

∀t2 ≥ T2

∑
t<Tε

P(t<λ|να=n)∑t2
i=0 P(i<λ|να=n)

≤ ε
∀t2 ≥ t ≥ Tε |Ek,t[f(X|Xp)]− E0[f(X|Xp)]| ≤ ε

The case where λ is finite can be deduced by considering the sequence Xt>λ. All the observation are
sampled according to fθ∗1 , and thus f∞0 and f∞1 converges to f1.

This result is also valid for fνα1 . In fact, as P(t > λ|να = n) is increasing with respect to t, then for
any fixed horizon H we have:∑

t<H

P(t > λ|να = n)∑t2
i=0P(i > λ|να = n)

t2→∞−−−−→ 0.

As this remains true for H = Tε, we obtain that fνα1 converges to f1.

For a given integer n, if t2 = λ+ n, the convergence of fνα0 to f0 is achieved as λ→∞. In order
to establish this result, we need to prove that

∑t2
t=λ

P(t<λ|να)∑t2
i=0 P(i<λ|να)

is decreasing with respect to λ.

This is a consequence of P(t < λ|να) being decreasing with respect to t. In fact:∑t2
t=λP(t < λ|να) ≤

∑t2
t=λP(λ < λ|να) = nP(λ < λ|να)∑t2

t=0P(t < λ|να) ≥
∑λ
t=0P(λ < λ|να) = λP(λ < λ|να)

as a consequence the following inequality holds:
t2∑
t=λ

P(t < λ|να)∑t2
i=0P(i < λ|να)

≤ n

λ

λ→∞−−−−→ 0.

As such, for any ε > 0, there exists An > 0 such that:

∀λ ≥ An
∑t2
t=λ

P(t<λ|να)∑t2
i=0 P(i<λ|να)

≤ ε

∀λ ≥ Tε
∑Tε
t=0

P(t<λ|να)∑t2
i=0 P(i<λ|να)

≤ ε
∀λ ≥ t ≥ Tε |E0,t[f(X|Xp)]− E0[f(X|Xp)]| ≤ ε

Proof of Lemma 3: We have fλk converges to f0 as λ → ∞ (respectively f tk converges to f1 as
t → ∞). Given that θ∗0 minimises f0 (respectively θ∗1 minimises f1), then θλk and θtk satisfy the
following:

θλ0 , θ
λ
1

a.s−→
λ→+∞

θ∗0 and θt0, θ
t
1

a.s−→
t→+∞

θ∗1 .

As such, we obtain the following result:

Lλ
a.s−→

λ→+∞
0 and Lt

a.s−→
t→+∞

0
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On the other hand we have the following:

limλ→∞Eλ[L∗λ] = EXλ−1∼Π∗0 ,Xλ∼fθ∗0
[L∗λ] = −DK.L(fθ∗0‖fθ∗1 ) < 0

limt→∞Eλ[L∗t ] = EXt−1∼Π∗1 ,Xt∼fθ∗1
[L∗λ] = DK.L(fθ∗0‖fθ∗1 ) > 0

This concludes the proof of the lemma.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 HYPER-PARAMETER SELECTION

The algorithm we designed requires the selection of a few hyper-parameters in order to run properly.
In this section we address the issue of tuning them.

The first set of parameters are for optimisation purpose, and thus we advise selecting them according
to the complexity of the probability distribution family {fθ, θ ∈ Θ}. In all the experimental settings
we used a batch size of 32, a number of epoch equal to 25 and a gradient step size of 0.001. The
initial task parameters θ0 and θ1 are chosen randomly unless stated otherwise.

As for the cutting threshold, the penalisation and the annealing coefficients, they depend on the KL
divergence between the pre- and post- change distribution (thus the task sampling distribution F ) and
on the mixing times of these distribution. Fine tuning using grid search is the most efficient way to
identify suitable candidates.

From our experimental inquiries, we advise a low penalisation coefficient (e.g. c = 0.001) unless
the threshold Bα is smaller than 100 for the SHIRYAEV statistic and smaller than 10 for the CUSUM
statistic. The annealing parameter ε depends on the mixing time of the Markov chain. In fact ε reflects
to what extent we keep learning the pre-change parameter once it’s similar to the post-change one.
In practice we found out that a small coefficient (e.g. ε = 0.01) is advised when the observations
converge slowly to the stationary distribution. On the other hand, when convergence occurs in few
observations, a higher coefficient is a safer choice.

E.2 COPYCAT AGENT PROBLEM: COMPLEMENTARY RESULTS

In this section we further the analysis of the copycat agent problem. The Fetch set of environments
provides a good mix of complexity and interpretability. The ability of the TWR algorithm to detect
changes and to solve the copycat agent problem in these environments is proof of it’s robustness.

SHARED BEHAVIOURS

When different tasks are associated to a shared behavior, it becomes difficult to evaluate the param-
eter θ∗t . This is true for the push and the PickandPlace environments. In both cases, the goal is to
control a robotic hand (through its joints’ movements) in order to interact with an object until it
reaches a final position (either push it there or pick it and then place it there).

The task space in these problems is the set of possible final positions. No matter what the task is, the
main agent is going to reach to the object. The observations associated to this intermediate process of
reaching are probably going to yield a poor estimation of the final position. However as the agent
start to interact with the object, it starts to become clear what task is being executed. For this reason,
an artificial change is detected between the reaching behaviour and the interaction one when using
the TWR algorithm. Even though this detection is unwanted (in the sense that there was no actual
change of behavior) it allows to reduce the estimation error ‖θt0 − θ∗t ‖.
In this section, the experiment we run consists of performing three randomly sampled tasks, each
over a window of 20 observations. We estimate the running task θ∗t using the TWR algorithm and
a maximum log-likelihood estimator (MLE) over both the last 5 and 10 observations. We average
the errors over 500 trajectories and report the results in Figure 7. In both environments estimating
the task with the running pre-change parameter of the TWR algorithm outperforms MLE. The gap
grows narrower however in the PickAndPlace setting as the shared behaviour last longer. This makes
estimations more difficult.
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(a) Prediction error in the Push problem (b) Prediction error in the Pick&Place problem

Figure 7: Performance analysis of the copycat problem

We also notice that the first task estimation of TWR is better than the MLE estimator despite the
fact that all the observations are generated with a single parameter. This strange result is due to
the detection of an artificial change after the "shared" behaviour. optimising only observations that
are clearly correlated to a particular task, leads to better estimations. As for the gap in the first
estimation, this is explained by a built-in agnostic behaviour in the TWR algorithm. When the
number of observation is less than the ADD of the SHIRYAEV algorithm, the pre-change weight
term P(τ < t|τ ∼ f

θt0,θ
t
1

n ) of Ln0 is extremely small. and thus the estimation remains close to the
initialisation. In addition, the tow target functions Lt0 and Lt1 are adversarial as they kind of optimise
the opposite of each other. This leads to smaller gradient updates. On the other hand, MLE tend to
commit to a particular estimate using observations from the ’shared’ behaviour phase. This leads
generally to a heavily over-fitting estimate.

The agnostic behaviour is more pronounced in Figure 7b (PickAndPlace) as the robotic hand picks
the object exactly the same way no mater what task is being solved. As long as there is few evidence
of a distinctive behaviour occurring, the TWR estimate remains close to the initialisation. In fact the
tasks here are positions and the error is the distance between the true and predicted coordinates. In
the PickAndPlace scenario, the target is randomly sampled in a cube of edge length 0.3, in the Push
scenario, it is sampled in a square with the same edge length. with random initialisation we get an
average error of 0.1×

√
3 and 0.1×

√
2 respectively with a random initialisation. This coincide with

the TWR error (blue curve) in both environments given few observations proving that the learned
task remained close to the initialisation.

In Figure 7a, the improvement due to the artificial detection of change between the shared behaviour
and the task specific one is marked around the 5th observation. In fact once the robotic hand starts
pushing the object in a particular way, the estimation error starts to decay faster.

PERFORMANCE COST OF LEARNING THE POLICY

Estimating the running task θ∗t in the copycat problem with either the TWR algorithm or the MLE
requires access to the probability distribution π∗θ . However, in real life situations, we can only learn
an approximation of this distribution through historical observations.

In this section we evaluate experimentally the impact of using inverse reinforcement learning to
construct an approximate policy π̂θ and using it as a substitute for π∗θ . We consider the Reach
environment where the task is to move the robotic hand to a particular position. The main agent
execute 5 different tasks, sampled randomly, each over a window of 20 time steps. We evaluate the
running task with TWR and MLE using the last 5 observations using the actual policy π∗θ and the
learned one π̂θ. We average the estimation error over 100 simulations and we provide the experimental
results in Figure 8. The approximate policy is constructed using the GAIL algorithm and a data-set of
task labelled observations generated using π∗θ .

As established before, the TWR estimates using the true policy (in blue) outperform MLE based
approaches. This trends remains true on average when using π̂θ. However, the true policy based MLE
(in green) converges to a better estimation in the last observations before the change point, while the
GAIL based TWR estimate (in red) as well as the GAIL based MLE (in orange) seem to be unable
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Figure 8: Impact of learning the policy

to improve. This is the cost of using a policy approximation. The additional error is built in due to
estimation error of the learned policy.

E.3 COMPLEMENTARY PERFORMANCE ANALYSIS

In this section we provide complementary experimental results to the ones introduced in the paper.
We keep using the same hyper-parameters (i.e. X = R10, Θ = R10, and (φµ, φσ) are 5-layer deep,
32-neurons wide neural network).

SINGLE CHANGE POINT PERFORMANCE

In Figure 9, we provide the average regret overs 500 simulations in both the BAYESIAN (on the
left) and the MIN-MAX (on the right) settings. Each simulated trajectory is 1000 observation long
with a change point at the 500th observation. We use the full pipeline of our algorithm with a
penalisation coefficient (c = 0.01), and we allow the adaptive algorithm to exploit 10% of the pre
change observations. Our algorithm (the blue curve) achieves comparable performance to the GLR
statistic (without requiring intensive computational resources) and achieves better and more stable
results compared to the adaptive algorithm (without requiring domain knowledge).

In all experiments and for all considered change detection algorithms, we observe a spike and a high
variance of the average detection delay for low cutting threshold. This is a direct consequence of the
definition of Bα. In fact a low cutting threshold implies a high tolerance of the type I error. This
implies that the optimal detection time is no longer a reliable estimate.

MULTIPLE CHANGE POINTS PERFORMANCE

We reconsider in this section the multiple change points problem introduced early on in the paper.
If the change points are sufficiently separated (i.e. tk − tk−1 is big enough), they can be seen as
independent single change point problems. However there is no good reason to believe that this is
the case of real life applications. For this reason, the detection delay of the first change point t1
will probably reduce the accuracy at which we estimate the parameter θ1, this in turn will affect the
accuracy of estimating the log-likelihood for the next change point t2. This behaviour will keep on
snowballing until we reach a breaking point at which we will miss a change point. Some attempts to
deal with this issue have been made in the past to improve the convergence rate of the GLR algorithm
in order to reduce the impact of this problem (Ross, 2014). These approaches remain computationally
extensive and thus are not considered in our comparison setting.

We provide however an analysis of the impact of the number of pre change observations on the
average detection delay in the single change point setting. We keep using the same hyper-parameters
where X = R10, Θ = R10, and (φµ, φσ) are 5-layer deep, 32-neurons wide neural network. We
use parameters achieving a KL divergence of 1.5 between the pre and post change parameters, and
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evaluate the average detection delay over 500 simulations where t2 = λ + 250. By varying λ we
simulate different multiple change point scenarios where the accumulated delay exhausts most of
the available observations. The first thing to notice is that our algorithms (in the blue curve) has
similar average detection delay to the GLR (green curve) in all presented cases. When we have
sufficient observations (λ = 250), all algorithms will have reasonable performances compared to the
optimal delay. However, for smaller horizon, the adaptive algorithm (the orange curve) is predicting
change way before the optimal algorithm. This is explained with the bad estimation of the pre change
distribution due to a reduced sample size. In fact for cutting threshold up to 1025, the adaptive
algorithm is predicting the change point before it happens. In addition, we observe that our approach
varies less than the adaptive one as it’s less prone to fit statistical fluctuations.

We provide an analysis of the impact of the number of pre change observations on the average
detection delay in both the BAYESIAN (on the left) and the MIN-MAX (on the right) settings. We
use parameters achieving a KL divergence of 1.5 between the pre and post change parameters, and
evaluate the average detection delay over 500 simulations where t2 = λ + 250. By varying λ we
simulate different multiple change point scenarios where the accumulated delay exhausts most of the
available observations. There is no notable variation in the algorithms behaviour when using either
the SHIRYAEV or the CUSUM statistic. As for the impact of the number of available pre-change
observation before the change point (λ), the results presented in Figure 10 illustrate how our algorithm
is less prone than adaptive procedures to over fit the observation when their number is limited. In fact
the blue curve (our algorithm) is closer than the adaptive one (orange curve) to the GLR (green curve)
performances. All approaches end up having a constant regret with respect to the optimal detection
given enough observations (λ = 250).

(a) DKL(fθ∗0 |fθ∗1 ) = 3

(b) DKL(fθ∗0 |fθ∗1 ) = .3

Figure 9: Performance analysis of the regretted detection delay as a function of the cutting threshold
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(a) λ = 20

(b) λ = 50

(c) λ = 100

(d) λ = 250

Figure 10: Performance analysis of the average detection delay as a function of the cutting threshold
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(a) DKL(fθ∗0 |fθ∗1 ) = 3

(b) DKL(fθ∗0 |fθ∗1 ) = .3

Figure 11: Performance analysis of the regretted detection delay given a nominal behaviour

PERFORMANCE GIVEN A NOMINAL BEHAVIOUR

In this section, we keep using the same hyper-parameters from the previous experiments. However
we consider the setting where we have access to the pre-change parameter (which correspond to
a nominal behaviour). Beside the ADD of the GLR and TWR statistics (computed with no prior
knowledge of the pre-change parameter), we computed the ADD of the adaptive and TWR statistics
using the prior knowledge of the true pre-change distribution.

The first notable thing is that the adaptive algorithm performances (yellow curve) did not improve
by much compared to the case where the parameter were estimated using 10% of the available
observations. In fact TWR statistics outperforms it even with no prior knowledge of the nominal
behaviour (dark blue curve). The second notable observation, is that given the pre-change parameter,
TWR statistic performance (light blue) is within a constant of the GLR statistic. These observations
confirm again that using the asymptotic behaviour of the Shriyaev detection delay is a very powerful
approximation
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