Under review as a conference paper at ICLR 2022

OFFLINE-ONLINE REINFORCEMENT LEARNING:
EXTENDING BATCH AND ONLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Batch RL has seen a surge in popularity and is applicable in many practical
scenarios where past data is available. Unfortunately, the performance of batch
RL agents is limited in both theory and practice without strong assumptions on the
data-collection process e.g. sufficient coverage or a good policy. To enable better
performance, we investigate the offline-online setting: the agent has access to a
batch of data to train on but is also allowed to learn during the evaluation phase in
an online manner. This is an extension to batch RL, allowing the agent to adapt to
new situations without having to precommit to a policy. In our experiments, we
find that standard RL agents trained in an offline-online manner can outperform
agents trained only offline or online, sometimes by a large margin, highlighting the
potential of this new setting.

1 INTRODUCTION

The batch RL setting has attracted much attention in recent times Fujimoto et al.| (2019b)); Wu et al.
(2021); [Zhang et al.| (2021} |2020). In this problem, the agent has to learn a good policy from a fixed
batch of data, without acting in the environment (Ernst et al., 2005), making it a good fit for many
practical applications where only past logged data is available.

This problem setting has proven to be difficult. Empirically, in the case where a behaviour policy
has collected the data, batch RL algorithms are only able to provide a policy matching or slightly
exceeding the original behaviour policy’s performance (Fujimoto et al.,2019a; Kumar et al.l 2019).
From the theoretical side, lower bounds exist showing that without strong assumptions on the data
distribution and features, it may take exponentially many samples to learn a good policy (Zanette,
2020; |(Chen & Jiang| [2019). Otherwise it seems an algorithm can only produce the best policy which
is well-covered by state-actions contained within the batch (Liu et al., 2020).

These findings contrast results in the online setting, where there exist many effective algorithms both
in practice (Haarnoja et al.,|2018; Mnih et al. [2015)) and in theory (Jin et al., [2020a)). As such, it
is natural to consider a variant of the batch setting, closer to online learning. In the standard batch
RL problem, the learner observes a pre-collected dataset and outputs a policy, which is evaluated by
running it on the environment. The main difficulty is the lack of feedback from the environment. As
such, the learner is unable to assess the quality of a policy it proposes.

We may instead consider a setting where the agent is allowed to do further learning during the
evaluation phase, which we call the offline-online RL setting. While a natural extension to batch RL,
this setting remains largely unexplored. In the offline-online setting, the goal is to learn an effective
policy as quickly as possible. While this may involve starting with a good policy learned offline as
in batch RL, the agent now has the chance to correct its policy by observing new transitions. This
can help avoid a major roadblock to offline RL—extrapolation error (Levine et al., 2020; |[Fujimoto
et al.,)2019b). This issue arises due to the agent encountering states not found in the dataset when
it is evaluated. Oftentimes, the agent may choose bad actions in these new states, without a chance
to learn from its mistakes. This implicitly limits the agent’s performance based on which states are
present in the dataset. In many applications, this problem is unavoidable since we cannot expect to
collect a batch of data covering all possible situations. In the offline-online setting, the agent sidesteps
this issue as it can improve its policy at new states.

Under review as a conference paper at ICLR 2022

Compared to online RL, the offline-online agent now has extra information in the form of this dataset.
As such, the agent can be expected to perform better since we can jumpstart the policy to higher-level
of performance through batch RL. This may be especially desirable in practical applications where
one would require the initial deployed policy to perform well. In these settings, starting tabula rasa,
with online RL may be an unacceptable solution. From a theoretical standpoint, it has been shown
that online learning performance can be improved (Xie et al.,[2021)) when the agent has access to a
good reference policy, a similar setting.

In this paper, we study the difference between the online, batch and offline-online RL settings
from an empirical perspective. We look at the simplest instance of offline-online RL. where we
transfer a policy (value function) and a learned representation from the offline phase to the online
phase. While we can expect algorithms to perform better in the offline-online setting compared to
batch RL as we allow additional learning, as far as we know, no work has delved deeper into the
differences. In offline-online RL, the goal is to use the batch of data to learn faster online, similar to
the goal of representation learning: learn features that facilitate effective linear updates. However, the
representation learned offline will also be limited, and so should continue to be adapted online too.
We show that an approach, called Two-Timescale Networks (TTNs) (Chung et al.||2018)), that separate
representation learning and value learning, are well-suited to this offline-online setting. To the best
of our knowledge, there are no existing approaches that exploit this offline-online setting to learn a
representation and policy offline, for further updating online. The batch RL setting focuses only on
learning a policy that is fixed and deployed online. Existing works often focuses on unsupervised
RL (Schwarzer et al.| 2021} |Ghosh & Bellemare|, |2020), where a representation is learned without
explicit rewards but the agent can control the data gathering policy.

As a part of this work, we show that there is (a) a significant benefit in comparison with offline
methods to allow the policy to continue to adapt online and (b) a significant benefit to use the offline
batch in comparison to purely online methods. The offline setting is often characterized by the need
for safety, and concerns with allowing the policy to adjust. This work, however, highlights the large
opportunity cost with doing so, and suggests that a more suitable path is to consider even small
adaptation, such as has been considered for high-confidence policy improvement. On the flip side, it
also highlights that it is restrictive to only learn online from scratch; if data is available (as it often is),
then this can be leveraged to significantly speed learning both the representation and policy.

Further experiments in batch RL measuring the performance to the size of the dataset, the data-
collection policy and the amount of training done. Here, we find that larger datasets and a good policy
can be critical to good results. There are no clear trends for the impact of the amount of training. In
each environment, different amounts of training are best. Taken together, these experiments highlight
the difficulty of batch RL, where many different factors have to be correct to obtain reasonable results.

1.1 RELATED WORK

There has been quite a bit of work considering transferring learning from one setting to another;
here, that transfer occurs from learning in an offline data to then learn further online. However, most
transfer settings involve transfering only the policy or transferring between related environments,
where the agent can control data collection in both environments. There is however some work that
has considered transferring objects other than a policy between the offline and online (evaluation)
phases. One work has considered transferring options, where options (Sutton et al.,|1999) are learned
in the offline phase and then leveraged to speed up learning during the online phase (Ajay et al., 2021).
Other directions of research are of a similar flavor, such as unsupervised representation learning, in
which the agent seeks to learn a useful transformation of the observations for control without access
to rewards (Schwarzer et al., [2021)).

From batch RL, other examples include learning world models (Yu et al.| [2020) for planning or
learning uncertainty estimates (Osband et al., 2018} Jaques et al.,2019) to induce either optimism [Lai
& Robbins|(1985) or pessimism (Jin et al.l 2020b; Buckman et al., 2020)in the online phase, either of
which may be useful in certain situations. Different problems can also be viewed as part of the offline-
online setting such as inverse RL (Ng et al., 2000), where we seek to learn the appropriate reward
function on a batch of data to optimize during the online phase. Offline-online RL is also related to
safe RL (Thomas et al., 2015} [Kakade & Langford, |2002)) where the agent uses a fixed-policy for
some time to collect enough data to make a policy improvement step with high-confidence.

Under review as a conference paper at ICLR 2022

From the perspective of offline-online RL, we can imagine other extensions of algorithms designed
for online RL, such as using an offline dataset to jumpstart the meta-learning process of update rules
(Javed & Whitel |2019) or hyperparameters (Xu et al.,|2018). Through these connections, we see that
offline-online RL is a natural setting to study, suggesting new algorithms and relevant in practical
situations.

2 BACKGROUND

We model the environment as an MDP M = (S, A, R, P,) where S are the states, A are the actions,
R :S x A — Ris the reward function, P : S x A — [0, 1] denotes the transition probabilities, and
~ € [0, 1] is the discount factor.

Online RL (Sutton & Barto, [2018];|Lai & Robbins, [1985). In this setting, the agent directly interacts
with the environment. At each timestep, the agent chooses an action a; and the environment returns
the next state s;; 1 and reward 4. The agent can adapt to new data and change its policy after every
single transition. For an episodic task, the goal is to accumulate the highest amount of return in each
episode and eventually obtain the optimal policy.

Batch RL (Ernst et al.,|2005; [Fujimoto et al., 2019b; [Levine et al., 2020). The agent receives a dataset
D = {(si,ai,ri,8;) }i-q, consisting of N transitions from an environment M. These transitions
can be collected arbitrarily although they are often obtained by running a policy and recording the
transitions observed by the agent. The goal of the agent is to use this dataset to learn a policy that
performs well in the underlying environment. A key aspect is that once the algorithm has output a
policy, it can no longer change it.

3 OFFLINE-ONLINE RL

In this section, we outline the proposed offline-online setting. There are two phases: The offline
phase and the evaluation (online) phase. In standard batch RL, given a dataset D, the agent would
learn a policy 7 in the offline phase. Then, during evaluation, this policy is fixed and deployed in
the environment to assess its performance. Likewise, in the basic offline-online setting, a policy 7 is
learned in the offline phase. The difference is that in the evaluation phase, the policy is allowed to
adapt online as it interacts with the environment. For a generic RL algorithm that has parameters
and associated policy my and an episodic task, we have the following pseudocode in Algorithm 1.

Algorithm 1 Offline-Online RL

1: procedure OFFLINE-ONLINE RL(6, D)
2: Given dataset D of transitions (s, a,r, s')

3: Initialize agent parameters 6

4: for number of updates do

5: Update 6 using data from D

6: end for

7: for N number of online episodes do > Evaluate the agent
8: while episode not done do

9: a <+ action chosen by 7y given s
10: r, s’ < Environment(s, a) > Get reward and next state
11: D+ (s,a,r,) > Add sample to the batch data
12: Update 6 using (s, a,r, s") (and possibly past samples) > Allow additional learning
13: If episode ends, record the total return.
14: end while
15: end for

16: end procedure

Compared to online RL, the agent now has extra information in the form of this dataset. Thus, it
could be expected that the agent perform better in this setting, with the amount of improvement
depending on properties of the offline dataset given to the agent.

Under review as a conference paper at ICLR 2022

In this paper, we consider some simple approaches to offline-online RL where a learned value function
and a representation are directly transferred from the offline phase and the online phase. As we will
see, despite the simplicity, there are already major benefits to the approach.

To give a concrete example of how to set up an algorithm in this setting, we present the pseudocode
for an offline-online variant of Two-Timescale Networks (TTNs), in Algorithm 2.

The TTN algorithm splits representation learning and value learning. For the representation, we use a
neural network and treat the final hidden layer as a learned representation. This neural network is
trained by using SGD on a surrogate loss, which would be minimizing the squared TD-error in this
case (with a stop gradient on the target value). For value learning, we treat the representation as fixed
and use fitted Q-iteration (FQI) (Ernst et al., [2005) tailored for linear function approximation, which
solves for the parameters using the replay buffer. This may be an advantage since the updates can be
larger and takes into account all available data at once, unlike SGD approaches, which must make
small incremental updates.

Algorithm 2 Offline-Online TTN

1: procedure TRAIN(w, 8,0,)
2: Initialize 6, w with Xavier initialization, w to 0, 7 to number of updates, and starting state s
according to the environment.

3: Initialize data set D from a batch of data generated by an arbitrary policy.
4: while [0;11 — 6] > eort <7 do > Offline-step
5: 0, + Do 10000 gradient descent on feature learning using sample (s, a,r, s’) from
mini-batch data d € D
6: w < Do 1 FQI update on value learning using sample (s, a, r, s") from batch data D
7: t—t+1
8 end while
9: for N number of episodes do
10: a < action chosen by 7 given s
11: r, s’ + Environment(s, a) > Get reward and next state
12: D « (s,a,r,) > Add sample to the batch data
13: 0,7 < Do SGD on feature learning using sample (s, a,r,s’) from mini-batch data
de D
14: if number of steps == 1000 then
15: w <+ Do FQI update on value learning using sample (s, a, r, s’) from batch data D
16: end if
17: end for

18: end procedure

The difference with (original) online TTN is that, here, the agent first gets to learn on the given
batch of data. This is done by doing some number of SGD updates from the dataset to learn the
features, followed by multiple iterations of Fitted Q-iteration to learn the value estimates. In this
way, offline-online TTN has access to both a better representation and a value function (policy) when
starting the online phase. Compared to offline TTN, offline-online TTN is allowed additional updates
after the offline phase. In doing so, the agent can adapt to any new data it observes in the online phase
and can continue to improve the policy and representation. The complete pseudocode for offline and
online TTN and DQN can be found in appendix

4 EXPERIMENTS

In the following sections, we investigate various aspects of the offline-online setting and compare to
the more traditional batch and online RL settings. As a first experiment, we focus on the batch RL
setting and look at offline-online DQN (Mnih et al.; 2015), an agent which gets to train first on a batch
of data and then perform online updates. We compare its performance to a representative batch RL
algorithm, discrete BCQ (Fujimoto et al.,|2019a). The batch of data is collected from a policy which
performs well on the task and consists of 10 thousand transitions. Offline-online Two-Timescale
Networks (TTN) is included as an agent that separates the representation learning and value learning
processes (Chung et al.| [2018) as an alternative approach.

Under review as a conference paper at ICLR 2022

For all experiments, we use 30 runs of each algorithm in the Mountain Car, Acrobot, Cart-
pole (Brockman et al) 2016), and Catcher (Tasfi, 2016) environments. To tune the learn-
ing rate, «, and the regularization coefficients, A for TTN, we run the algorithms using grid
search with the sweeps o € {10710,1072:9,1072°,10730,1073:5,10737°,1074%} and \ €
{0,0.0003,0.001,0.002,0.05,0.01, 1,2, 3,5,8}. To find a suitable number of updates for the of-
fline phase, the offline-TTN algorithm was assessed for {70, 100, 150,200} number of updates.
Afterwards, the number with the best performance is selected for the offline-online setting as well.

MountainCar Acrobot
1000 - 1000 -
= DQN offline-online
800 | TTN offline-online 300 1
- — BCQ S
) —— Offline DQN o
2 500 —— Offline TTN 2 600
w %)
g y g
o v o
2 400 Ny 2 400
o W o
200 A 200 A
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
episodes episodes
CartPole 160- Catcher
1000 -
/J'\»\ 140
800 A 1204
5 Y\a
g 600 mlDO—
" £
g ‘S 80
& 4004 60 |
(=3
fU
200 1 407
N 20]\
0 04
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
episodes episodes

Figure 1: We compare the offline-online setting to batch RL. We see that while training only offline
does not perform well in any environment alone, allowing learning afterwards can significantly
improve the performance of the policy.

In Fig. [T| we see that the offline-online algorithms outperforms the batch RL agents, discrete BCQ
(Fujimoto et al.;, 2019a) and offline DQN/TTN, by a significant margin. In Mountain Car and Acrobot,
lower episode lengths are better while in Cartpole and Catcher, longer episode lengths are better.
The learning curves are smoothed by averaging over a window of five episodes. Other experimental
details can be found in the appendix.

In CartPole and Catcher, we see that the batch RL agents are unable to learn a policy that achieves
non-neglible rewards. In these cases, we see that adding online training steps enables the agent to
achieve a decent level of performance after some time. This highlights the importance of letting
the agent learn during the evaluation phase, after it is trained on the offline batch. Looking at other
settings, even though offline TTN can achieve a good performance in mountain car, additional training
in the online phase still improves performance. In all cases, the performance of the offline-online
agent is never worse than only offline training.

Next, we turn to the online RL setting and compare offline-online DQN and TTN with their purely
online versions. As an additional comparison, we consider using the offline batch of data to initialize
the replay buffer of the algorithms. We can view this is as a simple attempt to augment the online
algorithms with an available batch of data and expect this to improve the performance of the online
agent.

Under review as a conference paper at ICLR 2022

MountainCar Acrobot
1000 -
—=- DOQON online + init
800 4 DQN online 8001
- —— DOQN offline-online =
= === TTN online + init =
2 600 TTN online @ 600
4] TTN offline-online 2
< o
3 3
D 400 2 400
o 7]
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
episodes episodes
CartPole Catcher

1000 { 160,

)J'\ﬁt 1401
800 -

Y\4 120
E=]
o 4
S 6001 ‘i‘_u‘} 2 100
= 2, 1 £
E) \ ! {'\\/J'.‘;’?'”“\ ‘E 80
O 4004
.g 60 ;_‘
] KSR Y
i a W
2004 40 A N g
<7
20 1 Faus
0 ol — 2 }
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
episodes episodes

Figure 2: We compare the offline-online setting to purely online learning. We plot learning curves for
standard online DQN/TTN, online DQN/TTN initialized with the offline dataset and offline-online
DQN/TTN. We find that initializing with the offline dataset is better than the standard procedure but
additionally training on it is still best.

Fig. 2] shows the learning curves for this setting. We see the offline-online agents improve on the
purely online agent in every setting. Training offline before the online phase gives a jump-start in
terms of the performance at the beginning and, in some cases, this advantage is retained throughout
the entirety of training. The buffer initialization strategy also gives better performance across the
board compared to the standard online agent and, in Mountain car and Acrobot, leads to a final
performance similar to that of the offline-online agents’ even if the performance is inferior in the
early stages.

These two experiments confirms that the offline-online setting can produce better performing agents
than either setting alone. Since this setting can naturally occur in many practical situations where
some data is available beforehand, offline-online RL deserves further study. Specifically, compared
to batch RL, there may be no need to restrict the agent to precommit to a policy after training on the
dataset. We see that allowing adaptation to incoming data during deployment may yield significant
benefits.

4.1 LEARNING A REPRESENTATION SEPARATELY

We investigate separating representation learning as in Two-Timescale Networks (TTN) or whether
end-to-end learning is a better choice as is traditionally done.

The TTN algorithm splits representation learning and value learning. For the representation, we use a
neural network and treat the final hidden layer as a learned representation. This neural network is
trained by using SGD on a surrogate loss, which would be minimizing the squared TD-error in this
case (with a stop gradient on the target value). For value learning, we treat the representation as fixed
and use fitted Q-iteration (FQI) (Ernst et al.| |2005)), which solves for the parameters using the replay
buffer as a batch of data. Since FQI is fairly computationally expensive, we only do this every 1000
steps. See the appendix for more details.

Under review as a conference paper at ICLR 2022

Revisiting figures [[|and [2] we can focus on comparing the performance of TTN and DQN. We find
that TTN achieves better performance than DQN in the majority of cases. Notably, TTN seems to
produce better solutions in the batch RL setting such as MountainCar, where offline DQN is not
able to complete the task (it hits the timeout limit) but offline TTN is able to do so. In the online
setting, from Fig. [2] again we have that TTN seems to have better performance overall, with a larger
difference near the beginning of the online phase. As a tradeoff, since TTN uses FQI (Ernst et al.,
2005) to solve for the next set of linear weights to approximate the value function in addition to
SGD steps to learn the representation, the computational cost of TTN is higher in practice than than
of DQN although the asymptotic cost is of the same order. These results suggest that end-to-end
training may not be necessary to achieve good performance on these tasks and, in fact, separating the
representation can be superior.

4.2 CHOICES OF OFFLINE DATASET

In this section, we perform certain ablation studies on the offline dataset. We can expect the properties
of the dataset to influence the performance of the agent. For the offline-online setting, we test the
impact of the size of the offline batch of data with DQN and TTN. The results are shown in Fig. [3]

MountainCar Acrobot
1000 4
500 4
TTN offline-online 10k
800 1 —=—= TTN offline-online 50k
= —— DQN offline-online 10k £ 4001
k= ——- DQN offline-online 50k o
c c
2 6o 2
8 @ 300
g g
% 400 2
@ 200 p
1 L
] Taghvy,]
200 Py i\l PNV ol
100] Tt DGR
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
episodes episodes
CartPole Catcher
1000 4 P ar T
M ‘-(‘_'1" W Ay ! HE i !
| ¥ L " 200
800 4 I Wy
E=
2 co0 150+ A s
h ,
" ATVTYRE!
g 2 ooy H\‘,‘.' s
B 400 1 2 100 " ll:
g i !
2001 501 | v
i Iy
1
oY I
04 ol wore?
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
episodes episodes

Figure 3: We present learning curves for two dataset sizes in the offline-online setting, 10 thousand
and 50 thousand transitions for DQN and TTN. The larger dataset provides a noticeable boost.

From these plots, we see that the increasing the amount of data improves performance as expected.
In Mountain Car, the difference is more remarkable as the larger dataset enables DQN to start the
online phase with a good policy. This may be due to better coverage of the state space which makes
offline training more successful.

We repeat the experiments comparing the offline-online setting to batch RL (Fig. [I)) with the larger
dataset of 50 thousand transitions. The results are qualitatively similar with the larger dataset although
the performance of all the algorithms is improved, particularly the offline algorithms.

Under review as a conference paper at ICLR 2022

MountainCar Acrobot
300 350
2751 —— DQN offline-online 50k
TTN offline-online 50k 3004
250 |
< —— BCQ 50k s
S 525 —— Offline DQN 50k 2550 nl
9 —— Offline TTN 50k @ J
g 200 1 g
T 200
2 1751 2 ﬂq
a =1
e @ 4\/\
150 150 v A |
Ve AR N
100 - —
100 1
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
episodes episodes
CartPole Catcher
1000 2501
800 | 200 N
= \f {
2 ' 150 A
600 g .
[3
8 8 100
B 4001
(4]
AAI/\I 50 4
2001 A ,_J |
O,
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
episodes episodes

Figure 4: We compare the offline-online setting to batch RL when a dataset of 50 thousand transitions
is used. We observe qualitatively similar behaviour as with 10 thousand transitions.

Furthermore, we provide more experiments for the batch RL setting. First, we test two sizes of
datasets and two different data-collection strategies: using a near-optimal policy or a random policy
with dataset sizes of 10 thousand or 50 thousand transitions.These are summarized in table [T}

We see that both the quality of the policy and the size of the dataset are important factors to the final
performance of the agent. The data-collection policy impacts the results greatly. Often, the random
policy does not seem to provide a dataset sufficient to achieve nontrivial performance (e.g. Mountain
Car or Acrobot). Looking at TTN on Catcher or DQN on CartPole, we see that the size of the dataset
can also be the difference between trivial and decent results. In general, we see that TTN performs
better in the batch RL setting with performance always equal or better than DQN’s. We hypothesize
this may be due to fitted Q-iteration operating on the entire dataset at once for each update instead of
stochastic updates as in DQN.

Finally, we investigate offline TTN further and look at how the amount of offline training impacts the
performance. Since this setting resembles supervised learning, we may expect a similar trend where
performance increases at first and then decreases due to “overfitting”.

The results in Table [2] suggest that the previous hypothesis is too simplistic since we do not show any
clear trends across environments. In Catcher, performance tends to increase with additional training
but, in CartPole, it is the opposite. In Acrobot, the best performance is achieved by either a low
number or a large number iterations, with the intermediate numbers producing worse results. The
ideal amount of training seems to be highly specific to the environment and it may be difficult to tune
for batch RL.

5 DISCUSSION

While batch RL is an appealing setting due to its relevance in many applications, we argue that
allowing learning during the evaluation phase—the offline-online setting—may be a more natural

Under review as a conference paper at ICLR 2022

Mountain Car DQN TTN
Size/Policy | Good Random Good Random
10k 1000 (0) 1000 (0) 401 (8.6) 1000 (0)
50k 289 (7.1) 1000 (0) 126 (8.1) 1000 (0)
CartPole DQN TTN
Size/Policy | Good Random Good Random
10k 9.4 (1.5) 9.9 (1.7) 10.2 (0.9) 9.5(0.8)
50k 121.6 (13.2) 10 (1.0) 313.5(24.8) | 106.3 (7.1)
Acrobot DQN TTN
Size/Policy | Good Random Good Random
10k 782 (10.8) 1000 (0) 553 (2.0) 999.5 (2.1)
50k 232 (17.4) 905 (7.8) 146 (11.1) 999.3 (2.1)
Catcher DQN TTN
Size/Policy | Good Random Good Random
10k -0.78 (0.021) | -0.73 (0.031) | 1.89(0.19) | 0.87 (0.024)
50k -0.73 (0.032) | -0.73 (0.029) 167 (3.2) 16.6 (1.9)

Table 1: This table contains the results for training on an offline batch of data examining two factors:
the size of the dataset (10 thousand or 50 thousand) and the quality of the policy (a good policy or a
random policy). The experiments are done for both DQN and TTN. The number in the table is the
average of 30 runs with one standard error indicated in parentheses. Entries highlighted in green
show settings where nontrivial performance was achieved.

Iterations | MountainCar CartPole Acrobot Catcher
70 201 (7.4) 313.5(24.8) | 249 (30.7) | 23.9(1.3)
100 126 (8.1) 236.2 (16.7) | 146 (11.1) | 25.6(1.2)
150 642 (12.0) 135.8 (13.2) | 168.8 (32.4) | 37.3(1.2)
200 647 (10.1) 91.6 (10.4) | 262.2 (28.1) | 167 (3.2)

Table 2: This table presents the results for training on a dataset of 50 thousand transitions but varying
the amount of training measured by number of FQI iterations with TTN. The mean of 30 runs is
included with one standard error in parentheses.

problem to study. We find that it can be difficult to get good performance empirically with batch RL
algorithms, with a common algorithm, DQN, often failing to achieve nontrivial results. On the other
hand, in the offline-online setting, the same algorithm can achieve decent performance after a modest
amount of training. The batch RL problem may be asking too much of RL algorithms since the agent
has to commit to a single fixed policy. Allowing learning afterwards enables quick adaptation to
unexpected situations. In practical applications, we are unlikely to be able to collect data for every
possible situation, thus it is intuitive to enable the agent to adapt in this manner.

Compared to purely online training, offline-online RL may be more desirable since we can leverage
an available dataset to jumpstart the learning process. In a real-world scenario, it may be undesirable
to learn purely online since we would like the initial deployed policy to be high-performing, unlike a
random policy. Training on an offline dataset is one way to start with reasonable performance and
keep improving thereafter.

We hope that this paper generates more interest into offline-online RL. We see this setting as being
potentially relevant in many real-world problems where a batch of data is available and could be a
more practical solution than either batch or online RL on their own. We see many opportunities to
further investigate this setting. From a theoretical perspective, certain work has already started to
extend batch RL (Xie et al., 2021), given the unsatisfactory lower bounds (Zanette, [2020). We believe
the offline-online RL setting opens the door to many interesting avenues of research.

Under review as a conference paper at ICLR 2022

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. {OPAL}: Offline
primitive discovery for accelerating offline reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL |https://openreview.net/forum?id=
V69LGwJOLIN.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-dataset
policy optimization. arXiv preprint arXiv:2009.06799, 2020.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pp. 1042-1051. PMLR, 2019.

Wesley Chung, Somjit Nath, Ajin Joseph, and Martha White. Two-timescale networks for nonlinear
value function approximation. In International conference on learning representations, 2018.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503-556, 2005.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052-2062. PMLR, 2019b.

Dibya Ghosh and Marc G Bellemare. Representations for stable off-policy reinforcement learning.
In International Conference on Machine Learning, pp. 3556-3565. PMLR, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861-1870. PMLR, 2018.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Khurram Javed and Martha White. Meta-learning representations for continual learning. arXiv
preprint arXiv:1905.12588, 2019.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137-2143.
PMLR, 2020a.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline r1? arXiv
preprint arXiv:2012.15085, 2020b.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In In
Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy g-learning via
bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4-22, 1985.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

10

https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=V69LGwJ0lIN

Under review as a conference paper at ICLR 2022

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. arXiv preprint arXiv:1806.03335, 2018.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, Devon
Hjelm, Philip Bachman, and Aaron Courville. Pretraining representations for data-efficient
reinforcement learning. arXiv preprint arXiv:2106.04799, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/
PyGame—-Learning—-Environment, 2016.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In International Conference on Machine Learning, pp. 2380-2388. PMLR, 2015.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M. Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted offline reinforcement learning, 2021. URL https:
//openreview.net/forum?id=7hMenh--8gq.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning. arXiv preprint arXiv:2106.04895, 2021.

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-gradient reinforcement learning. arXiv
preprint arXiv:1805.09801, 2018.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint arXiv:2005.13239,
2020.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be
exponentially harder than online rl. arXiv preprint arXiv:2012.08005, 2020.

Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, ziyu wang,
and Mohammad Norouzi. Autoregressive dynamics models for offline policy evaluation and
optimization. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=kmgqjgSNXbyl.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Gradientdice: Rethinking generalized offline
estimation of stationary values. In International Conference on Machine Learning, pp. 11194—
11203. PMLR, 2020.

A APPENDIX

The appendix is split into two main sections. Additional experiments are found in the first part and
experimental details can be found in the second. Within the experimental details, we present the
hyperparameters used for all the experiments along with pseudocode for the different settings and
algorithms.

A.1 ADDITIONAL EXPERIMENTS
We repeat the experiments comparing the offline-online setting to batch RL (Fig. [T)) and online RL

(Fig. [2) with the larger dataset of 50 thousand transitions. The results are qualitatively similar with
the larger dataset although the performance of all the algorithms is improved.

11

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://openreview.net/forum?id=7hMenh--8g
https://openreview.net/forum?id=7hMenh--8g
https://openreview.net/forum?id=kmqjgSNXby
https://openreview.net/forum?id=kmqjgSNXby

Under review as a conference paper at ICLR 2022

MountainCar Acrobot
300 350
2751 —— DQN offline-online 50k
TTN offline-online 50k 3001
= 2501 —— BCQ 50k =
= . E=4
2 25 1 —— Offline DQN 50k 2550 nl
< —— Offline TTN 50k Q@
g 200 { é‘ 200 '
8175 a ﬂq
a a
\‘ll
150 ? 1504 V’A/\ A L
125 v Vv \,\,fr\ _hrl'\ M /‘
100 e
100 4

0 25 50 75 100 125 150 175 200

0 25 50 75 100 125 150 175 200
episodes episodes
CartPole Catcher
1000 - 250 4
800 | 200 N
s \f 1
(=] f
2 150
600 g \ \
[=]
2 2 1001
wn
‘& 4004
(4]
.A/ﬂ . |
1 A
O,
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
episodes episodes

Figure 5: We compare the offline-online setting to batch RL. A dataset of 50 thousand transitions is
used.

A.2 EXPERIMENTAL DETAILS

We present the hyperparameters for all the algorithms and the experiments.

Table 3: This table presents the common hyper-parameters for the TTN and DQN algorithms.

Parameter Value
Learning rate for TTN 1073
Learning rate for DQN 10737
Minibatch size for DQN 32
Minibatch size for TTN 32
Minibatch size for offline training 64

Target estimation in FQI Expected SARSA
€ for Expected SARSA 0.01

Table 4: This table presents the regularization coefficients and number of offline training for offline-
online setting for each environments separately.

Environments MountainCar | Acrobot | CartPole | Catcher
Regularization coefficient in FQI 1073 1073 1 1
Number of offline training for offline-online setting 100 100 70 200

12

Under review as a conference paper at ICLR 2022

MountainCar Acrobot
900 1 |
i : .
1 1 —==- DQN online 50k + init
800 L
I - DQN online 50k 800+
c 7007 1= —— DQN offline-online 50k =
=) n —== TTN online 50k + init >
600 . c |
E '\ TTN online 50k @ 600
& 500 |‘| TTN offline-online 50k]
£ ool B 2
& 4001 |3 0 4001
& 1Ny o
1 vy @ ,
3001 | g =
1 MNeasnany W Vi 2
200 \ 200 | VWA
AT TN o
100 { > A S D P, — gl oS
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
episodes episodes
CartPole Catcher
1000 - 2504
800 200
=
S 150]
S 6004 0
o £
4] 2 |
5 @ 100 W I
@ 4004 AN
a LY ALY
¢ 50 ¥R
200 - ,,-','
IJ
O,
0
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
episodes episodes

Figure 6: We compare the offline-online setting to purely online learning. We plot learning curves for
standard online DQN/TTN, online DQN/TTN initialized with the offline dataset and offline-online
DQN/TTN. We use a dataset of 50 thousand transitions here and find qualitatively similar results to
using 10 thousand transitions, although performance is usually increased.

To generate the datasets for a good policy, we ran TTN online algorithm for a sufficient number of
steps to achieve a good policy and then we stored only the last K -steps where K is the size of a
dataset. To collect the dataset of 10 thousand transactions, the algortihm was run for 50 thousand
steps and for the dataset of 50 thousand transitions, 100 thousands learning steps were used.

We limit each episode of MountainCar, Acrobot, and CartPole to 1000 steps. For Catcher, we cap the
(undiscounted) sum of rewards to 300 and terminate the episode if the limit is reached.

A.2.1 TRAINING PROCEDURES

We include pseudocode for the training procedures of the three settings considered: batch RL, online
RL and offline-online RL.

For a generic RL algorithm that has parameters 6 and associated policy 7y, we have the following
pseudocode

A.2.2 ALGORITHMS

We provide pseudocode for TTN and DQN in the different settings here, along with their hyperpa-
rameters.

13

Under review as a conference paper at ICLR 2022

Algorithm 3 Online RL
1: procedure ONLINE RL(#)
2: Initialize agent parameters 6
3 Initialize state s by the environment
4 for number of episodes do
5: while episode not done do
6: a < action chosen by g given s
7 r, s’ + Environment(s, a) > Get reward and next state
8 Update 6 using (s, a,r, s") (and possibly past samples
9: If episode ends, record the total return.
10: end while
11: end for

12: end procedure

Algorithm 4 Batch RL

1: procedure BATCH RL(6, D)

2: Given dataset D of transitions (s, a, r, s’)

3: Initialize agent parameters 6

4: for number of updates do

5: Update 6§ using data from D

6: end for

7: for number of evaluation episodes do > Evaluate the agent

8: Initialize state s by the environment

9: Run the policy 7y until episode terminates
10: Record the return for the episode

11: end for
12: end procedure

Algorithm 5 Offline-Online RL

1: procedure OFFLINE-ONLINE RL(6, D)
2: Given dataset D of transitions (s, a,r, s')

3: Initialize agent parameters 6

4: for number of updates do

5: Update 6 using data from D

6: end for

7: for number of evaluation episodes do > Evaluate the agent

8: while episode not done do

9: a < action chosen by 7y given s
10: r, s’ < Environment(s, a) > Get reward and next state
11: Update 6 using (s, a,r, s’) (and possibly past samples) > Allow additional learning
12: If episode ends, record the total return.
13: end while

14: end for
15: end procedure

14

Under review as a conference paper at ICLR 2022

Algorithm 6 Online TTN

1:

procedure TRAIN(w, 0, w, 7)

2: Initialize 6, w with Xavier initialization, w to 0 and starting state s according to the environ-
ment.
3: Initialize data set D = &
4: for N number of episodes do
5: a < action chosen by 7 given s
6: r, s < Environment(s, a) > Get reward and next state
7: D + (s,a,r,$) > Add sample to the batch data
8: 6,%w <+ Do SGD on feature learning using sample (s,a,r, s’) from mini-batch data
de D
9: if number of steps == 1000 then
10: w < Do FQI update on value learning using sample (s, a, r, s’) from batch data D
11: end if
12: end for
13: end procedure
Algorithm 7 Offline TTN
1: procedure TRAIN(w, 0, w, 7)
2: Initialize 6, @ with Xavier initialization, w to 0, 7 to number of updates, and starting state s
according to the environment.
3: Initialize data set D from a batch of data generated by an arbitrary policy.
4: while |0;1; — 6;] > eort < 7 do > Offline-step
5: 0, <+ Do 10000 gradient descent on feature learning using sample (s, a,r,s’) from
mini-batch data d € D
6: w <+ Do 1 FQI update on value learning using sample (s, a, r, s") from batch data D
7: end while
8 t—t+1
9: for N number of episodes do
10: a <— action chosen by 7 given s
11: r, s’ + Environment(s, a) > Get reward and next state
12: end for
13: end procedure
Algorithm 8 Online DQN
1: procedure TRAIN(w, 6, w,)
2 Initialize # with Xavier initialization, w to 0 and starting state s according to the environment.
3 Initialize data set D = &
4 for N number of episodes do
5: a < action chosen by 7 given s
6: r, s’ + Environment(s, a) > Get reward and next state
7 D « (s,a,r,) > Add sample to the batch data
8: 6, < Do SGD on feature learning using sample (s, r, s’) from mini-batch data d € D
9: if number of steps = 1000 then
10: w < Do 1 FQI update on value learning using sample (s, r, s") from batch data D
11: end if
12: end for
13: end procedure

15

	Introduction
	Related Work

	Background
	Offline-Online RL
	Experiments
	Learning a representation separately
	Choices of offline dataset

	Discussion
	Appendix
	Additional Experiments
	Experimental Details
	Training procedures
	Algorithms

