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ABSTRACT

The current methods for the determination of the statistical significance of peaks and re-
gions in next generation sequencing (NGS) data require an explicit normalization step to
compensate for (global or local) imbalances in the sizes of sequenced and mapped libraries.
There are no canonical methods for performing such compensations; hence, a number of
different procedures serving this goal in different ways can be found in the literature.
Unfortunately, the normalization has a significant impact on the final results. Different
methods yield very different numbers of detected ‘‘significant peaks’’ even in the simplest
scenario of ChIP-Seq experiments that compare the enrichment in a single sample relative
to a matching control. This becomes an even more acute issue in the more general case of the
comparison of multiple samples, where a number of arbitrary design choices will be re-
quired in the data analysis stage, each option resulting in possibly (significantly) different
outcomes. In this article, we investigate a principled statistical procedure that eliminates the
need for a normalization step. We outline its basic properties, in particular the scaling upon
depth of sequencing. For the sake of illustration and comparison, we report the results of re-
analyzing a ChIP-Seq experiment for transcription factor binding site detection. In order to
quantify the differences between outcomes, we use a novel method based on the accuracy of
in silico prediction by support vector machine (SVM) models trained on part of the genome
and tested on the remainder. See Kowalczyk et al. (2009) for supplementary material.
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1. INTRODUCTION

Current short read sequencing technology, routinely referred to as next generation sequencing

(NGS), allows for genome wide scans for various phenomena of interest, such as methylation and

transcription factor binding sites. In order to derive meaningful results from the mapping of short reads

(or tags) to the reference genome, a number of statistical filters based on the binomial distribution,

Poisson distribution and their variants have been proposed in the literature (Rozowsky et al., 2009;

Nix et al., 2008; Robertson et al., 2007; Kowalczyk, 2009). These methods are also very similar to

SAGE data analysis (Baggerly et al., 2003; Robinson and Smyth, 2007), which also deals with short

sequence data.
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In order to discern a meaningful signal from tags mapped to a reference genome, a number of biases have

to be dealt with and corrected for, as the signal ‘‘is actually the convolution of a number of effects: the

density of mappable bases in a region, the underlying chromatin structure and the actual signal from

transcription factor binding’’ (Rozowsky et al., 2009). The natural way to mitigate these issues is to

introduce control samples, so that the detected signal is in the form of local enrichment of tag counts with

respect to the control. The closer the preparation and processing of the control to the target sample, the

more reliable the mitigation of biases.

However, experimenters cannot ensure that the target and control samples are prepared and processed in

a completely equivalent manner and in practice the number of tags derived from two separate sequencing

reaction can differ by a significant factor. This situation becomes endemic if one attempts to develop local

models (Rozowsky et al., 2009), compensating for local biases along the reference DNA. In the simplest

situation such as ChIP-Seq experimental detection of binding sites for a transcription factor (Rozowsky

et al., 2009), where one attempts to detect enrichments in the target sample with respect to a carefully

prepared control, there is a plausible argument for scaling the control sample counts to the level of the

target, especially when considering pre-filtered narrow regions of significant enrichment.

In practice, there are other scenarios where such scaling is less applicable. An example is where one

looks for the differential peaks between two different tissue samples, for example, differences in meth-

ylation between two cell lineages (Bloushtain-Qimron et al., 2008; Kowalczyk, 2009). Here, even the

direction of scaling (local or global) is not obvious. Moreover, as argued in Kowalczyk (2009), the common

level to which the sample counts are adjusted has a profound impact on the statistical significance of peaks

when either Poisson or binomial models are used (see Section 3.3); thus, the number of detected peaks

depends significantly on the choices of scaling strategies.

The situation becomes even more cumbersome for experiments that involve multiple samples, for

example, when quantifying the difference between two cell lineages using pairs of samples collected from

multiple subjects in order to account for patient specific heterogeneity. One possibility is to adjust all counts

to a common size across the whole collection. As we have noted, this common size impacts on the number

of ‘‘significant peaks’’ as in practice scaling could be by a factor of 2 or more with the resulting variation in

p-values being by a factor of 4 or more. Moreover, the addition of new samples to the analysis could lead

logically to readjustment of the updated ‘‘common size’’ distorting the previous results. The ad hoc nature

of some of these adjustments undermines the principled statistical analysis, introducing arbitrary design

choices and obscure data driven adjustments.

In this article, we propose a different statistical technique that does not require an explicit sample size

adjustment and thus functions directly on the original counts. Any adjustments can be used as an additional

means for accounting for other biases in the data. An example of this is the known variations in the density

of mappable tags (i.e., the effective depth of sequencing) (Rozowsky et al., 2009) along the DNA sequence.

2. BACKGROUND

We now outline a conceptual model that can be used while reading this article. Using a specific

protocol (e.g., sonication, enzymatic reactions cutting the DNA at specific locations, protein immuno-

precipitation selecting specific fragments of protein bound to them), a library L of DNA fragments is

prepared. From this library, a subset R is randomly sampled, and for each of the sampled fragments a part

of it, a short read, is sequenced providing a tag, which is a k-mer of DNA bases. The tag is then mapped

to one or many matching locations in an a priori known reference DNA sequence, the human genome in

our case, using a specific protocol, for example, only exact matching, or only exact and unique, or only

unique with up to one error. We are interested in the reference genome locations where significant over/

under-representation of the mapped tags occur, so called peaks or peak ranges, as these can be interpreted

as evidence for some specific property of DNA or its epigenetic modifications. In some experiments such

as SAGE-Seq or digital karyotyping (Bloushtain-Qimron et al., 2008; Kowalczyk, 2009), there are natural

peak regions, as the tags congregate at specific DNA locations determined by the enzymes used to cut the

source DNA. In other cases, such as ChIP-Seq experiments using sonication, the peak regions have to be

determined from the data using specific algorithms (Rozowsky et al., 2009; Zang et al., 2009), or perhaps

just defined by a simple partitioning of the genome into uniform small blocks, say, on the order of a

thousand bases.
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In this section, we assume that a set of peak regions of interest is given to us. Let us consider a single

peak range r. We denote by X¼X(R) a random variable of the count of tags mapped to r, and by x its

particular realisation. If we denote by l, 0< l< 1, the proportion (fraction) of reads in the library L with

tags mappable to r, then X can be modelled as a binomial random variable, Bin(l, jRj):

P[x¼X(R)]¼ jRj
x

� �
kx(1� k)jRj � x, (1)

for x¼ 0, 1, . . . , jRj. In a typical case of interest l� 1 and the distribution of X is very well approximated

by the Poisson distribution (Keeping, 1995), Poi(m):

P[x¼X]¼ lx e� l

x!
, (2)

where x¼ 0, 1, . . . , jRj and the Poisson rate is defined as m¼ ljRj.

3. THE POISSON MARGIN TEST

Now we focus on comparing two libraries, LA and LB, from which random samples of mappable tags RA

and RB were drawn, respectively. Suppose we have observed counts xA and xB of tags mapped to the

specific peak range r of interest, and lA and lB are the corresponding proportions of tags in the libraries LA

and LB mappable to r, respectively. Let (a, b) 2 f(A, B), (B, A)g and the following relation for empirical

proportions holds:

k̂ka : ¼ xa

jRaj
5 k̂kb : ¼ xb

jRbj
: (3)

How strong is this evidence for la< lb? We approach this issue in a typical statistical hypothesis testing

manner. Namely, we are interested in testing the alternative hypothesis (H1) that la< lb versus the null

hypothesis (H0) that la� lb, i.e., that the complementary relation holds. As a natural test statistic we can

use the maximal probability of observing at least as extreme counts Xa,Xb under the null hypothesis (H0).

This probability we shall quantify in two different ways, a test based on the binomial distribution (Binomial

Margin, MBi) and its Poisson approximation (Poisson Margin, MPo), respectively:

MBi(xa, xb) : ¼ sup
ka�kb 4 0

P[Xa � xa & xb 5Xb

�� Xi~Bin(ki, jRij)],

MPo(xa, xb) : ¼ sup
ka�kb 4 0

P[Xa � xa & xb 5Xb

�� Xi~Poi(kijRij)],
(4)

assuming the observed proportions relation (3) holds and, otherwise:

MBi(xa, xb)¼MPo(xa, xb) : ¼ 1: (5)

In practice, both tests are numerically equivalent, but MPo is easier to handle analytically and computa-

tionally, and will be the primary focus of the rest of this article.

We observe that the above definitions do not require that the sample sizes jRAj and jRBj be

equal. By definition, the Poisson margin MPo is the tightest universal upper bound on the following

probability

P[Xa � xa & xb 5Xb & ka � kb

�� Xi~Poi(kijRij)] �MPo(xa, xb):

In this sense, it is a very conservative p-value, corresponding to the worst case scenario test.

3.1. Computation of Poisson margin

The following result facilitates the efficient numerical evaluation of MPo; the proof is presented in the

supplementary material in Kowalczyk et al. (2009). Let
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q : ¼ jRaj=jRbj, and v : ¼ xa=xb:

Theorem 1. If the empirical relation for proportions (3) holds, then

MPo(xa, xb)¼ sup
05 l

e� 2l
Xxa

i¼ 0

(2l)i

i!(1þ q)i

X
j4 xb

(2lq) j

j!(1þ q) j
, (6)

where the supremum is achieved for m¼ m*, the only solution of the reduced critical equation:

0¼E(l) : ¼ qþ q
Xxa

i¼ 1

Yi� 1

j¼ 0

(1þ q)(xa� j)

2l
�
X1
i¼ 1

Yi

j¼ 1

2lq
(1þ q)(xbþ j)

(7)

with the function E monotonically decreasing for m> 0, fromþ? to �?. Moreover, if Eqn. 3 holds,

then

q� vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(q� v)2þ 4vq(1þ q)

p
4q

� l�
xb

� (1þ v)(1þ q)

2qþ 1
þO

1

xb

� �
, (8)

where we use the ‘‘O’’-notation for the negligible rounding term such that

lim
e!0
jO(e)=ej5 v=4þ 1=2:

Equation (7) is easy to solve numerically, using Newton’s method for example, even for large counts

where xa, xb*105. The function E(m) is monotonically decreasing and the bounds (8) can be used for

initialization of the solver iterations. The sums in (7) have quickly decaying terms, so in practice they are

reduced to a summation of only a few terms. One of the aims of our derivation was to develop such a

simplification and to remove some very small nuisance factors that are below the computer precision, say

with log10 below �308 (¼ the limit of IEEE-754 double precision).

Proof outline. We express (4) explicitly as a two-dimensional optimization task:

MPo(xa, xb)¼ sup
05 kb�ka

e� la �lb

Xxa

i¼ 0

li
a

i!

X
j4 xb

lj
b

j!

����
la ¼ ka jRa j
lb ¼ kb jRb j

, (9)

which can be reduced to the one-dimensional optimization

MPo(xa, xb)¼ sup
05 k

e� la � lb

Xxb

i¼ 0

li
a

i!

X
j4 xb

lj
b

j!

����
la ¼ kjRa j
lb ¼ kjRb j

:

The latter task can be solved by finding a solution l* of the critical equation for the function of l under

‘‘sup’’ above, which, after some simplifications, introduction of variable l : ¼ k jRaj þ jRbj
2

, and removal of

small positive factors, reduces to (7). The details are available in Kowalczyk et al. (2009). &

Figure 2A shows the numerical evaluation of MPo across a range of counts that occur in practice.

This figure clearly shows where the effects of the precision limits of IEEE-754 become apparent: the

significant, dark blue shaded part of the plot corresponds to p-values < 10�400. The thousands of

peaks in the experimental data discussed in Section 4 fall into this region (Kowalczyk et al., 2009).

Note that the truncation of log10MPo at �500 is used in Figure 2A purely for the purpose of

visualization.

3.2. Related statistical tests

The Poisson Margin test is closely related to some other statistical tests. This relationship has been

explored elsewhere (Kowalczyk et al., 2009; Kowalczyk, 2009), and here we mention only the Counts test

and the Coin Toss test.

For xa< xb, the Counts test is defined as
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D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 O
f 

M
el

bo
ur

ne
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

2/
12

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



T�(xa, xb) : ¼ sup
la�lb 4 0

P[Xa � xa & xb 5Xb

�� Xi~Poi(li)] (10)

and for xa< xb and the Coin Toss test as

T ct(xa, xb) : ¼P X � xa

��� X~Bin
1

2
, xaþ xb

� �� �
: (11)

The Coin Toss test was used in Nix et al. (2008) and Rozowsky et al. (2009). The data from the latter article

will be used for our experimental validation; hence, indirectly, we will be comparing against this statistic,

and a clarification of its relationship to the Poisson Margin is appropriate here. Both articles have used Coin

Toss for computing the statistical significance of the difference between two counts xa and xb in the same

fashion as in the case of MPo, but for the special case when libraries have equal, or equalized, sizes,

namely jRaj � jRbj. In this special case, they are ‘‘equivalent’’ to the MPo test in the following sense.

Theorem 2. If jRaj ¼ jRbj and the empirical proportion relation (3) holds, then

MPo(xa, xb)¼ T�(xa, xb) � T ct(xa, xb):

Proof outline. If jRaj ¼ jRbj, then la< lb is equivalent to ma :¼ lajRaj< mb :¼ lbjRbj; hence, the

equivalence MPo(xa, xb)¼ T�(xa, xb) follows from the definitions (4) and (10). The approximation by

T ct has been argued in Kowalczyk (2009); here we demonstrate it by numerical evaluation presented in

Figure 2. &

Figure 2B shows a numerical evaluation of the differences between log10MPo

��
jRaj ¼ jRbj and log10 T ct

over a grid of values of xa and xb that occur in practice. Note the differences in the shading scales used in

the two sub-figures. The difference j log10MPo� log10 T ctj is < 2; hence, in the areas of significant values

of log10MPo, say <�100, it composes practically negligible correction of �1%. This also allows the

extension of the scaling properties T ct discussed below to the case of MPo

��
jRaj ¼ jRbj.

3.3. Scaling properties

The following result can be shown formally (Kowalczyk, 2009).

Theorem 3 (Scaling Power Law). Let 0< 2xa< xb be two integers and k> 1. Then

log T ct(jxa, jxb)¼ j log T ct(xa, xb)þ o(xb)

xb

, (12)

where o(xb)
xb
! 0 for xb?? denotes a ‘‘negligible’’ correction.

The computational validation of this result and implied practical extension to the whole range of values

xb> 0 is presented in Figure 1B, which is sufficient for our discussion below. Plots there show clearly the

FIG. 1. (A) Lower and upper

bounds on m* given by Eqn. (8) of

Theorem 1 (broken lines) and

compared to the exact values m*

given by solution of Eqn. 7; here we

show averages for m* as solid lines,

the values for evaluation over xa-

grid of 100 values logarithmically

spaced between 1 and 1000 and

corresponding xb :¼ xa/w< 10,000.

(B) Computational validation of the

Scaling Power Law given by The-

orem 3. The plots show clearly the asymptotical power scaling law (12): T ct(jxa, jxb) � T ct(xa, xb)j translating to the

linear dependence in the plots of the form xa 7! log10 T ct(xa, xa=v) � xa · A� 1 log10 T ct(A, A=v), where A� 1 is a

constant.
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asymptotical power scaling law (12): T ct(jxa, jxb) � T ct(xa, xb)j translating to the linear dependence in

the plots of the form log10 T ct(xa, xa=v) � xa · A� 1 log10 T ct(A, A=v), where A� 1 is a constant.

The above Theorem and Figure 1B facilitate a discussion of two important issues in the analysis of the

NGS data, namely, (i) the impact of the number of lanes use by the sequencing machine to map the library

and (ii) scaling of the counts, in the case of typically unequal sizes of the sequenced and then mapped tag

sets. First, they tell us that having k times more reads sequenced, for example, using k lanes in the

sequencing machine rather than one, will provide exponentially stronger (i.e., smaller, exponentiated by k)

p-values, asymptotically for large xb. This can be used, for example, as guidance for selection of more or

fewer lanes in an NGS experiment.

However, those results also point to fragility of ‘‘count scaling.’’ More precisely, if the numbers of reads

actually sequenced and mapped are significantly different, jRaj= jRbj, then either we need statistical tests

that are intrinsically immune to such differences, or we need to normalize the counts in a candidate peak

region to make them comparable. TheMPo test (4) falls in the first category, whereas the T ct test represents

the latter.

4. EXPERIMENTAL VALIDATION

It is far from clear that the postulated statistical test will provide useful results in practice. Simply put, the

worst case scenario embraced in definition (4) may be too conservative and the generated p-values too close

to 1 to be informative. In order to address this concern, we have decided to focus on the well-studied NGS

application of ChIP-Seq peak calling, which involves comparison of only two libraries (the target and the

dedicated control). The more complex problem of differential analysis of multiple libraries will be ad-

dressed in future work.

In order to validate our method, we have used public domain ChIP-Seq data. In particular, Rozowsky

et al. (2009) provides 36,998 putative locations/regions for binding STAT1 and 24,739 locations/regions

for Pol II. Note that both databases in Rozowsky et al. (2009) have been used as the basis of the most recent

ENCODE data in their correponding domains; hence, we have no alternative ‘‘gold standards’’ to evaluate

the results of our analysis. In this article, we deal with this obstacle by using a procedure evaluating the

results of analysis by checking their internal consistency. This procedure is outlined below in Section 4.3.

Since Rozowsky et al. (2009) also provides the Eland mappings of the tags for the controls, and STAT1

and Pol II data sets, we have performed an additional independent analysis of this data using Poisson

Margin outlined in the following two sections.

4.1. Re-ordering

We have used the list of peak ranges, peak locations, and range boundaries exactly as in Rozowsky et al.

(2009). For each range, we have extracted (raw) counts, following the protocol described in the original

article, and then we used theMPo statistic to allocate the p-value (see Table 1 for STAT1 and Table 2 for

Pol II in Supplementary material in Kowalczyk et al. [2009]). Although the order according to the MPo

method is only slightly different from the original, the overlap is >90% (Table 1); the differences in

performance benchmarks especially for STAT1 are significant.

FIG. 2. (A) Numerical evaluation

of log10MPo(xa, xb) for the case of

jRaj ¼ jRbj. (B) Numerical evaluation

of the relative difference ( log10

MPo� log10 T ct)= log10MPo. The

evaluation has been done for the

regular logarithmic grid of count

values 1� xa, xb� 10,000.
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4.2. De novo significant range location

In our experiments described below, we have implemented and run a fixed size sliding window method

across the genome comparing the number of tags in each window for the control and target samples, for each

sample for both DNA strands pooled together. Regions of significance are then defined by thresholding the p-

values obtained from the Poisson Margin test. This resembles the approach in Zhang et al. (2008). This

effectively separates the tasks of finding regions of the genome where we believe a peak lies and determining

the location of the antibody binding site itself—the former task being done efficiently on the whole genome

scale and the latter being done intensively on just those regions identified by the genome wide scan as

containing a peak. The genome was scanned sequentially with a window of 200 bp, shifted every four bases,

which took about 17 minutes on a workstation with 2GHz Opteron CPUs and 32Gb of main memory.

We have identified 35,229 peak ranges for STAT1 using un-adjusted p-values < 1E-4 and 28,890 using

un-adjusted p-values < 1E-6 for Pol II, with thresholds chosen to match the numbers of peaks in the

original publication. The range was defined as a contiguous region of 200 BP blocks that passed the

threshold.

Such a procedure can be followed by refinements of boundaries, more precise location of the range

boundaries, and more precise peak location. Example of such secondary adjustments can be found else-

where (Rozowsky et al., 2009; Zhang et al., 2008; Ji et al., 2008), but we used none here.

4.3. Genome annotation test

We wish to quantify consistency of the putative peak ranges by quantifying ability to predict those

locations on the whole genome by a predictor trained on a part of the genome. In our experiments, peak

ranges from chromosome 22 were used for training, and those from the remaining chromosomes were used

only for testing. For quantifying prediction accuracy, we have adapted protocol 1B in the literature

(Sonnenburg et al., 2006; Abeel et al., 2009; Bedo et al., 2009). In brief, the genome is divided into 500bp

non-overleaping segments (total of 5,362,342 segments not containing ‘N’s), with each segment labeled as

positive if it overlaps a peak range and negative otherwise (the positive segments comprise <1% of the

total number of segments). These labels were used to build a predictor and verify its performance measured

by precision and recall. We recall that ‘‘Precision’’ means ratio of true positive retrieved (for a given

decision threshold) to number of retrieved cases, and ‘‘Recall’’ is the number of true positive retrieved

divided by the total number of true positive cases.

A linear support vector machine (SVM) was developed to label each 500bp segment independently (Bedo

et al., 2009). Each 500bp segment was represented as a feature vector containing frequency counts of

4-mers contained within. Recursive feature elimination was used to reduce the model’s number of features,

and other meta-parameters were set to maximize the area under precision-recall curve (PRC) in an internal

cross-validation on the training data.

This method works very well for some tasks such as the prediction of transcription start sites and the

binding of some transcription factors (e.g., c-Myc) (Bedo et al., 2009) and seems to significantly outper-

form other methods such as standard position weight matrices (PWM). From our experience, STAT1 is one

of the harder transcription factors to predict; however, we still observe much higher performance using the

SVM predictor than with PWMs (Bedo et al., 2009).

4.4. Results

Table 1 and Figure 3 summarize results for a few variations of genome annotation experiments described

above, for STAT1 and Pol II data, respectively. As we recall, the data from chromosome 22 were used for

training exclusively, and test results reported are for data from the whole genome. The following four basic

variations of the experiment consisted in usage of different sets of peaks:

	 I: The top 50% of the original list in Rozowsky et al. (2009)
	 II: The top 50% of the list in Rozowsky et al. (2009) after sorting by MPo method
	 III: The whole 100% list in Rozowsky et al. (2009)
	 IV: A de novo list of peaks derived as outlined in Section 4.2

Additionally, for STAT1 we have also tested a typical PWM from TRANSFAC� 7.0. This is reported as

row ‘‘V’’ in Table 1. In this case, the ‘‘score’’ per range in Rozowsky et al. (2009) is defined as the max of
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PWM scores for all positions within a 500BP tile. The overlap in Table 1 was calculated using the top 37k

tiles as scored by the PWM.

We observe that, for variants I and II for STAT1, the area under the PRC curve (4.0%) is approximately

1.5 times that for the original Rozowsky et al. (2009) ordering (2.6%). For Pol II, the corresponding

difference is smaller, due to larger similarity of the ordered lists and much higher accuracy of predictions,

but differences between de-novo (blue solid) and 100% list (broken blue) in Rozowsky et al. (2009) in

Figure 3B is well pronounced.

5. DISCUSSION

The basic protocol described in this article can be extended in a number of directions. In the experiments,

we have used only uniquely mapped reads. The density of such reads varies along the genome, which can

affect the relative p-values for peaks at different locations since both MPo and the Coin Tossing statistic

(T ct) (Rozowsky et al., 2009) are sensitive to the sequencing depth (Fig. 1B). A simple way around this

obstacle is to scale up the observed counts (per range) inversely to the fraction of mappable tags for the

region. Such information for uniquely mapped tags of length 30 is provided in Rozowsky et al. (2009), but

information of uniquely mapped up to two mismatches (which we prefer) is not currently available

(Rozowsky et al., 2009). We have not used this correction here.

We present an alternative to the methods introduced previously (Rozowsky et al., 2009; Robertson et al.,

2007; Zhang et al., 2008) (and see Pepke et al. [2009] for a recent review of these and other ChIP-seq

computational methods). We have focused on the first of those references, since it is one of the most recent

Table 1. Summary of Ordered Peaks Lists Overlap with the List in Rozowsky et al. (2009)

and the Accuracy Prediction of Binding Site on the Whole Genome

List overlap (%) with Rozowsky et al. (2009) Prediction for whole genome

Number of top peaks Prec. at recall

Experiment 10% 20% 50% 100% Area under Prec.-Rec. curve 10% 20%

STAT1

I: Roz.50% 100 100 100 — 2.6 7.6 4.2

II: Roz:þMPo50 96 94 91 — 4.0 12.3 7.5

III: Roz.100% 100 100 100 100 5.5 17.1 8.0

IV: deNovo-MPo 68 69 70 83 5.7 18.2 8.2

V: Roz.100% PWM 3 5 9 12 4.1 8.4 4.4

Pol II

I: Roz.50% 100 100 100 — 24.4 56.0 50.1

II: Roz:þMPo50 53 85 95 — 25.6 57.4 51.7

III: Roz.100% 100 100 100 100 23.2 58.8 51.2

IV: deNovo-MPo 66 71 74 77 26.9 62.4 56.1

In experiments I–IV, we use data on chromosome 22 for training SVM exclusively. All values listed are in %.

Boldface marks the most significant results within each group of experiments, I–II and III–IV, respectively.

FIG. 3. Precision–recall curves

for STAT1 (A) and Pol II (B)

corresponding to Table 1. We

report test results for the whole

genome for the variants I–V of

the genome annotation test ex-

periment described in Section 4.4.
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and allows access to good quality of experimental data, included in ENCODE. We have shown that a

principled analysis of such data using our method is feasible with minimal need for (arbitrary) design

choices and with a minimal number of data-adjustable parameters. (An illustrating example here is the

introduction in Rozowsky et al. [2009] of an ad hoc parameter 0�Pf� 1 for the fraction of putative highest

peaks to be excluded from regression for local normalization of counts.) Our approach is robust, and can be

applied to a wide variety of experimental designs involving different numbers of samples, possibly from

different cell lineages. It is applicable precisely because it does not require scaling of the individual

libraries of reads. The results in Kowalczyk (2009) and Section 3.3 show that such a scaling, if applied,

should be done with extreme caution, if the analysis is to be meaningful.

6. CONCLUSION

We have developed a principled statistical test for the detection of significant read concentrations that is

directly applicable to libraries of different (unmatched) sizes without any scaling of read counts and have

demonstrated that such a scaling could introduce significant bias in the computed p-values. Although our

statistical test targets differential analysis for multiple NGS libraries, the initial validation in this article is

restricted to the simplest case of comparison of a target library to a matching reference. Using the recent

Encode Chip-Seq data, we have shown that our test delivers non-vacuous results, with peak calling

accuracies comparable or even improved with respect to the original dedicated algorithm. The absence of

adequate gold standards for benchmarking was circumvented by application of a novel internal consistency

check based on the accuracy of generalization of a supervised learning predictor. Demonstration of the

utility of that protocol is the second major contribution of this article.
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