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Abstract

When the parameters are independently and
identically distributed (initialized) neural net-
works exhibit undesirable properties that
emerge as the number of layers increases, e.g.
a vanishing dependency on the input and a
concentration on restrictive families of func-
tions including constant functions. We con-
sider parameter distributions that shrink as
the number of layers increases in order to re-
cover well-behaved stochastic processes in the
limit of infinite depth. This leads to set forth a
link between infinitely deep residual networks
and solutions to stochastic differential equa-
tions, i.e. diffusion processes. We show that
these limiting processes do not suffer from the
aforementioned issues and investigate their
properties.

1 Introduction

Modern neural networks (NN) models featuring a large
number of layers (depth) and features per layer (width)
have achieved a remarkable performance across many
domains (LeCun et al., 2015). It is well known (Neal,
1995; Matthews et al., 2018) that in the limit of infi-
nite width, NNs whose parameters are appropriately
distributed converge to Gaussian processes. This con-
nection helps to study properties of very wide NNs,
and forms the basis of inferential algorithms directly
targeting the infinite-dimensional setting (Lee et al.,
2018; Garriga-Alonso et al., 2019; Lee et al., 2019;
Arora et al., 2019). Based on this recent literature,
it is natural to ask whether it is possible to set an
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analogous useful connection between infinitely deep
neural networks (IDNN) and stochastic processes. At
a first glance, this correspondence might prove elusive.
To see why, we now look at the literature on initial-
ization schemes. Indeed there is a duality between
initialization schemes and Bayesian NNs: an initial-
ization scheme can be seen as a prior on the model
parameters, thus inducing a prior on the NN. A NN at
initialization may thus be viewed as a stochastic pro-
cess indexed by depth, whose distribution is defined by
a sequence of conditional distributions mapping from
each layer to the next. Early works focused on stabi-
lizing the variance of key quantities of interest across
the layers of deep NNs (Glorot and Bengio, 2010; He
et al., 2015). More recent works (Poole et al., 2016;
Schoenholz et al., 2017; Hayou et al., 2019a) consider
the impact of initializations to the propagation of the
input signal.

Even when initialized on the edge of chaos (EOC) for
optimal signal propagation, feedforward NNs with fixed
independent and identically distributed (i.i.d.) initial-
ization exhibit some pathological properties as their
total depth increases. In particular, the dependency on
the input eventually vanishes for most activation func-
tions. In addition to that, the layers seen as random
functions on the input space eventually concentrate on
restrictive families including constant functions. As an
illustrative example, we show in Figure 1 function sam-
ples from the last layer of a feedforward deep NNs for
two activation functions under EOC initialization. For
a tanh activation, the input has no discernible impact
on the output, as can be seen by the constant marginal
distributions, and the sampled functions are almost con-
stant. This behavior is representative of most smooth
activation functions. For a ReLU activation, the input
affects the variance of the output and the function sam-
ples are piece-wise linear. In both cases, the outputs of
any two inputs end up perfectly correlated. While this
study applies to feedforward NNs, very deep residual
networks (ResNet) suffer from similar issues (Yang and
Schoenholz, 2017), with the additional issue that the
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Figure 1: Function samples of a given pre-activation
(number 1) of the last layer, xlast,1, of a fully connected
feedforward NN with 500 layers of 500 units over a 1-
dimensional input z ∈ [−2, 2]; tanh activation function
and ReLU activation function, and parameters on the
edge of chaos; 5 draws are displayed in blue in each
figure; for each input the 5%, 50% and 95% quantiles
are displayed in orange.

variance of the Gaussian-distributed pre-activations
may grow unbounded over layers.

While it is possible to obtain a well-defined stochastic
process corresponding to an IDNN, such a process is
unexpressive: linear regression is a more flexible alter-
native. The difficulties discussed so far are determined
by the fact that typical prior distributions on the model
parameters introduce a constant level of randomness
over each hidden layer. In this paper we consider prior
distributions that depend on the number of layers, in
such a way that they shrink as the number layers in-
creases. This approach leads to our main result: as the
number of layers increases, a class of ResNets converges,
jointly over multiple inputs, to diffusion processes on
a finite time interval. The conditions required for at-
taining convergence provide us with a general guideline
for selecting compatible NN architectures, activation
functions and parameters distributions. The limiting
diffusion processes satisfy suitable stochastic differen-
tial equations (SDE) that describe the evolution of
IDNN layers over time (depth). The limiting diffusion
is well-behaved in the sense that: i) it retains depen-
dency from the input; ii) it does not suffer from the
perfect correlation constraint; iii) it does not collapse
to a deterministic function nor does it diverge.

The paper is structured as follows. In Section 2 we
recall some preliminary results on diffusion limits of
discrete-time stochastic process. Section 3 contains our
main result: the convergence of a class of ResNets to
solutions of SDEs. Section 4 contains numerical ex-
periments and Section 5 concludes. Proofs, additional
experiments and plots, and additional discussions on re-
lated work are deferred to the Supplementary Material
(SM).

Notation: for a matrix h, h> is its transpose, and if
h is square diag(h) is its diagonal vector and Tr(h) is

its trace; ‖x‖ =
√
x>x is the norm of the vector x;

〈x, y〉 = x>y is the inner product of vectors x and y;
‖h‖ =

√
Tr(h>h) is the norm of a matrix h; vec(u) is

the vectorization the tensor u; I is the identity matrix
and 1 is a vector of ones; for random variables z and w,
var[z], cov[z, w] and ρ[z, w] are the variance, covariance
and correlation; for random vectors x ∈ Rr and y ∈ Rc,
C[x, y]i,j = cov[xi, xj ] is the r × c cross-covariance
matrix C[x, y]; V[x] = C[x, x] is the r × r covariance
matrix of x; the expectation E[u] of a random tensor
u is the tensor of the expectations of its elements; for
two D-dimensional stochastic processes xt, yt, [x]t is
the quadratic variation (a D-dimensional vector) and
[x, y]t is the quadratic covariation (aD×D-dimensional
matrix); 1 is the indicator function.

2 Preliminaries

For l = 1, . . . , L let xl be the l-th layer of a NN with
with L layers, and let x0 be the NN input. In this
section we recall general results for diffusion approxi-
mations. The connection with NNs, i.e. defining what
xl exactly represents in a NN, is postponed to the
next section. As we will be seeking a continuous time
stochastic process limit we re-index x0,x1, . . . ,xL on
a discrete time scale. Let T > 0 denote a terminal
time, ∆t = T/L, for each L we establish the corre-
spondence between discrete indices l ∈ Z+ and discrete
times t ∈ R+ by l = 0, 1, . . . , L↔ t = 0,∆t, 2∆t, . . . , T .
From now on we will consider without loss of generality
a NN with input x0 and layers x∆t, . . . ,xT , denoting
a layer with xt.

Let p(xT |x0) be the conditional distribution of the
output given the input for a NN at initialization. Our
strategy to enforce desirable properties on p(xT |x0)
consists in having a NN converge, as the number of
layers L go to infinity (∆t ↓ 0), to a continuous-time
stochastic process on the time interval [0, T ]. In this
case, for L large enough, the distribution p(xT |x0) will
be close to the distribution of the limiting process at
terminal time T given the same x0, and such limiting
process should be chosen to make this transition density
well behaved. In all NN architectures considered in this
paper, each layer depends only on the previous one,
hence xt has the Markov property. These conditions
identify a class of diffusion processes (Stroock and
Varadhan, 2006), which are continuous-time Markov
processes with continuous paths, as natural candidates
for the limiting process. For simplicity we assume that
the parameters of all layers follow the same distribution
(extensions are discussed in Section 3.2), making xt
time-homogeneous.

Let xt be a genericD-dimensional discrete-time Markov
process and let ∆xt = xt+∆t − xt define the forward
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increments. Hereafter we report a set of conditions
that imply the convergence of xt to the solution of a
limiting SDE, and it is implicit that the distribution
p(xt+∆t|xt) depends on ∆t for the limits to exist as
required.
Assumption 2.1 (Convergence of instantaneous mean
and covariance). There exist µx(x) : RD → RD and
σ2
x(x) : RD → RD×D such that:

lim
∆t↓0

E[∆xt|xt]
∆t

= µx(xt) (1)

lim
∆t↓0

V[∆xt|xt]
∆t

= σ2
x(xt) (2)

lim
∆t↓0

E[(∆xt)
2+δ|xt]

∆t
= 0 (3)

for some δ > 0, where all convergences are uniform on
compacts of RD for each component, µx(x) and σ2

x(x)
are continuous, and σ2

x(x) is positive semi-definite:
σ2
x(x) = σx(x)σx(x)> for some σx(x) : RD → RD×D.

Assumptions (1) and (2) pinpoint the form of the limit-
ing SDE, while assumption (3) is a technical condition
that allows us to consider the limits (1) and (2) instead
of their truncated version (Nelson, 1990). The next
theorem establishes that, under additional assumptions,
in the limit xt can be embedded in the solution of a
SDE.
Theorem 2.1. Under Assumption 2.1, extend xt to a
continuous-time process xt on t ∈ [0, T ] by continuous-
on-right step-wise-constant interpolation of xt:

xt = xu1u≤t<u+∆t (u ∈ 0,∆t, 2∆t, . . . , T ) (4)

Consider the D-dimensional SDE on [0, T ] with initial
value x0 = x0, drift vector µx(x) given by (1), and
diffusion matrix σx(x) given by a square root of (2):

dxt = µx(xt)dt+ σx(xt)dBt (5)

where Bt is a D-dimensional Brownian motion (BM)
with independent components and (5) is short-hand
notation for:

xT = x0 +

∫ T

0

µx(xt)dt+

∫ T

0

σx(xt)dBt

The first integral is a standard (Riemann) integral, and
the second integral is an Ito integral. If SDE (5) admits
a weak solution, and if this solution is unique in law and
non-explosive, then the stochastic process defined by (4)
converges in law to the solution of the SDE (5). This
result still holds true for a random but independent and
square integrable random variable x0 ∼ p(x0), provided
that the driving BM is independent of x0. In both cases
the convergence in law is on D([0,∞),RD), the space
of RD-valued processes on [0,∞) which are continuous
from the right with finite left limits, endowed with the
Skorohod metric (Billingsley, 1999).

We are dealing with three processes: the (discrete-time)
NN xt, its continuous time interpolation xt, and the
limiting diffusion xt (Øksendal, 2003). In Theorem
2.1, the continuous-time interpolation xt of xt is in-
troduced because we are seeking a continuous-time
limiting process from a discrete-time one. The conver-
gence established in Theorem 2.1 is strong in the sense
that it concerns the convergence of the distribution of
the stochastic process (xt)t∈[0,T ] as a stochastic object
on the whole time interval [0, T ] to the diffusion limit
(xt)t∈[0,T ] as L ↑ ∞. We consider weak solutions, as
opposed to a strong ones, where it suffices that a BM
Bt can be found such that a solution can be obtained
(Øksendal, 2003). The focus on weak solutions and
uniqueness in law of such solutions (also called weak
uniqueness) is justified by our interest in the distribu-
tional properties of the limiting behavior of xt, and it
enables us to consider weaker requirements for attain-
ing convergence of xt. Consider the discretization of
SDE (5)

xt+∆t = xt + µx(xt)∆t+ σx(xt)ζt
√

∆t, (6)

where ζt is a D-dimensional random vector whose com-
ponents are i.i.d. as standard Gaussian (mean 0 and
variance 1). Under suitable conditions (Kloeden and
Platen, 1992), it can be proved that the discretized
SDE (6) converges to the SDE (5), and we recognize the
Euler discretization of an ordinary differential equation
(ODE) in the deterministic part (6). In Theorem 2.1
we postulate the existence and uniqueness in law of
the weak solution of the limiting SDE, and its non-
explosive behavior. The following conditions suffice for
our goals.

Assumption 2.2 (Existence of weak solution and
uniqueness in law on compact sets). The functions
µx(x) and σx(x) are twice continuously differentiable.

Assumption 2.3 (Non-explosive solution). There ex-
ist a finite C > 0 such that for each x ∈ RD:
‖µx(x)‖+ ‖σx(x)‖ ≤ C(1 + ‖x‖).

When Assumption 2.1 and Assumption 2.2 hold (as it
will be the case in all the models considered), but As-
sumption 2.3 does not hold, we still obtain convergence
to the solution of the SDE (5). However, the stochas-
tic process xt might diverge to infinity with positive
probability on any time interval. We will return to this
point more in detail.

3 Residual network diffusions

We focus on unmodified, albeit simplified, standard
architectures. This is in line with the information
propagation research (Poole et al., 2016; Schoenholz
et al., 2017; Hayou et al., 2019a) but in contrast with
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Chen et al. (2018), where the recursion is modified
with an additional ∆t term to achieve convergence to
a limiting ODE.

In this section, we study the implications of Assump-
tion 2.1, Assumption 2.2 and Assumption 2.3 in NNs.
First of all, xt needs to be of constant dimensionality,
as otherwise ∆xt is undefined. Consistently with the
previous section we assume xt ∈ RD. For Assump-
tion 2.1 to hold we need Pr(‖∆xt‖ > ε|xt) ↓ 0 as
∆t ↓ 0 for any ε > 0, i.e. we require the increments
to vanish eventually. Intuitively this is due to the
continuity of the paths of the limiting diffusion pro-
cess. A fully connected feedforward NN is expressed
by the relationship xt+∆t = ft(xt) = φ(Atxt + at)
for a nonlinear activation φ : R→ R applied element-
wise. As standard convention we refer to At ∈ RD×D
as weights and to at ∈ RD as biases. Hence ∆xt =
φ(Atxt + at)− xt. Shrinking increments would imply
that for all x, φ(Atx + at) can be made arbitrarily
concentrated around x with a suitable choice of distri-
butions for (At, at). This cannot be achieved unless φ
is linear or the distribution of (At, at) depends on x.
Indeed, fixing x determines the values around which
(At, at) need to concentrate for the increments to vanish
(if any), hence the increments will not vanish for a differ-
ent x′ 6= x, a fact that is most easily seen in the specific
case where (At, at) are scalars. The same reasoning
rules out the ResNet originally introduced in the work
of He et al. (2016a), where xt+∆t = ft(xt + rt(xt)).
This leaves us with the identity ResNet of He et al.
(2016b) where xt+∆t = xt + rt(xt) for some choice of
rt, the residual blocks, which we require to eventually
vanish.

3.1 Shallow residual blocks

Each residual block rt results from an interleaved ap-
plication of affine transforms and non-linear activation
functions. We consider the case of shallow residual
blocks of the form:

xt+∆t = xt + φ(Atψ(xt) + at) (7)

for two activation functions φ : R → R, ψ : R → R
which are applied element-wise. We point out that
the non-standard use of 2 activation functions φ, ψ
is to cover the case of shallow residual blocks in full
generality.

3.2 Parameter distribution and activation
functions

For a shallow residual block rt, the vanishing incre-
ments requirement is satisfied by having the distri-
butions of At and at concentrate around 0 provided
that φ(0) = 0. It proves advantageous to consider

weights and biases given by increments of diffusions
corresponding to solvable SDEs.
Assumption 3.1 (Parameters distribution and scal-
ing). Let Wt and bt be the diffusion processes respec-
tively with values in RD×D and RD solutions of:

dWt = µW dt+ dW̃t; d vec(W̃t) = σW d vec(BWt ) (8)

dbt = µbdt+ σbdBbt (9)

where BWt and Bbt are independent BMs with inde-
pendent components respectively with values in RD×D
and RD, µW ∈ RD×D, µb ∈ RD, σW ∈ RD2×D2

, σb ∈
RD×D, and ΣW = σWσW

>, Σb = σbσb
> are positive

semi-definite.

Then the discretizations of Wt and bt admit the (exact)
representations:

∆Wt = µW∆t+ εWt
√

∆t; ∆bt = µb∆t+ εbt
√

∆t

vec(εWt )
i.i.d.∼ ND2

(
0,ΣW

)
; εbt

i.i.d.∼ ND
(
0,Σb

)
for t = ∆t, . . . , T where N stands for the multivariate
Gaussian distribution. We will consider residual blocks
where At = ∆Wt and at = ∆bt:

xt+∆t = xt + φ(∆Wtψ(xt) + ∆bt) (10)

Thus Assumption 3.1 covers the case where the pa-
rameters are independently and identically distributed
across layers according to an arbitrary multivariate
Gaussian distribution, up to the required scaling
which is necessary to obtain the desired diffusion
limit. By considering deterministic but time-dependent
µWt , µ

b
t ,Σ

W
t ,Σ

b
t the extension to layer-dependent distri-

butions is immediate. More generally, we can consider
Wt and bt driven by arbitrary SDEs. Moreover, depen-
dencies across the parameters of different layers can be
accommodated by introducing additional SDE-driven
processes, commonly driving the evolution of Wt and
bt. We do not pursue further these directions in the
present work. As for the activation functions, we will
require:
Assumption 3.2 (Activation functions regularity).
The function φ : R → R satisfies: φ(0) = 0, φ is
continuously differentiable three times on R, its sec-
ond and third derivatives have at most exponential tails
growth, i.e. for some k > 0:

lim
|x|↑∞

|φ′′(x)|
ek|x|

+ lim
|x|↑∞

|φ′′′(x)|
ek|x|

<∞

The function ψ : R→ R is locally bounded and contin-
uously differentiable two times on R.

3.3 Diffusion limits

The next theorem is the main result of the present
paper, regarding the convergence of (10). Proofs are
in SM A.
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Theorem 3.1. Under Assumption 3.1 and Assump-
tion 3.2 the continuous-time interpolation xt of xt
converges in law to the solution on [0, T ] of

dxt = φ′(0)(V[εWt ψ(xt) + εbt |xt])1/2dBt (11)

+ φ′(0)(µb + µWψ(xt))dt

+
1

2
φ′′(0) diag(V[εWt ψ(xt) + εbt |xt])dt

with initial value x0 = x0 where Bt is a D-dimensional
BM vector with independent components.

This result does not establish a direct connection be-
tween xt and the driving sources of stochasticity Wt

and bt. As we are interested in the properties of deep
ResNets in function space, i.e. over multiple inputs, a
brute force approach would require us to establish
diffusion limits as in Theorem 3.1 for an enlarged
xt = [x

(1)
t · · ·x

(N)
t ] ∈ RDN corresponding to N ini-

tial values x0 = [x
(1)
0 · · ·x

(N)
0 ]. Instead, we show that

the limiting SDE is equivalent in law to the solution
of another SDE which preserves the dependency on
the driving sources of stochasticity. From here on
x

(i)
t ,x

(j)
t denote ResNets corresponding to two initial

values x
(i)
0 ,x

(j)
0 , and x

(i)
t , x

(j)
t denotes diffusion lim-

its corresponding to the same two initial values (i.e.
x

(i)
0 = x

(i)
0 , x

(j)
0 = x

(j)
0 ). We will continue to use xt for

x
(i)
t and xt for x

(i)
t when no confusion arises.

Corollary 3.1. Under the same assumptions of Theo-
rem 3.1 the limiting process is also given by the solution
on [0, T ] of:

dx
(i)
t = φ′(0)(dWtψ(x

(i)
t ) + dbt) (12)

+
1

2
φ′′(0)(d[Wψ(x(i))]t + d[b]t)

where Wt and bt are defined in Assumption 3.1 and
over two initial values we have:

d[x(i), x(j)]t = φ′(0)2(d[Wψ(x(i)),Wψ(x(j))]t+d[b, b]t)
(13)

The results obtained so far are general in the sense that
we allow for an arbitrary covariance structure between
the elements of εWt , i.e. an arbitrary (constant and de-
terministic) quadratic covariation for Wt. This makes
it difficult to derive more explicit results, and is also an
impractical approach as the parametrization requires
O(D4) elements. We thus consider more restrictive dis-
tribution assumptions with a more manageable O(D2)
parametrization cost.
Assumption 3.3 (Matrix normal weights). Let
bt, µ

b, σb, B
b
t , µ

W , BWt be defined as in Assumption 3.1.
Let Wt be the diffusion matrix with values in RD×D
solution of:

dWt = µW dt+ σWOdBWt σWI

where σWO , σWI ∈ RD×D and ΣWO = σWOσWO
>,

ΣWI = σWI
>
σWI are positive semi-definite.

Under Assumption 3.3 the discretization ofWt satisfies:

εWt
i.i.d.∼ MND,D

(
0,ΣWO ,ΣWI

)
for t = ∆t, . . . , T where MN stands for the ma-
trix normal distribution. This is an immediate con-
sequence of the fact that if ζ ∼ MN (0, I, I), then
AζB ∼ MN (0, AA>, B>B). See Gupta and Nagar
(1999). The main property ofMN distributions is that
the covariance factorizes as cov(εWo,i, ε

W
o′,i′) = ΣWO

o,o′ Σ
WI

i,i′ .
Corollary 3.2. Under the same assumptions of The-
orem 3.1, if Wt is distributed according to Assump-
tion 3.3, (12) and (13) are given by:

dx
(i)
t = φ′(0)

(
(µWψ(x

(i)
t ) + µb)dt (14)

+ σWOdBWt σWIψ(x
(i)
t ) + σbdBbt

)
+

1

2
φ′′(0) diag

(
Σb + ΣWO (ψ(x

(i)
t )>ΣWIψ(x

(i)
t ))

)
dt

d[x(i), x(j)]t = φ′(0)2
(
Σb + ΣWOψ(x

(i)
t )>ΣWIψ(x

(j)
t )
)
dt

Finally, we consider the simplest "fully i.i.d." centered
distribution assumptions forWt, bt. i.i.d. initializations
are most commonly used in the training of NNs. We
also introduce a scaling of the weights by D−1/2 (which
is the same scaling used to obtain Gaussian process
limits in infinitely wide NNs). We will see in Section 4.2
that this scaling has a stabilizing effect on the dynamics
of xt.
Assumption 3.4 (Fully i.i.d. parameters). Let Wt

and bt be the diffusion processes respectively with values
in RD×D and RD solutions of:

dWt =
σw√
D
dBWt ; dbt = σbdB

b
t

for BWt , Bbt independent BMs respectively with values
in RD×D,RD and scalars σw > 0, σb > 0.

Under Assumption 3.4 the discretizations of Wt, bt sat-
isfy:

∆Wt = εWt
σw√
D

√
∆t; ∆bt = εbtσb

√
∆t (15)

εWt
i.i.d.∼ MND,D

(
0, ID, ID

)
; εbt

i.i.d.∼ ND
(
0, ID

)
(16)

Corollary 3.3. Under the same assumptions of The-
orem 3.1, if Wt and bt are distributed according to
Assumption 3.4, (12) and (13) are given by:

dx
(i)
t = φ′(0)

( σw√
D
‖ψ(x

(i)
t )‖dBWt + σbdB

b
t

)
(17)

+
1

2
φ′′(0)

(
σ2
b +

σ2
w

D
‖ψ(x

(i)
t )‖2)

)
ID dt

d[x(i), x(j)]t = φ′(0)2
(
σ2
b +

σ2
w

D
〈ψ(x

(i)
t ), ψ(x

(j)
t )〉

)
ID dt
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3.4 Qualitative properties

Non-vanishing input dependency: a consequence of The-
orem 3.1 is that the distribution of the ResNet output
given the input p(xT |x0) converges to the transition
density p(xT |x0) of the solution of (12). As T is finite,
the dependency on the input does not vanish in the
limit of infinite total depth L and can be controlled via
the parameter distributions and T .

Flexible output distributions: from (12)-(13) we see
that the joint evolution of x(i)

t , x
(j)
t corresponding to

x
(i)
0 , x

(j)
0 is not perfectly correlated (unless there are

no weight parameters, a not very relevant case). This
remains true also in the parameterizations of Assump-
tion 3.3 and Assumption 3.4. Thus in the limit of
infinite total depth L the distribution in function space
does not suffer from the perfect correlation problem.
The joint distribution p(x

(i)
T , x

(j)
T |x

(i)
0 , x

(j)
0 ) is not Gaus-

sian.

Role of integration time: a standard time-change result
for SDEs (Revuz and Yor, 1999) implies that time-
scaling a SDE is equivalent to multiplying the drift
and diffusion coefficients respectively by the scaling
constant and by the square root of the scaling constant,
as can be intuitively seen from (6). From (11) we see
that it is possible to compensate changes in the inte-
gration time T with changes in the "hyper-parameters"
µb, µW ,Σb,ΣW in Assumption 3.1 to leave the dynam-
ics of (11) invariant. This remains true also in the pa-
rameterizations of Assumption 3.3 and Assumption 3.4.
Hence we can restrict T = 1 without loss of generality.

Matrix normal weights: in this case V[εWt ψ(xt) + εbt |xt]
is given by Σb + ΣWO(ψ(xt)

>ΣWIψ(xt)). The depen-
dency on the state xt in (11) goes through a linear
transformation and a weighted inner product. This
sheds some light on the impact of introducing depen-
dencies among row and columns of the weight parame-
ters At = ∆Wt. Specifically, ΣWI define the structure
of the inner weighted product, while ΣWO defines how
such transforms affect each dimension d ∈ D.

Fully i.i.d. parameters: in this case V[εWt ψ(xt) + εbt |xt]
is given by σ2

b +
σ2
w

D ‖ψ(xt)‖2. The dependency on the
state xt in (11) goes only through the norm of xt which
is permutation invariant in d ∈ D. Thus the law of
the processes xt,d is exchangeable across d ∈ D if the
distribution of x0,d is so.

Explosive solutions: without further assumptions the
solutions to the limiting SDEs can be explosive. From
(11) we see that the potentially troublesome term is the
variance matrix in the drift ((14) makes the issue easier
to see in a more restricted setting). Assumption 2.3 is
satisfied under all considered parameter distribution

assumptions if either: i) ψ exhibits at most square-root
growth, in particular ψ is bounded; or ii) ψ exhibits
at most linear growth, in particular ψ is the identity
function, and φ′′(0) = 0, in particular φ = tanh.

Non-smooth activations: the diffusion limits are based
on a sufficiently smooth activation φ per Assump-
tion 3.2. We consider here the following case which in-
cludes the ReLU activation. If φ(a) is positively homo-
geneous, i.e. φ(αa) = αφ(a) for α > 0, h is random vari-
able, and γ > 0 then: E[φ(h∆tγ)/∆t] = E [φ(h)] ∆tγ−1

and E[φ(h∆tγ)2/∆t] = E
[
φ(h)2

]
∆t2γ−1. Comparing

these with (1) and (2), we see that unless E[φ(h)] = 0,
choosing γ = 1/2 would result in the drift term blowing
up. Choosing γ = 1 recovers a deterministic limit as
in Chen et al. (2018).

3.5 Input and output layers

So far we have considered x0 ∈ RD to be the input
of the ResNet. A NN acts as a function approxima-
tor to be fitted to some dataset {(z(i), y(i))}Ni=1 where
z(i) ∈ RZ represents an input and y(i) ∈ RY represents
the corresponding output. In general, there can be
a mismatch between D,Z and Y , making it is neces-
sary to introduce adaptation layers z(i) 7→ x

(i)
0 and

x
(i)
T 7→ ŷ(i) where ŷ(i) is the NN prediction for z(i).

As for xt, we will denote a single data-point (z(i), y(i))
with (z, y) when no confusion arises.

4 Experiments

4.1 Sanity check

First of all we investigate numerically the correctness
of the results obtained in Section 3.3. We consider the
setting of Assumption 3.4 with φ = tanh, σ2

w = σ2
b = 1,

T = 1, L = D = 500 and 1-dimensional inputs. In
all the experiments ψ is set to the identity function.
As noted in Section 3.5 we need to introduce an in-
put layer mapping z ∈ R 7→ x0 ∈ RD. For this toy
example we simply copy the input across all dimen-
sions: x0,• = z, i.e. x0,d = z for each d ∈ D. We
refer to this model as SCtanh. We consider two inputs
z(1) = 0, z(2) = 1, hence x

(1)
0,• = z(1),x

(2)
0,• = z(2), and

simulate 10.000 draws of the first dimension (d = 1)
of i) x

(1)
T , x(2)

T via the ResNet recursion (7); ii) x(1)
T ,

x
(2)
T via the discretization (6) of the limiting SDE (17).

Our analysis imply that i) and ii) are equivalent in
the limit L ↑ ∞. We report the results in Figure 2
where good agreement is indeed observed. We replicate
this experiment in SM B for SCswish, where the tanh
activation in SCtanh is replaced by the swish activa-
tion (swish(x) = x sigmoid(x)) which has been shown
empirically (Ramachandran et al., 2017) and theoreti-
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Figure 2: For model SCtanh: 2D KDE plot for
(ŷ1(z(1)), ŷ1(z(2))) (left), 1D KDE and histogram plots
for ŷ1(z(1)) (center), ŷ1(z(2)) (right) when ŷ1 is sam-
pled from a ResNet and from the Euler discretization
of its limiting SDE (sde); ŷ denotes a generic model
output, hence ŷ1 is its first dimension.
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Figure 3: Function samples of xT.1 for SCtanh (top)
and SCswish (bottom), see Figure 1 for the description
of the plotted quantities.

cally (Hayou et al., 2019a) to be competitive. In this
case φ′(0) = φ′′(0) = 1/2 and Assumption 2.3 is not
satisfied.

4.2 Function space distributions

We show empirically that the dependency on the input
is retained and the output distribution does not exhibit
perfect correlation for very deep ResNet constructed
as in the present paper. We consider the same model
SCtanh of Section 4.1. First of all, from the center and
right plots of Figure 2 we see that x(1)

T,1 and x
(2)
T,1 are

differently distributed, meaning the input dependency
is retained, and from the left plot we see that they are
not perfectly correlated, otherwise the 2D KDE would
collapse to a straight line.

In Figure 3 (top) we visualize samples of xT,1 from
SCtanh in function space for different combinations of
L (more plots in SM B). More specifically, we approx-
imate function draws by considering 400 inputs z(i)

equally spaced on [−2, 2]. Using the ResNet recursion
(7) we obtain 400 output values x(i)

T,1. We repeat this
procedure to obtain 10.000 function draws. In Figure 3
(bottom) we repeat this experiment for SCswish. In this
specific case we did not observe divergent trajectories
for the 10.000 function draws. In Figure 3 we observe
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Figure 4: Output correlation heatmap for SCtanh

(top-left), SCswish (top-right), EOtanh (bottom-left),
EOReLU (bottom-right).

similar distribution properties across different orders
of magnitude for D, which suggests the existence of
a stochastic limit in the doubly infinite setting where
L,D ↑ ∞.

In Figure 4 (top) we plot the correlations ρ[x
(1)
T,1,x

(2)
T,1]

for inputs (z(1), z(2)) in the range [−2, 2]× [−2, 2] for
the tanh and swish activations: for different inputs
the output correlations are far from 1. Let us refer to
the model of Figure 1 with tanh activation as EOtanh,
and to the model of Figure 1 with ReLU activation as
EOReLU. For comparison, we show in Figure 4 (bottom)
the correlations ρ[x

(1)
last,1, x

(2)
last,1] for pre-activation 1 for

EOtanh and EOReLU: all correlations are close to 1.

4.3 SGD training

In this experiment we consider the MNIST dataset
(LeCun, 1998). Each observation (z, y) is composed
of an image z ∈ R784 (we flatten to a vector) and a
class y ∈ R10 (we use 1-hot encoding). We consider the
setting of Assumption 3.4 with φ = tanh, σ2

w = σ2
b = 1,

T = 1 and random input and output layers given by
x0 = WIz, ŷ = WOxT where WI ∈ RD×784,WO ∈
R10×D and WI,d,i,WO,c,o

i.i.d.∼ N (0, 1). We use the
cross-entropy loss function and fit the model to the
training dataset via SGD. Figure 5 (top) shows the evo-
lution of the training losses over 1 epoch (mini-batches
of 200 samples) when the gradients are taken with re-
spect to {εWt , εbt}T−∆t

t=0 ((16), reparametrized gradients)
for a common learning rate. This choice results in
stable loss decrease over all considered values for L
and D. Moreover all average accuracies computed on
the test dataset after 1 training epoch are in the range
[87.1%, 90.6%]. In contrast, we were unable to obtain
a test accuracy uniformly above 72.4% with a common
(tuned via grid-search) learning rate when the gradients
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Figure 5: Averaged (over each batch) loss on MNIST
training dataset for the model of Section 4.3, different
L,D, for reparametrized gradients (top, shared linear-
scale on y-axes) and for standard gradients (bottom,
different log-scales on y-axes).

are computed with respect to {∆Wt,∆bt}T−∆t
t=0 ((15),

standard gradients). Figure 5 (bottom) illustrates the
issue: a common learning rate leads to either slow or
divergent trajectories. Similar results (not shown) are
obtained for commonly used initializations (Glorot and
Bengio (2010); He et al. (2015)). Our experiment sug-
gests the existence of results akin to Jacot et al. (2018);
Hayou et al. (2019b) as both L,D ↑ ∞.

Zhang et al. (2019) considers initializations for ResNets
which are not encompassed yet by our analysis. Con-
versely, the residual blocks in Zhang et al. (2019) can-
not be shallow. An analysis of gradient properties
motivates initializing the residual block parameters
so that the their variance shrinks as the ResNet gets
deeper. However, the residual blocks are multiplied by
parameters initialized at 0, hence our desiderata iii)
(Section 1) is not satisfied. Moreover the gradients are
not reparametrized as in the above experiment.

5 Discussion

We have established the convergence of identity
ResNets He et al. (2016b) to solutions of SDEs as the
number of layers goes to infinity. Our results rely on
smooth activation functions and on model parameter
distributions which shrink as total depth increases. Fur-
ther conditions on the activation functions are obtained
by restricting the limiting SDEs to be non explosive.
As the infinitesimal evolution of SDEs is character-
ized by their instantaneous mean and covariance, it
seemed natural to assume that model’s parameters
have Gaussian distributions. However, our results can
be strengthened to hold for finite-variance parameter
distributions.

Building on the connection between IDNN and diffu-
sion processes we showed that, as the number of layers

goes to infinity: the last layer does not collapse to a
deterministic limit, nor does it diverge to infinity; the
dependency of the last layer on the input does not
vanish; the last layer, as stochastic function on input
space, remains flexible without collapsing to restrictive
families of distributions. We then investigated addi-
tional properties of the limiting diffusions. In contrast
to the information propagation approach our analysis
covers finitely-wide NNs and correlated parameters at
the layer level.

While the limiting diffusions do not suffer from catas-
trophic limitations, to obtain competitive performance
more attention needs to be paid to architectural choices,
to parameters’ distribution selection, and to input and
output layers. Moreover, results on forward propa-
gation do not trivially translate to corresponding re-
sults on gradient back-propagation. With this in mind,
hereafter we list some promising future research direc-
tions. Firstly, we can consider more realistic residual
blocks consisting of multiple convolutional layers as
in Zhang et al. (2019). Extending the present work
to convolutional NN does not require new theoretical
developments as a convolutional transform (jointly over
all positions) can be expressed via matrix multiplica-
tion. Deep residual blocks could be approached via
fractional Brownian motions (Biagini et al., 2008) or
via re-scaled Brownian motions. Secondly, the same
techniques used to derive the evolution of IDNNs can
be used to obtain the evolution of the input-output
Jacobian. This would pave the way to an extensions
of the neural tangent kernel (Jacot et al., 2018; Lee
et al., 2019; Arora et al., 2019; Hayou et al., 2019b)
to IDNNs. Thirdly, stable behavior has been observed
with an appropriate scaling of the weight parameters
as the wideness D increases. In particular, it would
be instructive to characterize the distribution of NNs
which are both infinitely deep and wide. This result
could form the basis of Bayesian inference (Lee et al.,
2018; Garriga-Alonso et al., 2019) for doubly infinite
NNs and of data-dependent initializations.
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A Proofs

This section contains all the proofs of the theorems stated in the main text and the lemmas required to prove
them.

Proof of Theorem 2.1. This is (Nelson, 1990, Theorem 2.2): Assumption 2.1 and the postulated weakly unique
and non-explosive weak solution satisfy all the conditions required for the application of (Nelson, 1990, Theorem
2.2). Note that we use a stronger non-explosivity condition Øksendal (2003). Alternatively, for this standard
result the reader can refer to the monograph Stroock and Varadhan (2006) on which Nelson (1990) is based; yet
another reference is Ethier and Kurtz (2009).

Lemma A.1. If φ satisfies Assumption 3.2, ε ∼ N (0, σ2) with σ2 ≤ σ2
∗, α > 0, then we can find M2(α, σ2

∗) <∞
and M3(α, σ2

∗) <∞ such that:

E [|φ′′(ε)|α] ≤M2(α, σ2
∗)

E [|φ′′′(ε)|α] ≤M3(α, σ2
∗)

Proof. We prove the result only for φ′′(ε), the case for φ′′′(ε) being identical. Let L large enough such that
|φ′′(x)| ≤ K1e

K2|x| for |x| ≥ L then:

E [|φ′′(ε)|α] = E
[
|φ′′(ε)|α1|ε|≤L

]
+ E

[
|φ′′(ε)|α1|ε|>L

]
≤ sup
|x|≤L

|φ′′(x)|α +Kα
1 E[eK2α|ε|]

The first term is finite, that the second one can be bounded by a finite and increasing function in σ2 follows from
the symmetry in law of ε and the form of its movement generating function.

Proof of Theorem 3.1. We suppress the dependency on t of vector and matrices and the conditioning in expecta-
tions and covariances in this proof to ease the notation. We also drop the boldness of xt as no confusion arises in
this setting. We instead reserve subscripts for indexing: for example xd denotes the d-th element of a vector x.

Let h = (µW
√

∆t+ εW )ψ(x) + (µb
√

∆t+ εb) so that h
√

∆t = ∆Wψ(x) + ∆b. By second order Taylor expansion
of φ around 0 we have for d = 1, . . . , D

∆xd
∆t

=
φ(hd

√
∆t)

∆t
= φ′(0)hd∆t

−1/2 +
1

2
φ′′(0)h2

d +
1

6
φ′′′(ϑd)h

3
d∆t

1/2

with ϑd ∈ (−hd
√

∆t, hd
√

∆t). To prove (1) we want to show that ∀R > 0

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣µx(x)d − E
[
φ′(0)hd∆t

−1/2 +
1

2
φ′′(0)h2

d +
1

6
φ′′′(ϑ)h3

d∆t
1/2

]∣∣∣∣ = 0.

Now, hd = (µWd
√

∆t+ εWd )ψ(x) + µbd
√

∆t+ εbd and the distribution assumptions on εW and εb lead to

E
[
φ′(0)hd∆t

−1/2 +
1

2
φ′′(0)h2

d

]
= φ′(0)(µbd + µWd ψ(x))

+
1

2
φ′′(0)V[εWψ(x) + εb]d,d

+
1

2
φ′′(0)

(
µbd + µWd ψ(x)

)2
∆t

= µx(x)d +
1

2
φ′′(0)

(
µbd + µWd ψ(x)

)2
∆t.

It remains to show that
lim
∆t↓0

sup
‖x‖<R

∣∣∣(µbd + µWd ψ(x)
)2∣∣∣∆t = 0,



which holds as ψ is locally bounded, and that

lim
∆t↓0

sup
‖x‖<R

∣∣E [φ′′′(ϑd)h3
d

]∣∣∆t1/2 = 0,

for which it suffices to show that sup‖x‖<R
∣∣E [φ′′′(ϑd)h3

d

]∣∣ can be bounded by M(R) <∞ uniformly in ∆t. By
Cauchy–Schwarz

sup
‖x‖<R

∣∣E [φ′′′(ϑd)h3
d

]∣∣ ≤ sup
‖x‖<R

E
[
φ′′′(ϑd)

2
]1/2

sup
‖x‖<R

E
[
h6
d

]1/2
.

Again, as ψ is locally bounded the constraint sup‖x‖<R corresponds to a constraint on the variance of hd hence
the second sup is finite. By Lemma A.1 the first sup is finite too and not increasing in ∆t as |ϑd| ≤

√
∆t|hd|

which allows us to produce the desired bound M(R).

Regarding (3), by first order Taylor expansion of φ around 0 we need to show that for d = 1, . . . , D and R > 0

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣∣E
[(
φ′(0)hd∆t

1/2 + 1
2φ
′′(ϑd)h

2
d∆t

)4
∆t

]∣∣∣∣∣ = 0

with ϑd ∈ (−hd
√

∆t, hd
√

∆t). Note that The term inside the expectation is composed of a sum of terms of the
form khndφ

′′(ϑd)
m∆tα for integers n,m ≥ 0 and reals α > 0, k ∈ R. This results from repeated applications of

the Cauchy–Schwarz inequality and Lemma A.1 as we did previously to prove (1).

Regarding (2), we can compute E[∆x(∆x)>]/∆t instead of V[∆x]/∆t as in the infinitesimal limit of ∆t ↓ 0 the
two quantities have to agree due to the convergence of the infinitesimal mean that we have already established.
Hence by first order Taylor expansion of φ around 0 we need to show that for d, u = 1, . . . , D and R > 0:

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣∣σ2
x(x)d,u − E

[(
φ′(0)hd∆t

1/2 + 1
2φ
′′(ϑd)h

2
d∆t

)(
φ′(0)hu∆t1/2 + 1

2φ
′′(ϑu)h2

u∆t
)

∆t

] ∣∣∣∣∣ = 0

with ϑd ∈ (−hd
√

∆t, hd
√

∆t), ϑu ∈ (−hu
√

∆t, hu
√

∆t). The only term inside the expectation not vanishing in
∆t is

E[φ′(0)2hdhu] = φ′(0)2 V[εWψ(x) + εb]d,u

+ φ′(0)2
(
µbd + µWd ψ(x)

) (
µbu + µWu ψ(x)

)
∆t

= σ2
x(x)d,u + φ′(0)2

(
µbd + µWd ψ(x)

) (
µbu + µWu ψ(x)

)
∆t.

The (uniform on compacts) convergence of all terms aside from σ2
x(x)d,u to 0 once again follows from repeated

applications of the Cauchy–Schwarz inequality and Lemma A.1.

Now, the continuity of µx(x) and σx(x) are a consequence of the continuity of the conditional covariance
V[εWψ(x) + εb], and as V[εWψ(x) + εb] is positive semi-definite so is σ2

x(x). Hence all the conditions of
Assumption 2.1 hold true.

Finally, as ψ is differentiable two times with continuity, it follows from the dependency of µx and σ2
x on x only

through V[εWψ(x) + εb] that Assumption 2.2 is satisfied too. The application of Theorem 2.1 completes the
proof.

Proof of Corollary 3.1. Notice that

d[Wψ(x)]t + d[b]t = d[Wψ(x) + b]t = diag(V[εWt ψ(xt) + εbt |xt])dt

Then expanding dWt and dbt in (12) shows that the drift terms are matched between (11) and (12). The quadratic
variation of (11) is

φ′(0)2 diag(V[εWt ψ(xt) + εbt |xt])dt
which is equal to the quadratic variation of (12) as it is computed as

d[x]t = d[φ′(0)(Wψ(x) + b)]t = φ′(0)2d[Wψ(x) + b]t

This shows the equivalence in law between the solution of (11) and the solution of (12). Then (13) immediately
follows by direct computation.



Proof of Corollary 3.2 and Corollary 3.3. Notice that

d[Wψ(x(i)) + b,Wψ(x(j)) + b]t

= C[εWt ψ(x
(i)
t ) + εbt , ε

W
t ψ(x

(j)
t ) + εbt |x

(i)
t , x

(j)
t ]dt

=
(
Σb + C[εWt ψ(x

(i)
t ), εWt ψ(x

(j)
t )|x(i)

t , x
(j)
t ]
)
dt

and

C[εWt ψ(x
(i)
t ), εWt ψ(x

(j)
t )|x(i)

t , x
(j)
t ]r,c

= E[(εWt,r,•ψ(x
(i)
t ))(εWt,c,•ψ(x

(j)
t ))|x(i)

t , x
(j)
t ]

=

D∑
d,u=1

ψ(x
(i)
t,d)ψ(x

(j)
t,u)E[Wr,dWc,u]

= ΣWO
r,c

D∑
d,u=1

ψ(x
(i)
t,d)ψ(x

(j)
t,u)ΣWI

d,u

= ΣWO
r,c (ψ(x

(i)
t )>ΣWIψ(x

(j)
t )).

This proves Corollary 3.2. Corollary 3.3 follows by setting σb = σb ID, σWI = ID and σWO = σwD
−1/2 ID.

B Additional experiments and plots

B.1 Bayesian inference

In this toy experiment we perform approximate Bayesian inference via Approximate Bayesian Computation
(ABC, (Sisson et al., 2018)) rejection sampling for function regression. We consider the setting of Assumption
3.4 with φ = tanh, σ2

w = σ2
b = 10, T = 1 and L = D = 500. For this experiment we use a random input layer

given by x0 = WIz where WI ∈ RD×1 and WI,d,1
i.i.d.∼ N (0, 1) which makes the distribution of xT,1 symmetric

around 0. We refer to this model as SRtanh. We fix a computational budget of 10.000 simulations and compute
10 approximate posteriors samples by selecting the 10 function draws with smallest l2 distance from a synthetic
dataset D consisting of 3 data points. The results are reported in Figure 1 where we also compare with the
results obtained by applying the same ABC algorithm to the first pre-activation of the last layer of EOtanh. We
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Figure 1: 10 function samples in light blue over z ∈ [−2, 2] for: prior xT,1 and ABC-posterior xT,1|D for SRtanh

(2 leftmost); prior xlast,1 and ABC-posterior xlast,1|D for EOtanh (2 rightmost); 3 data points of D in blue.

observe that the more flexible prior results in significantly improved efficiency with ABC: as the prior draws are
almost constant in EOtanh we are constrained to finding the line with minimum distance from the 3 points. The
use of σ2

w = σ2
b = 10 in SRtanh compared to SCtanh allows for increased range and variability of xT,1. While it’s

possible to similarly increase weight and bias variances in EOtanh while remaining on the edge of chaos, this does
not solve the underlying issue that the model a priori (hence a posteriori) assigns all probability mass to constant
functions in the limit of L ↑ ∞. Simulations (not shown) confirms that this modification does not improve the
posterior inference efficiency for EOtanh. It should be noted that we do not advocate the use of ABC rejection
sampling as a realistic solution for this inference setting. Nonetheless this toy experiment exemplifies how a
prior-data conflict typically frustrates inference algorithms.



B.2 Additional experiment for Section 4.1

We replicate the experiment of Section 4.1 for the swish activation and plot the results in Figure 2 where again
good agreement is observed.

Figure 2: For model SCswish: 2D KDE plot for (ŷ1(z(1)), ŷ1(z(2))) (left), 1D KDE and histogram plots for ŷ1(z(1))
(center), ŷ1(z(2)) (right) when ŷ1 is sampled from a ResNet (resnet) and from the Euler discretization of its
limiting SDE (sde); ŷ denotes a generic model output, hence ŷ1 is its first dimension.

B.3 Additional plots for Section 4.2

In Figure 3 we plot additional function samples for the models SCtanh and SCswish of Section 4.2 corresponding
to different combinations of L and D. We observe similar dynamics across different orders of magnitude for both
L and D.

B.4 Additional 2D plots

In Figure 4 we plot 2D function samples of xT,1 for SCtanh and SCswish to complement the visualizations of
Section 4.2.

C Related work

In this section we discuss more in detail further connections with related work. Chen et al. (2018) investigates
the connection between infinite ResNets and ordinary differential equations (ODE), with a focus on potential
computational advantages from gradient-descent training perspective. A difference between our work and that
of Chen et al. (2018) is that we only operate on the distribution of the model parameters, while Chen et al.
(2018) modifies the ResNet recursion with a ∆t multiplicative term. The two approaches are equivalent for ReLU
activations (see Section 3.4), where the SDE limit collapses to a deterministic ODE. While the focus of Chen
et al. (2018) is on the training of neural networks in the present work the emphasis is on the priori distribution of
neural networks induced by a class of priors on the model parameters.

Pennington et al. (2017, 2018) investigates the properties of the spectrum of the input-output Jacobian of deep
neural networks at initialization which affects gradient-descent training speed. Of particular interest to the setting
of the present work are the orthogonal initializations, proposed in Pennington et al. (2017) to achieve dynamical
isometry, which seem amenable to a modification of the approach presented in our paper.

While Pennington et al. (2017, 2018) relies on mean-field assumptions, i.e. infinite width and iid finite variance
initializations, Burkholz and Dubatovka (2019) consider the setting of finite width and ReLU activations to derive
exact results. Unfortunately, due to the use of ReLU activations the proposed initialization scheme is not of
particular interest to our setting (see our discussion above regarding Chen et al. (2018)).

Hanin and Rolnick (2018); Hanin (2018) study ReLU networks when the width and depth are comparable and
both large. As hinted in Section 4.2 and in the Discussion it would be interesting to investigate the behavior of
the limiting SDEs when both depth and width grow unbounded. In this setting it is possible for the order of the
limits and for the relative speed of convergence of L and D to affect the limiting dynamics.

Finally there has been recent interest in using heavy-tailed distributions for gradient noise and for trained
parameter distributions, see for instance Simsekli et al. (2019); Martin and Mahoney (2019). The present
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Figure 3: Function samples of xT,1 for SCtanh (top) and SCswish (bottom) for different values of L and D.
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Figure 4: Function samples of xT,1 for SCtanh (left) and SCswish (right) for L = 100 and D = 100 on the bounded
interval [−2, 2]× [−2, 2].

work covers exclusively Gaussian initializations and could be extended with some effort to cover finite-variance



ones. Extensions to heavy tailed distributions would me more involved and likely resulting in less tractable
Semimartingales (instead of SDEs) due to the presence of finite and infinite activity jump components. On the
other hand the added flexibility could prove beneficial in bridging the gap between the performance of finitely
trained neural networks and their limiting stochastic processes counterparts at least in some settings.
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