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Abstract

Photoplethysmography (PPG) is the most widely used non-invasive technique for
monitoring biosignals and cardiovascular health, with applications in both clinical
settings and consumer health through wearable devices. However, most models
applied to PPG data are task-specific and lack generalizability. Limited previous
works often used single-device datasets, did not explore out-of-domain generaliza-
tion, or did not release their models, hindering open research. Here, we introduce
PAPAGEI, the first open foundation model for PPG signals. Pre-trained on more
than 57,000 hours of 20 million unlabeled PPG signals using publicly available
datasets exclusively, PAPAGEI is evaluated against popular time-series foundation
models and other benchmarks on 18 diverse tasks spanning cardiovascular health,
sleep disorders, pregnancy monitoring, and wellbeing assessment. PAPAGEI’s
architecture incorporates a novel representation learning approach that examines
differences in PPG signal morphology across individuals, enabling it to capture
rich representations. Across 18 clinically-relevant classification and regression
tasks, PAPAGEI outperforms baselines in 13, resulting in an average improvement
of 6.3% and 2.9%, respectively. Notably, it can be used out of the box as both a
feature extractor and an encoder for other multimodal models, opening up new
opportunities for multimodal health monitoring 2.

1 Introduction

Photoplethysmography (PPG) is a technique that enables non-invasive monitoring of physiological
signals by capturing changes in blood flow volume through light-based (optical) sensing [1]. In
hospitals and clinics, PPG is used for monitoring blood oxygen and heart rate, and has also been
integrated into consumer devices like smartwatches, making continuous health monitoring accessible
in both clinical settings and daily life. This dual role emphasizes PPG’s importance in acute medical
care and long-term health management. PPG signals have demonstrated utility in tracking various
conditions, from cardiovascular health to mood and sleep disorders [2, 3, 4, 5, 6, 7, 8]. However,
PPG data presents significant challenges for machine learning (ML), including difficulties in data
annotation, susceptibility to noise and motion artifacts [9], and inherent variability due to factors like
skin tone and body composition [10]. These challenges have resulted in small, task-specific datasets
that limit the development of robust, generalizable models.
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Therefore, we introduce PAPAGEI, a robust set of pre-trained models designed as a backbone for
diverse PPG tasks. Our contributions include large-scale pre-training on 57,000 hours of public
PPG data from sources like VitalDB [11], MIMIC-III [12], and MESA[13]. To enhance pre-training,
we develop a novel PPG-aware self-supervised learning framework and perform comprehensive
evaluations across 18 clinically relevant tasks—spanning cardiovascular health, sleep disorders,
pregnancy monitoring, and overall well-being. By releasing our models and code, PAPAGEI provides
a strong foundation for applying large-scale models to domain-specific biosignals and promotes
future research in this field.

2 Related work

Self-supervised learning (SSL) allows learning general representations from unlabeled datasets, with
promising applications in physiological signal analysis [14, 15, 16, 17, 18, 19, 20, 21], showing the
potential of PPG embeddings for various health outcomes and applications [22, 23, 24, 25]. For
example, REGLE [23] showed that embedding PPG signals can improve genetic discovery and risk
prediction outcomes. However, the field lacks widely available pre-trained models for PPG data, with
existing studies often being limited by single-device datasets, lack of out-of-domain generalization,
or unavailability of released models. While generic time series foundation models like Chronos [26]
and Moment [27] have gained traction, they often lack significant physiological data representation.
Our work takes a domain-specific approach, focusing exclusively on PPG data to capture its unique
characteristics and complexities, building upon the growing interest in modality-specific foundation
models such as those for ECG [28, 29] and EEG [30].

3 Model

We use self-supervised learning to train PAPAGEI’s deep neural network encoder. First, we propose
PAPAGEI-P, a patient contrastive approach to maximize agreement between signals from the same
participant. While [22] implements a similar strategy, they do not evaluate on public datasets.

Table 1: PAPAGEI’s pre-training datasets.

Dataset #People #Segments Hours
VitalDB 5,866 6,248,100 17,355
MIMIC-III 5,596 7,196,401 19,990
MESA 2,055 7,306,705 20,296

Total 13,517 20,751,206 57,641

Importantly, we propose PAPAGEI-S, a morphology-
aware model that maximizes agreement between sig-
nals that exhibit similar morphology. Formally, given
a dataset D = {p1,p2, · · · ,pS} representing PPG sig-
nals from S subjects, a PPG signal ps ∈ Rn is defined
as a time series that models the changes in light intensity
due to arterial blood flow. To model granular changes
in PPG signal obtained from a subject s, we segment
ps without overlap to obtain Xs = {xs

1,x
s
2, · · ·xs

⌊n
l ⌋
}.

Here, the length l of each segment x is a product of the
sampling frequency and the desired time window.

Participant-aware objective. We define a positive pair as any two distinct segments from the same
subject, denoted as {(xs

i ,x
s
j)|i ̸= j}. Next, we apply a series of random time series augmentations

such as random cropping, adding Gaussian noise, time flipping, negation, and magnitude scaling
[31]. During training, the two randomly sampled positive pairs are passed through the encoder E and
projection P to obtain embeddings denoted (zsi , z

s
j). Given a batch of embeddings from N distinct

subjects with positive pairs of the form (zsi , z
s
j), the model optimizes the NT-Xent loss given by:

Lp = 1
2 (ℓp(i, j) + ℓp(j, i)), where ℓp(i, j) = − 1
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i=1 log

exp(sim(zs
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s ̸=r exp(sim(zs
i ,z

r
j )/τ)

. Contrastingly,
vanilla SimCLR [32] uses positive pairs as augmented versions of randomly sampled PPG segments.

Segment-aware objective. To incorporate morphology into self-supervised learning, we introduce
a morphology augmentation module prior to training that computes three PPG metrics: (1) Stress-
induced Vascular Response Index (sVRI) [33, 34]: the ratio of mean PPG signal between post-
to pre-systolic phases, (2) Inflection Point Area ratio (IPA) [35]: the ratio of systolic to diastolic
areas defined by the dicrotic notch, and (3) Signal quality index (SQI): skewness of the signal as
an indicator of quality [36]. These metrics complement each other, with sVRI capturing amplitude
variations, IPA reflecting signal width, and SQI addressing cases where IPA cannot be computed due
to poor-quality signals lacking a dicrotic notch.
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Figure 1: PAPAGEI Overview: (Top) We train a large PPG model using public data from 13.5K users
comprising 20M segments for downstream medical tasks. (Bottom) PAPAGEI-S: (Left) We calculate
morphology metrics (IPA, SVRI, and SQI) for each PPG segment. (Middle) A batch of PPG signals,
with morphology, is passed to an encoder (E) to extract embeddings. (Right) The projection head (P )
contrasts signals based on SVRI, while expert heads (M1 and M2) refine embeddings by predicting
IPA and SQI values, respectively.

ℓs(i, j) = − 1

N

N∑
i=1

log
exp (sim(zi, zj)/τ)∑
k ̸=j exp (sim(zi, zk)/τ)

(1)

Lsvri =
1

2
(ls(i, j) + ls(j, i)) Lipa =

1

N

N∑
i=1

∣∣∣yipai − ŷipai
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Ls = αLsvri + (1− α) (Lipa + Lsqi) ,where α ∈ [0, 1] (3)

The morphology augmentation module takes an input time series x and outputs y =
{ysvri, yipa, ysqi} ∈ R3 (Figure 1 middle). To compute positive pairs, we first discretize ysvri into
a predefined set of n = 8 bins, where ysvri ∈ {0, 1, . . . , n}. We define positive pairs based on the
sVRI labels as {(xi,xj)|ysvrii = ysvrij , i ̸= j}. In PAPAGEI-S, given a batch of N PPG signals and
their morphology, we optimize three heads. First, we extract the embeddings Z = {z1, z2, · · · , zN}
from the projection P (Figure 1 right middle), and compute contrastive loss for sVRI (equation 1).
Next, we use the embeddings H = {h1,h2, · · · ,hN} to predict the IPA (ŷipa) and SQI (ŷsqi) using
the mixture of expert heads M1 and M2. These heads are optimized using the mean absolute error
(equation 2). Finally, the overall PAPAGEI-S training objective given in equation 3 (α = 0.6).

4 Experiments

Training. We pre-train PAPAGEI using a ResNet-style CNN with 5/5.7M parameters on three large
public datasets: VitalDB [11], MIMIC-III [12], and the MESA sleep sub-study [13, 37]. After data
curation, we apply several pre-processing steps: (1) a 4th-order Chebyshev bandpass filter (0.5–12Hz)
[38, 39], (2) segmentation into 10-second windows [40, 41], (3) removal of segments with over 25%
flatline data [42], (4) Z-score normalization [22], and (5) downsampling to 125Hz. This results in
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Table 2: Downstream tasks comparison against pre-trained models (parameter size and references are
denoted next to their names). 95% CIs are reported in square brackets and the best value is bolded.
Classification (AUROC ↑) REGLE [23] (0.07M) Chronos [26] (200M) Moment [27] (385M) PAPAGEI-P (5M) PAPAGEI-S (5.7M)

ICU Admission 0.57 [0.52-0.62] 0.73 [0.68-0.80] 0.72 [0.70-0.80] 0.73 [0.67-0.78] 0.79 [0.75-0.82]

Smoker 0.54 [0.47-0.59] 0.62 [0.57-0.67] 0.62 [0.56-0.67] 0.64 [0.58-0.69] 0.61 [0.56-0.66]

Mortality 0.55 [0.52-0.59] 0.68 [0.65-0.71] 0.67 [0.63-0.71] 0.67 [0.63-0.71] 0.67 [0.63-0.70]

Sleep-disordered Breathing 0.45 [0.30-0.61] 0.58 [0.35-0.82] 0.45 [0.23-0.66] 0.54 [0.23-0.66] 0.70 [0.57-0.84]

Hypertension 0.47 [0.34-0.58] 0.57 [0.43-0.71] 0.75 [0.64-0.85] 0.74 [0.55-0.90] 0.77 [0.68-0.87]

Valence 0.55 [0.52-0.57] 0.56 [0.53-0.59] 0.57 [0.54-0.59] 0.53 [0.51-0.56] 0.56 [0.54-0.59]

Arousal 0.51 [0.52-0.58] 0.57 [0.54-0.60] 0.56 [0.53-0.58] 0.58 [0.55-0.61] 0.55 [0.52-0.57]

Mood Disturbance 0.41 [0.16-0.66] 0.43 [0.21-0.68] 0.55 [0.33-0.78] 0.53 [0.27-0.78] 0.56 [0.33-0.77]

Pregnancy stage 0.64 [0.57-0.63] 0.81 [0.79-0.82] 0.76 [0.74-0.78] 0.74 [0.72-0.76] 0.78 [0.75-0.80]

Average 0.52 ± 0.06 0.62 ± 0.10 0.63 ± 0.09 0.63 ± 0.08 0.67 ± 0.09
Regression (MAE ↓)
AHI > 3% 15.54 [14.20-16.69] 14.06 [13.05-15.16] 14.23 [13.04-15.42] 13.85 [12.43-15.49] 12.97 [11.87-14.05]

AHI > 4% 12.64 [11.47-13.78] 11.57 [10.51-12.72] 11.80 [10.79-12.93] 11.24 [9.71-12.87] 10.56 [9.59-11.62]

Systolic BP (PPG-BP) 16.32 [13.87-19.13] 16.91 [13.31-19.34] 14.50 [11.98-17.31] 13.60 [10.65-16.51] 14.39 [12.53-16.45]

Diastolic BP (PPG-BP) 9.30 [7.94-10.87] 10.26 [8.13-12.57] 9.53 [8.28-10.96] 8.88 [7.33-10.76] 8.71 [7.18-10.01]

Average HR 6.88 [5.81-8.12] 8.51 [7.05-10.07] 4.41 [3.48-5.48] 3.47 [2.74-4.32] 4.00 [3.34-4.67]

HR 16.35 [16.20-16.50] 9.65 [9.50-9.79] 8.82 [8.68-8.96] 10.92 [10.80-11.04] 11.53 [11.40-11.66]

Gestation Age 7.28 [7.16-7.39] 5.69 [5.54-5.85] 6.24 [6.10-6.37] 6.40 [6.21-6.59] 6.05 [5.91-6.17]

Systolic BP (VV) 15.88 [13.67-18.36] 17.24 [14.57-20.13] 14.71 [12.38-17.29] 19.11 [16.26-22.23] 14.65 [12.50-16.78]

Diastolic BP (VV) 8.65 [7.16-10.27] 10.53 [8.91-12.19] 10.53 [8.91-12.19] 10.87 [9.10-12.98] 8.29 [6.61-10.22]

Average 12.09 ± 3.83 11.60 ± 3.60 10.43 ±3.46 10.92 ± 4.25 10.12 ± 3.47

20M segments from 13.5K people (Table 1). We train PAPAGEI for 15,000 steps on 8 V100 GPUs
with a learning rate of 10−4.

Linear Probing. For downstream evaluation, we use the following datasets and tasks (Appendix A):
(1) VitalDB [11]: ICU admission, (2) MESA [13, 37]: AHI > 3% and 4% oxygen desaturation, and
smoking status, (3) MIMIC-III [12]: mortality, (4) SDB [43]: sleep-disordered breathing, (5) PPG-BP
[6]: systolic/diastolic blood pressure, heart rate, and hypertension, (6) WESAD [44]: valence and
arousal, (7) PPG-DaLia [5]: heart rate, (8) ECSMP [45]: mood disturbance, (9) nuMoM2B [46, 13]:
pregnancy stage and gestation age, and (10) VitalVideos [47]: systolic/diastolic blood pressure. We
split datasets into training/validation/testing sets (80/10/10 for ID and 60/20/20 for OOD), ensuring
no participant overlap. Feature embeddings from the projection layer are extracted for downstream
prediction. For binary classification, we use logistic regression with ROC-AUC, whereas regression
tasks use ridge regression with mean absolute error (MAE). Further, we compute 95% confidence
intervals using bootstrapping (500 sampling runs with replacement). We compare our model to
pre-trained baselines REGLE [23], Chronos [26], and Moment [27].

5 Results & Discussion

From Table 3, we observe that PAPAGEI surpasses the baseline models in 13 out of 18 tasks.
Specifically, PAPAGEI-S achieves improvements of 2.6%, 1.9%, 0.4%, and 4.1% in hypertension,
diastolic BP (PPG-BP), systolic BP, and diastolic BP, respectively. These findings highlight the
effectiveness of our approach, especially considering that changes in blood pressure affect blood
volume, which is captured by sVRI. Notably, our model with 5.7 million parameters, is more efficient
than other time series foundation models, largely because CNN architectures are particularly well-
suited for PPG signals [22, 24]. From a practical standpoint, having models that can be deployed on
mobile phones, finger oximeters, and wearables—the main sources of PPG signals—is advantageous.
While REGLE was trained on the UK Biobank, its small genetics-focused model struggles to capture
generalizable features, whereas, among the larger models, Moment outperforms Chronos due to its
training on a subset of physiological data. Additionally, our preliminary ablation studies show that
the combined model (sVRI + IPA + SQI) delivers the best performance, with the sVRI contrastive
component contributing the most. Similarly, early comparisons with contrastive baselines such as
SimCLR and TF-C demonstrate that our method outperforms them in 12 out of 18 tasks. In the future,
we plan to explore model scaling, alternative backbone architectures like CNN-Transformer, and
different input sampling rates. Overall, PAPAGEI-S’s morphology-aware training proves effective
across a variety of classification and regression tasks on diverse datasets.
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Table 3: The task evaluation benchmark of PAPAGEI. Datasets highlighted in grey are unseen during
training, thus, the corresponding tasks are out-of-domain. The rest were used for pre-training but
their test sets and labels are held out. For task type, B/M/R refers to Binary classification, Multi-class
classification (#classes), and Regression, respectively.
#ID Dataset SR (Hz) Collected by Task Task Type #Subjects (#Samples)
T1 VitalDB [11] 500 ICU monitor ICU admission (Yes/No) B 5866
T2 Operation Type M (11) 5866
T3 MESA [37] 256 Polysomnography finger Smoker B 2055
T4 AHI > 3% Oxygen Desat. R 2055
T5 AHI > 4% Oxygen Desat. R 2055
T6 MIMIC-III [12] 125 ICU Monitor Mortality B 5596
T7 SDB [43] 62.5 Finger Pulse Ox Sleep-Disordered Breathing B 146
T8 PPG-BP [6] 1000 Finger Pulse Ox Systolic Blood Pressure R 219
T9 Diastolic Blood Pressure R 219
T10 Average Heart Rate R 219
T11 Hypertension B 219
T12 WESAD [44] 64 Wrist Valence B 15 (4497)
T13 Arousal B 15 (4497)
T14 PPG-DaLiA [5] 64 Wrist Heart Rate R 15 (64697)
T15 Activity M (9) 15 (64697)
T16 ECSMP [45] 64 Wrist Mood Disturbance B 89
T17 nuMom2B [46] 75 Polysomnography finger Pregnancy stage (early/late) B 3163 (5337)
T18 Gestation Age R 3163 (5337)
T19 VV (Skin Tone) [47] 60 Finger Systolic BP R 231
T20 Diastolic BP R 231
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