
Real-time Classification from Short Event-Camera
Streams using Input-filtering Neural ODEs

Abstract

Event-based cameras are novel, efficient sensors inspired by the human vision1

system, generating an asynchronous, pixel-wise stream of data. Learning from2

such data is generally performed through event integration into images. This3

requires buffering long sequences and can limit the response time of the inference4

system. In this work, we propose to directly use events from a DVS camera, which5

produces a stream of intensity changes and their spatial coordinates. This sequence6

is used as an input for a novel asynchronous RNN-like architecture, the Input-7

filtering Neural ODE (INODE). INODE allows for input signals to be continuously8

fed to the network, as done for filtering dynamical systems. INODE learns to9

discriminate short event sequences and to perform event-by-event online inference.10

We demonstrate our approach on a series of classification tasks, comparing against11

a set of LSTM baselines. We show that, independently of the camera resolution,12

INODE can outperform the baselines by a large margin on the ASL task and it is13

on par with a considerably larger LSTM for the NCALTECH task. Finally, we14

show that INODE is accurate even when provided with very few events.15

1 Introduction16

x

y

t

Integrate into 2D “im
age”

Encode into evenly-spaced series

Direct to model

INODE

ConvNets

RNNs

DVS
camera
interface

(x, y, p
)

Enc(t, x, y, p
)

(p)

Pre-
Processing

methods

camera sensor

t

t

DVS
camera
interface

(x, y, p
)

Current Methods

Our Method

z

z(t)

z(t)

h(t)

h(t)

Figure 1: Approach rationale. The standard way to perform machine learning on asynchronous event stream data
from DVS cameras consists in either integrating events into a 2D grid to be fed into convolutional networks or
converting them into traditional time series with some time discretization scheme. On the contrary, our method
requires no preprocessing or loss of information, and inherently handles the data stream’s asynchronous timing.
In the figure, blue and red dots represent events of different polarity respectively.

Event-based cameras are asynchronous sensors that capture changes in pixel intensity as binary17

events, with very high frequency compared to RGB sensors. This makes them suitable for high18

speed applications, such as robotics [16, 10] and other safety-critical scenarios. The Dynamic19

Vision Sensor (DVS) [20] is an event camera that, compared to traditional sensors, has low power20

consumption, high dynamic range, no motion blur, and microsecond latency times. Due to their21

asynchronous and binary format, there is no obvious choice of a model class for handling DVS22

data, unlike the predominant use of convolution-based models for RGB images. In this paper,23

we propose the use of a deep-learning and differential-equation hybrid method for such tasks,24

inspired by Neural Ordinary Differential Equations (NODE). NODE pioneered a novel machine25

learning approach where the data is modeled as an ODE in latent space, which can in principle be26

adjusted to process multiple asynchronous inputs. [9]. Most recent works using machine-learning27

to model DVS data integrate individual events to convert them into formats that can be fed as input28

into existing models, but lose precise timing information. The work of [1] studies the benefit of29

using precise temporal event data over aggregated event techniques. In particular, the study states:30

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

Figure 2: Event integration. This
figure shows the result of inte-
grating 100 × 10 consecutive
events into a pixel grid. Our
method trains and performs infer-
ence without directly integrating
events, but instead processing one
event at a time.

The use of information theory to characterize separability between classes31

for each temporal resolution shows that high temporal acquisition pro-32

vides up to 70% more information than conventional spikes generated from33

frame-based acquisition as used in standard artificial vision, thus drastically34

increasing the separability between classes of objects. This provides mo-35

tivation to research methods that can directly handle asynchronous36

data.37

Summary of contributions. This work develops a novel real-time38

online classification model for event-based camera data streams.39

Moreover, it proposes INODE, an extension of the NODE architec-40

ture, which can directly take as input the stream of a possibly-high-41

frequency signal. This can be seen a continuous-time extension of42

Recurrent Neural Networks (RNNs). INODE is trained to perform43

continuous-time event filtering in order to infer classification labels44

online, based on its hidden state at a given moment. At test time, the classification prediction and45

the hidden state are updated as each (asynchronous) camera event is received. The event polarity46

and spatial coordinates are fed directly as inputs to the network without using convolutional layers47

or event integration. Importantly, we remark that input data is not processed in any form beyond48

normalization.49

Summary of experiments. We demonstrate that the proposed approach excels in sample efficiency50

and real-time performance, significantly outperforming several LSTM architectures using short51

sequencing during online inference at test time. Furthermore, our method works with raw, noisy52

camera readings and is also invariant to the camera resolution used to capture the data.53

2 Input-filtering Neural ODE54

The proposed approach builds upon the architecture proposed in [25], with the difference that here55

we do not focus on the improvement of training efficiency and use standard back-propagation through56

time. We implement a batch Euler ODE solver so that our network can be dealt with as an RNN. This57

allows for the state to be unmeasured (hidden), for instance like in LSTMs. The result is a recurrent58

architecture with skip connections that can handle unevenly-spaced points in time. We also add a59

decoder network as a classifier.60

Input-filtering Neural ODE. Consider the constrained differential optimization problem:61

min
θf ,θg∈Rm

∫ t1

t0

L(z(t), z̄(t)) dt,

s.t. h′(t) = f(h(t), u(t); θf), z(t) = g(h(t); θg), h(t0) = h0,

(1)

where h(t) is the hidden state, u(t) is the input, z(t) is the predicted output, z̄(t) is the desired output,62

the loss L is given, f and g are neural networks with a fixed architecture defined by, respectively, θf ,63

and θg which are parameters that have to be learned. The first two equality constraints in (1) define64

an ODE. Problems of this form have been used to represent several inverse problems, for instance in65

machine learning, estimation, filtering and optimal control [30, 17, 27]. Since this architecture can act66

as a general filter for the input signal, u(t), we refer to it as the Input-filtering Neural ODE (INODE).67

We consider this a general framework for handling event data in a machine-learning scenario.68

Application to DVS cameras. We propose to use INODE to build a system that predicts (labels)69

online by filtering a live-stream of DVS-camera events. The aim is to learn the ODE in problem (1),70

given short excitation event sequences u(t). Ideally, this model should produce the fastest trajectory71

from the initial state h0 to an appropriate (unknown) state h̄ such that z̄ = g(h̄), where g serves as a72

classification layer and z̄ are the labels to be predicted. Hence, we fix the target to z̄(t) = z̄, ∀t.73

Event inputs. Events are high-frequency signals, and solving a high-frequency ODE is difficult.74

Event streams are also extremely dense: the time between events is, in general, very small (often75

< 100µs). We propose the use of a sample-and-hold approach, where events are held constant for up76

to a maximum delta-time dmax. In the rare case that no events occur after dmax, then we simply wait77

for the next event and hold the previous result without running the forward pass.78

Problem discretization. A neuromorphic dataset D is a collection e = {ei}Mi=0 of events ei =79

(xi, yi, pi, ti), where M is the number of events considered for a given sample (typically on the80

2

order of thousands), and labels z̄ ∈ {0,, C − 1} for C classes. A digit is represented by a81

tuple (e, z̄) and the dataset by D = {(e, z̄)n}Nn=0, where N is the number of samples. Thus, the82

integral in (1) is discretized for each sample using a subset of size S evaluation points [t1, ..., tS] as:83

L(e, z̄) = 1
S

∑S
i=1 L(z(ti), z̄), where L is the cross-entropy loss. For each evaluation point, a new84

input event is used, i.e., u(ti) = (x(ti), y(ti), p(ti)). Finally, the sample loss is averaged over the85

dataset LD = E(e,z̄) [L(e, z̄)] and used for optimization.86

Time step normalization. To accurately use the time-steps dt, they can be normalized to values87

smaller than one (timestamps are recorded in microseconds and thus quickly reach very large values).88

At the same time, dt should not be very small to avoid optimization issues, such as vanishing89

gradients. We compute dt from the raw time-steps and divide by the 98th quantile dq from the90

empirical distribution of dt for each training dataset, pre-computed and fixed, with an upper threshold91

at 1. The normalized step is dτ = dt/dq. The complete training procedure is summarised in92

Algorithm 1 (Appendix A).93

3 Experiments94

We consider multiple classification tasks to validate our method, benchmarking against LSTM95

variants. We always learn from short event subsequences (up to 100 events). Performance is evaluated96

with the same number of events used during training. This allows for potential real-time classification97

(when properly optimized), as inference time increases with number of events processed. We report98

full Tables and Figures for the experiment in the Appendix.99

Setup. We use the same configurations, architectures, and hyper-parameters for all of the datasets100

and model variants. We train all models with different ρ = {1, 0.4, 0.2} levels, where ρ is the101

fraction of train dataset used for training. For each sequence, we sample a random offset and relative102

sub-sequence of length S � M . In all of the experiments we set S = 100. We then use such103

sub-sequence as input u(t) for the model with batch size Bρ = ρBρ=1. At test time, we consider104

different scenarios: a standard case, where the models are evaluated with S = 100 on the test105

set, and more challenging ones, in which they are evaluated with short sub-sequences in the range106

S = {10, 20, 30, ..., 100}.107

Baselines. We first compare INODE against LSTM and bidirectional LSTM (bi-LSTM). The LSTMs108

and bi-LSTMs receive the event time-step as additional input. We consider three bi-LSTM models109

with hidden states of dimension {36, 72, 128}. The bi-LSTM72 has approximately the same capacity110

of INODE, while bi-LSTM128 is 3x larger. We also consider a variant of LSTM, the PhasedLSTM111

[22] without coordinate-grid embedding. This model explicitly handles asynchronous data learning112

an additional phase gate. Such approach is – according to the authors – fruitful for long sequences113

(>1000 steps), in which the phase gate can exploit periodic mechanism in the data. Given our use case,114

short sequences of events (<100), we do not expect improvements over a standard LSTM. To the best115

of our knowledge, this is the only known method which – like ours – inherently handles asynchronous116

timing within the model and does not need to learn an external transition model. Unfortunately,117

our initial results with standard PhasedLSTM were rather poor. However, combining phased and118

bidirectional LSTM seemed promising. We denote this as P-bi-LSTM.119

Datasets. We consider three neuromorphic datasets: i) NMNIST The NMNIST dataset [23] is a120

neuromorphic version of MNIST. It is an artificial dataset, generated by moving a DVS sensor in front121

of an LCD monitor displaying static images. It consists of 60k training samples and 10k test samples,122

for 10 different digits on a grid of 34 × 34 pixels. We consider only the first 2,000 (of potentially up123

to 6,000) events for each sequence. We do not stabilize the events spatially nor attempt to remove124

noisy events, which are options available in the dataset. ii) ASL (12-16k) The ASL-DVS dataset, is a125

neuromorphic dataset, obtained for a stream of real-world events [33]. It consists of around 100k126

samples for 24 different letters from the American Sign Language, with spatial resolution 180 ×127

240. Its sequences range from 1-500k events, with length distribution peaking in the 12-16k range.128

To avoid inconsistencies, we consider a subset containing only samples with a number of events129

between 12k and 16k. The resulting dataset contains 12,275 training samples plus 1,364 test samples.130

iii) NCALTECH The NCALTECH dataset [23] is the neuromorphic version of CALTECH101,131

produced in the same fashion as NMNIST. It consists of 100 heavily unbalanced classes of objects132

plus a background, with spatial resolution 172 × 232. The dataset contains 6,634 training samples133

and 1,608 test samples, after removing the background images. As with NMNIST, we again avoid134

stabilizing/denoising the images.135

3

Solver. We train each model using ADAM for 300 epochs, with S = 100 and learning rate of 1e-3.136

The batch size Bρ=1 is 1000 for NMNIST, and 100 for the other datasets. We consider a simple137

multi-layer perceptron for f : f(x, u) = FC3(σ(FC2(σ({FC1(x),FCu(u)})), where {·, ·} denotes138

the concatenation operation, FC is a fully-connected layer, and σ = tanh is the activation.139

Table 1: Classification accuracy on test sets
for different datasets between INODE and
comparable baselines. More baselines and
results in Appendix C.

MODEL DATASETS

NMNIST ASL NCALTECH

INODE30 0.89 0.79 0.34
BI-LSTM72 0.84 0.61 0.30
LSTM72 0.81 0.35 0.31

Results. When testing the models, we vary both the size140

of the training dataset and the number of test events used141

for the classification (10 ≤ S ≤ 100). The former is used142

to show INODE’s learning efficiency when using a small143

amount of training data, while the latter demonstrates IN-144

ODE’s real-time scenario usability. Tables 4, 5, and 6 in145

Appendix C report accuracies for each of our datasets. The146

LSTM with 164 states outperforms the proposed architec-147

ture on NMNIST, see Table 6. On the ASL dataset (Table148

5) our approach consistently outperforms all of the unidi-149

rectional baselines with a margin of 20%. We believe this150

is important since, among the considered datasets, ASL151

contains by far the most realistic data, being the only one not generated from static images. For152

NCALTECH, our approach is either on par or better than the LSTM when a small percentage of event153

is used (Table 4). For the bidirectional baselines, with approximately the same capacity (INODE30

INODE30 LSTM72 LSTM104 LSTM164

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(a) MNIST (100 epochs)

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(b) ASL (100 epochs)

0 50 100
epochs

3.0

3.5

4.0

4.5

Lo
ss

25 50 75 100
n events

0.0

0.1

0.2

0.3

0.4
A

cc
u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(c) NCALTECH (100 epochs)

Figure 3: Summary of results. Train/test losses and classification performance for INODE and multiple LSTM
baselines, with increasing number of inference events per digit from 10 to 100. The three images for each dataset
sub-figure correspond to training-set fraction of 20% (left), 40% (center), and 100% (right).

154
and bi-LSTM72), INODE performs better then the bi-LSTMs on all of the datasets. Increasing the155

baseline capacity (bi-LSTM128), INODE performs better on NCALTECH and ASL, while slightly156

losing its edge to the bi-LSTM128 on NMNIST. Decreasing the training-set size has essentially157

no impact on NMNIST for all models – confirmation of a relatively simple dataset. One can also158

notice that, save a couple of exceptions on NMNIST, INODE outperforms the bidirectional methods159

regardless of number of input events. These are as low as S = 10, and, in principle, even S = 1160

is possible without modifying our approach. Interestingly, with a mere 10 events, the model can161

correctly classify NMNIST digits about half of the time. As such, we demonstrate INODE’s ability to162

extract information in the case of exceptional sparsity and data unavailability. This could be extremely163

important in scenarios such as collision avoidance and human-machine interaction, where safety is a164

paramount requisite. Finally, Figure 4, 5 and more comprehensive figures found in the Appendix165

further illustrate how INODE trains faster using fewer samples and events, especially on the ASL166

dataset.167

4 Conclusion168

This paper presents a novel approach for performing machine learning from event-camera streams.169

The proposed INODE model is devised to handle high-frequency event data, inherently making use of170

the precise timing information of each individual event, and does not require processing the raw data171

into different formats. INODE excels in the most realistic scenarios, when little training data and few172

events are available. This makes it suitable for real-time, low-computation settings where decisions173

must be taken with only few event such as collision avoidance and high-speed object recognition.174

4

References175

[1] Himanshu Akolkar, Cedric Meyer, Xavier Clady, Olivier Marre, Chiara Bartolozzi, Stefano Panzeri,176

and Ryad Benosman. What can neuromorphic event-driven precise timing add to spike-based pattern177

recognition? Neural computation, 27:561–593, 03 2015.178

[2] Himanshu Akolkar, Stefano Panzeri, and Chiara Bartolozzi. Spike time based unsupervised learning of179

receptive fields for event-driven vision. Proceedings - IEEE International Conference on Robotics and180

Automation, 2015:4258–4264, 06 2015.181

[3] Patrick Bardow, Andrew J Davison, and Stefan Leutenegger. Simultaneous optical flow and intensity182

estimation from an event camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern183

Recognition, pages 884–892, 2016.184

[4] S. Barua, Y. Miyatani, and A. Veeraraghavan. Direct face detection and video reconstruction from event185

cameras. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1–9, March186

2016.187

[5] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep188

learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.189

[6] J.C. Butcher and G. Wanner. Runge-Kutta methods: some historical notes. Applied Numerical Mathematics,190

22(1-3):113–151, November 1996.191

[7] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. Asynchronous Convolutional192

Networks for Object Detection in Neuromorphic Cameras. arXiv:1805.07931 [cs], May 2018. arXiv:193

1805.07931.194

[8] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. Matrix-LSTM: a Differentiable195

Recurrent Surface for Asynchronous Event-Based Data. arXiv e-prints, page arXiv:2001.03455, Jan 2020.196

[9] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. Neural Ordinary Differential197

Equations. In NeurIPS, 2018.198

[10] Rika Sugimoto Dimitrova, Mathias Gehrig, Dario Brescianini, and Davide Scaramuzza. Towards low-199

latency high-bandwidth control of quadrotors using event cameras. arXiv preprint arXiv:1911.04553,200

2019.201

[11] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.202

[12] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern203

recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.204

[13] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpanis, and Davide Scaramuzza. End-to-End205

Learning of Representations for Asynchronous Event-Based Data. arXiv:1904.08245 [cs], April 2019.206

arXiv: 1904.08245.207

[14] Amir Gholami, Kurt Keutzer, and George Biros. ANODE: Unconditionally Accurate Memory-Efficient208

Gradients for Neural ODEs. Preprint at arXiv:1902.10298, 2019.209

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,210

1997.211

[16] Hanme Kim, Stefan Leutenegger, and Andrew J Davison. Real-time 3d reconstruction and 6-dof tracking212

with an event camera. In European Conference on Computer Vision, pages 349–364. Springer, 2016.213

[17] Kody Law, Andrew Stuart, and Kostas Zygalakis. Data assimilation. Cham, Switzerland: Springer, 2015.214

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to215

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.216

[19] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using217

backpropagation. Frontiers in neuroscience, 10:508, 2016.218

[20] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128× 128 120 db 15 µs latency asynchronous temporal219

contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2):566–576, Feb 2008.220

[21] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural221

networks, 10(9):1659–1671, 1997.222

[22] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased LSTM: Accelerating Recurrent Network Training223

for Long or Event-based Sequences. arXiv:1610.09513 [cs], October 2016. arXiv: 1610.09513.224

[23] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image datasets225

to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.226

[24] Lukas Paulun, Anne Wendt, and Nikola Kasabov. A retinotopic spiking neural network system for accurate227

recognition of moving objects using neucube and dynamic vision sensors. Frontiers in Computational228

Neuroscience, 12:42, 2018.229

5

[25] Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutník. Snode: Spectral discretization of230

neural odes for system identification. In International Conference on Learning Representations, 2020.231

[26] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scaramuzza. Events-to-video: Bringing modern232

computer vision to event cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern233

Recognition, pages 3857–3866, 2019.234

[27] I. Michael Ross. A primer on Pontryagin’s principle in optimal control, volume 2. Collegiate publishers235

San Francisco, 2009.236

[28] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent ODEs for Irregularly-Sampled Time237

Series. arXiv:1907.03907 [cs, stat], July 2019. arXiv: 1907.03907.238

[29] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. Eventnet: Asynchronous recursive event processing.239

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3887–3896,240

2019.241

[30] Robert F. Stengel. Optimal control and estimation. Dover books on advanced mathematics. Dover242

Publications, New York, 1994.243

[31] Evangelos Stromatias, Miguel Soto, Teresa Serrano-Gotarredona, and Bernabé Linares-Barranco. An244

event-driven classifier for spiking neural networks fed with synthetic or dynamic vision sensor data.245

Frontiers in neuroscience, 11:350, 2017.246

[32] Stepan Tulyakov, Francois Fleuret, Martin Kiefel, Peter Gehler, and Michael Hirsch. Learning an event247

sequence embedding for dense event-based deep stereo. In Proceedings of the IEEE International248

Conference on Computer Vision, pages 1527–1537, 2019.249

[33] Alhabib Abbas Eirina Bourtsoulatze Yin Bi, Aaron Chadha and Yiannis Andreopoulos. Graph-based object250

classification for neuromorphic vision sensing. In The IEEE International Conference on Computer Vision251

(ICCV), Oct. 2019.252

[34] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. EV-FlowNet: Self-Supervised253

Optical Flow Estimation for Event-based Cameras. Robotics: Science and Systems XIV, June 2018. arXiv:254

1802.06898.255

6

Appendix256

A Related Works257

We review previous works related to our method, first describing alternative approaches to process events and258

discussing their relative advantages, then briefly introducing NODE methods.259

Learning from event data. Event data from DVS cameras, being asynchronously streamed per sensor array260

pixel, requires careful processing to be compatible with traditional machine learning models. Methods for261

handling event data can be, in general, divided into grouped-event-based and per-event-based. The former262

employ a scheme to integrate multiple events into a single data structure that can be handled by spatially-based263

(e.g., convolutional) models, while the latter process the data stream on an event-by-event basis. Figure 1264

illustrates the main differences between the reviewed works and the proposed approach.265

Grouped-event methods. One of the more evident strategies in this category is to integrate time windows of266

data into grayscale intensity images, then apply existing computer vision techniques on these reconstructions.267

This is used, for example, in optical flow estimation [3], SLAM [16] and face recognition [4]. Such a process268

requires various filtering, tracking, and/or inertial measurement integration to properly compute frame offsets.269

This integration method itself is also the subject of [26], that uses RNNs to obtain usable intensity video from270

events. The main advantage of these methods is the possibility of directly plugging-in existing algorithms on top271

of grayscale images. This comes at the cost of including pipeline buffering (latency) due to event collection over272

some time window, loosing the timestamp information, and potentially needing external IMU integration for273

long-term odometry.274

Many techniques avoid the reconstruction of a full intensity image over a long buffer, but still rely on machine275

learning methods made for image data, such as Convolutional Neural Networks [12, 18], and thus require276

formatting events into a sparse 2D grid structure. This has been applied to optical flow estimation [34, 8], object277

detection [7, 8], and depth estimation [32]. Various aggregation schemes can be used, such as time-window278

binning or voxel volumes. Different grid sampling schemes are proposed in [13] and [8]. Advantages of these279

methods include compatibility with image-based learning algorithms, but disadvantages include, once again,280

inefficiency over sparse grids, loss of precise event timings, and a delay required to collect frames over time281

windows.282

A distinct approach, evaluated on image classification, samples events until they form a connected graph, with a283

combination of spatial and temporal distances as a measure of edge length [33]. A neural network able to work284

on graph data [5] is then used to process the inputs. The use of spatial graph convolutions addresses the issue of285

sparsity found in grid-based approaches but still requires to collect data over a time window.286

Per-event methods. Since event-cameras are considered a neuromorphic system, researchers theorized they287

would go hand-in-hand with a more biologically-grounded model for processing. Spiking Neural Networks288

(SNNs) [21] are a class of neural networks based on human-vision perception principles, asynchronously289

activating specific neurons. This makes them a theoretical candidate for processing DVS events, one at a290

time [2, 24]. In their original form, SNNs are non-differentiable and thus incompatible with backpropagation-291

based training; therefore, most SNN methods require either proxy-based procedures [31] or an approximation292

of the original SNN formulation [19]. Nevertheless, these models tend to have lower performance than more293

modern methods.294

Another clear choice for event-by-event classification are RNNs [11], neural networks specifically designed to295

handle sequential data. Such models, however, usually assume evenly-spaced series inputs, therefore neglecting296

one of the main features of DVS sensors. To address this, an extension of the LSTM [15] architecture, named297

PhasedLSTM [22], was devised. This model added time gates to the previous and current intermediate hidden298

states. These gates open cyclically, modulated by the current input timestamp. PhasedLSTM was tested on299

event classification, using an embedding for the event coordinates, showing an improvement over LSTM for300

performance on the same task. Recent approaches process events with recursive strategies [29].301

Neural ODEs. NODEs are a recent methodology for modeling data as a dynamical system, governed by a neural302

network and solved using traditional ODE solvers [9]. Inference is performed using gradient-based optimization303

through several time steps of the discretized ODE, typically using explicit time-stepping schemes [6]. To reduce304

memory requirements, researchers have proposed using the adjoint method [9, 14]. NODEs have been applied to305

the time-series domain [28], by employing an LSTM to preprocess irregularly-spaced samples before feeding it306

into a NODE solver. This adds flexibility to the original formulation, at the cost of additional parameters and307

increased processing time. Moreover, there is high risk that the conditioning network could perform most of the308

inference and therefore the NODE results only in an integration task. In this work, we instead consider ODEs309

with an input connection, similarly to the SNODE architecture in [25].310

7

B Algorithm311

Algorithm 1 INODE

Inputs: e, dmax, dq , S �M
repeat

Sample {ui, ti}s+Si=s from e
for i = 0 to S − 1 do

dτ = min((ti+1 − ti)/dq, dmax)
h(ti+i) = h(ti) + dτ f(h(ti), u(ti))
z(ti+1) = g(h(ti+1))
Li+1 = L(z(ti+1), z̄)

end for
L = 1

S

∑S
i=1 Li

θ ← ∇θL
until Convergence

C Tables and Figures312

INODE30 bi-LSTM36 bi-LSTM72 bi-LSTM128

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(a) MNIST (100 epochs)

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(b) ASL (100 epochs)

0 50 100
epochs

3.0

3.5

4.0

4.5

Lo
ss

25 50 75 100
n events

0.0

0.1

0.2

0.3

0.4
A

cc
u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(c) NCALTECH (100 epochs)

0 100 200 300
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(d) MNIST (300 epochs)

0 100 200 300
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(e) ASL (300 epochs)

0 100 200 300
epochs

3.0

3.5

4.0

4.5

Lo
ss

25 50 75 100
n events

0.0

0.1

0.2

0.3

0.4

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(f) NCALTECH (300 epochs)

Figure 4: Summary of results. Train/test losses and classification performance for INODE and multiple bi-LSTM
baselines, with increasing number of inference events per digit from 10 to 100. The three images for each dataset
sub-figure correspond to training-set fraction of 20% (left), 40% (center), and 100% (right).
The number of states, parameters, and input features for each model are summarized in Table 2.313

8

INODE30 LSTM72 LSTM104 LSTM164

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(a) MNIST (100 epochs)

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(b) ASL (100 epochs)

0 50 100
epochs

3.0

3.5

4.0

4.5

Lo
ss

25 50 75 100
n events

0.0

0.1

0.2

0.3

0.4

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(c) NCALTECH (100 epochs)

0 100 200 300
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(d) MNIST (300 epochs)

0 100 200 300
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(e) ASL (300 epochs)

0 100 200 300
epochs

3.0

3.5

4.0

4.5

Lo
ss

25 50 75 100
n events

0.0

0.1

0.2

0.3

0.4

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(f) NCALTECH (300 epochs)

Figure 5: Summary of results. Train/test losses and classification performance for INODE and multiple LSTM
baselines, with increasing number of inference events per digit from 10 to 100. The three images for each dataset
sub-figure correspond to training-set fraction of 20% (left), 40% (center), and 100% (right).

Table 2: Models setup and complexity

MODEL N STATES N PARAMS INPUT

INODE30 (OURS) 30 42,161 (x, y, p)

LSTM164 164 111,520 (x, y, p, t)
P-LSTM164 164 111,192 (x, y, p)
LSTM104 104 45,760 (x, y, p, t)
P-LSTM104 104 45,552 (x, y, p)
LSTM72 72 22,464 (x, y, p, t)
P-LSTM72 72 22,320 (x, y, p)

BI-LSTM128 128 137,216 (x, y, p, t)
P-BI-LSTM128 128 136,704 (x, y, p)
BI-LSTM72 72 44,928 (x, y, p, t)
P-BI-LSTM72 72 44,640 (x, y, p)
BI-LSTM36 36 12,096 (x, y, p, t)
P-BI-LSTM36 36 11,952 (x, y, p)

Table 3: f parameterization for INODE and classifier.

FC1 FCu FC2 FC3 FCc

INPUT DIM 30 3(+1) 256 128 30
OUTPUT DIM 128 128 128 30 N CLASSES

9

Table 4: Classification accuracy on NMNIST test set increasing the number of events (10 classes).

MODEL DATASET % N EVENTS TEST

10 20 30 40 100

INODE30 100 0.48 0.66 0.75 0.80 0.89
LSTM164 100 0.63 0.80 0.86 0.89 0.94
LSTM104 100 0.55 0.71 0.78 0.81 0.88
P-LSTM104 100 0.27 0.29 0.27 0.24 0.18
LSTM72 100 0.46 0.61 0.68 0.73 0.81
BI-LSTM128 100 0.39 0.66 0.77 0.84 0.93
P-BI-LSTM128 100 0.28 0.34 0.39 0.44 0.55
BI-LSTM72 100 0.31 0.50 0.62 0.70 0.84
P-BI-LSTM72 100 0.26 0.32 0.36 0.40 0.51
BI-LSTM36 100 0.22 0.34 0.43 0.48 0.61
P-BI-LSTM36 100 0.24 0.30 0.32 0.35 0.44

INODE30 40 0.46 0.65 0.73 0.79 0.88
LSTM164 40 0.61 0.79 0.85 0.88 0.93
LSTM104 40 0.46 0.62 0.69 0.73 0.80
P-LSTM104 40 0.24 0.26 0.24 0.21 0.15
LSTM72 40 0.44 0.59 0.65 0.70 0.78
BI-LSTM128 40 0.30 0.53 0.68 0.77 0.89
P-BI-LSTM128 40 0.27 0.33 0.37 0.41 0.51
BI-LSTM72 40 0.27 0.39 0.49 0.56 0.72
P-BI-LSTM72 40 0.25 0.30 0.34 0.37 0.45
BI-LSTM36 40 0.25 0.36 0.42 0.47 0.58
P-BI-LSTM36 40 0.23 0.27 0.30 0.32 0.40

INODE30 20 0.46 0.63 0.73 0.78 0.87
LSTM164 20 0.46 0.62 0.68 0.72 0.79
LSTM104 20 0.29 0.36 0.41 0.43 0.49
P-LSTM104 20 0.22 0.25 0.23 0.20 0.17
LSTM72 20 0.26 0.33 0.36 0.39 0.42
BI-LSTM128 20 0.42 0.64 0.75 0.80 0.90
P-BI-LSTM128 20 0.25 0.30 0.34 0.37 0.47
BI-LSTM72 20 0.30 0.47 0.58 0.64 0.77
P-BI-LSTM72 20 0.23 0.28 0.30 0.33 0.41
BI-LSTM36 20 0.21 0.30 0.36 0.40 0.49
P-BI-LSTM36 20 0.21 0.24 0.26 0.28 0.34

RANDOM 0.10 0.10 0.10 0.10 0.10

10

Table 5: Classification accuracy on ASL test set increasing the number of events (24 classes).

MODEL DATASET % N EVENTS TEST

10 20 30 40 100

INODE30 100 0.37 0.51 0.61 0.67 0.79
LSTM164 100 0.35 0.44 0.51 0.55 0.59
P-LSTM164 100 0.22 0.25 0.25 0.24 0.21
LSTM104 100 0.27 0.31 0.32 0.34 0.37
P-LSTM104 100 0.21 0.21 0.23 0.22 0.20
LSTM72 100 0.27 0.30 0.33 0.32 0.35
P-LSTM72 100 0.24 0.26 0.27 0.28 0.24
BI-LSTM128 100 0.18 0.26 0.35 0.40 0.54
P-BI-LSTM128 100 0.28 0.33 0.36 0.41 0.47
BI-LSTM72 100 0.25 0.36 0.43 0.49 0.61
P-BI-LSTM72 100 0.29 0.32 0.36 0.38 0.45
BI-LSTM36 100 0.17 0.25 0.29 0.32 0.38
P-BI-LSTM36 100 0.23 0.27 0.30 0.31 0.36

INODE30 40 0.36 0.50 0.58 0.64 0.69
LSTM164 40 0.32 0.39 0.44 0.47 0.46
P-LSTM164 40 0.19 0.19 0.19 0.19 0.18
LSTM104 40 0.28 0.32 0.34 0.36 0.39
P-LSTM104 40 0.18 0.19 0.20 0.19 0.21
LSTM72 40 0.26 0.29 0.29 0.30 0.31
P-LSTM72 40 0.24 0.26 0.25 0.27 0.25
BI-LSTM128 40 0.29 0.40 0.48 0.55 0.65
P-BI-LSTM128 40 0.27 0.32 0.35 0.37 0.41
BI-LSTM72 40 0.23 0.26 0.31 0.35 0.40
P-BI-LSTM72 40 0.23 0.28 0.30 0.33 0.36
BI-LSTM36 40 0.19 0.22 0.24 0.28 0.34
P-BI-LSTM36 40 0.23 0.27 0.30 0.31 0.35

INODE30 20 0.32 0.47 0.55 0.60 0.71
LSTM164 20 0.25 0.29 0.31 0.31 0.31
P-LSTM164 20 0.17 0.17 0.16 0.16 0.15
LSTM104 20 0.26 0.29 0.31 0.32 0.33
P-LSTM104 20 0.19 0.18 0.19 0.19 0.17
LSTM72 20 0.26 0.32 0.34 0.33 0.35
P-LSTM72 20 0.19 0.19 0.16 0.17 0.18
BI-LSTM128 20 0.28 0.37 0.43 0.48 0.55
P-BI-LSTM128 20 0.25 0.28 0.30 0.34 0.37
BI-LSTM72 20 0.20 0.26 0.32 0.34 0.39
P-BI-LSTM72 20 0.24 0.28 0.30 0.30 0.35
BI-LSTM36 20 0.21 0.26 0.28 0.30 0.33
P-BI-LSTM36 20 0.23 0.26 0.27 0.28 0.31

RANDOM 0.04 0.04 0.04 0.04 0.04

11

Table 6: Classification accuracy on NCALTECH test set increasing the number of events (100 classes).

MODEL DATASET % N EVENTS TEST

10 20 30 40 100

INODE30 100 0.22 0.26 0.29 0.30 0.34
LSTM164 100 0.25 0.29 0.32 0.32 0.36
P-LSTM164 100 0.22 0.24 0.24 0.24 0.21
LSTM104 100 0.24 0.27 0.28 0.29 0.31
P-LSTM104 100 0.23 0.25 0.25 0.24 0.21
LSTM72 100 0.24 0.27 0.29 0.30 0.31
P-LSTM72 100 0.23 0.24 0.23 0.24 0.24
BI-LSTM128 100 0.16 0.24 0.28 0.31 0.35
P-BI-LSTM128 100 0.21 0.24 0.26 0.26 0.28
BI-LSTM72 100 0.16 0.24 0.28 0.29 0.30
P-BI-LSTM72 100 0.21 0.24 0.25 0.26 0.28
BI-LSTM36 100 0.12 0.21 0.24 0.27 0.28
P-BI-LSTM36 100 0.21 0.23 0.24 0.25 0.26

INODE30 40 0.23 0.27 0.29 0.31 0.34
LSTM164 40 0.25 0.27 0.30 0.31 0.33
P-LSTM164 40 0.22 0.23 0.22 0.22 0.20
LSTM104 40 0.26 0.28 0.29 0.30 0.30
P-LSTM104 40 0.21 0.22 0.22 0.22 0.22
LSTM72 40 0.25 0.27 0.28 0.29 0.31
P-LSTM72 40 0.20 0.21 0.20 0.21 0.20
BI-LSTM128 40 0.17 0.22 0.24 0.25 0.29
P-BI-LSTM128 40 0.22 0.24 0.26 0.26 0.28
BI-LSTM72 40 0.20 0.24 0.25 0.27 0.28
P-BI-LSTM72 40 0.21 0.23 0.24 0.25 0.27
BI-LSTM36 40 0.18 0.21 0.23 0.24 0.25
P-BI-LSTM36 40 0.20 0.21 0.22 0.23 0.25

INODE30 20 0.22 0.25 0.26 0.28 0.30
LSTM164 20 0.24 0.25 0.26 0.27 0.30
P-LSTM164 20 0.21 0.22 0.22 0.22 0.20
LSTM104 20 0.22 0.24 0.25 0.25 0.27
P-LSTM104 20 0.20 0.23 0.22 0.23 0.21
LSTM72 20 0.23 0.25 0.27 0.27 0.28
P-LSTM72 20 0.19 0.20 0.20 0.20 0.20
BI-LSTM128 20 0.19 0.23 0.25 0.26 0.28
P-BI-LSTM128 20 0.21 0.23 0.25 0.26 0.26
BI-LSTM72 20 0.11 0.15 0.20 0.22 0.25
P-BI-LSTM72 20 0.20 0.21 0.23 0.24 0.25
BI-LSTM36 20 0.17 0.18 0.21 0.20 0.22
P-BI-LSTM36 20 0.20 0.20 0.23 0.23 0.24

RANDOM 0.01 0.01 0.01 0.01 0.01

12

	Introduction
	Input-filtering Neural ODE
	Experiments
	Conclusion
	Related Works
	Algorithm
	Tables and Figures

