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ABSTRACT

Classic reinforcement learning (RL) assumes that an agent can observe a reward
for each state-action pair. However, in practical applications, it is often difficult and
costly to collect a reward for each state-action pair. While there have been several
works considering RL with trajectory feedback, it is unclear if trajectory feedback
is inefficient for learning when trajectories are long. In this work, we consider a
model named RL with segment feedback, which offers a general paradigm filling
the gap between per-state-action feedback and trajectory feedback seemlessly.
In this model, we consider an episodic Markov decision process (MDP), where
each episode is equally divided into m segments, and the agent observes reward
feedback only at the end of each segment. Under this model, we study two popular
feedback settings: binary feedback and sum feedback, where the agent observes
a binary outcome and a reward sum according to the underlying reward function,
respectively. To investigate the impact of the number of segments m on learning
performance, we design efficient algorithms and establish regret upper and lower
bounds for both feedback settings. Our theoretical and empirical results show that:
under binary feedback, increasing the number of segments m decreases the regret
at an exponential rate; in contrast, surprisingly under sum feedback, increasing m
does not reduce the regret significantly.

1 INTRODUCTION

Reinforcement learning (RL) is a class of sequential decision-making algorithms, where an agent
interacts with an unknown environment through time with the goal of maximizing the obtained
reward. RL is applied to extensive fields such as robotics, autonomous driving and game playing.

In classic RL, when the agent takes an action in a state, the environment will provide a reward for
this state-action pair. However, in real-world applications, it is often difficult and costly to collect a
reward for each state-action pair. For example, in robotics, when we instruct a robot to scramble eggs,
it is hard to specify a reward for each individual action. In autonomous driving, it is difficult and
onerous to evaluate each action, considering multiple criteria including safety, comfort and speed.

Motivated by this fact, there have been several works that consider RL with trajectory feedback (Efroni
et al., 2021; Chatterji et al., 2021). In these works, the agent observes a reward signal only at the
end of each episode, instead of at each step, with the signal indicating the quality of the trajectory
generated during the episode. While these works mitigate the issue of impractical per-step reward
feedback in classic RL, the relationship between the frequency of feedback and the performance of
RL algorithms is unknown. In particular, if for example we get feedback twice in each trajectory,
does that significantly improve performance over once per trajectory feedback?

To answer this question, we study a general model called RL with segment feedback, which bridges
the gap between per-state-action feedback in classic RL (Sutton & Barto, 2018) and trajectory
feedback in recent works (Efroni et al., 2021; Chatterji et al., 2021). In this model, we consider an
episodic Markov decision process (MDP), where an episode is equally divided into m segments. In
each episode, at each step, the agent first observes the current state, and takes an action, and then
transitions to a next state according to the transition distribution. The agent observes a reward signal
at the end of each segment. Under this model, we consider two reward feedback settings: binary
feedback and sum feedback. In the binary feedback setting, the agent observes a binary outcome
(e.g., thumbs up/down) generated by a sigmoid function of the reward on this segment. In the sum
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feedback setting, the agent observes the sum of the rewards over this segment. In our model, the
agent needs to learn the underlying reward function (i.e., the expected reward as a function of states
and actions) from binary or sum segment feedback, and maximize the expected reward achieved.
(Reviewer NUmy) While Tang et al. (2024) also studied this segment model before (they called it
bagged reward), their work is mostly an empirical work, and did not provide theoretical guarantees
for algorithms and rigorously reveal the influence of segments on learning.

This model is applicable to many scenarios involving human queries. For instance, in autonomous
driving, a driving trajectory is often divided into several segments, and human annotators are asked to
provide feedback for each segment, e.g., thumbs up/down. Compared to state-action pairs or whole
trajectories, segments are easier and more efficient to evaluate, since human annotators can focus on
and rate behaviors in each segment, e.g., passing interactions, reversing the car and park.

In this segment model, there is an interesting balance between the number of segments (queries to
humans) and the collected observations, i.e., we desire more observations, but we also want to reduce
the number of queries. Therefore, in this problem, it is critical to investigate the trade-off between
the benefits brought by segments and the increase of queries, which essentially comes down to a
question: How does the number of segments m impact learning performance?

To answer this question, we design efficient algorithms for binary and sum feedback settings in both
known and unknown transition cases. Regret upper and lower bounds are provided to rigorously show
the influence of the number of segments on learning performance. We also present experimental
results to validate our theoretical findings.

(Reviewer NUmy) (Reviewer R7pS) Note that studying RL with equal segments is an important
start point and serves as a foundation for further investigation on more general models and analysis for
RL with unequal segments. Even for the equal segment case, this problem is already very challenging:
(i) This problem cannot be solved by applying prior trajectory feedback works, e.g., (Efroni et al.,
2021), since they use the martingale property of subsequent trajectories in analysis, while subsequent
segments are not a martingale due to the dependence of segments within a trajectory. (ii) In prior
trajectory feedback works (Efroni et al., 2021; Chatterji et al., 2021), there exists a gap between upper
and lower bounds for sum feedback, and there is no lower bound for binary feedback. This fact poses
a great challenge for figuring out the essential influence of the number of segments m on learning
performance, since one cannot get too many hints from prior works.

Our work resolves the above challenges and makes the following contributions:

1. We study a general model called RL with segment feedback, which bridges the gap between
per-state-action feedback in classic RL and trajectory feedback seemlessly. Under this
model, we consider two feedback settings: binary feedback and sum feedback.

2. For binary feedback, we design computationally and sample efficient algorithms SegBiTS
and SegBiTS-Tran for known and unknown transitions, respectively. We provide regret up-
per and lower bounds which depend on exp(Hrmax

2m ), where H is the length of each episode,
and rmax is the universal upper bound of rewards. Our results exhibit that under binary
feedback, increasing the number of segments m significantly helps accelerate learning.

3. For sum feedback, we devise algorithms E-LinUCB and LinUCB-Tran for known and un-
known transitions, respectively, which achieve near-optimal regrets in terms of H and m.
We also establish lower bounds to validate the optimality, and show that optimal regrets do
not depend on m. Our results reveal that surprisingly, under sum feedback, increasing the
number of segments m does not help expedite learning much.

4. We develop novel techniques which can be of independent interest, including the KL
divergence analysis to derive an exponential lower bound under binary feedback, and the
use of E-optimal experimental design in algorithm E-LinUCB to refine the eigenvalue of the
covariance matrix and reduce the regret.

2 RELATED WORK

In this section, we briefly review prior works related to ours.
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The algorithm design and theoretical analysis for classic RL were well studied in the literature (Sutton
& Barto, 2018; Jaksch et al., 2010; Azar et al., 2017; Jin et al., 2018; Zanette & Brunskill, 2019).
(Reviewer NUmy) Tang et al. (2024) proposed the RL with segment feedback problem (they called it
RL with bagged reward) and designed a transformer-based algorithm. However, their work is mostly
an empirical work and only considered the sum feedback type. They did not provide theoretical
results for their algorithm and rigorously quantified the influence of segments on learning. There are
two recent theoretical works (Efroni et al., 2021; Chatterji et al., 2021) studying RL with trajectory
feedback, which are most related to our work. Efroni et al. (2021) investigated RL with sum trajectory
feedback, and designed upper confidence bound (UCB)-type and Thompson sampling (TS)-type
algorithms with regret guarantees. Chatterji et al. (2021) considered RL with binary trajectory
feedback, and developed algorithms based on UCB value iteration. For binary trajectory feedback,
Chatterji et al. (2021) provided regret upper bounds that exponentially depend on the scale of rewards.

Different from (Efroni et al., 2021; Chatterji et al., 2021), we study RL with segment feedback,
which allows feedback from multiple segments within a trajectory, with per-state-action feedback and
trajectory feedback as the two extremes. (Reviewer NUmy) Under sum feedback, we improve the
regret bound in (Efroni et al., 2021) by

√
H using experimental design, and demonstrate the optimality

of our result by establishing a lower bound. Under binary feedback, we propose TS-style algorithms
which are computationally efficient, and also build a lower bound to validate the inevitability of the
exponential dependence in the regret bound, which is new to the literature.

Our work is also related to linear bandits (Abbasi-Yadkori et al., 2011) and logistic bandits (Filippi
et al., 2010; Faury et al., 2020; Russac et al., 2021), and uses analytical techniques from that literature.

3 FORMULATION

In this section, we present the formulation of RL with binary and sum segment feedback.

We consider an episodic MDP denoted byM(S,A, H, r, p, ρ). Here S is the state space, and A is
the action space. H is the length of each episode. (Reviewer R7pS) r : S × A → [−rmax, rmax]
is an unknown reward function, where rmax > 0 is a universal constant and used to prevent the
input of binary feedback (the sigmoid function) from being too large. Define the reward parameter
θ∗ := [r(s, a)](s,a)∈S×A ∈ R|S||A|. p : S × A → △S is the transition distribution. For any
(s, a, s′) ∈ S ×A×S , p(s′|s, a) is the probability of transitioning to s′ if action a is taken in state s.
ρ ∈ △S is the initial state distribution.

A policy π : S × [H]→ A is defined as a mapping from the state space and step indices to the action
space, so that πh(s) specifies what action to take in state s at step h. For any policy π, h ∈ [H] and
(s, a) ∈ S ×A, let V π

h (s) be the state value function, and Qπ
h(s, a) be the state-action value function,

which denote the cumulative expected reward obtained under policy π till the end of an episode,
starting from s and (s, a) at step h, respectively. Formally,

V π
h (s) := E

[
H∑
t=h

r(st, at)|sh = s, π

]
, Qπ

h(s, a) := E

[
H∑
t=h

r(st, at)|sh = s, ah = a, π

]
.

The optimal policy is defined as π∗ = argmaxπ V
π
h (s) for all s ∈ S and h ∈ [H]. For any s ∈ S

and h ∈ [H], denote V ∗
h (s) := V π∗

h (s).

The process of RL with segment feedback is as follows. In each episode k, the agent chooses a policy
πk at the beginning of this episode, and starts from sk1 ∼ ρ. At each step h ∈ [H], the agent first
observes the current state skh, and takes an action akh = πk

h(s
k
h) according to her policy, and then

transitions to a next state skh+1 ∼ p(·|skh, akh).

Each episode is equally divided into m segments, and each segment is of length H
m . For convenience,

assume that H is divisible by m. For any k > 0 and i ∈ [m], let τk = (sk1 , a
k
1 , . . . , s

k
h, a

k
h) denote the

trajectory in episode k, and τki = (skH
m ·(i−1)+1

, akH
m ·(i−1)+1

, . . . , skH
m ·i, a

k
H
m ·i) denote the i-th segment

of the trajectory in episode k.

For any trajectory or trajectory segment τ , ϕτ ∈ R|S||A| denotes the vector where each entry ϕτ (s, a)
is the number of times (s, a) is visited in τ . For any policy π, ϕπ ∈ R|S||A| denotes the vector where
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Algorithm 1: SegBiTS
Input: δ, δ′ := δ

3 , α := exp(Hrmax

m ) + exp(−Hrmax

m ) + 2, λ.
1 for k = 1, . . . ,K do
2 θ̂k−1 ← argminθ −(

∑k−1
k′=1

∑m
i=1(y

k′

i · log(µ((ϕτk′
i )⊤θ)) + (1− yk

′

i ) · log(1−
µ((ϕτk′

i )⊤θ)))− 1
2λ∥θ∥

2
2);

3 Σk−1 ←
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤ + αλI;
4 Sample ξk ∼ N (0, α · ν(k − 1)2 · Σ−1

k−1), where ν(k − 1) is defined in Eq. (1);
5 θ̃k ← θ̂k−1 + ξk;
6 πk ← argmaxπ(ϕ

π)⊤θ̃k, where ϕπ is defined in Eq. (3);
7 Play episode k with policy πk. Observe trajectory τk and binary segment feedback {yki }mi=1;

each entry ϕπ(s, a) is the expected number of times (s, a) is visited in an episode under policy π, i.e.,
ϕπ(s, a) := E[

∑H
h=1 1{sh = s, ah = a}|π].

In our model, the agent observes reward feedback only at the end of each segment, instead of each
step as in classic RL. We consider two reward feedback settings as follows.

Binary Segment Feedback. Denote the sigmoid function by µ(x) := 1
1+exp(−x) for any x ∈ R. In

the binary segment feedback setting, in each episode k, at the end of each segment i ∈ [m], the agent
observes a binary outcome

yki =

1, w.p. µ
(
−
∑H

m ·i
t=H

m ·(i−1)+1
r(skt , a

k
t )
)
= µ((ϕτk

i )⊤θ∗),

0, w.p. 1− µ
(
−
∑H

m ·i
t=H

m ·(i−1)+1
r(skt , a

k
t )
)
= 1− µ((ϕτk

i )⊤θ∗).

Sum Segment Feedback. In the sum segment feedback setting, in each episode k, at each step
h, the environment generates an underlying random reward Rk

h = r(skh, s
k
h) + εkh, where εkh is a

zero-mean and 1-Sub-Gaussian noise, and independent of the transition distribution. At the end of
each segment i ∈ [m], the agent observes the sum of random rewards

Rk
i =

H
m ·i∑

t=H
m ·(i−1)+1

R(skt , a
k
t ) = (ϕτk

i )⊤θ∗ +

H
m ·i∑

t=H
m ·(i−1)+1

εkt .

In the sum feedback setting, when m = H , our model degenerates to classic RL (Azar et al., 2017;
Sutton & Barto, 2018). When m = 1, the above two settings reduce to the problems of RL with
binary (Chatterji et al., 2021) and sum trajectory feedback (Efroni et al., 2021), respectively.

In our model, the agent needs to infer the reward function from sparse and implicit reward feedback.
Let K denote the number of episodes played. The goal of the agent is to minimize the cumulative
regret, which is defined asR(K) :=

∑K
k=1(V

∗
1 (s1)− V πk

1 (s1)).

4 REINFORCEMENT LEARNING WITH BINARY SEGMENT FEEDBACK

In this section, we investigate RL with binary segment feedback. To isolate the effect of segment
feedback from transition model learning, we first design a computationally-efficient and sample-
efficient algorithm SegBiTS for the known transition case with a regret guarantee, and establish a
nearly matching regret lower bound. Then, we further develop an algorithm SegBiTS-Tran with
carefully-designed transition bonuses for the unknown transition case, and provide a regret analysis.

4.1 ALGORITHM SegBiTS AND REGRET UPPER BOUND FOR KNOWN TRANSITION

Building upon the Thompson sampling algorithm (Thompson, 1933), SegBiTS adopts the maxi-
mum likelihood estimator (MLE) to learn rewards from binary feedback, and performs posterior
sampling to compute the optimal policy. (Reviewer NUmy) Different from prior trajectory feedback
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algorithms (Chatterji et al., 2021) which are either computationally inefficient or have an O(K
2
3 )

regret bound, SegBiTS is both computationally efficient and has an O(
√
K) regret bound.

Algorithm 1 presents the procedure of SegBiTS. Specifically, in each episode k, SegBiTS first
employs MLE with past binary reward observations to obtain the estimated reward parameter θ̂k−1

(Line 2). Then, SegBiTS calculates the feature covariance matrix of past segments Σk−1 (Line 3).
After that, SegBiTS samples a noise ξk from Gaussian distributionN (0, α·ν(k−1)2 ·Σ−1

k−1) (Line 4).
Here α represents the universal upper bound of the inverse of the sigmoid function’s derivative. For
any k > 0, we define

ν(k) :=
m
√
λ

H

(
1+

Hrmax

√
|S||A|

m
+

H

m
√
λ

√
1+

Hrmax

√
|S||A|

m
ω(k)+

H2

m2λ
· ω(k)2

) 3
2

, (1)

and

ω(k) :=
√
λ

(
rmax

√
|S||A|+ 1

2

)
+
|S||A|√

λ
log

(
4

δ′

(
1 +

H2k

4|S||A|λm

))
. (2)

(Reviewer 1qnB) ν(k) stands for the confidence radius of the MLE estimate θ̂k. With high probability,
we have |ϕ⊤θ∗ − ϕ⊤θ̂k| ≤

√
α · ν(k)∥ϕ∥Σ−1

k
, where ϕ is the visitation indicator of any trajectory.

Adding noise ξk to θ̂k−1, SegBiTS obtains a posterior reward estimate θ̃k (Line 5). Then, it computes
the optimal policy πk under reward θ̃k (Line 6). Note that the step in Line 6 is computationally
efficient, which can be easily solved by any MDP planning algorithm, e.g., value iteration, with
reward θ̃k. After obtaining πk, SegBiTS plays episode k, and observes trajectory τk and binary
feedback {yki }mi=1 on each segment (Line 7).

Now we provide a regret upper bound for algorithm SegBiTS.

Theorem 1. (Reviewer R7pS) With probability at least 1− δ, for any K > 0, the regret of algorithm
SegBiTS is bounded by

R(K) = Õ

(
exp

(
Hrmax

2m

)
·
(√

Km|S||A|max
{ H2

mαλ
, 1
}
+H

√
K

αλ

)
·
m
√
λ|S||A|
H

·

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ

√
1 +

Hrmax

√
|S||A|

m

(√
λ
(
rmax

√
|S||A|+ 1

2

)
+
|S||A|√

λ

)

+
H2

m2λ

(√
λ
(
rmax

√
|S||A|+ 1

2

)
+
|S||A|√

λ

)2
) 3

2
)
.

(Reviewer 1qnB) Theorem 1 exhibits that the regret of algorithm SegBiTS depends on exp(Hrmax

2m ),
which is usually the dominating factor. This implies that as the number of segments m increases, the
regret decays rapidly. Thus, under binary feedback, increasing the number of segments significantly
helps accelerate learning. (Reviewer 1qnB) The intuition behind this is that when the reward scale
x = Hrmax

m is large, the binary feedback is generated from the range where the sigmoid function
µ(x) = 1

1+exp(−x) is flat, i.e., the derivative of the sigmoid function µ′(x) is small. Then, the
generated binary feedback is likely always 0 or always 1, and it is hard to distinguish between a good
action and a bad action, leading to a higher regret; On the contrary, when the reward scale x = Hrmax

m
is small, the binary feedback is generated from the range where the sigmoid function µ(x) is steep,
i.e., µ′(x) is large. Then, the generated binary feedback is more dispersed to be 0 or 1, and it is easier
to distinguish between a good action and a bad action, leading to a lower regret. In other words, the
regret bound depends on the inverse of the sigmoid function’s derivative µ′(x) = 1

exp(x)+exp(−x)+2 .

(Reviewer R7pS) In Theorem 1, the dependence on |S|, |A|, H are |S|3, |A|3, exp(Hrmax

2m )H2, re-
spectively. Since the exponential dependence on exp(Hrmax

m ) usually dominates the bound, here we
mainly aim to reveal such exponential influence on the regret, and are not pursuing the absolute tight-
ness of every polynomial factor. Below we establish a lower bound to demonstrate the inevitability of
this exponential dependence.
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4.2 REGRET LOWER BOUND FOR KNOWN TRANSITION

The lower bound for RL with binary segment feedback and known transition is as follows.

Theorem 2. Consider the problem of RL with binary segment feedback and known transition. There
exists a distribution of instances where for any c0 ∈ (0, 1

2 ), when K ≥ exp(Hrmax

m ) 4|S||A|m
H2r2maxc

2
0

, the
regret of any algorithm must be

Ω

(
exp

((1
2
− c0

)Hrmax

m

)√
|S||A|mK

)
.

Theorem 2 shows that the exponential dependence on Hrmax

m in the regret is indispensable, and the
exp(Hrmax

2m ) factor in Theorem 1 nearly matches the exponential dependence in the lower bound up
to an arbitrarily small factor c0 in exp(·). Together with Theorem 1, Theorem 2 reveals that when the
number of segments m increases, the regret decreases at an exponential rate. (Reviewer NUmy) In
addition, this regret lower bound also holds for the unknown transition case, by constructing the same
problem instance as in this lower bound proof.

This lower bound and its analysis is novel to the literature. In analysis, we calculate the KL
divergence of Bernoulli distributions with the sigmoid function as parameters. Then, we employ
Pinsker’s inequality and the fact that µ′(x) = µ(x)(1 − µ(x)) to build a connection between the
calculated KL divergence and µ′(Hrmax

m ). Since µ′(Hrmax

m ) contains an exponential factor, we can
finally derive an exponential dependence in the lower bound.

4.3 ALGORITHM SegBiTS-Tran AND REGRET UPPER BOUND FOR UNKNOWN TRANSITION

In the following, we extend our results to the unknown transition case. We develop an efficient
algorithm SegBiTS-Tran for binary segment feedback and unknown transition. SegBiTS-Tran
includes a transition bonus ppvk−1 in posterior reward estimate θ̃bk, and replaces visitation indicator ϕπ

by its estimate ϕ̂π
k−1. For any (s, a) ∈ S ×A, ϕ̂π

k−1(s, a) is the expected number of times (s, a) is
visited in an episode under policy π on empirical MDP p̂k−1, where p̂k−1 is the empirical estimate
of transition distribution p. Then, SegBiTS-Tran finds the optimal policy via argmaxπ(ϕ̂

π
k−1)

⊤θ̃bk,
which can be efficiently solved by any MDP planning algorithm with transition p̂k−1 and reward θ̃bk.
We defer the pseudo-code and details of SegBiTS-Tran to Appendix C.3.

The regret performance of algorithm SegBiTS-Tran is stated below.

Theorem 3. With probability at least 1− δ, for any K > 0, the regret of algorithm SegBiTS-Tran
is bounded by

Õ

(
exp

(
Hrmax

2m

)
ν(K)

√
|S||A|

(√
Km|S||A|max

{
H2

mαλ
, 1

}
+H

√
K

αλ

)

+

(
ν(K)

√
|S||A|

λ
+Hrmax

)
|S|2|A| 32H 3

2

√
K

)
.

Similar to algorithm SegBiTS (Theorem 1), the regret of algorithm SegBiTS-Tran also has a
dependence on exp(Hrmax

2m ). When the number of segments m increases, the regret of SegBiTS-Tran
significantly decreases. Compared to SegBiTS, the regret of SegBiTS-Tran has an additional term
polynomial in |S|, |A|, H and

√
K, which is incurred by learning the unknown transition distribution.

5 REINFORCEMENT LEARNING WITH SUM SEGMENT FEEDBACK

In this section, we turn to RL with sum segment feedback. (Reviewer NUmy) Different from prior
trajectory feedback algorithm (Efroni et al., 2021) which directly uses the least squares estimator
and has a suboptimal regret bound, we develop an algorithm E-LinUCB for the known transition case,
which employs experimental design to perform an initial exploration and achieves a near-optimal
regret with respect to H and m. To validate the optimality, we further establish a regret lower bound.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2: E-LinUCB

Input: δ, δ′ := δ
3 , λ := H

r2maxm
, rounding procedure ROUND, rounding approximation parameter

γ := 1
10 . β(k) :=

√
H|S||A|

m log(1 + kH2

λ|S||A|m ) + 2 log( 1
δ′ ) + rmax

√
λ|S||A|,∀k > 0.

1 Let w∗ ∈ △Π and z∗ be the optimal solution and optimal value of the optimization:

min
w∈△Π

∥∥∥∥∥
(∑

π∈Π

w(π)

( m∑
i=1

Eτi∼π

[
ϕτi(ϕτi)⊤

]))−1∥∥∥∥∥ (3)

2 K0 ← ⌈max{26(1 + γ)2(z∗)2H4 log( 2|S||A|
δ′ ), |S||A|

γ2 }⌉ ;
3 (π1, . . . , πK0)← ROUND({

∑m
i=1 Eτi∼π

[
ϕτi(ϕτi)⊤

]
}π∈Π, w

∗, γ,K0) ;
4 Play K0 episodes with policies π1, . . . , πK0 . Observe trajectories τ1, . . . , τK0 and rewards
{R1

i }mi=1, . . . , {R
K0
i }mi=1 ;

5 for k = K0 + 1, . . . ,K do
6 θ̂k−1 ← (λI +

∑k−1
k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤)−1
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i Rk′

i ;

7 Σk−1 ← λI +
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤ ;
8 πk ← argmaxπ∈Π((ϕ

π)⊤θ̂k−1 + β(k − 1) · ∥ϕπ∥(Σk−1)−1) ;
9 Play episode k with policy πk. Observe trajectory τk and sum segment feedback {Rk

i }mi=1 ;

Moreover, we design an algorithm LinUCB-Tran equipped with a variance-aware transition bonus to
handle the unknown transition scenario.

5.1 ALGORITHM E-LinUCB AND REGRET UPPER BOUND FOR KNOWN TRANSITION

If we regard visitation indicators ϕπk
i as feature vectors and θ∗ as the reward parameter, the problem

of RL with sum segment feedback and known transition is similar to linear bandits.

Building upon the classic linear bandit algorithm LinUCB (Abbasi-Yadkori et al., 2011), algorithm
E-LinUCB adopts the E-optimal design (Pukelsheim, 2006) to conduct an initial exploration to ensure
sufficient coverage of the covariance matrix and further sharpen the norm under the inverse of the
covariance matrix, resulting in a near-optimal regret.

As shown in Algorithm 2, the procedure of E-LinUCB is as follows. E-LinUCB first performs the
E-optimal design to compute an optimal policy distribution w∗, which maximizes the minimum eigen-
value of the feature covariance matrix (Line 1). In Line 1,

∑
π∈Π w(π)(

∑m
i=1 Eτi∼π[ϕ

τi(ϕτi)⊤]) is
the feature covariance matrix of segments under policy distribution w, and we assume that this matrix
is invertible. Then, E-LinUCB calculates the number of samples K0 for initial exploration according
to the optimal value z∗ of the E-optimal design (Line 2).

Then, in Line 3, E-LinUCB calls a rounding procedure ROUND (Allen-Zhu et al., 2021) to trans-
form sampling distribution w∗ into discrete sampling sequence (π1, . . . , πK0) which satisfies (see
Appendix B for more details of ROUND)∥∥∥∥∥
(

K0∑
k=1

( m∑
i=1

Eτi∼πk

[
ϕτi(ϕτi)⊤

]))−1∥∥∥∥∥ ≤ (1+γ)

∥∥∥∥∥
(
K0

∑
π∈Π

w∗(π)

( m∑
i=1

Eτi∼π

[
ϕτi(ϕτi)⊤

]))−1∥∥∥∥∥.
After that, E-LinUCB plays K0 episodes with (π1, . . . , πK0) to perform initial exploration (Line 4).
Owing to the E-optimal design, the covariance matrix of initial exploration ΣK0 has an optimized
minimum eigenvalue, and then ∥ϕπ∥(Σk−1)−1 has a sharpened upper bound for any k > K0. This is
the key to the optimality of E-LinUCB with respect to H and m.

After initial exploration, in each episode k > K0, E-LinUCB first calculates the least squares reward
estimate θ̂k−1 with past reward observations and covariance matrix Σk−1 (Lines 6-7). Then, it
computes the optimal policy with reward estimate θ̂k−1 and bonus ∥ϕπ∥(Σk−1)−1 (Line 8). With
the computed optimal policy πk, E-LinUCB plays episode k, and collects trajectory τk and reward
observation on each segment {Rk

i }mi=1 (Line 9).
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Below we present a regret upper bound for algorithm E-LinUCB.

Theorem 4. With probability at least 1 − δ, for any K > 0, the regret of algorithm E-LinUCB is
bounded by

O

(
|S||A|

√
HK log

((
1 +

KHrmax

|S||A|m

)
1

δ

)
+ (z∗)2H5 log

(
|S||A|

δ

)
+ |S||A|H

)
.

(Reviewer 1qnB) Surprisingly, under sum feedback, when the number of segments m increases, the
regret bound does not decrease significantly as people might expect, e.g., at a rate of 1√

m
or 1

m . While
this looks surprising at the first glance, we discover an intuition through analysis: The objective of
RL measures the expected reward sum of an episode, namely, we only need to accurately estimate
the expected reward sum of an episode. When the number of segments m increases, although we
obtain more observations, the segment features ϕτk′

i contributed to covariance matrix Σk shrink,
which makes the reward estimation uncertainty ∥ϕπ∥(Σk)−1 inflate. When we focus on the estimation
performance of the expected reward sum of an episode, these two effects cancel out with each other,
and the regret result is not influenced by m distinctly.

(Reviewer NUmy) When m = 1, our problem reduces to RL with sum trajectory feedback (Efroni
et al., 2021), and our result improves theirs by a factor of

√
H . This improvement comes from that we

conduct the E-optimal design and perform an initial exploration to guarantee that ∥ϕπ∥(Σk−1)−1 ≤ 1,
instead of ∥ϕπ∥(Σk−1)−1 ≤ H√

λ
as used in (Efroni et al., 2021).

Next, we investigate the lower bound to see if the number of segments m does not influence the regret
bound distinctly in essence.

5.2 REGRET LOWER BOUND FOR KNOWN TRANSITION

We establish a lower bound for RL with sum segment feedback and known transition as follows.

Theorem 5. Consider the problem of RL with sum segment feedback and known transition. There
exists a distribution of instances where the regret of any algorithm must be

Ω
(√
|S||A|HK

)
.

Theorem 5 demonstrates that our regret upper bound for algorithm E-LinUCB (Theorem 4) is optimal
with respect to H and m when ignoring logarithmic factors. In addition, this lower bound corroborates
that the number of segments m does not impact the regret result essentially.

5.3 ALGORITHM LinUCB-Tran AND REGRET UPPER BOUND FOR UNKNOWN TRANSITION

Now we study RL with sum segment feedback in the unknown transition scenario. For unknown
transition, we design an algorithm LinUCB-Tran, which constructs a variance-aware uncertainty
bound for the estimated visitation indicator ϕ̂π

k , and takes into account this uncertainty bound in
exploration bonuses. In analysis, we handle the estimation error of visitation indicators ∥ϕ̂π

k − ϕπ∥1
by this variance-aware uncertainty bound, which enables us to achieve a near-optimal regret in terms
of H . The pseudo-code and details of LinUCB-Tran are deferred to Appendix D.3.

In the following, we state the regret performance of algorithm LinUCB-Tran.

Theorem 6. With probability at least 1− δ, for any K > 0, the regret of algorithm LinUCB-Tran is
bounded by

Õ
(
(1 + rmax)|S|

5
2 |A|2H

√
K
)
.

Theorem 6 shows that similar to algorithm E-LinUCB, the regret of LinUCB-Tran does not depend
on the number of segments m when ignoring logarithmic factors. The heavier dependence on |S|,
|A| and H is due to the estimation of the unknown transition distribution. We also provide a lower
bound for the unknown transition case, which demonstrates that the optimal regret indeed does not
depend on m and our upper bound is near-optimal in terms of H (see Appendix D.5).
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Figure 1: Experimental results for RL with binary or sum segment feedback.

6 EXPERIMENTS

Below we present experiments for RL with segment feedback to validate our theoretical results.

For the binary feedback setting, we evaluate our algorithms SegBiTS and SegBiTS-Tran in known
and unknown transition environments, respectively, and we set |S| = 9, |A| = 5 and K = 30000.
For the sum feedback setting, similarly, we run our algorithms E-LinUCB and LinUCB-Tran in
known and unknown transition environments, respectively. Since E-LinUCB and LinUCB-Tran are
computationally inefficient (mainly designed to exhibit the optimal dependence on m), we use a
small MDP with |S| = 3 and |A| = 5, and set K = 1000. The details of the instances used in our
experiments are described in Appendix A. In both settings, we set rmax = 0.5, δ = 0.005, H = 100
and m ∈ {1, 2, 4, 5, 10, 20, 25, 50, 100}. We perform 20 independent runs for each algorithm, and
plot the average cumulative regret up to episode K across runs with a 90% confidence interval.

Figure 1(a) draws the regrets of algorithms SegBiTS and SegBiTS-Tran under binary feedback. One
sees that as the number of segments m increases, the regret decreases rapidly. Specifically, when m
decreases from 20 to 1, i.e., H

2m increases from exp(2.5) to exp(50), the regret grows explosively.
This matches our theoretical results (Theorems 1 and 3) which show a dependence on exp(Hrmax

2m ).

Figure 1(b) plots the regrets of algorithms E-LinUCB and LinUCB-Tran under sum feedback. To see
the impact of segments on regrets clearly, here we show the regrets with respect to the number of
segments m and the length of each segment H

m in the left and right subfigures, respectively. In the left
subfigure, when m increases, the regrets almost keep the same for small m and slightly decrease for
large m. To see the dependence on m more clearly, we turn to the right subfigure: When the length
of each segment H

m increases, the regrets slightly increase in a logarithmic trend. This also matches
our theoretical bounds, which do not depend on m except for the log(Hm ) factor (Theorems 4 and 6).

7 CONCLUSION

In this work, we formulate a model named RL with segment feedback, which offers a general
paradigm for feedback, bridging the gap between per-state-action feedback in classic RL and trajectory
feedback. In the binary feedback setting, we deign efficient algorithms SegBiTS and SegBiTS-Tran,
and provide regret upper and lower bounds which show a dependence on exp(Hrmax

2m ). These results
reveal that under binary feedback, increasing the number of segment m greatly helps expedite learning.
In the sum feedback setting, we develop near-optimal algorithms E-LinUCB and LinUCB-Tran in
terms of H and m, where the regret results do not depend on m when ignoring logarithmic factors.
These results exhibit that under sum feedback, increasing m does not help accelerate learning much.

There are several interesting directions worth further investigation. One direction is to consider
segments of unequal lengths and study how to divide segments to optimize learning. Another
direction is to generalize the results to the function approximation setting.
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A DETAILS OF THE EXPERIMENTAL SETUP

In this section, we detail the instances used in our experiments.

For the binary segment feedback setting, we consider an MDP as in Figure 1(a): There are 9 states
and 5 actions. For any a ∈ A, we have r(s0, a) = 0, r(si, a) = rmax for any i ∈ {1, 3, 5, 7} (called
good states), and r(si, a) = −rmax for any i ∈ {2, 4, 6, 8} (called bad states). There is an optimal
action a∗ and four suboptimal actions asub for all states. The agent starts from an initial state s0. For
any 0 ≤ i ≤ 6, in state si, under the optimal action a∗, the agent transitions to the good state and bad
state at the next horizon with probabilities 0.9 and 0.1, respectively; Under the suboptimal action
asub, the agent transitions to the good state and bad state at the next horizon with probabilities 0.1
and 0.9, respectively. In s7 or s8, under the optimal action a∗, the agent transitions to s1 and s2 with
probabilities 0.9 and 0.1, respectively; Under the suboptimal action asub, the agent transitions to s1
and s2 with probabilities 0.1 and 0.9, respectively.

𝑠

𝑠ଵ

𝑠ଶ

𝑠ଷ

𝑠ସ

𝑠ହ

𝑠

𝑠

𝑠଼
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Optimal action 𝑎∗:𝑤. 𝑝. 0.9
Suboptimal action: 𝑎௦௨:𝑤. 𝑝. 0.1

Optimal action 𝑎∗:𝑤. 𝑝. 0.1
Suboptimal action 𝑎௦௨: 𝑤. 𝑝. 0.9

𝑟 𝑠,⋅ = 𝑟௫, ∀𝑖 ∈ {1,3,5,7}

𝑟 𝑠,⋅ = −𝑟௫, ∀𝑖 ∈ {2,4,6,8}

𝑠ଵ

𝑠ଶ

Figure 2: Instance used in the experiment for RL with binary segment feedback.

For the sum segment feedback setting, since algorithms E-LinUCB and LinUCB-Tran are computa-
tionally inefficient (which are mainly designed for revealing the optimal dependency on H and m),
we consider a smaller MDP as in Figure 1(b): There are 3 states and 5 actions. For any a ∈ A, we
have r(s0, a) = 0, r(s1, a) = rmax (called a good state), and r(s2, a) = −rmax (called a bad state).
There is an optimal action a∗ and four suboptimal actions asub for all states. The agent starts from an
initial state s0. In any state s ∈ S , under the optimal action a∗, the agent transitions to s1 and s2 with
probabilities 0.9 and 0.1, respectively; Under the suboptimal action asub, the agent transitions to s1
and s2 with probabilities 0.1 and 0.9, respectively.

𝑠

𝑠ଵ

𝑠ଶ

𝑟(𝑠,⋅) = 0

Optimal action 𝑎∗:𝑤. 𝑝. 0.9
Suboptimal action: 𝑎௦௨:𝑤. 𝑝. 0.1

Optimal action 𝑎∗:𝑤. 𝑝. 0.1
Suboptimal action 𝑎௦௨: 𝑤. 𝑝. 0.9

𝑟 𝑠ଵ,⋅ = 𝑟௫

𝑟 𝑠ଶ,⋅ = −𝑟௫

Figure 3: Instance used in the experiment for RL with sum segment feedback.
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B ROUNDING PROCEDURE ROUND

Algorithm E-LinUCB calls a rounding procedure ROUND (Allen-Zhu et al., 2021) in the experimental
design literature. Taking X1, . . . , Xn ∈ Sd+, distribution w ∈ △{X1,...,Xn}, rounding approximation
error γ > 0 and the number of samples T ≥ d

γ2 as inputs, ROUND rounds sampling distribution w into
a discrete sampling sequence (Y1, . . . , YT ) ∈ {X1, . . . , Xn}T that satisfies∥∥∥∥∥

(
T∑

t=1

Yt

)−1∥∥∥∥∥ ≤ (1 + γ)

∥∥∥∥∥
(
T
∑
i∈[n]

w(Xi)Xi

)−1∥∥∥∥∥.
In implementation, we can regard xx⊤ in (Allen-Zhu et al., 2021) as

∑m
i=1 Eτi∼π[ϕ

τi(ϕτi)⊤], and
regard sampling weight on x as the sampling weight on π in our work.

C PROOFS FOR RL WITH BINARY SEGMENT FEEDBACK

In this section, we present the proofs for RL with binary segment feedback.

C.1 PROOF FOR THE REGRET UPPER BOUND WITH KNOWN TRANSITION

First, we prove the regret upper bound (Theorem 1) of algorithm SegBiTS for known transition.

For any k > 0 and θ ∈ Θ, define

Zk :=

k∑
k′=1

m∑
i=1

εk′,i · ϕτk′
i ,

gk(θ) :=

k∑
k′=1

m∑
i=1

µ((ϕτk′
i )⊤θ) · ϕτk′

i + λθ, (4)

Λk(θ) :=

k∑
k′=1

m∑
i=1

µ′((ϕτk′
i )⊤θ) · ϕτk′

i (ϕτk′
i )⊤ + λI. (5)

Lemma 1. For any k > 0 and θ ∈ Θ, we have

det(Λk(θ)) ≤
(
H2µ′

maxk

|S||A|m
+ λ

)|S||A|

.

Proof. For any k > 0, we have

det(Λk(θ)) ≤
(

tr(Λk(θ))

|S||A|

)|S||A|

≤

(
1

|S||A|
·

(
km · µ′

max ·
(
H

m

)2

+ λ|S||A|

))|S||A|

=

(
H2µ′

maxk

|S||A|m
+ λ

)|S||A|

.

For any k > 0, let Fk denote the filtration that includes all events up to the end of episode k,
and F̃k denote the filtration that includes all events before playing πk in episode k. Then, πk is
F̃k-measurable.

For any k > 0 and i ∈ [m], let εk,i := yki − (ϕτk
i )⊤θ∗ denote the noise of binary feedback, and

v2k,i := E[ε2k,i|F̃k] = (ϕτk
i )⊤θ∗ · (1 − (ϕτk

i )⊤θ∗) = µ′((ϕτk
i )⊤θ∗) denote the variance of εk,i

conditioning on F̃k.
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Then, we have

Λk(θ
∗) :=

k∑
k′=1

m∑
i=1

µ′((ϕτk′
i )⊤θ∗) · ϕτk′

i (ϕτk′
i )⊤ + λI

=

k∑
k′=1

m∑
i=1

v2k′,i · ϕτk′
i (ϕτk′

i )⊤ + λI.

Lemma 2 (Concentration of Noises under Binary Feedback). With probability at least 1− δ′, for
any k > 0,∥∥∥∥∥

k∑
k′=1

m∑
i=1

εk′,i · ϕτk′
i

∥∥∥∥∥
Λ−1

k (θ∗)

≤
√
λ

2
+
|S||A|√

λ
log

(
4

δ′
·
(
1 +

H2µ′
maxk

|S||A|mλ

))
.

Proof. According to Theorem 1 in (Faury et al., 2020), we have that with probability at least 1− δ′,
for any k > 0,∥∥∥∥∥

k∑
k′=1

m∑
i=1

εk′,i · ϕτk′
i

∥∥∥∥∥
Λ−1

k (θ∗)

≤
√
λ

2
+

2√
λ
log

(
det(Λk(θ

∗))
1
2 · λ− |S||A|

2

δ′

)
+

2√
λ
|S||A| log(2)

(a)
≤
√
λ

2
+

2√
λ
log

 1

δ′

(
1 +

H2µ′
maxk

|S||A|mλ

) |S||A|
2

+
2√
λ
|S||A| log(2)

≤
√
λ

2
+
|S||A|√

λ
log

(
1

δ′

(
1 +

H2µ′
maxk

|S||A|mλ

))
+

2√
λ
|S||A| log(2)

≤
√
λ

2
+
|S||A|√

λ
log

(
4

δ′

(
1 +

H2µ′
maxk

|S||A|mλ

))
,

where (a) uses Lemma 1.

Define event

E :=

{∥∥∥gk(θ̂k)− gk(θ
∗)
∥∥∥
Λ−1

k (θ∗)
≤ ω(k), ∀k > 0

}
.

Lemma 3. It holds that

Pr [E ] ≥ 1− δ′.

Proof. This proof is similar to that for Lemma 8 in (Faury et al., 2020).

Define

Lk(θ) :=−

(
k∑

k′=1

m∑
i=1

(
yk

′

i · log
(
µ((ϕτk′

i )⊤θ)
)
+(1−yk

′

i ) · log
(
1−µ((ϕτk′

i )⊤θ)
))
− 1

2
λ∥θ∥22

)
.

Recall that θ̂k = argminθ Lk(θ). Using the facts that ∇Lk(θ̂k) = 0 and µ′(x) = µ(x)(1− µ(x)),
we have

k∑
k′=1

m∑
i=1

µ((ϕτk′
i )⊤θ̂k) · ϕτk′

i + λθ̂k︸ ︷︷ ︸
gk(θ̂k)

=

k∑
k′=1

m∑
i=1

yk
′

i · ϕτk′
i .

Hence, we have

gk(θ̂k)− gk(θ
∗) =

k∑
k′=1

m∑
i=1

yk
′

i · ϕτk′
i −

(
k∑

k′=1

m∑
i=1

µ((ϕτk′
i )⊤θ∗) · ϕτk′

i + λθ∗

)
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=

k∑
k′=1

m∑
i=1

εk′,i · ϕτk′
i − λθ∗. (6)

Then, using Lemma 2, we have that with probability at least 1− δ′, for any k > 0,∥∥∥gk(θ̂k)− gk(θ
∗)
∥∥∥
Λ−1

k (θ∗)
≤

∥∥∥∥∥
k∑

k′=1

m∑
i=1

εk′,i · ϕτk′
i

∥∥∥∥∥
Λ−1

k (θ∗)

+ rmax

√
λ|S||A|

≤
√
λ

2
+
|S||A|√

λ
log

(
4

δ′
·
(
1 +

H2µ′
maxk

|S||A|mλ

))
+ rmax

√
λ|S||A|

= ω(k).

For any ϕ ∈ R|S||A| and θ1, θ2 ∈ Θ, define

b(ϕ, θ1, θ2) :=

∫ 1

z=0

µ′((1− z) · ϕ⊤θ1 + z · ϕ⊤θ2)dz.

For any k > 0 and θ1, θ2 ∈ Θ, define

Γk(θ1, θ2) :=

k∑
k′=1

m∑
i=1

b(ϕ, θ1, θ2) · ϕτk′
i (ϕτk′

i )⊤ + λI.

In the definitions of b(ϕ, θ1, θ2) and Γk(θ1, θ2), θ1 and θ2 have the same roles and can be inter-
changed.

Recall that

α := exp(
Hrmax

m
) + exp(−Hrmax

m
) + 2.

Then, we have

sup
τ seg,θ

1

µ′((ϕτ seg)⊤θ)
≤ α,

where τ seg denotes the visitation indicator of any possible trajectory segment.

Lemma 4. For any k ≥ 1 and θ ∈ Θ, we have

Σk ⪯ αΛk(θ).

Proof. We have
1

α
= inf

τ seg,θ
µ′((ϕτ seg

)⊤θ).

Then, it holds that

Σk =

k∑
k′=1

m∑
i=1

ϕτk′
i (ϕτk′

i )⊤ + αλI

= α

(
k∑

k′=1

m∑
i=1

1

α
· ϕτk′

i (ϕτk′
i )⊤ + λI

)

⪯ α

(
k∑

k′=1

m∑
i=1

µ′((ϕτk′
i )⊤θ) · ϕτk′

i (ϕτk′
i )⊤ + λI

)
= αΛk(θ).
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Lemma 5. For any ϕ ∈ R|S||A| and θ1, θ2 ∈ Θ, we have

µ(ϕ⊤θ1)− µ(ϕ⊤θ2) = b(ϕ, θ2, θ1) · ϕ⊤(θ1 − θ2).

In addition, for any k > 0 and θ1, θ2 ∈ Θ, we have

∥θ1 − θ2∥Γk(θ2,θ1)
= ∥gk(θ1)− gk(θ2)∥Γ−1

k (θ2,θ1)
.

Proof. The first statement follows from the mean-value theorem.

Then, using the first statement, we have that for any k > 0,

gk(θ1)− gk(θ2) =

k∑
k′=1

m∑
i=1

(
µ((ϕτk′

i )⊤θ1)− µ((ϕτk′
i )⊤θ2)

)
· ϕτk′

i + λ (θ1 − θ2)

=

k∑
k′=1

m∑
i=1

b(ϕτk′
i , θ2, θ1) · ϕτk′

i (ϕτk′
i )⊤(θ1 − θ2) + λ (θ1 − θ2)

= Γk(θ2, θ1) · (θ1 − θ2),

and thus

∥θ1 − θ2∥Γk(θ2,θ1)
=

√
(θ1 − θ2)

⊤ · Γk(θ2, θ1) · (θ1 − θ2)

=

√
(θ1 − θ2)

⊤ · Γk(θ2, θ1) · Γ−1
k (θ2, θ1) · Γk(θ2, θ1) · (θ1 − θ2)

= ∥gk(θ1)− gk(θ2)∥Γ−1
k (θ2,θ1)

,

which gives the second statement.

Recall that for any k > 0, Zk :=
∑k

k′=1

∑m
i=1 εk′,i · ϕτk′

i .
Lemma 6. For any k > 0, we have

Γk(θ
∗, θ̂k) ⪰

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

Λk(θ
∗),

∥Zk∥Γ−1
k (θ∗,θ̂k)

≤

√
1 +

Hrmax

√
|S||A|

m
∥Zk∥Λ−1

k (θ∗) +
H

m
√
λ
∥Zk∥2Λ−1

k (θ∗) .

Furthermore, assuming that event E holds, we have

∥Zk∥Γ−1
k (θ∗,θ̂k)

≤

√
1 +

Hrmax

√
|S||A|

m
· ω(k) + H

m
√
λ
· ω(k)2.

Proof. This proof follows the analysis of Proposition 6 and Corollary 5 in (Russac et al., 2021).

From Eq. (6), we have that for any k > 0,

gk(θ̂k)− gk(θ
∗) = Zk − λθ∗.

Using Lemma 34, we have that for any ϕ ∈ R|S||A| such that ∥ϕ∥2 ≤ Lϕ,

b(ϕ, θ∗, θ̂k) ≥
(
1 +

∣∣∣ϕ⊤(θ∗ − θ̂k)
∣∣∣)−1

µ′(ϕ⊤θ∗)

=
(
1 +

∣∣∣ϕ⊤Γ−1
k (θ∗, θ̂k) · (gk(θ∗)− gk(θ̂k))

∣∣∣)−1

µ′(ϕ⊤θ∗)

≥
(
1 + ∥ϕ∥Γ−1

k (θ∗,θ̂k)

∥∥∥gk(θ∗)− gk(θ̂k)
∥∥∥
Γ−1
k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗)

≥
(
1 +

Lϕ√
λ

∥∥∥gk(θ∗)− gk(θ̂k)
∥∥∥
Γ−1
k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗)
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=

(
1 +

Lϕ√
λ
∥Zk − λθ∗∥Γ−1

k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗)

≥
(
1 + Lϕrmax

√
|S||A|+ Lϕ√

λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗).

Using the above equation with ϕ = ϕτk′
i and Lϕ = H

m , we have

Γk(θ
∗, θ̂k) :=

k∑
k′=1

m∑
i=1

b(ϕτk′
i , θ∗, θ̂k) · ϕτk′

i (ϕτk′
i )⊤ + λI

⪰
k∑

k′=1

m∑
i=1

(
1+

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗) · ϕτk′
i (ϕτk′

i )⊤+λI

=

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

Λk(θ
∗).

This implies

∥Zk∥2Γ−1
k (θ∗,θ̂k)

≤

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)
∥Zk∥2Λ−1

k (θ∗) ,

which is equivalent to

∥Zk∥2Γ−1
k (θ∗,θ̂k)

− H

m
√
λ
∥Zk∥2Λ−1

k (θ∗) ∥Zk∥Γ−1
k (θ∗,θ̂k)

−

(
1 +

Hrmax

√
|S||A|

m

)
∥Zk∥2Λ−1

k (θ∗) ≤ 0.

By analysis of quadratic functions, we have

∥Zk∥Γ−1
k (θ∗,θ̂k)

≤

√
1 +

Hrmax

√
|S||A|

m
∥Zk∥Λ−1

k (θ∗) +
H

m
√
λ
∥Zk∥2Λ−1

k (θ∗)

≤

√
1 +

Hrmax

√
|S||A|

m
· ω(k) + H

m
√
λ
· ω(k)2.

Lemma 7 (Concentration of ϕ⊤θ̂k under Binary Feedback). Assume that event E holds. Then, for
any k > 0 and ϕ ∈ R|S||A|,

|ϕ⊤θ∗ − ϕ⊤θ̂k| ≤
√
α · ν(k) ∥ϕ∥Σ−1

k
.

Proof. We have

|ϕ⊤θ∗ − ϕ⊤θ̂k|

= ∥ϕ∥Γ−1
k (θ∗,θ̂k)

∥∥∥θ∗ − θ̂k

∥∥∥
Γk(θ∗,θ̂k)

(a)
≤

√
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗)

∥∥∥gk(θ∗)− gk(θ̂k)
∥∥∥
Γ−1
k (θ∗,θ̂k)

=

√
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗) ∥Zk − λθ∗∥Γ−1
k (θ∗,θ̂k)

≤

√
1+

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗)

(
∥Zk∥Γ−1

k (θ∗,θ̂k)
+rmax

√
λ|S||A|

)
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=
m
√
λ

H

√
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗) ·(
H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
+

Hrmax

√
|S||A|

m

)

≤ m
√
λ

H

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

) 3
2

∥ϕ∥Λ−1
k (θ∗)

(b)
≤m
√
αλ

H

1+
Hrmax

√
|S||A|

m
+

H

m
√
λ

√1+
Hrmax

√
|S||A|

m
ω(k)+

H

m
√
λ
ω(k)2


3
2

∥ϕ∥Σ−1
k

=
√
α · ν(k) ∥ϕ∥Σ−1

k
.

where inequality (a) is due to Lemmas 5 and 6, and inequality (b) follows from Lemmas 4 and 6.

Lemma 8 (Gaussian Anti-Concentration). Assume that event E holds. Then, for any k > 0 and
Fk−1-measurable random variable X ∈ R|S||A|, we have

Pr
[
X⊤θ̃k > X⊤θ∗ | Fk−1

]
≥ 1

2
√
2πe

.

Proof. This proof is originated from the analysis of Lemma 11 in (Efroni et al., 2021).

Using Lemma 7, we have that for any k > 0,

|X⊤θ∗ −X⊤θ̂k−1| ≤
√
α · ν(k − 1) ∥X∥Σ−1

k−1
.

It holds that

Pr
[
X⊤θ̃k > X⊤θ∗ | Fk−1

]
= Pr

[
X⊤θ̃k −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

>
X⊤θ∗ −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

| Fk−1

]
.

Here given Fk−1, X⊤θ̃k − X⊤θ̂k−1 = X⊤ξk is a Gaussian random variable with mean 0 and
standard deviation

√
α · ν(k − 1)∥X∥Σ−1

k−1
.

Since when event E holds,

X⊤θ∗ −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

≤

√
α · ν(k − 1)∥X∥Σ−1

k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

= 1,

we have

Pr
[
X⊤θ̃k > X⊤θ∗ | Fk−1

]
≥ Pr

[
X⊤θ̃k −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

> 1 | Fk−1

]

= Pr

[
X⊤ξk√

α · ν(k − 1)∥X∥Σ−1
k−1

> 1 | Fk−1

]
(a)
≥ 1

2
√
2πe

,

where inequality (a) comes from that if Z ∼ FB
UTran(0, 1), Pr[Z > z] ≥ 1√

2π
· z
1+z2 e

− z2

2 (Borjesson
& Sundberg, 1979).

Lemma 9. Let ξk, ξ′k ∈ R|S||A| be i.i.d. random variables given Fk−1. Let p̃ be a Fk−1-measurable
transition model, and xk−1 ∈ R|S||A| be a Fk−1-measurable random variable. For any policy π,
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denote the visitation indicator under policy π on MDP p̃ by ϕ̃π. Let π̃k := argmaxπ(ϕ̃
π)⊤(xk−1 +

ξk). Then, we have

E
[(

(ϕ̃π̃k

)⊤ (xk−1 + ξk)− E
[
(ϕ̃π̃k

)⊤ (xk−1 + ξk) | Fk−1

])+ ∣∣∣ Fk−1

]
≤ E

[
|(ϕ̃π̃k

)⊤ξk|+ |(ϕ̃π̃k

)⊤ξ′k|
∣∣∣ Fk−1

]
.

Proof. This proof is originated from Lemma 12 in (Efroni et al., 2021).

First, using the definition of π̃k and the fact that ξk and ξ′k follow the same distribution, we have

E
[
(ϕ̃π̃k

)⊤ (xk−1 + ξk) | Fk−1

]
= E

[
max
π

(ϕ̃π)⊤ (xk−1 + ξ′k) | Fk−1

]
. (7)

Then, since given Fk−1, ξk and ξ′k are independent, we have

E
[
max
π

(ϕ̃π)⊤ (xk−1 + ξ′k) | Fk−1

]
= E

[
max
π

(ϕ̃π)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

]
≥ E

[
(ϕπ̃k)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

]
. (8)

Hence, combining Eqs. (7) and (8), we have

E
[(
(ϕπ̃k)⊤ (xk−1 + ξk)− E

[
(ϕπ̃k)⊤ (xk−1 + ξk) | Fk−1

])+ ∣∣∣ Fk−1

]
≤ E

[(
(ϕπ̃k)⊤ (xk−1 + ξk)− E

[
(ϕπ̃k)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

])+ ∣∣∣ Fk−1

]
= E

[(
E
[
(ϕπ̃k)⊤ (xk−1 + ξk)− (ϕπ̃k)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

])+ ∣∣∣ Fk−1

]
= E

[(
E
[
(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k | Fk−1, ξk, π̃k

])+ ∣∣∣ Fk−1

]
≤ E

[∣∣E [(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k | Fk−1, ξk, π̃k

]∣∣ ∣∣∣ Fk−1

]
≤ E

[
E
[
|(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k| | Fk−1, ξk, π̃k

] ∣∣∣ Fk−1

]
= E

[
|(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k|

∣∣∣ Fk−1

]
≤ E

[
|(ϕπ̃k)⊤ξk|

∣∣∣ Fk−1

]
+ E

[
|(ϕπ̃k)⊤ξ′k|

∣∣∣ Fk−1

]
.

For any k > 0 and δk ∈ (0, 1), define event

Mk(δk) :=

{
∀ϕ ∈ R|S||A| : |ϕ⊤ξk| ≤

√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
∥ϕ∥Σ−1

k−1

}
.

Lemma 10. For any k > 0 and δk ∈ (0, 1), we have

Pr [Mk(δk) | Fk−1] ≥ 1− δk.

In addition, for a random variable X ∈ R|S||A| such that ∥X∥Σ−1
k−1
≤ LX , we have

E
[
|X⊤ξk| |Fk−1

]
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]
+
√
α · ν(k − 1) · LX

√
|S||A|δk.

Proof. This proof is similar to the analysis of Lemma 13 in (Efroni et al., 2021).

First, we prove the first statement.
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For any ϕ ∈ R|S||A|, we have

|ϕ⊤ξk| = |ϕ⊤Σ
− 1

2

k−1Σ
1
2

k−1ξk|

≤
∥∥∥Σ− 1

2

k−1ϕ
∥∥∥
2

∥∥∥Σ 1
2

k−1ξk

∥∥∥
2

=
√
α · ν(k − 1) ∥ϕ∥Σ−1

k−1

∥∥∥∥ 1√
α · ν(k − 1)

Σ
1
2

k−1ξk

∥∥∥∥
2

. (9)

Since given Fk−1, 1√
α·ν(k−1)

Σ
1
2

k−1ξk ∈ R|S||A| is a vector with each entry being a standard Gaussian

random variable, we have that ∥ 1√
α·ν(k−1)

Σ
1
2

k−1ξk∥2 is chi-distributed with parameter |S||A|.

Then, using Lemma 1 in (Laurent & Massart, 2000), we have that with probability at least 1− δk,∥∥∥∥ 1√
α · ν(k − 1)

Σ
1
2

k−1ξk

∥∥∥∥
2

≤

√√√√|S||A|+ 2

√
|S||A| log

(
1

δk

)
+ 2 log

(
1

δk

)

=

√√√√(√|S||A|+√log

(
1

δk

))2

+ log

(
1

δk

)

≤
√
|S||A|+ 2

√
log

(
1

δk

)
.

Next, we prove the second statement.

For a random variable X ∈ R|S||A|, we have

E
[
|X⊤ξk| |Fk−1

]
= Pr [Mk(δk)] · E

[
|X⊤ξk| |Fk−1,Mk(δk)

]
+ Pr

[
M̄k(δk)

]
· E
[
|X⊤ξk| |Fk−1,M̄k(δk)

]
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]
+
√
Pr
[
M̄k(δk)

]
· E
[
|X⊤ξk|2 |Fk−1,M̄k(δk)

]
(a)
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]

+
√
α · ν(k − 1)

√√√√δkE

[
∥X∥2Σ−1

k−1
·
∥∥∥∥ 1√

α · ν(k − 1)
Σ

1
2

k−1ξk

∥∥∥∥2
2

|Fk−1

]

≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]

+
√
α · ν(k − 1)

√√√√δkL2
XE

[∥∥∥∥ 1√
α · ν(k − 1)

Σ
1
2

k−1ξk

∥∥∥∥2
2

|Fk−1

]
(b)
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]
+
√
α · ν(k − 1) · LX

√
|S||A|δk.

Here inequality (a) follows from the Cauchy-Schwarz inequality. Inequality (b) is due to the
fact that given Fk−1, ∥ 1√

α·ν(k−1)
Σ

1
2

k−1ξk∥2 is chi-distributed with parameter |S||A|, and then

E[∥ 1√
α·ν(k−1)

Σ
1
2

k−1ξk∥22 |Fk−1] = |S||A|.
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Define event

FB
KTran :=

{∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤ 4H

√
k

αλ
log

(
4k

δ′

)
,∣∣∣∣∣

k∑
k′=1

(
E
[
(ϕπk′

)⊤θ∗|Fk′−1

]
− (ϕπk′

)⊤θ∗
)∣∣∣∣∣ ≤ 4Hrmax

√
k log

(
4k

δ′

)
, ∀k > 0

}
. (10)

Lemma 11. It holds that

Pr
[
FB

KTran

]
≥ 1− 2δ′.

Proof. We prove the first inequality as follows.

For any k′ ≥ 1, we have that ∥ϕτ∥(Σk′−1)
−1 ≤ H√

αλ
, and then |Eτ∼πk′ [∥ϕτ∥(Σk′−1)

−1 |Fk′−1] −
∥ϕτ∥(Σk′−1)

−1 | ≤ 2H√
αλ

.

Using the Azuma-Hoeffding inequality, we have that for any fixed k > 0, with probability at least
1− δ′

2k2 ,∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

αλ
· k log

(
4k2

δ′

)
.

Since
∑∞

k=1
δ′

2k2 ≤ δ′, by a union bound over k, we have that with probability at least δ′, for any
k ≥ 1,∣∣∣∣∣

k∑
k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

αλ
· k log

(
4k2

δ′

)

≤ 4H

√
k

αλ
log

(
4k

δ′

)
.

The second inequality can be obtained by a similar argument and the fact that |(ϕπk

)⊤θ∗| ≤ Hrmax

for any k > 0.

Lemma 12. For any K ≥ 1, we have
K∑

k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)
.

Proof. We have

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√√√√Km

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

(a)
≤

√√√√2Km ·max

{
H2

mαλ
, 1

}
·

K∑
k=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)

=

√
2Km ·max

{
H2

mαλ
, 1

}
· log

(
det(ΣK)

det(αλI)

)

≤

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)
, (11)

where inequality (a) is due to that for any x ∈ [0, c] with constant c ≥ 0, it holds that x ≤
2max{c, 1} · log(1 + x).
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Proof of Theorem 1. Letting δ′ = δ
3 , we have Pr[E ∩ FB

KTran] ≤ 1− δ. Then, to prove this theorem,
it suffices to prove the regret bound when event E ∩ FB

KTran holds.

Assume that event E ∩ FB
KTran holds. Then, we have

R(K) =

K∑
k=1

(
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗
)

=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
+ E

[
(ϕπk

)⊤θ∗|Fk−1

]
− (ϕπk

)⊤θ∗
)

≤
K∑

k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

])
+ 4Hrmax

√
K log

(
4K

δ′

)
. (12)

For the first term, we have
K∑

k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

]
+ E

[
(ϕπk

)⊤θ̃k − (ϕπk

)⊤θ∗|Fk−1

])
. (13)

In the following, we prove

E
[
(ϕπ∗

)⊤θ∗−(ϕπk

)⊤θ̃k|Fk−1

]
≤2
√
2πe · E

[(
(ϕπk

)⊤θ̃k−E
[
(ϕπk

)⊤θ̃k|Fk−1

])+
|Fk−1

]
. (14)

If E[(ϕπ∗
)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1] < 0, then Eq. (14) trivially holds.

Otherwise, letting z := E[(ϕπ∗
)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1], we have

E
[(

(ϕπk

)⊤θ̃k − E
[
(ϕπk

)⊤θ̃k|Fk−1

])+
|Fk−1

]
≥ z Pr

[
(ϕπk

)⊤θ̃k − E
[
(ϕπk

)⊤θ̃k|Fk−1

]
≥ z|Fk−1

]
≥
(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

])
· Pr

[
(ϕπk

)⊤θ̃k ≥ (ϕπ∗
)⊤θ∗|Fk−1

]
(a)
≥
(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

])
· Pr

[
(ϕπ∗

)⊤θ̃k ≥ (ϕπ∗
)⊤θ∗|Fk−1

]
(b)
≥
(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

])
· 1

2
√
2πe

,

where inequality (a) uses the definition of πk, and inequality (b) follows from Lemma 8. Thus, we
complete the proof of Eq. (14).

Let ξ′k ∈ R|S||A| be a random variable that is i.i.d. with ξ given Fk−1. Then, using Lemma 9 with
p′ = p, xk−1 = θ̂k−1 and π̃k = πk, we have

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

]
≤ 2
√
2πe · E

[(
(ϕπk

)⊤θ̃k − E
[
(ϕπk

)⊤θ̃k|Fk−1

])+
|Fk−1

]
≤ 2
√
2πe · E

[
|ϕ(πk)⊤ξk|+ |ϕ(πk)⊤ξ′k| |Fk−1

]
.

Plugging the above inequality into Eq. (13) and using Lemma 10 with δk = 1
k4 and LX = H√

αλ
, we

have
K∑

k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
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=

K∑
k=1

(
2
√
2πe E

[
|(ϕπk

)⊤ξk|+|(ϕπk

)⊤ξ′k| |Fk−1

]
+E

[
(ϕπk

)⊤
(
θ̂k−1+ξk

)
−(ϕπk

)⊤θ∗|Fk−1

])

=

K∑
k=1

((
2
√
2πe+ 1

)
· E
[
|(ϕπk

)⊤ξk| |Fk−1

]
+ 2
√
2πe · E

[
|(ϕπk

)⊤ξ′k| |Fk−1

]
+ E

[
(ϕπk

)⊤θ̂k−1 − (ϕπk

)⊤θ∗|Fk−1

])
(a)
≤

K∑
k=1

((
4
√
2πe+ 2

)√
α · ν(k − 1)

(√
|S||A|+ 4

√
log (k)

)
· E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]

+
(
4
√
2πe+ 1

)√
α · ν(k − 1)

√
|S||A|
k2

· H√
αλ

)
, (15)

where inequality (a) uses Lemmas 7 and 10.

Here according to the definition of event FB
KTran and Lemma 12, we have

K∑
k=1

E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
=

K∑
k=1

(
E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
−
∥∥∥ϕπk

∥∥∥
Σ−1

k−1

)
+

K∑
k=1

∥∥∥ϕπk
∥∥∥
Σ−1

k−1

≤ 4H

√
K

αλ
log

(
4K

δ′

)

+

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)
.

(16)

Therefore, plugging the above two equations into Eq. (12), we have

R(K) ≤
(
4
√
2πe+ 2

)√
α · ν(K)

(√
|S||A|+ 4

√
log (K)

)
·(

4H

√
K

αλ
log

(
4K

δ′

)
+

√
2Km|S||A|max

{
H2

mαλ
, 1

}
log

(
1 +

KH2

αλ|S||A|m

))

+ 2
(
4
√
2πe+ 1

)
H · ν(K)

√
|S||A|

λ
+ 4Hrmax

√
K log

(
4K

δ′

)
(a)
= Õ

(
exp(

Hrmax

2m
) · ν(K)

√
|S||A|

(√
Km|S||A| ·max

{
H2

mαλ
, 1

}
+H

√
K

αλ

))
,

where in equality (a), the last two terms are absorbed into Õ(·).

C.2 PROOF FOR THE REGRET LOWER BOUND WITH KNOWN TRANSITION

In the following, we prove the regret lower bound (Theorem 2) for RL with binary segment feedback
and known transition.

Proof of Theorem 2. We construct a random instance I as follows. As shown in Figure 4, there
are n bandit states s1, . . . , sn (i.e., there is an optimal action and multiple suboptimal actions), a
good absorbing state sn+1 and a bad absorbing state sn+2. The agent starts from s1, . . . , sn with
equal probability 1

n . For any i ∈ [n], in state si, one action aJ is uniformly chosen from A as the
optimal action. In state si, under the optimal action aJ , the agent transitions to sn+1 deterministically,
and r(si, aJ) = rmax; Under any suboptimal action a ∈ A \ {sJ}, the agent transitions to sn+2

deterministically, and r(si, a) = (1− ε)rmax, where ε ∈ (0, 1
2 ) is a parameter specified later. For all

actions a ∈ A, r(sn+1, a) = rmax and r(sn+2, a) = (1− ε)rmax.
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𝑠1

𝑠2

𝑠𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

…

𝑎𝑖
∗: transition to 𝑠𝑛+1

𝑎𝑖
𝑠𝑢𝑏: transition to 𝑠𝑛+2

𝑠𝑛+1

𝑠𝑛+2

𝑟 𝑠𝑛+1,⋅ = 𝑟𝑚𝑎𝑥 

𝑟 𝑠𝑛+2,⋅ = 1 − 𝜀 𝑟𝑚𝑎𝑥

Optimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
∗) = 𝑟𝑚𝑎𝑥

Suboptimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
𝑠𝑢𝑏) = (1 − 𝜀)𝑟𝑚𝑎𝑥

Figure 4: Instance for the lower bound under binary segment feedback and known transition.

In this proof, we will also use an alternative uniform instance Iunif. The only difference between
Iunif and I is that for any i ∈ [n], in state si, under all actions a ∈ A, the agent transitions to sn+2

deterministically, and r(si, a) = (1− ε)rmax.

Fix an algorithm A. Let Eunif[·] denote the expectation with respect to Iunif. Let E∗[·] denote the
expectation with respect to I. For any i ∈ [n] and j ∈ [|A|], let Ei,j [·] denote the expectation with
respect to the case where aj is the optimal action in state si, and Ni,j denote the number of episodes
where algorithm A chooses aj in state si, i.e., Ni,j =

∑K
k=1 1{πk

1 (si) = aj}.
The KL divergence of binary observations if taking aJ in si in each episode between Iunif and I is

m∑
i=1

KL
(
Ber

(
µ

(
(1− ε)rmax ·

H

m

))∥∥∥Ber(µ(rmax ·
H

m

)))
(a)
≤ m ·

(
µ
(
(1− ε)rmax · Hm

)
− µ

(
rmax · Hm

))2
µ′
(
rmax · Hm

)
(b)
≤ m ·

µ′ ((1− ε)Hrmax

m

)2 (
ε · Hrmax

m

)2
µ′
(
Hrmax

m

) ,

where inequality (a) uses the fact that KL(Ber(p)∥Ber(q)) ≤ (p−q)2

q(1−q) , and inequality (b) is due to
that µ′(x) is monotonically decreasing when x > 0.

In addition, the agent has probability only 1
n to arrive at (observe) state si.

Thus, using Lemma A.1 in (Auer et al., 2002), we have that for any i ∈ [n], in state si,

Ei,j [Ni,j ] ≤ Eunif[Ni,j ] +
K

2

√√√√ 1

n
· Eunif[Ni,j ] ·m ·

µ′
(
(1− ε)Hrmax

m

)2 (
ε · Hrmax

m

)2
µ′
(
Hrmax

m

)
= Eunif[Ni,j ] +

K

2
· ε · Hrmax

m

√√√√m

n
· Eunif[Ni,j ] ·

µ′
(
(1− ε)Hrmax

m

)2
µ′
(
Hrmax

m

) .

Summing over j ∈ [|A|], using the Cauchy-Schwarz inequality and the fact that
∑|A|

j=1 Eunif[Ni,j ] =
K, we have

|A|∑
j=1

Ei,j [Ni,j ] ≤ K +
KHrmaxε

2

√√√√ |A|K
mn

·
µ′
(
(1− ε)Hrmax

m

)2
µ′
(
Hrmax

m

)
≤ K +

KHrmaxε

2

√√√√ |A|K
mn

·
µ′
(
(1− c0)

Hrmax

m

)2
µ′
(
Hrmax

m

) ,
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where c0 ∈ (0, 1
2 ) is a constant which satisfies c0 ≥ ε. We will specify how to make c0 ≥ ε to satisfy

this condition later.

Then, we have

R(K) =

K∑
k=1

E∗

[
V ∗ − V πk

]

= rmaxHK − 1

n

n∑
i=1

(1− ε)rmaxHK + εrmaxH ·
1

|A|

|A|∑
j=1

Ei,j [Ni,j ]


≥ εrmaxH

K − K

|A|
− KHrmaxε

2

√√√√ K

|A|mn
·
µ′
(
(1− c0)

Hrmax

m

)2
µ′
(
Hrmax

m

)
 .

Let

ε =
1

2Hrmax

√√√√ |A|mn

K
·

µ′
(
Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 .
Then, the constant c0 should satisfy

ε =
1

2Hrmax

√√√√ |A|mn

K
·

µ′
(
Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 ≤ c0.

Since

µ′ (Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 =

(
exp

(
(1− c0)

Hrmax

m

)
+ exp

(
−(1− c0)

Hrmax

m

)
+ 2
)2

exp
(
Hrmax

m

)
+ exp

(
−Hrmax

m

)
+ 2

≤
(
4 exp

(
(1− c0)

Hrmax

m

))2
exp

(
Hrmax

m

)
= 16 exp

((
1− 2c0

)Hrmax

m

)
,

it suffices to let c0 satisfy

1

2Hrmax

√
|A|mn

K
· 16 exp

(
(1− 2c0)

Hrmax

m

)
≤ c0,

which is equivalent to K ≥ 4|A|mn
H2r2maxc

2
0
exp((1− 2c0)

Hrmax

m ).

It suffices to let

K ≥ 4|A|mn

H2r2maxc
2
0

exp

(
Hrmax

m

)
,

and then c0 can be any constant in (0, 1
2 ).

Let |S| ≥ 3, |A| ≥ 2, c0 ∈ (0, 1
2 ) and K ≥ 4|A|mn

H2r2maxc
2
0
exp(Hrmax

m ). Since

µ′ (Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 =

(
exp

(
(1− c0)

Hrmax

m

)
+ exp

(
−(1− c0)

Hrmax

m

)
+ 2
)2

exp
(
Hrmax

m

)
+ exp

(
−Hrmax

m

)
+ 2

≥
(
exp

(
(1− c0)

Hrmax

m

))2
4 exp

(
Hrmax

m

)
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Algorithm 3: SegBiTS-Tran

Input: δ, δ′ := δ
8 , λ.

1 for k = 1, . . . ,K do
2 θ̂k−1 ← argminθ −(

∑k−1
k′=1

∑m
i=1(y

k′

i · log(µ((ϕτk′
i )⊤θ)) + (1− yk

′

i ) · log(1−
µ((ϕτk′

i )⊤θ)))− 1
2λ∥θ∥

2
2);

3 Σk−1 ←
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤ + αλI;
4 Draw a noise ξk ∼ N (0, α · ν(k − 1)2 · Σ−1

k−1), where ν(k − 1) is defined in Eq. (1);

5 bpvk−1(s, a)← min{2Hrmax

√
log(KH|S||A|

δ′ )
nk−1(s,a)

, Hrmax} for any (s, a) ∈ S ×A;

6 θ̃bk ← θ̂k−1 + ξk + bpvk−1;
7 πk ← argmaxπ(ϕ̂

π
k−1)

⊤θ̃bk, where ϕ̂π
k−1 is defined in Eq. (17);

8 Play episode k with policy πk. Observe τk and binary segment feedback {yki }mi=1;

=
1

4
exp

((
1− 2c0

)Hrmax

m

)
,

we have

R(K) ≥ 1

2Hrmax

√√√√ |A|mn

K
·

µ′
(
Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 · rmaxH

(
K − K

|A|
− K

4

)

= Ω

(√
exp

(
(1− 2c0)

Hrmax

m

)
|S||A|mK

)

= Ω

(
exp

((1
2
− c0

)Hrmax

m

)√
|S||A|mK

)
.

C.3 PSEUDO-CODE AND DETAILED DESCRIPTION OF ALGORITHM SegBiTS-Tran

Algorithm 3 illustrates the procedure of SegBiTS-Tran. In episode k, similar to SegBiTS,
SegBiTS-Tran first uses MLE with past binary segment observations to obtain a reward estimate
θ̂k−1, and calculates the covariance matrix of past observations Σk−1 (Lines 2-3). After that,
SegBiTS-Tran samples a Gaussian noise ξk using Σk−1 (Line 3).

For any k > 0 and (s, a) ∈ S × A, let p̂k(·|s, a) denote the empirical estimate of p(·|s, a), and
nk(s, a) denote the number of times (s, a) was visited at the end of episode k. Then, SegBiTS-Tran
constructs a transition bonus bpvk−1(s, a), which represents the uncertainty on transition estimation.
Incorporating the MLE estimate θ̂k−1, noise ξk and transition bonus bpvk−1(s, a), SegBiTS-Tran
constitutes a posterior estimate of the reward parameter θ̃k (Line 6).

For any policy π, k > 0 and (s, a) ∈ S ×A, we define

ϕ̂π
k (s, a) := Ep̂k

[
H∑

h=1

1{sh = s, ah = a}|π

]
, (17)

which denotes the expected number of times (s, a) is visited in an episode under policy π on the
empirical MDP p̂k. In addition, let ϕ̂π

k := [ϕ̂π
k (s, a)](s,a)∈S×A ∈ R|S||A|.

Then, SegBiTS-Tran finds the optimal policy via argmaxπ(ϕ̂
π
k−1)

⊤θ̃bk, which can be efficiently
solved by any MDP planning algorithm with transition p̂k−1 and reward θ̃bk (Line 7). With the
computed optimal policy πk, SegBiTS-Tran plays episode k, and observes a trajectory and binary
feedback on each segment (Line 8).
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C.4 PROOF FOR THE REGRET UPPER BOUND WITH UNKNOWN TRANSITION

In the following, we prove the regret upper bound (Theorem 3) of algorithm SegBiTS-Tran for
unknown transition.

Define event

GHoeff :=

{∣∣p̂k−1(·|s, a)⊤V ∗
h+1 − p(·|s, a)⊤V ∗

h+1

∣∣ ≤ (2Hrmax

√√√√ log
(

KH|S||A|
δ′

)
nk−1(s, a)

∧Hrmax

)
,

∀(s, a) ∈ S ×A, ∀k > 0

}
.

Lemma 13. It holds that

Pr [GHoeff] ≥ 1− 2δ′.

Proof. This lemma follows from the Hoeffding inequality and a union bound over nk−1(s, a) ∈
[KH] and (s, a) ∈ S ×A.

Lemma 14 (Optimism of Thompson Sampling with Unknown Transition). Assume that event E and
GHoeff holds. Then, for any k > 0, we have

Pr
[
ϕ̂k−1(π

k)⊤θ̃bk > (ϕπ∗
)⊤θ∗ | Fk−1

]
≥ 1

2
√
2πe

.

Proof. This proof follows the analysis of Lemma 17 in (Efroni et al., 2021).

Using the value difference lemma (see Lemma 35), we have

ϕ̂k−1(π
∗)⊤θ̃bk − (ϕπ∗

)⊤θ∗

= Ep̂k−1,π∗

[
H∑

h=1

(
θ̃bk(sh, ah)− θ∗(sh, ah) + (p̂k−1(·|sh, ah)− p(·|sh, ah))⊤ V ∗

h+1

)]

= Ep̂k−1,π∗

[
H∑

h=1

(
θ̃k(sh, ah)−θ∗(sh, ah)+bpvk−1(sh, ah)+(p̂k−1(·|sh, ah)−p(·|sh, ah))⊤V ∗

h+1

)]
(a)
≥ Ep̂k−1,π∗

[
H∑

h=1

(
θ̃k(sh, ah)− θ∗(sh, ah) + bpvk−1(sh, ah)− bpvk−1(sh, ah)

)]

= Ep̂k−1,π∗

[
H∑

h=1

(
θ̃k(sh, ah)− θ∗(sh, ah)

)]
= ϕ̂k−1(π

∗)⊤θ̃k − ϕ̂k−1(π
∗)⊤θ∗,

where inequality (a) uses the definition of event GHoeff.

Thus, by the definition of πk, we have

Pr
[
ϕ̂k−1(π

k)⊤θ̃bk > (ϕπ∗
)⊤θ∗ | Fk−1

] (a)
≥ Pr

[
ϕ̂k−1(π

∗)⊤θ̃bk > (ϕπ∗
)⊤θ∗ | Fk−1

]
= Pr

[
ϕ̂k−1(π

∗)⊤θ̃bk − (ϕπ∗
)⊤θ∗ > 0 | Fk−1

]
≥ Pr

[
ϕ̂k−1(π

∗)⊤θ̃k − ϕ̂k−1(π
∗)⊤θ∗ > 0 | Fk−1

]
(b)
≥ 1

2
√
2πe

,

where inequality (a) is due to the definition of πk, and inequality (b) follows from Lemma 8.
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Define event

GKL :=

{
KL(p̂k−1(·|s, a), p(·|s, a)) ≤

L

nk−1(s, a)
, ∀k > 0,∀(s, a) ∈ S ×A

}
. (18)

Lemma 15 (Concentration of Transition). It holds that

Pr[GKL] ≥ 1− δ′.

Proof. This lemma can be obtained by Theorem 3 and Lemma 3 in (Ménard et al., 2021).

Recall that for any k > 0 and (s, a) ∈ S × A, nk(s, a) denotes the cumulative number of times
that (s, a) is visited at the end of episode k. For any k > 0, h ∈ [H] and (s, a) ∈ S × A, let
wk,h(s, a) denote the probability that (s, a) is visited at step h in episode k, and let wk(s, a) :=∑H

h=1 wk,h(s, a).

Define event

H :=

{
nk(s, a) ≥

1

2

k∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)
, ∀k > 0,∀(s, a) ∈ S ×A

}
. (19)

Lemma 16 (Concentration of the Number of Visitations). It holds that

Pr[H] ≥ 1− δ′.

Proof. This lemma can be obtained from Lemma F.4 in (Dann et al., 2017) and summing over
h ∈ [H].

Define event

FB
UTran :=

{∣∣∣∣∣
k∑

k′=1

(
E
[
(ϕπk′

)⊤bpvk′−1|Fk′−1

]
− (ϕπk′

)⊤bpvk′−1

)∣∣∣∣∣ ≤ 4H2rmax

√
k log

(
4k

δ′

)
,∣∣∣∣∣

k∑
k′=1

(
E
[∥∥∥ϕ̂k′−1(π

k′
)− ϕ(πk′

)
∥∥∥
1
|Fk′−1

]
−
∥∥∥ϕ̂k′−1(π

k′
)− ϕ(πk′

)
∥∥∥
1

)∣∣∣∣∣
≤ 8H

√
k log

(
4k

δ′

)
, ∀k > 0

}
.

Lemma 17. It holds that

Pr
[
FB

UTran

]
≥ 1− 2δ′.

Proof. This lemma can be obtained by a similar analysis as Lemma 11, and the facts that
|(ϕπk

)⊤bpvk−1| ≤ H2rmax and ∥ϕ̂k−1(π
k)− ϕπk∥1 ≤ 2H for any k ≥ 1.

Lemma 18. Assume that event FB
UTran ∩ GKL ∩H holds. Then, we have

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
≤ 24e12|S| 32 |A| 32H 3

2

√
KL log(2KH)

+ 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
.

Proof. First, from Lemmas 29 and 30, we have
K∑

k=1

∥∥∥ϕ̂k−1(π)− ϕ(π)
∥∥∥
1

≤ e12|S||A|
K∑

k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

(
8H

√
L

nk−1(s, a)
+

46H2L

nk−1(s, a)

)
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+ e12|S||A|H
K∑

k=1

H∑
h=1

∑
(s,a)/∈Dk

wπk

h (s, a)

≤ 8e12|S||A|H
√
L

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

nk−1(s, a)

+ 46e12|S||A|H2L

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

nk−1(s, a)
+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
≤ 16e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 184e12|S|2|A|2H2L log(2KH)

+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
≤ 16e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
.

Next, we have
K∑

k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
≤

K∑
k=1

∥∥∥ϕ̂k−1(π
k)− ϕπk

∥∥∥
1
+

K∑
k=1

(
E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
−
∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1

)
≤ 16e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
+ 8H

√
K log

(
4K

δ′

)
≤ 24e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
.

Lemma 19. Assume that event FB
UTran holds. Then, we have

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
≤ 20|S||A|H2rmax

√
K log

(
4KH|S||A|

δ′

)
.

Proof. It holds that
K∑

k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
=

K∑
k=1

(ϕπk

)⊤bpvk−1 +

K∑
k=1

(
E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
− (ϕπk

)⊤bpvk−1

)

≤
K∑

k=1

H∑
h=1

∑
s,a

wπk

h (s, a)

2Hrmax

√√√√ log
(

KH|S||A|
δ′

)
nk−1(s, a)

∧Hrmax

+ 4H2rmax

√
K log

(
4K

δ′

)

≤ 2Hrmax

√
log

(
KH|S||A|

δ′

) K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)√
nk−1(s, a)
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+Hrmax

K∑
k=1

H∑
h=1

∑
(s,a)/∈Dk

wπk

h (s, a) + 4H2rmax

√
K log

(
4K

δ′

)

≤ 2Hrmax

√
log

(
KH|S||A|

δ′

)
·
√
KH ·

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

nk−1(s, a)

+ 8|S||A|H2rmax log

(
|S||A|H

δ′

)
+ 4H2rmax

√
K log

(
4K

δ′

)

≤ 2Hrmax

√
log

(
KH|S||A|

δ′

)
·
√
KH ·

√
4|S||A| log(2KH)

+ 8|S||A|H2rmax log

(
|S||A|H

δ′

)
+ 4H2rmax

√
K log

(
4K

δ′

)
≤ 16|S||A|H2rmax

√
K log

(
4KH|S||A|

δ′

)
.

Proof of Theorem 3. Letting δ′ = δ
8 , we have Pr[E ∩ FB

KTran ∩ GHoeff ∩ GKL ∩H ∩ FB
UTran] ≤ 1− δ.

Then, to prove this theorem, it suffices to prove the regret bound when event E ∩ FB
KTran ∩ GHoeff ∩

GKL ∩H ∩ FB
UTran holds.

Assume that event E ∩ FB
KTran ∩ GHoeff ∩ GKL ∩H ∩ FB

UTran holds. Then, we have

R(K) =

K∑
k=1

(
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗
)

=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
+ E

[
(ϕπk

)⊤θ∗|Fk−1

]
− (ϕπk

)⊤θ∗
)

=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

])
+ 4Hrmax

√
K log

(
4K

δ′

)
. (20)

For the first term, we have
K∑

k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤θ̃bk − (ϕπk

)⊤θ∗|Fk−1

])
. (21)

In the following, we prove

E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

]
≤ 2
√
2πe · E

[(
ϕ̂k−1(π

k)⊤θ̃bk − E
[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

])+
|Fk−1

]
. (22)

If E[(ϕπ∗
)⊤θ∗ − ϕ̂k−1(π

k)⊤θ̃bk|Fk−1] < 0, then Eq. (22) trivially holds.

Otherwise, letting z := E[(ϕπ∗
)⊤θ∗ − ϕ̂k−1(π

k)⊤θ̃bk|Fk−1], we have

E
[(

ϕ̂k−1(π
k)⊤θ̃bk − E

[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

])+
|Fk−1

]
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≥ z Pr
[
ϕ̂k−1(π

k)⊤θ̃bk − E
[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

]
≥ z|Fk−1

]
≥
(
E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

])
· Pr

[
ϕ̂k−1(π

k)⊤θ̃bk ≥ (ϕπ∗
)⊤θ∗|Fk−1

]
(a)
≥
(
E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

])
· 1

2
√
2πe

,

where inequality (a) uses Lemma 14. Thus, we complete the proof of Eq. (22).

Let ξ′k ∈ R|S||A| be an i.i.d. random variable with ξ given Fk−1. Then, using Lemma 9 with
p′ = p̂k−1, xk−1 = θ̂k−1 + bpvk−1 and π̃k = πk, we have

E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

]
≤ 2
√
2πe · E

[(
ϕ̂k−1(π

k)⊤θ̃bk − E
[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

])+
|Fk−1

]
≤ 2
√
2πe · E

[
|ϕ̂k−1(π

k)⊤ξk|+ |ϕ̂k−1(π
k)⊤ξ′k| |Fk−1

]
.

Plugging the above inequality into Eq. (21) and using Lemma 10 with δk = 1
k4 and LX = H√

αλ
, we

have
K∑

k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
=

K∑
k=1

(
2
√
2πe · E

[
|ϕ̂k−1(π

k)⊤ξk|+ |ϕ̂k−1(π
k)⊤ξ′k| |Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1 + ξk

)
− (ϕπk

)⊤θ∗|Fk−1

])
=

K∑
k=1

((
2
√
2πe+ 1

)
· E
[
|ϕ̂k−1(π

k)⊤ξk| |Fk−1

]
+ 2
√
2πe · E

[
|ϕ̂k−1(π

k)⊤ξ′k| |Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1

)
− (ϕπk

)⊤θ∗|Fk−1

])
≤

K∑
k=1

((
4
√
2πe+ 1

)√
α · ν(k − 1)

(√
|S||A|+ 4

√
log (k)

)
E
[∥∥∥ϕ̂k−1(π

k)
∥∥∥
Σ−1

k−1

|Fk−1

]

+
(
4
√
2πe+ 1

)√
α · ν(k − 1)

√
|S||A|
k2

· H√
αλ

+ E
[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1

)
− (ϕπk

)⊤θ∗|Fk−1

])
. (23)

We have

E
[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1

)
− (ϕπk

)⊤θ∗|Fk−1

]
= E

[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 − θ∗

)
|Fk−1

]
+ E

[(
ϕ̂k−1(π

k)− ϕπk
)⊤

θ∗|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

]
≤
√
α · ν(k − 1)E

[∥∥∥ϕ̂k−1(π
k)
∥∥∥
Σ−1

k−1

|Fk−1

]
+ rmaxE

[∥∥∥ϕ̂k−1(π
k)− ϕπk

∥∥∥
1
|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

]
.
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Hence, plugging the above inequality into Eq. (23), we have
K∑

k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
≤

K∑
k=1

((
4
√
2πe+ 2

)√
α · ν(k − 1)

(√
|S||A|+ 4

√
log (k)

)
· E
[∥∥∥ϕ̂k−1(π

k)
∥∥∥
Σ−1

k−1

|Fk−1

]

+
(
4
√
2πe+ 1

)
· ν(k − 1)

H

k2

√
|S||A|

λ
+ rmaxE

[∥∥∥ϕ̂k−1(π
k)− ϕπk

∥∥∥
1
|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

])
.

Here we have
K∑

k=1

E
[∥∥∥ϕ̂k−1(π

k)
∥∥∥
Σ−1

k−1

|Fk−1

]

≤
K∑

k=1

E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
+

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
Σ−1

k−1

|Fk−1

]

≤
K∑

k=1

E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
+

1√
αλ

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
(a)
≤ 4H

√
K

αλ
log

(
4K

δ′

)
+

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)

+
1√
αλ

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
,

where inequality (a) uses Eq. (16).

In addition, we have
K∑

k=1

E
[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

]
≤

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
+

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1

∥∥bpvk−1

∥∥
∞ |Fk−1

]
≤

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
+Hrmax

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
.

Therefore, plugging the above three equations into Eq. (20), we have

R(K)

≤
(
4
√
2πe+ 2

)√
α · ν(K)

(√
|S||A|+ 4

√
log (K)

)
·(

4H

√
K

αλ
log

(
4K

δ′

)
+

√
2Km|S||A|max

{
H2

mαλ
, 1

}
log

(
1 +

KH2

αλ|S||A|m

))

+

((
4
√
2πe+2

)ν(K)√
λ

(√
|S||A|+4

√
log(K)

)
+2Hrmax

) K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]

+

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
+2
(
4
√
2πe+ 1

)
H · ν(K)

√
|S||A|

λ
+4Hrmax

√
K log

(
4K

δ′

)
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(a)
= Õ

(
exp

(
Hrmax

m

)
ν(K)

√
|S||A|

(√
Km|S||A|max

{
H2

mαλ
, 1

}
+H

√
K

αλ

)

+

(
ν(K)

√
|S||A|

λ
+Hrmax

)
|S|2|A| 32H 3

2

√
K

)
,

where in equality (a), we use Lemmas 18 and 19, and the last three terms are absorbed into Õ(·).

D PROOFS FOR RL WITH SUM SEGMENT FEEDBACK

In this section, we provide the proofs for RL with sum segment feedback.

D.1 PROOF FOR THE REGRET UPPER BOUND WITH KNOWN TRANSITION

We first prove the regret upper bound (Theorem 4) of algorithm E-LinUCB for known transition.

Define event

J :=

{∥∥∥∥∥
K0∑
k=1

(
m∑
i=1

ϕτk
i (ϕτk

i )⊤ − Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])∥∥∥∥∥
≤ 4H2

m

√
K0 log

(
2|S||A|

δ′

)
+

4H2

m
log

(
2|S||A|

δ′

)}
. (24)

Lemma 20 (Concentration of Initial Sampling). It holds that

Pr [J ] ≥ 1− δ′.

Proof. Note that π1, . . . , πK0 and K0 are fixed before sampling, E[
∑m

i=1 ϕ
τk
i (ϕτk

i )⊤] =

Eτi∼πk

[∑m
i=1 ϕ(τi)ϕ(τi)

⊤], and ∥
∑m

i=1 ϕ
τk
i (ϕτk

i )⊤∥ ≤ H2

m . Then, using the matrix Bernstein
inequality (Theorem 6.1.1 in (Tropp et al., 2015)), we can obtain this lemma.

Lemma 21 (E-optimal Design). Assume that event J holds. Then, we have∥∥∥∥∥∥
(

K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤

)−1
∥∥∥∥∥∥ ≤ 1

H2
.

Proof. Using the guarantee of the rounding procedure ROUND (Theorem 1.1 in (Allen-Zhu et al.,
2021)) and the fact that K0 ≥ |S||A|

γ2 , we have∥∥∥∥∥∥
(

K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])−1
∥∥∥∥∥∥

≤ (1 + γ)

∥∥∥∥∥∥
(
K0

∑
π∈Π

w∗(π) · Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])−1
∥∥∥∥∥∥

≤ (1 + γ)z∗

K0
.

Let σmin(·) denote the minimum eigenvalue. Then, we have

σmin

(
K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤

)

= σmin

(
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

]
+

K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤−
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])
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≥σmin

(
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])
−

∥∥∥∥∥
K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤−
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

]∥∥∥∥∥
≥ K0

(1 + γ)z∗
− 4H2

m

√
log

(
2|S||A|

δ′

)
·
√
K0 −

4H2

m
log

(
2|S||A|

δ′

)
. (25)

Let x =
√
K0 and

f(x) =
1

(1 + γ)z∗
· x2 − 4H2

m

√
log

(
2|S||A|

δ′

)
· x− 4H2

m
log

(
2|S||A|

δ′

)
−H2.

According to the property of quadratic functions, when

x ≥

4H2

m

√
log
(

2|S||A|
δ′

)
+

√(
4H2

m

√
log
(

2|S||A|
δ′

))2

+ 4 · 1
(1+γ)z∗

(
4H2

m log
(

2|S||A|
δ′

)
+H2

)
2 · 1

(1+γ)z∗

,

(26)

we have f(x) ≥ 0.

To make Eq. (26) hold, it suffices to set

K0 ≥
(1 + γ)2(z∗)2

4
·

(
2 ·

(
4H2

m

√
log

(
2|S||A|

δ′

))2

+ 2 ·

(
4H2

m

√
log

(
2|S||A|

δ′

))2

+
8

(1 + γ)z∗
· 5H2 log

(
2|S||A|

δ′

))

=

(
16H4(1 + γ)2(z∗)2

m2
+ 10H2(1 + γ)z∗

)
log

(
2|S||A|

δ′

)
.

Furthermore, since ∥
∑

π∈Π w∗(π)Eτi∼πk

[∑m
i=1 ϕ(τi)ϕ(τi)

⊤] ∥ ≤ H2 and then z∗ ≥ 1
H2 , to make

the right-hand-side in Eq. (25) no smaller than H2, it suffices to set

K0 ≥ 26H4(1 + γ)2(z∗)2 log

(
2|S||A|

δ′

)
.

Therefore, combining the definition of K0 and Eq. (25), we have

σmin

(
K0∑
k=1

ϕ(τk)ϕ(τk)⊤

)
≥ H2,

which completes the proof.

Lemma 22. For any k > 0,
k∑

k′=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
= log

(
det(Σk)

det(λI)

)
≤ |S||A| log

(
1 +

kH2

λ|S||A|m

)
.

Proof. For any k > 0, it holds that

det(Σk) = det

(
Σk−1 +

m∑
i=1

ϕτk
i (ϕτk

i )⊤

)

= det(Σk−1) det

(
I +

m∑
i=1

(Σk−1)
− 1

2ϕτk
i (ϕτk

i )⊤(Σk−1)
− 1

2

)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

= det(Σk−1)

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)

= det(λI)

k∏
k′=1

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
.

Taking the logarithm on both sides, we have

log det(Σk) = log det(λI) +

k∑
k′=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
.

Then,
k∑

k′=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
= log

(
det(Σk)

det(λI)

)

(a)
≤ log


(

tr(Σk)
|S||A|

)|S||A|

λ|S||A|


= |S||A| log

(
tr(Σk)

λ|S||A|

)
≤ |S||A| log

(
λ|S||A|+ km · H

2

m2

λ|S||A|

)

= |S||A| log
(
1 +

kH2

λ|S||A|m

)
,

where (a) uses the arithmetic mean-geometric mean inequality.

Lemma 23 (Elliptical Potential with Optimized Initialization). Assume that event J holds. Then, for
any k ≥ K0 + 1,

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

≤ 1.

Furthermore, for any K ≥ K0 + 1,
K∑

k=K0+1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√
2Km|S||A| log

(
1 +

KH2

λ|S||A|m

)
.

Proof. Using Lemma 21, for any k ≥ K0 + 1, we have
m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

=

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2(
λI+

∑K0
k′=1

ϕτk′
(ϕτk′

)⊤+
∑k−1

k′=K0+1
ϕτk′

(ϕτk′
)⊤

)−1

≤
m∑
i=1

∥∥∥ϕτ i
i

∥∥∥2(∑K0
k′=1

ϕτk′
(ϕτk′

)⊤
)−1

≤ m · H
2

m2
· 1

H2

≤ 1.

Then, we have

K∑
k=K0+1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√√√√Km

K∑
k=K0+1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1
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(a)
≤

√√√√Km · 2
K∑

k=K0+1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)

≤

√√√√Km · 2
K∑

k=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)
(b)
≤

√
2Km|S||A| log

(
1 +

KH2

λ|S||A|m

)
,

where (a) uses the fact that x ≤ 2 log(1 + x) for any x ∈ [0, 1], and (b) follows from Lemma 22.

Define event

K :=

{∥∥∥θ̂k−θ∗∥∥∥
Σk

≤

√
H|S||A|

m
log

(
1+

kH2

λ|S||A|m

)
+2 log

(
1

δ′

)
+rmax

√
λ|S||A|, ∀k > 0

}
.

(27)

Lemma 24 (Concentration of θ̂k under Sum Feedback). It holds that

Pr [K] ≥ 1− δ′.

Proof. Since the sum feedback on each segment is H
m -sub-Gaussian given the observation of transition

and ∥θ∗∥ ≤ rmax

√
|S||A|, using Lemma 2 in (Abbasi-Yadkori et al., 2011), we can obtain this

lemma.

Define event

FS
opt :=

{∣∣∣∣∣
k∑

k′=K0+1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣
≤ 4

√
k log

(
4k

δ′

)
, ∀k ≥ K0 + 1

}
. (28)

Lemma 25 (Concentration of Visitation Indicators). It holds that

Pr
[
FS

opt

]
≥ 1− δ′.

Proof. According to Lemma 23, we have that for any k′ ≥ K0 + 1, ∥ϕτ∥(Σk′−1)
−1 ≤ 1, and then

|Eτ∼πk′ [∥ϕτ∥(Σk′−1)
−1 |Fk′−1]− ∥ϕτ∥(Σk′−1)

−1 | ≤ 2.

Using the Azuma-Hoeffding inequality, we have that for any fixed k ≥ K0 + 1, with probability at
least 1− δ′

2k2 ,∣∣∣∣∣
k∑

k′=K0+1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
−∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√

2 · 4(k −K0 − 1) log

(
4k2

δ′

)
.

Since
∑∞

k=K0+1
δ′

2k2 ≤ δ′, by a union bound over k, we have that with probability at least δ′, for any
k ≥ K0 + 1,∣∣∣∣∣

k∑
k′=K0+1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4(k −K0 − 1) log

(
4k2

δ′

)

≤ 4

√
k log

(
4k

δ′

)
.
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Proof of Theorem 4. Let δ′ = δ
3 . We have Pr[J ∩ K ∩ FS

opt] ≥ 1 − δ. To prove this theorem, it
suffices to prove the regret bound when event J ∩ K ∩ FS

opt holds.

Assume that event J ∩ K ∩ FS
opt holds. Then, we have

R(K) =

K∑
k=1

(
(ϕπ∗

)⊤θ − (ϕπk

)⊤θ
)

(a)
≤

K∑
k=K0+1

(
(ϕπ∗

)⊤θ̂k−1 + β(k − 1) · ∥ϕπ∗
∥(Σk−1)−1 − (ϕπk

)⊤θ
)
+K0H

(b)
≤

K∑
k=K0+1

(
(ϕπk

)⊤θ̂k−1 + β(k − 1) · ∥ϕπk

∥(Σk−1)−1 − (ϕπk

)⊤θ
)
+K0H

≤
K∑

k=K0+1

2β(k − 1) · ∥ϕπk

∥(Σk−1)−1 +K0H

= 2β(K)

K∑
k=K0+1

∥Eτ∼πk [ϕτ |Fk−1]∥(Σk−1)−1 +K0H

(c)
≤ 2β(K)

K∑
k=K0+1

Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
+K0H

= 2β(K)

K∑
k=K0+1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−∥ϕτ∥(Σk−1)−1+∥ϕτ∥(Σk−1)−1

)
+K0H

≤ 2β(K)

K∑
k=K0+1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−∥ϕτ∥(Σk−1)−1+

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

)
+K0H, (29)

where (a) follows from Eq. (27), (b) is due to the definition of πk, and (c) uses the Jensen inequality.

Plugging Eq. (28) and Lemma 23 into Eq. (29) and using the fact that λ := H
r2maxm

, we have

R(K) ≤ 2

(√
H|S||A|

m
log

(
1 +

KH2

λ|S||A|m

)
+ 2 log

(
1

δ′

)
+ rmax

√
λ|S||A|

)
·(

4

√
K log

(
4K

δ

)
+

√
2Km|S||A| log

(
1 +

KH2

λ|S||A|m

))

+H

⌈
max

{
26H4(1 + γ)2(z∗)2 log

(
2|S||A|

δ′

)
,
|S||A|
γ2

}⌉
= O

(
|S||A|

√
HK log

((
1 +

KHr2max

|S||A|m

)
1

δ

)
+(z∗)2H5 log

(
|S||A|

δ

)
+|S||A|H

)
.

D.2 PROOF FOR THE REGRET LOWER BOUND WITH KNOWN TRANSITION

Now we prove the regret lower bound (Theorem 5) for RL with sum segment feedback and known
transition.

Proof of Theorem 5. We construct a random instance I as follows. As shown in Figure 5, there are
n bandit states s1, . . . , sn (i.e., there is an optimal action and multiple suboptimal actions), a good
absorbing state sn+1 and a bad absorbing state sn+2. The agent starts from s1, . . . , sn with equal
probability 1

n . For any i ∈ [n], in state si, one action aJ is uniformly chosen from A as the optimal
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𝑠1

𝑠2

𝑠𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

…

𝑎𝑖
∗: transition to 𝑠𝑛+1

𝑎𝑖
𝑠𝑢𝑏: transition to 𝑠𝑛+2

𝑠𝑛+1

𝑠𝑛+2

𝑟 𝑠𝑛+1,⋅ =
1

2
+ 𝜀 𝑟𝑚𝑎𝑥 

𝑟 𝑠𝑛+2,⋅ =
1

2
𝑟𝑚𝑎𝑥 

Optimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
∗) =

1

2
+ 𝜀 𝑟𝑚𝑎𝑥

Suboptimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
𝑠𝑢𝑏) =

1

2
𝑟𝑚𝑎𝑥

Figure 5: Instance for the lower bound under sum segment feedback and known transition.

action. In state si, under the optimal action aJ , the agent transitions to sn+1 deterministically, and
r(si, aJ) = ( 12 + ε)rmax, where ε ∈ (0, 1

2 ] is a parameter specified later; Under any suboptimal
action a ∈ A \ {sJ}, the agent transitions to sn+2 deterministically, and r(si, a) =

1
2rmax. For all

actions a ∈ A, r(sn+1, a) = ( 12 + ε)rmax and r(sn+2, a) =
1
2rmax. For any (s, a) ∈ S × A, the

reward distribution of (s, a) is Gaussian distribution N (r(s, a), 1).

In this proof, we will also use an alternative uniform instance Iunif. The only difference between
Iunif and I is that for any i ∈ [n], in state si, under all actions a ∈ A, the agent transitions to sn+2

deterministically, and r(si, a) =
1
2rmax.

Fix an algorithm A. Let Eunif[·] denote the expectation with respect to Iunif. Let E∗[·] denote the
expectation with respect to I. For any i ∈ [n] and j ∈ [|A|], let Ei,j [·] denote the expectation with
respect to the case where aj is the optimal action in state si, and Ni,j denote the number of episodes
where algorithm A chooses aj in state si, i.e., Ni,j =

∑K
k=1 1{πk

1 (si) = aj}.
The KL divergence of the reward observations if taking aJ in si (i ∈ [n]) between Iunif and I is

m∑
i=1

KL
(
N
(
1

2
rmax ·

H

m
,
H

m

)∥∥∥N ((1

2
+ ε

)
rmax ·

H

m
,
H

m

))

= m ·
(
H
m · rmaxε

)2
H
m

= Hr2maxε
2.

In addition, the agent has probability only 1
n to arrive at (observe) state si.

Hence, using Lemma A.1 in (Auer et al., 2002), we have that for any i ∈ [n], in state si,

Ei,j [Ni,j ] ≤ Eunif[Ni,j ] +
K

2

√
1

n
· Eunif[Ni,j ] ·Hr2maxε

2.

Summing over j ∈ [|A|], using the Cauchy-Schwarz inequality and the fact that
∑|A|

j=1 Eunif[Ni,j ] =
K, we have

|A|∑
j=1

Ei,j [Ni,j ] ≤ K +
K

2

√
|A|
n
·K ·Hr2maxε

2

= K +
Krmaxε

2

√
|A|HK

n
.
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Algorithm 4: LinUCB-Tran

Input: δ, δ′ := δ
4 , λ := H

m , L := log(3|S||A|H
δ′ ) + S log(8e(1 +KH)). For any k ≥ 1,

β(k) :=
√

H|S||A|
m log(1 + kH2

λ|S||A|m ) + 2 log( 1
δ′ ) + rmax

√
λ|S||A|.

1 for k = 1, . . . ,K do
2 θ̂k−1 ← (λI +

∑k−1
k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤)−1
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i Rk′

i ;

3 Σk−1 ← λI +
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤;
4 πk←argmaxπ∈Π((ϕ̂

π
k−1)

⊤θ̂k−1+β(k−1)·∥ϕ̂π
k−1∥(Σk−1)−1+

∑
s′,a′Es1∼ρ[B

π;s′,a′;k
1 (s1)]),

where Bπ;s′,a′;k
1 (s1) is defined in Eq. (31);

5 Play episode k with policy πk. Observe τk and sum segment feedback {Rk
i }mi=1;

Then, we have

R(K) =

K∑
k=1

E∗

[
V ∗ − V πk

]

=

(
1

2
+ ε

)
rmaxHK − 1

n

n∑
i=1

1

2
rmaxHK + εrmaxH ·

1

|A|

|A|∑
j=1

Ei,j [Ni,j ]


= εrmaxH

(
K − K

|A|
− Krmaxε

2

√
HK

n|A|

)
.

Recall that n = |S| − 2. Let |S| ≥ 3, |A| ≥ 2, K ≥ n|A|
r2maxH

and ε = 1
2rmax

√
n|A|
HK . Then, we have

R(K) = Ω
(√
|S||A|HK

)
.

D.3 PSEUDO-CODE AND DETAILED DESCRIPTION OF ALGORITHM LinUCB-Tran

Algorithm 4 presents the pseudo-code of LinUCB-Tran. In each episode k, similar to algorithm
E-LinUCB, LinUCB-Tran first computes the least squares estimate of the reward parameter θ̂k−1 and
covariance matrix Σk−1 with past observations (Lines 2-3).

Then, we introduce the transition estimation in LinUCB-Tran. We first define some notation which
also appears in algorithm SegBiTS-Tran. For any k > 0 and (s, a) ∈ S × A, let p̂k(·|s, a) denote
the empirical estimate of p(·|s, a), and nk(s, a) denote the number of times (s, a) was visited up to
the end of episode k. In addition, for any policy π, let ϕ̂π

k (s, a) denote the expected number of times
(s, a) is visited in an episode under policy π on empirical MDP p̂k−1 (see Eq. (17) for the formal
definition).

Below we establish a bound for the deviation between ϕ̂π
k−1 and ϕπ. For ease of analysis, we first

connect ϕπ with a newly-defined visitation value function Gπ;s′,a′

h (s; p). For any transition model p′,
policy π and (s′, a′) ∈ S ×A, if regarding hitting (s′, a′) as an instantaneous reward one, then we
can define a visitation value function:{

Gπ;s′,a′

h (s; p′) = 1{s = s′, πh(s) = a′}+ p(·|s, πh(s))
⊤Gπ;s′,a′

h+1 (·), ∀s ∈ S, ∀h ∈ [H],

Gπ;s′,a′

H+1 (s; p′) = 0, ∀s ∈ S.
(30)

Gπ;s′,a′

h (s; p′) denotes the expected cumulative number of times (s′, a′) was hit starting from s
at step h under policy π on MDP p′, till the end of this episode. It holds that ϕπ(s′, a′) =

Es1∼ρ[G
π;s′,a′

1 (s1|p)] and ϕ̂π
k−1(s

′, a′) = Es1∼ρ[G
π;s′,a′

1 (s1|p̂k−1)] for any (s′, a′) ∈ S ×A.
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With the definition of Gπ;s′,a′

h , bounding the deviation between ϕ̂π
k−1 and ϕπ is similar to bounding the

gap between the estimated and true value functions. Then, we can build a Bernstern-type uncertainty
bound between ϕ̂π

k−1 and ϕπ using the variance of Gπ;s′,a′

h . For any policy π, (s′, a′) ∈ S ×A and
k > 0, define

Bπ;s′,a′;k
h (s) = min

{(
4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′
h+1 (·|p̂k−1))·L

nk−1(s,πh(s))
+ 13H2L

nk−1(s,πh(s))

+
(
1 + 2

H

)
p̂k−1(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

)
, H

}
, ∀s ∈ S, ∀h ∈ [H],

Bπ;s′,a′;k
H+1 (s) = 0, ∀s ∈ S.

(31)

The construction of Bπ;s′,a′;k
h (s) satisfies (see Lemma 29 for more details)

|ϕ̂π
k−1(s

′, a′)− ϕπ(s′, a′)| ≤ Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
, ∀(s′, a′) ∈ S ×A,

∥ϕ̂π
k−1 − ϕπ∥1 ≤

∑
(s′,a′)

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.

Incorporating this transition uncertainty Es1∼ρ[B
π;s′,a′;k
1 (s1)] and reward uncertainty

∥ϕ̂π
k−1∥(Σk−1)−1 into exploration bonuses, LinUCB-Tran computes the optimal policy πk

under optimistic estimation (Line 4). After that, LinUCB-Tran plays episode k with πk, and collects
trajectory τk and reward observation on each segment {Rk

i }mi=1 (Line 5).

D.4 PROOF FOR THE REGRET UPPER BOUND WITH UNKNOWN TRANSITION

In the following, we prove the regret upper bound (Theorem 6) of algorithm LinUCB-Tran for
unknown transition.

Recall the definition of events GKL andH in Eqs. (18) and (19), respectively.

For any k > 0, define the set of state-action pairs

Dk :=

{
(s, a) ∈ S ×A :

1

4

k∑
k′=1

wk′(s, a) ≥ H log

(
|S||A|H

δ′

)
+H

}
. (32)

Dk stands for the set of state-action pairs which have sufficient visitations in expectation.

Lemma 26. Assume that eventH holds. Then, if (s, a) ∈ Dk,

nk−1(s, a) ≥
1

4

k∑
k′=1

wk′(s, a).

Proof. We have

nk−1(s, a) ≥
1

2

k−1∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)

=
1

4

k−1∑
k′=1

wk′(s, a) +
1

4

k−1∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)

=
1

4

k∑
k′=1

wk′(s, a) +
1

4

k∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)
− 1

2
wk(s, a)

(a)
≥ 1

4

k∑
k′=1

wk′(s, a) +H − 1

2
wk(s, a)

≥ 1

4

k∑
k′=1

wk′(s, a),
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where (a) is due to the definition of Dk (Eq. (32)).

Lemma 27. It holds that
K∑

k=1

H∑
h=1

∑
(s,a)/∈Dk

wk,h(s, a) ≤ 8|S||A|H log

(
|S||A|H

δ′

)
.

Proof. If (s, a) /∈ Dk, then

1

4

k∑
k′=1

wk′(s, a) < H log

(
|S||A|H

δ′

)
+H.

Thus, we have
K∑

k=1

H∑
h=1

∑
(s,a)/∈Dk

wk,h(s, a) =
∑
(s,a)

K∑
k=1

H∑
h=1

1{(s, a) /∈ Dk} · wk,h(s, a)

=
∑
(s,a)

K∑
k=1

1{(s, a) /∈ Dk} · wk(s, a)

≤ 4|S||A|H log

(
|S||A|H

δ′

)
+ 4|S||A|H

≤ 8|S||A|H log

(
|S||A|H

δ′

)
.

Lemma 28. Assume that eventH holds. Then, we have
K∑

k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)
≤ 4|S||A| log(2KH).

Proof. It holds that
K∑

k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)
=

K∑
k=1

∑
(s,a)∈Dk

wk(s, a)

nk−1(s, a)

=

K∑
k=1

∑
(s,a)

wk(s, a)

nk−1(s, a)
· 1{(s, a) ∈ Dk}

(a)
≤ 4

K∑
k=1

∑
(s,a)

wk(s, a)∑k
k′=1 wk(s, a)

· 1{(s, a) ∈ Dk}

= 4
∑
(s,a)

K∑
k=1

wk(s, a)∑k
k′=1 wk(s, a)

· 1{(s, a) ∈ Dk}

(b)
≤ 4|S||A| log(2KH),

where (a) uses Lemma 26, and (b) follows from the analysis of Lemma 13 in (Zanette & Brunskill,
2019).

Lemma 29 (Error in Visitation Vectors). Assume that event GKL holds. Then, for any k > 0 and
policy π,

∥ϕ̂k−1(π)− ϕ(π)∥1 ≤
∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.
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Proof. Since ϕπ(s′, a′) = Es1∼ρ[G
π;s′,a′

1 (s1|p)] and ϕ̂π
k−1(s

′, a′) = Es1∼ρ[G
π;s′,a′

1 (s1|p̂k−1)], in

this proof, we investigate the error in Gπ;s′,a′

h due to the estimation of the transition model.

In the following, we prove by induction that for any h ∈ [H] and s ∈ S, |Gπ;s′,a′

h (s|p̂k−1) −
Gπ;s′,a′

h (s|p)| ≤ Bπ;s′,a′;k
h (s).

When h = H + 1, by definition, we have Gπ;s′,a′

H+1 (s|p̂k−1) = Gπ;s′,a′

H+1 (s|p) = Bπ;s′,a′;k
H+1 (s) = 0 for

any s ∈ S, and then the above statement trivially holds.

When 1 ≤ h ≤ H , if |Gπ;s′,a′

h+1 (·|p̂k−1) − Gπ;s′,a′

h+1 (·|p)| ≤ Bπ;s′,a′;k
h+1 (·) element-wise, then for any

s ∈ S, we have

|Gπ;s′,a′

h (s|p̂k−1)−Gπ;s′,a′

h (s|p)|

=
∣∣∣p̂k−1(·|s, πh(s))

⊤Gπ;s′,a′

h+1 (·|p̂k−1)− p(·|s, πh(s))
⊤Gπ;s′,a′

h+1 (·|p)
∣∣∣

= p̂k−1(·|s, πh(s))
⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣

+
∣∣∣(p̂k−1(·|s, πh(s))− p(·|s, πh(s)))

⊤
Gπ;s′,a′

h+1 (·|p)
∣∣∣

(a)
≤ p̂k−1(·|s, πh(s))

⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣+ 2

√
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+
HL

nk−1(s, πh(s))
, (33)

where (a) is due to Lemma 37.

Here, we have

Varp(·|s,πh(s))(G
π;s′,a′

h+1 (·|p))
(a)
≤ 2Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) + 4H2L

nk−1(s, πh(s))
(b)
≤ 4Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) + 4Hp̂k−1(·|s, πh(s))
⊤|Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)|

+
4H2L

nk−1(s, πh(s))
,

where (a) uses Lemma 38 and (b) comes from Lemma 39.

Then,√
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

(34)

≤

√
4Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+

√
1

H
p̂k−1(·|s, πh(s))⊤|Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)| · 4H2L

nk−1(s, πh(s))
+

2HL

nk−1(s, πh(s))

(a)
≤ 2

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
1

H
p̂k−1(·|s, πh(s))

⊤|Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)|+ 6H2L

nk−1(s, πh(s))
, (35)

where (a) is due to the fact that
√
xy ≤ x+ y.
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Hence, plugging Eq. (35) into Eq. (33) and using the fact that |Gπ;s′,a′

h (s)| ∈ [0, H], we have

|Gπ;s′,a′

h (s|p̂k−1)−Gπ;s′,a′

h (s|p)|

≤

(
4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p̂k−1(·|s, πh(s))

⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣) ∧H.

≤

(
4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p̂k−1(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

)
∧H

= Bπ;s′,a′;k
h (s),

which completes the induction proof.

Therefore,∣∣∣ϕ̂π
k−1(s

′, a′)− ϕπ(s′, a′)
∣∣∣ = ∣∣∣Es1∼ρ

[
Gπ;s′,a′

1 (s1|p̂k−1)
]
− Es1∼ρ

[
Gπ;s′,a′

1 (s1|p)
]∣∣∣

≤ Es1∼ρ

[∣∣∣Gπ;s′,a′

1 (s1|p̂k−1)−Gπ;s′,a′

1 (s1|p)
∣∣∣]

≤ Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.

Summing over (s′, a′) ∈ S ×A, we obtain this lemma.

Lemma 30. Assume that event GKL ∩H holds. Then, for any k > 0 and policy π,

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]

≤ e12
H∑

h=1

∑
s,a

wπ
h(s, a)

8

√
Varp(·|s,a)(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)

 ∧H,

and ∑
s′,a′

K∑
k=1

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

≤ 16e12|S| 32 |A| 32H
√
KL log(2KH) + 192e12|S|2|A|2H2L log(2KH).

Proof. First, we prove the first statement.

For any policy π, k > 0, (s′, a′) ∈ S ×A, h ∈ [H] and s ∈ S, we have

Bπ;s′,a′;k
h (s) ≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p̂k−1(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

= 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

+

(
1 +

2

H

)
(p̂k−1(·|s, πh(s))− p(·|s, πh(s)))

⊤
Bπ;s′,a′;k

h+1 (·)
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(a)
≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

+

(
1 +

2

H

)
·

2

√
Varp(·|s,πh(s))(B

π;s′,a′;k
h+1 (·)) · L

nk−1(s, πh(s))
+

HL

nk−1(s, πh(s))


≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

+

(
1+

2

H

)(
2

√
1

H
p(·|s, πh(s))⊤B

π;s′,a′;k
h+1 (·) H2L

nk−1(s, πh(s))
+

HL

nk−1(s, πh(s))

)
(b)
≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
22H2L

nk−1(s, πh(s))

+

(
1 +

8

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·), (36)

where (a) uses Lemma 37, and (b) follows from the fact that
√
xy ≤ x+ y.

In addition, we have

Varp̂k−1(·|s,πh(s))(G
π;s′,a′

h+1 (·|p̂k−1))

(a)
= 2Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) +
4H2L

nk−1(s, a)
(b)
≤ 4Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) + 4Hp(·|s, πh(s))
⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣

+
4H2L

nk−1(s, a)

≤ 4Varp(·|s,πh(s))(G
π;s′,a′

h+1 (·|p)) + 4Hp(·|s, πh(s))
⊤Bπ;s′,a′

h+1 (·|p̂k−1) +
4H2L

nk−1(s, a)
,

where (a) uses Lemma 38, and (b) comes from Lemma 39.

Then,√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

≤

√
4Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+

√
1

H
p(·|s, πh(s))⊤B

π;s′,a′

h+1 (·|p̂k−1) ·
4H2L

nk−1(s, πh(s))

+
2HL

nk−1(s, a)

≤ 2

√
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+
1

H
p(·|s, πh(s))

⊤Bπ;s′,a′

h+1 (·|p̂k−1)

+
6H2L

nk−1(s, πh(s))
(37)
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Plugging Eq. (37) into Eq. (36) and using the clipping definition of Bπ;s′,a′;k
h (s), we have

Bπ;s′,a′;k
h (s) ≤

8

√
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+
46H2L

nk−1(s, πh(s))

 ∧H

+

(
1 +

12

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

Using the above inequality, taking s1 ∼ ρ, and unfolding Bπ;s′,a′;k
1 (s1) over h, we have

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]

≤ e12
H∑

h=1

∑
s,a

wπ
h(s, a)

8

√
Varp(·|s,a)(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)

 ∧H. (38)

Next, we prove the second statement.

It holds that∑
s′,a′

K∑
k=1

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

≤ e12
∑
s′,a′

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

8

√
Varp(·|s,a)(G

πk;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)


+ e12H|S||A|

K∑
k=1

H∑
h=1

∑
(s,a)/∈Dk

wk,h(s, a)

(a)
≤ 8e12

√
L
∑
s′,a′

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)Varp(·|s,a)(G
πk;s′,a′

h+1 (·|p))·

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)
+ e12|S||A| · 46H2L

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)

+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
(b)
≤ 8e12|S||A|

√
L
√
KH2 ·

√
4|S||A| log(2KH) + 184e12|S|2|A|2H2L log(2KH)

+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
≤ 16e12|S| 32 |A| 32H

√
KL log(2KH) + 192e12|S|2|A|2H2L log(2KH),

where (a) is due to Lemma 27, and (b) follows from Lemmas 36 and 28.

Lemma 31 (Optimism under Sum Feedback and Unknown Transition). Assume that event GKL holds.
Then, for any k > 0 and fixed policy π,

V π
1 (s1) ≤ ϕ̂k−1(π)

⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.

Proof. It holds that

V π
1 (s1) = ϕ(π)⊤θ

= ϕ̂k−1(π)
⊤θ̂k−1 + ϕ(π)⊤θ − ϕ̂k−1(π)

⊤θ + ϕ̂k−1(π)
⊤θ − ϕ̂k−1(π)

⊤θ̂k−1

≤ ϕ̂k−1(π)
⊤θ̂k−1 + ∥ϕ(π)− ϕ̂k−1(π)∥1 · ∥θ∥∞ + β(k − 1) · ∥ϕ̂k−1(π)∥(Σk−1)−1
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(a)
≤ ϕ̂k−1(π)

⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
,

where (a) uses Lemma 29.

Lemma 32. For any K ≥ 1, we have
K∑

k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤ H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

)
.

Proof. We have

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√√√√Km

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

=

√√√√Km

K∑
k=1

min

{
m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

,
H2

mλ

}

=

√√√√H2K

λ

K∑
k=1

min

{
mλ

H2

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

, 1

}

(a)
≤

√√√√2H2K

λ

K∑
k=1

log

(
1 + min

{
mλ

H2

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

, 1

})

(b)
≤

√√√√2H2K

λ

K∑
k=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)
(c)
≤

√
2KH2|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

)
,

where inequality (a) uses the fact that x ≤ 2 log(1 + x) for any 0 ≤ x ≤ 1, inequality (b) is due to
the fact that λ ≤ H2

m , and inequality (c) follows from Lemma 22.

Define event

FS
reg :=

{∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤ 4H

√
k

λ
log

(
4k

δ′

)
,

∀k > 0

}
. (39)

Event FS
reg is similar to FS

opt, except that here the universal upper bound of ∥ϕτ∥(Σk′−1)
−1 is H√

λ
rather than 1.
Lemma 33. It holds that

Pr
[
FS

reg

]
≥ 1− δ′.

Proof. For any k′ ≥ 1, we have that ∥ϕτ∥(Σk′−1)
−1 ≤ H√

λ
, and then

|Eτ∼πk′ [∥ϕτ∥(Σk′−1)
−1 |Fk′−1]− ∥ϕτ∥(Σk′−1)

−1 | ≤ 2H√
λ

.

Using the Azuma-Hoeffding inequality, we have that for any fixed k > 0, with probability at least
1− δ′

2k2 ,∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

λ
· k log

(
4k2

δ′

)
.
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Since
∑∞

k=1
δ′

2k2 ≤ δ′, by a union bound over k, we have that with probability at least δ′, for any
k ≥ 1,∣∣∣∣∣

k∑
k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

λ
· k log

(
4k2

δ′

)

≤ 4H

√
k

λ
log

(
4k

δ′

)
.

Proof of Theorem 6. Let δ′ = δ
4 . Then, we have Pr[K ∩ FS

reg ∩ GKL ∩H] ≥ 1− δ. Thus, it suffices
to prove the regret upper bound when event K ∩ FS

reg ∩ GKL ∩H holds.

Assume that event K ∩ FS
reg ∩ GKL ∩H holds. For any k > 0, we have

K∑
k=1

(
V ∗(s1)− V πk

(s1)
)

(a)
≤

K∑
k=1

(
ϕ̂k−1(π

∗)⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π
∗)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπ∗;s′,a′;k

1 (s1)
]

− V πk

)
(b)
≤

K∑
k=1

(
ϕ̂k−1(π

k)⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π
k)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

− V πk

)

≤
K∑

k=1

(
ϕ̂k−1(π

k)⊤θ̂k−1 − ϕ̂k−1(π
k)⊤θ + ϕ̂k−1(π

k)⊤θ − (ϕπk

)⊤θ

+ β(k − 1) · ∥ϕ̂k−1(π
k)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
])

(c)
≤

K∑
k=1

2β(k − 1) · ∥ϕ̂k−1(π
k)∥(Σk−1)−1 + 2rmax

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

≤ 2β(K)

K∑
k=1

∥ϕ̂k−1(π
k)∥(Σk−1)−1 + 2rmax

K∑
k=1

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]
, (40)

where (a) uses Lemma 31, (b) is due to the definition of πk, and (c) follows from Lemma 29 and the
definition of event K.

Next, we first bound
∑K

k=1 ∥ϕ̂k−1(π
k)∥(Σk−1)−1 .

We have
K∑

k=1

∥ϕ̂k−1(π
k)∥(Σk−1)−1 ≤

K∑
k=1

(
∥ϕπk

∥(Σk−1)−1 + ∥ϕ̂k−1(π
k)− ϕπk

∥(Σk−1)−1

)
≤

K∑
k=1

(
∥ϕπk

∥(Σk−1)−1 +
1√
λ
· ∥ϕ̂k−1(π

k)− ϕπk

∥2
)
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≤
K∑

k=1

(
∥ϕπk

∥(Σk−1)−1 +
1√
λ
· ∥ϕ̂k−1(π

k)− ϕπk

∥1
)
. (41)

Here we have
K∑

k=1

∥ϕπk

∥(Σk−1)−1

=

K∑
k=1

∥Eτ∼πk [ϕτ |Fk−1]∥(Σk−1)−1

(a)
≤

K∑
k=1

Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
=

K∑
k=1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−
∥∥ϕ(τk)∥∥

(Σk−1)−1 +
∥∥ϕ(τk)∥∥

(Σk−1)−1

)
≤

K∑
k=1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−
∥∥ϕ(τk)∥∥

(Σk−1)−1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

)
(b)
≤ 4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

)
, (42)

where (a) uses the Jensen inequality, and (b) comes from the definition of FS
reg and Lemma 32.

Hence, plugging Eq. (42) into Eq. (41) and using Lemma 29, we have
K∑

k=1

∥ϕ̂k−1(π
k)∥(Σk−1)−1 ≤ 4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|

)

+
1√
λ

K∑
k=1

∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
. (43)

On the other hand, according to Eq. (38), we have

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
≤e12

H∑
h=1

∑
s,a

wπ
h(s, a)

8
√

Varp(·|s,a)(G
π;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)

∧H.

Therefore, plugging Eqs. (43) and (38) into Eq. (40), we have
K∑

k=1

(
V ∗ − V πk

)

≤ 2β(K)

(
4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

))

+ 2

(
β(K)√

λ
+ rmax

)∑
s′,a′

K∑
k=1

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

(a)
≤ 2β(K)

(
4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

))

+
4β(K)√

λ

(
16e12|S| 32 |A| 32H

√
KL log(2KH) + 192e12|S|2|A|2H2L log(2KH)

)
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𝑛

…

Suboptimal action: transition to 𝑠𝑛+1 w.p.
1

2

𝑠𝑛+2 w.p.
1

2

𝑠𝑛+1

𝑠𝑛+2 𝑟 𝑠𝑛+2,⋅ = 0

𝑟 𝑠𝑛+1,⋅ = 𝑟𝑚𝑎𝑥

Optimal action: transition to 𝑠𝑛+1 w.p.
1

2
+ 𝜀
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1

2
− 𝜀

𝑟 𝑠𝑖 ,⋅ = 0

Figure 6: Instance for the lower bound under sum segment feedback and unknown transition.

= O

((√
H|S||A|

m
log

((
1 +

KH2

λ|S||A|m

)
1

δ

)
+ rmax

√
λ|S||A|

)
·

(
H

√
K|S||A|

λ
log

((
1 +

KH2

λ|S||A|m

)
1

δ

)
+ |S| 32 |A| 32H

√
KL

λ
log(KH)

+
|S|2|A|2H2L√

λ
log(KH)

))
(b)
= O

(
(1 + rmax)|S|2|A|2H

√
K

(
log

((
1 +

KH

|S||A|

)
1

δ

)

+
√
L log(KH)

√
log

((
1 +

KH

|S||A|

)
1

δ

))

+ (1 + rmax)|S|
5
2 |A| 52H2L log(KH)

√
log

((
1 +

KH

|S||A|

)
1

δ

))
= Õ

(
(1 + rmax)|S|

5
2 |A|2H

√
K + (1 + rmax)|S|

7
2 |A| 52H2

)
,

where (a) comes from Lemma 30, and (b) uses the fact that λ := H
m .

D.5 A LOWER BOUND FOR UNKNOWN TRANSITION AND ITS PROOF

Below we provide a lower bound for RL with sum segment feedback and unknown transition with
the proof.

Theorem 7. Consider the problem of RL with sum segment feedback and unknown transition. There
exists a distribution of instances where the regret of any algorithm must be

Ω
(
rmaxH

√
|S||A|K

)
.

Proof of Theorem 7. We construct a random instance I as follows. As shown in Figure 6, there
are n bandit states s1, . . . , sn (i.e., there are an optimal action and multiple suboptimal actions), a
good absorbing state sn+1 and a bad absorbing state sn+2. The agent starts from s1, . . . , sn with
equal probability 1

n . For any i ∈ [n], in state si, one action aJ is uniformly chosen from A as the
optimal action. In state si, under the optimal action aJ , the agent transitions to sn+1 and sn+2 with
probabilities 1

2 + ε and 1
2 − ε, respectively, where ε ∈ (0, 1

4 ) is a parameter specified later; Under any
suboptimal action a ∈ A \ {sJ}, the agent transitions to sn+1 and sn+2 with equal probability 1

2 .
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The rewards are deterministic for all state-action pairs. For any a ∈ A, r(sn+1, a) = rmax. For any
i ∈ {1, ..., n, n+ 2} and a ∈ A, r(si, a) = 0.

In this proof, we will also use an alternative uniform instance Iunif. The only difference between Iunif
and I is that for any i ∈ [n], in state si, under all actions a ∈ A, the agent transitions to sn+1 and
sn+2 with equal probability 1

2 .

Fix an algorithm A. Let Eunif[·] denote the expectation with respect to Iunif. Let E∗[·] denote the
expectation with respect to I. For any i ∈ [n] and j ∈ [|A|], let Ei,j [·] denote the expectation with
respect to the case where aj is the optimal action in state si, and Ni,j denote the number of episodes
where algorithm A chooses aj in state si, i.e., Ni,j =

∑K
k=1 1{πk

1 (si) = aj}.
The KL divergence of transition distribution on (si, aJ) (i ∈ [n]) between Iunif and I is

KL
(
Ber

(
1

2

)
∥Ber

(
1

2
+ ε

))
=

1

2
ln

( 1
2

1
2 − ε

)
+

1

2
ln

( 1
2

1
2 + ε

)
=

1

2
ln

( 1
4

1
4 − ε2

)
= −1

2
ln
(
1− 4ε2

)
(a)
≤ 4ε2,

where (a) uses the fact that − ln(1− x) ≤ 2x when x ∈ (0, 1
4 ).

In addition, the agent has probability only 1
n to arrive at (observe) state si.

Thus, using Lemma A.1 in (Auer et al., 2002), we have that for any i ∈ [n], in state si,

Ei,j [Ni,j ] ≤ Eunif[Ni,j ] +
K

2

√
1

n
· Eunif[Ni,j ] · KL

(
Ber

(
1

2

)
∥Ber

(
1

2
+ ε

))
≤ Eunif[Ni,j ] +

K

2

√
1

n
· Eunif[Ni,j ] · 4ε2

= Eunif[Ni,j ] +Kε

√
1

n
· Eunif[Ni,j ].

Summing over j ∈ [|A|], using the Cauchy-Schwarz inequality and the fact that
∑|A|

j=1 Eunif[Ni,j ] =
K, we have

|A|∑
j=1

Ei,j [Ni,j ] ≤ K +Kε

√
|A|
n
·K.

Then, we have

R(K) =

K∑
k=1

E∗

[
V ∗ − V πk

]
=

(
1

2
+ ε

)
(H − 1)rmaxK

− 1

n

n∑
i=1

1

2
(H − 1)rmaxK + ε(H − 1)rmax ·

1

|A|

|A|∑
j=1

Ei,j [Ni,j ]


≥ ε(H − 1)rmax

(
K − K

|A|
−Kε

√
K

|A|n

)
.
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Recall that n = |S| − 2. Let |S| ≥ 3, |A| ≥ 2, H ≥ 2, K > |A|n and ε = 1
4

√
|A|n
K . Then, we have

R(K) = Ω
(
rmaxH

√
|S||A|K

)
.

E TECHNICAL TOOLS

In this section, we introduce several technical tools.
Lemma 34 (Self-concordance, Lemma 9 in (Faury et al., 2020)). For any x1, x2 ∈ R, we have

µ′(x1)
1− exp(−|x1 − x2|)

|x1 − x2|
≤
∫ 1

z=0

µ′((1− z)x1 + zx2)dz ≤ µ′(x1)
exp(|x1 − x2|)− 1

|x1 − x2|
.

Furthermore, we have ∫ 1

z=0

µ′((1− z)x1 + zx2)dz ≥
µ′(x1)

1 + |x1 − x2|
.

Lemma 35 (Value Difference Lemma, Lemma E.15 in (Dann et al., 2017)). For any two MDPs M ′

and M ′′ with rewards r′ and r′′ and transition distributions p′ and p′′, we have that for any h ∈ [H]
and s ∈ S,

V ′
h(s)−V ′′

h (s)=Ep′′

[
H∑
t=h

(
r′(st, at)−r′′(st, at)+(p′(·|st, at)−p′′(·|st, at))

⊤
V ′
h+1(·)

)
|st = s

]
.

Lemma 36 (Law of Total Variance, Lemma 15 in (Zanette & Brunskill, 2019)). For an MDP p and a
fixed policy π, we have

Eπ,p

[(
H∑

h=1

r(sh, πh(s))−V π
1 (s1)

)∣∣∣∣s1
]
=Eπ,p

[
H∑

h=1

Varsh+1∼p(·|sh,πh(sh))

(
V π
h+1(sh+1)

) ∣∣∣∣s1
]
.

The idea of Lemma 36 was also used in earlier works, e.g., (Munos & Moore, 1999; Lattimore &
Hutter, 2012; Gheshlaghi Azar et al., 2013).
Lemma 37 (Lemma 10 in (Ménard et al., 2021)). For distributions p, q ∈ △S and function f : S →
[0, b], if KL(p, q) ≤ α, then

|(p(·)− q(·))⊤f(·)| ≤
√
2Varq(f)α+

2

3
bα.

Lemma 38 (Lemma 11 in (Ménard et al., 2021)). For distributions p, q ∈ △S and function f : S →
[0, b], if KL(p, q) ≤ α, then

Varq(f) ≤ 2Varp(f) + 4b2α.

Lemma 39 (Lemma 12 in (Ménard et al., 2021)). For distribution p ∈ △S and functions f, g : S →
[0, b], we have

Varp(f) ≤ 2Varp(g) + 2bp(·)⊤|f(·)− g(·)|.
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