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Abstract
Predicting visual acuity (VA) outcomes after treatment in diabetic macular edema (DME)
is crucial for optimizing patient management but remains challenging due to the hetero-
geneity of patient responses and the limited availability of comprehensive datasets. While
existing predictive models have shown promise, their clinical deployment is hindered by
their reliance on large training datasets that are often unavailable in real-world settings.
We address this challenge by developing a multimodal deep learning framework specifically
designed for small-scale clinical cohorts. Our approach integrates optical coherence to-
mography (OCT) images with carefully selected clinical parameters through a cross-modal
fusion architecture that leverages attention mechanisms to enhance feature interaction and
predictive accuracy. We validate our framework across two clinically distinct real-world co-
horts: treatment-naïve patients (n = 35) receiving intensive anti-VEGF therapy and chron-
ically treated patients (n = 20) receiving sustained-release corticosteroid implants. This
approach achieves mean absolute errors in post-treatment VA prediction of 3.07±0.82 and
4.20 ± 2.79 Early Treatment Diabetic Retinopathy Study (ETDRS) letters, respectively,
falling within the acceptable range of clinical measurement variability and meeting thresh-
olds for statistically significant visual change detection with ≥ 90% confidence. This work
demonstrates that appropriately designed multimodal architectures can achieve clinically
meaningful prediction accuracy even with limited datasets, offering a practical foundation
for personalized DME management in typical clinical settings where large datasets are
unavailable.
Keywords: Deep Learning, Multimodal Learning, Visual Acuity, Optical Coherence To-
mography (OCT), Diabetic Macular Edema
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1. Introduction

DME is a prevalent complication of diabetic retinopathy and a leading cause of vision impair-
ment among individuals with diabetes worldwide (Peto and Tadros, 2012). The condition
arises from hyperglycemia-induced damage to retinal blood vessels, leading to fluid accu-
mulation in the macula, which can result in vision loss or blindness (Davidson et al., 2007).
While anti-VEGF therapies are effective in improving visual outcomes (Stefanini et al.,
2014), patient responses remain highly variable (Chen et al., 2019), necessitating predictive
tools to guide personalized treatment plans. Changes in VA, measured using ETDRS letter
scores, are a common benchmark for evaluating treatment success.

Multimodal deep learning has shown promise for predicting treatment outcomes by in-
tegrating diverse data types. For DME, treatment outcomes are influenced not only by
imaging characteristics but also by systemic factors and treatment history (Bressler et al.,
2012; Dugel et al., 2019). Lin et al. (Lin et al., 2024) demonstrated improved outcome
prediction for glaucoma by combining operative notes with health records, while Wen et
al. (Wen et al., 2023) achieved robust VA prediction (R2 = 0.80) using OCT and clinical
data fusion. For anti-VEGF therapy in DME, Liu et al. (Liu et al., 2021) demonstrated
that an ensemble machine learning system combining deep learning and classical ML mod-
els could accurately predict post-treatment outcomes (central foveal thickness and BCVA)
in patients receiving anti-VEGF injections. However, these methods often rely on large,
well-curated datasets, limiting their generalizability to real-world clinical settings.

Developing reliable predictive models for DME presents significant challenges, including
limited availability of large, high-quality datasets (Anderson et al., 2023; Whang et al.,
2023), the complexity of integrating heterogeneous clinical and imaging data (Mårtensson
et al., 2020), and compliance with privacy regulations (Williamson and Prybutok, 2024).
Despite significant advancements, translating deep learning methods into clinical practice
for small, diverse patient populations remains a major hurdle.

This study addresses the challenge of predicting post-treatment VA in small cohorts of
patients with DME undergoing treatment using a novel multimodal deep learning framework.
The proposed approach integrates OCT imaging and clinical data to improve prediction
accuracy, even with limited datasets. Our main contributions are as follows:

1. Careful clinical feature selection (Sec. 3.2), using statistical methods to identify robust
predictors, ensuring the model focuses on clinically relevant factors.

2. A hybrid neural network architecture (Sec. 3.3) combining an EfficientNet-B0-based
image encoder with a feedforward network for clinical data. The framework integrates
these modalities through a fusion network for effective multimodal prediction.

3. Demonstration of the superiority of the multimodal approach over single-modality
methods (Sec. 4), leveraging complementary data sources to address the challenges of
small datasets.

2. Materials

This study utilized data from two prospective clinical trials at Sunderland Eye Infirmary, UK:
the DIME Study (NIHR CPMS ID 48908) of treatment-naïve patients receiving intensive
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anti-VEGF therapy, and the INDEX Study (IRAS ID 281058) of chronic DME patients
receiving fluocinolone acetonide intravitreal implants. Key demographics are presented in
Table 1.

Table 1: Demographic and clinical characteristics of study participants.

Characteristic Study Cohort
DIME INDEX

Total eyes 35 20
Age (years) 56.83 ± 13.70 68.75 ± 5.91
Gender (M/F) 26/9 15/5
DM duration (years) 18.23 ± 8.50 20.60 ± 9.70
DM type (1/2) 13/22 2/18
VA (ETDRS letters)
Baseline 69.50 ± 9.28 64.90 ± 10.26
Final follow-up* 75.60 ± 9.49 67.95 ± 9.70

*Final follow-up was at 12 months for DIME study and 4-6 months for INDEX study.
DM = Diabetes Mellitus.

The DIME Study included 35 treatment-naïve diabetic patients with active DME (cen-
tral macular thickness > 400 µm). Exclusion criteria included media opacities, laser scars
within 1000 µm of foveal centre, concurrent macular disease, and vitreo-macular interface
abnormalities. OCT imaging (Heidelberg Spectralis) parameters: scan angle 30◦ × 15◦,
145 lines, 30 µm spacing, 1536 × 496 pixels. Two eyes were excluded due to missing OCT
volumes.

The INDEX study enrolled 20 chronic DME patients with ≥ 12months’ disease history
and suboptimal dexamethasone response. Exclusion criteria included prior dexamethasone
response (≥ 20% CST reduction at 4+ months), other macular edema causes, macular
pathology precluding improvement, pre-existing glaucoma/IOP issues (> 25 mmHg requiring
multiple treatments), and active ocular infection. OCT imaging (Heidelberg Spectralis)
parameters: scan angle 20◦ × 20◦, 49 lines, 120 µm spacing, 512 × 496 pixels.

3. Methods

3.1. Image Preprocessing

OCT volumes from both datasets underwent standardization for resolution and dimensions.
For DIME, horizontal pixel resolutions (range: 5.43-11.92 µm) were standardized via Win-
sorization (Dixon and Yuen, 1974), with outliers beyond ±1.5 µm from the mean (6.089
µm) scaled accordingly, while axial resolution was constant (3.87 µm). OCT volumes (145
B-scans, width × height: 1536×496 pixels) were resized to 512×512 pixels. For INDEX,
horizontal pixel resolutions (10.61-11.88 µm) and axial resolution (3.87 µm) required no
rescaling, and B-scans (49 slices, width × height: 512×496 pixels) were center-cropped to
496×496 pixels.

Image augmentations included rotations (±8-11°), horizontal flips, shifts, Gaussian noise
(variance 0.1-8.6), and coarse dropout, with parameters optimized per dataset.

3.2. Clinical Feature Selection

Feature selection combined statistical and machine learning approaches: Pearson correla-
tion (Pearson, 1895) to assess linear relationships, random forest importance (Breiman,
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Figure 1: Architecture of the proposed multimodal network combining OCT imaging and
clinical features, with dimensions shown at each major processing stage.

2001) for non-linear interactions, F-test ANOVA (Fisher, 1925) for group differences, and
mutual information analysis (Shannon, 1948) for general statistical dependencies. Following
established guidelines for small datasets (Peduzzi et al., 1996), we limited selection to one
feature per 10 observations.

For the DIME dataset, this selection process identified three clinical features: baseline VA
(ETDRS), patient age (years), and DM duration (years), which consistently ranked as the
most predictive parameters across our analysis methods. For the INDEX dataset, two clinical
features were selected: baseline VA (ETDRS) and DM duration (years). These features were
chosen based on their consistent performance across feature importance methods and their
established clinical relevance in DME treatment response. Comprehensive feature evaluation
details are provided in Appendix Tables 5 and 6.

3.3. Model Architecture

Let XI ∈ Rb×1×h×w denote the input 2D OCT image (B-scan), where h and w are the height
and width of the input image in pixels, and the single channel corresponds to grayscale
images. XC ∈ Rb×p represents the clinical features, where b = 16 is the batch size, and p is
the number of clinical parameters used (p = 3 for DIME: baseline VA (ETDRS), age (years),
DM duration (years), and p = 2 for INDEX: baseline VA (ETDRS), DM duration (years)).
The proposed architecture integrates these inputs through three primary components: an
image encoder, a clinical encoder, and a prediction network, as shown in Figure 1.

The image encoder employs an EfficientNet-B0 backbone pre-trained on ImageNet (Deng
et al., 2009), modified to process grayscale input by averaging the pre-trained RGB channel
weights in the first convolutional layer. During training, only blocks 6 and 7 were fine-
tuned, while earlier layers were frozen to reduce computational cost. The final pooling
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layer flattens the spatial dimensions to produce a feature vector of 1280 channels, followed
by dimensionality reduction using a 1x1 convolutional layer with batch normalization and
ReLU activation, projecting the image features to hI ∈ Rb×320.

The clinical features XC are processed through fully connected layers with LayerNorm
and GELU activation, producing transformed clinical features hC ∈ Rb×16.

Cross-modal attention integrates information from both modalities by modulating the
image features based on the clinical features:

hatt = hI ⊙ σ(W3 · GELU(W2 · hC)), (1)

where σ is the sigmoid activation function, ⊙ denotes element-wise multiplication, and
W2 ∈ R128×16 and W3 ∈ R320×128 are trainable weight matrices.

For each B-scan s, the attended image features hatt are concatenated with the clinical
features hC :

V̂As = fP ([hatt;hC ]) ∈ Rb×1, (2)

where fP (·) denotes the prediction network, a three-layer fully connected module with
input-output dimensions of 336 → 512 → 128 → 1, using LayerNorm, GELU activation,
and dropout (rate = 0.3).

During training and inference, the model maintains patient-level consistency by repli-
cating clinical features across all B-scans belonging to the same patient’s OCT volume. Let
S = {1, . . . ,M} be the set of B-scan indices in a patient’s volume. The final VA prediction
for each patient is obtained by averaging these B-scan predictions:

V̂Apatient =
1

M

∑
s∈S

V̂As. (3)

This architecture leverages cross-modal attention and fusion to integrate OCT imaging
biomarkers with clinical metadata, enhancing interpretability and generalization for robust
post-treatment VA prediction on small, heterogeneous datasets.

3.4. Training and Evaluation

The model was trained using AdamW optimization (Loshchilov and Hutter, 2019) with cosine
annealing warm restarts (Loshchilov and Hutter, 2017) (learning rate = 10−3, weight decay =
0.01). Training was performed using Huber loss (Huber, 1992), with δ = 1.0 (the threshold
at which the loss transitions from quadratic to linear), and early stopping was applied after
10 epochs without improvement.

Evaluation used stratified 5-fold cross-validation, with stratification based on post-treatment
VA outcomes (low: <71, medium: 71-82, high: >82 ETDRS letters). These thresholds were
chosen with reference to +0.30 logMAR (70 ETDRS letters), a key minimum visual standard
required to hold a UK driver’s license (Rae et al., 2016). Performance was assessed using
standard regression metrics: mean absolute error (MAE), root mean square error (RMSE),
and coefficient of determination (R2), where predictions for each patient were computed by
averaging batch predictions according to Equation 3.
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4. Results

Table 2: Comparative analysis of VA prediction models.

Model
DIME Dataset INDEX Dataset

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑
Clinical Data Models
Linear Regression 4.73 ± 0.98 6.05 ± 1.37 0.55 ± 0.17 6.89 ± 3.99 7.67 ± 3.90 0.25 ± 0.49
Random Forest 5.17 ± 1.41 7.58 ± 2.29 0.25 ± 0.51 6.09 ± 3.51 6.84 ± 4.09 0.33 ± 0.52
Neural Network 7.78 ± 1.51 9.82 ± 2.69 -0.21 ± 0.41 8.18 ± 1.77 10.35 ± 4.25 -0.31 ± 0.48
OCT Image Models
EfficientNet-b0 5.29 ± 1.53 6.26 ± 1.74 0.53 ± 0.17 6.87 ± 1.98 8.34 ± 2.26 0.14 ± 0.22
ResNet-50 6.22 ± 2.29 7.35 ± 2.52 0.33 ± 0.29 6.27 ± 1.72 7.80 ± 1.33 0.21 ± 0.25
Multimodal Models
Proposed Model 3.07 ± 0.82 4.03 ± 1.12 0.77 ± 0.16 4.20 ± 2.79 4.87 ± 3.52 0.61 ± 0.36
Reference Models (External Datasets)

Ensemble ML (Liu et al., 2021)* 6.5 10.0 0.68 — — —
OCT-based DL (Wen et al., 2023)† 3.5 5.5 0.80 — — —

Note: Values presented as mean ± standard deviation across 5-fold cross-validation. ↑ indicates higher is
better, ↓ indicates lower is better.
All error metrics are in ETDRS letters. *Tested on GDPH/ZHSMU dataset. †Tested on iERM dataset.

Our proposed multimodal approach outperformed single-modality baselines using either
clinical features alone (linear regression, random forest, neural network with the same ar-
chitecture as the clinical network model but with a regression head) or OCT images alone
(ResNet-50 and EfficientNet-B0). It achieved superior performance across all metrics (Ta-
ble 2), with an MAE of 3.07±0.82 ETDRS letters (R2: 0.77±0.16) on DIME and 4.20±2.79
(R2: 0.61±0.36) on INDEX, significantly outperforming both clinical-only (best MAE: 4.73)
and imaging-only models (best MAE: 5.29) in both treatment-naïve and chronic DME cases.
The proposed model also demonstrated better error metrics than reference models from Liu
et al. (Liu et al., 2021) and comparable performance to Wen et al. (Wen et al., 2023), though
these were evaluated on different datasets, so direct comparison should be made cautiously.
Detailed per-fold performance metrics are provided in Appendix Table 4.

Interpretability analysis through Grad-CAM revealed distinct spatial attention distribu-
tions (Figure 2). Treatment-naïve cases (DIME) demonstrated focal activation patterns
localizing to regions of intraretinal fluid (IRF), while chronic cases (INDEX) exhibited
broader attention distribution across areas of edema and structural alteration, consistent
with established pathological progression patterns (Sakini et al., 2024).

Systematic error patterns varied across VA ranges (Figure 3a,b). In DIME (Figure 3(a)),
low VA cases (< 71 ETDRS letters, n = 10) showed over-prediction (2.24 ± 3.61 ET-
DRS letters), while high VA cases (> 82 ETDRS letters, n = 11) showed under-prediction
(−2.06± 3.07 ETDRS letters). In INDEX (Figure 3(b)), low VA predictions (n = 12) were
balanced (1.66±5.56 ETDRS letters), while higher VA ranges showed under-prediction bias
(n = 6, −1.39± 1.34 ETDRS letters; n = 2, −11.86± 2.74 ETDRS letters).

Feature importance analysis through Integrated Gradients quantified the relative con-
tributions of imaging and clinical features on the DIME dataset (Figure 4). OCT features
provided the strongest predictive signal (mean = 8.07 ± 4.21), complemented by baseline
VA as the primary clinical indicator (mean = 5.78± 1.95).
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Table 3: Ablation study of model components.

Model Configuration
DIME Dataset INDEX Dataset

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑
Proposed Model 3.07 ± 0.82 4.03 ± 1.12 0.77 ± 0.16 4.20 ± 2.79 4.87 ± 3.52 0.61 ± 0.36
Clinical Features
All Clinical Features Variation (11/18) 4.85 ± 1.67 6.71 ± 2.26 0.42 ± 0.31 6.56 ± 2.97 8.57 ± 4.85 0.09 ± 0.59
Replace Baseline VA with:

- IRF Cysts 5.45 ± 1.18 7.14 ± 1.83 0.35 ± 0.20 — — —
- Baseline IOP (mmHg) — — — 7.54 ± 1.95 9.02 ± 4.32 0.05 ± 0.15

Model Architecture Variation
Without Attention Mechanism 3.84 ± 1.13 5.06 ± 1.46 0.66 ± 0.19 4.57 ± 2.31 6.13 ± 4.43 0.59 ± 0.30

Note: DIME contains 11 clinical features while INDEX contains 18 clinical features for the all clinical
features configuration. IOP = Intraocular Pressure.

To further assess the contribution of individual components in our multimodal frame-
work, we conducted an ablation study (Table 3). When using all available clinical features

DIME

INDEX

1.0

0.0

Figure 2: Guided Grad-CAM activation maps for randomly chosen OCT images in the
DIME (top) and INDEX (bottom) datasets, highlighting regions of interest identified by the
model. The color bar indicates activation magnitude from 0.0 (blue) to 1.0 (red). Images
were selected randomly to illustrate typical model interpretations across the datasets.
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Figure 3: Error analysis by post-treatment VA range. Blue bars show systematic bias
(direction of error); orange bars show MAE. Patient counts (n) are displayed below each
group. Positive values indicate VA overestimation; negative values show underestimation.
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Figure 4: Mean feature attribution magnitudes across five-fold validation showing relative
importance of imaging and clinical predictors on DIME dataset. OCT volume measurements
show the highest variability, suggesting dataset-specific learning patterns.

(11 for DIME, 18 for INDEX) rather than our selected subset, model performance degraded
significantly (MAE increased by 1.78 and 2.36 ETDRS letters for DIME and INDEX, re-
spectively), demonstrating the effectiveness of our feature selection approach in mitigating
overfitting on small datasets.

Replacing baseline VA with alternative features (IRF cysts for DIME; baseline IOP
for INDEX) resulted in substantial performance deterioration, confirming baseline VA as a
critical predictor. Additionally, removing the cross-modal attention mechanism increased
prediction error by 25% for DIME and 9% for INDEX, highlighting the importance of
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modality-specific feature weighting in our architecture. These findings validate our design
choices for both feature selection and architectural components.

5. Discussion

Our multimodal framework achieves clinically meaningful error margins, maintaining aver-
age prediction errors below 5 ETDRS letters across both datasets - within the threshold for
statistically detectable change (≥ 90% confidence) in eyes with VA better than 20/100 (Beck
et al., 2007). The enhanced performance in DIME (MAE: 3.07± 0.82) compared to INDEX
(MAE: 4.20 ± 2.79) can be attributed to higher OCT resolution and larger sample size.
Analysis across VA ranges revealed distinct prediction patterns: DIME exhibited regression
toward the mean (over-prediction in low VA, under-prediction in high VA ranges), while
INDEX demonstrated under-prediction bias in higher VA ranges, likely influenced by its
smaller sample size (n=2 for high VA). Our ablation studies confirm the critical importance
of baseline VA as a clinical predictor, with its replacement significantly degrading perfor-
mance in both datasets. Additionally, the cross-modal attention mechanism proved essential
for accurate predictions, particularly for treatment-naïve patients (25% error increase when
removed). These findings validate our approach to feature selection and architectural design
for small clinical datasets. Feature attribution analysis validates OCT volumes as the pri-
mary predictive signal, complemented by clinical parameters, aligning with findings on the
relevance of both anatomical and clinical factors in DME progression (Antonetti et al., 2006).
Grad-CAM visualization demonstrated anatomically relevant attention patterns correspond-
ing to established OCT biomarkers (Zur et al., 2018; Sun et al., 2014), with differential ac-
tivation between treatment-naïve and chronic cases. Limitations include systematic biases
requiring range-specific calibration, small dataset size necessitating k-fold cross-validation,
and dataset heterogeneity in OCT protocols and treatment modalities complicating cross-
cohort comparison. Prospective validation with expert-graded OCT characteristics would
help establish clinical utility.

6. Conclusion

Our multimodal deep learning approach successfully predicted post-treatment VA in DME
patients with mean absolute errors of 3.07 ± 0.82 ETDRS letters (treatment-naïve) and
4.20 ± 2.79 ETDRS letters (chronically treated). These errors, below the clinically signifi-
cant threshold of 5 ETDRS letters, demonstrate potential for informing treatment decisions.
Ablation experiments validated our feature selection approach and cross-modal attention
mechanisms, while Grad-CAM analysis revealed pathology-specific attention patterns be-
tween patient cohorts. While these findings highlight the promise of multimodal deep learn-
ing for small datasets, further validation with multi-centre studies and external datasets is
needed. Future research should optimize architectures for small datasets, improve general-
izability, and address systematic biases, enabling valuable clinical insights and personalized
treatment planning for DME patients.
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Code and Data Availability

The code is publicly available at https://github.com/muanderson/VA_MM_DL. The data is
available upon request.

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council (EP-
SRC) and industrial partners of the Centre for Doctoral Training in Cloud Computing for
Big Data (EP/L015358/1). It was further facilitated through a collaborative working agree-
ment between Roche Products Limited, The University of Newcastle Upon Tyne, and South
Tyneside and Sunderland NHS Foundation Trust. M-GB-00021023 | December 2024.

References

Matthew Anderson, Salman Sadiq, Muzammil Nahaboo Solim, Hannah Barker, David H
Steel, Maged Habib, and Boguslaw Obara. Biomedical Data Annotation: An OCT Imag-
ing Case Study. Journal of Ophthalmology, 2023:5747010, 2023.

David A Antonetti, Alistair J Barber, Sarah K Bronson, Willard M Freeman, Thomas W
Gardner, Leonard S Jefferson, Mark Kester, Scot R Kimball, J Kyle Krady, Kathryn F
LaNoue, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease.
Diabetes, 55:2401–2411, 2006.

Roy W Beck, Maureen G Maguire, Neil M Bressler, Adam R Glassman, Anne S Lindblad,
and Frederick L Ferris. Visual acuity as an outcome measure in clinical trials of retinal
diseases. Ophthalmology, 114:1804–1809, 2007.

Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

Susan B Bressler, Haijing Qin, Roy W Beck, Kakarla V Chalam, Judy E Kim, Michele Melia,
John A Wells, Diabetic Retinopathy Clinical Research Network, et al. Factors associated
with changes in visual acuity and central subfield thickness at 1 year after treatment for
diabetic macular edema with ranibizumab. Archives of Ophthalmology, 130:1153–1161,
2012.

Yen-Po Chen, Ai-Ling Wu, Chih-Chun Chuang, and San-Ni Chen. Factors influenc-
ing clinical outcomes in patients with diabetic macular edema treated with intravitreal
ranibizumab: comparison between responder and non-responder cases. Scientific Reports,
9:10952, 2019.

Jaime A Davidson, Thomas A Ciulla, Janet B McGill, Keri A Kles, and Pamela W Anderson.
How the diabetic eye loses vision. Endocrine, 32:107–116, 2007.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

10

https://github.com/muanderson/VA_MM_DL


Visual Acuity Prediction with Multimodal DL

Wilfrid J Dixon and Kareb K Yuen. Trimming and winsorization: A review. Statistische
Hefte, 15:157–170, 1974.

Pravin U Dugel, Joanna H Campbell, Szilárd Kiss, Anat Loewenstein, Vanessa Shih, Xiaoshu
Xu, Nancy M Holekamp, Albert J Augustin, Allen C Ho, Victor H Gonzalez, et al.
Association between early anatomic response to anti–vascular endothelial growth factor
therapy and long-term outcome in diabetic macular edema: an independent analysis of
protocol i study data. Retina, 39:88–97, 2019.

Ronald A Fisher. Statistical methods for research workers. Genesis Publishing Pvt Ltd,
1925.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics:
Methodology and Distribution, pages 492–518. Springer, 1992.

Wei-Chun Lin, Aiyin Chen, Xubo Song, Nicole G Weiskopf, Michael F Chiang, and
Michelle R Hribar. Prediction of multiclass surgical outcomes in glaucoma using mul-
timodal deep learning based on free-text operative notes and structured ehr data. Journal
of the American Medical Informatics Association, 31:456–464, 2024.

Baoyi Liu, Bin Zhang, Yijun Hu, Dan Cao, Dawei Yang, Qiaowei Wu, Yu Hu, Jingwen Yang,
Qingsheng Peng, Manqing Huang, et al. Automatic prediction of treatment outcomes
in patients with diabetic macular edema using ensemble machine learning. Annals of
Translational Medicine, 9:43, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

Gustav Mårtensson, Daniel Ferreira, Tobias Granberg, Lena Cavallin, Ketil Oppedal,
Alessandro Padovani, Irena Rektorova, Laura Bonanni, Matteo Pardini, Milica G Kram-
berger, et al. The reliability of a deep learning model in clinical out-of-distribution MRI
data: a multicohort study. Medical Image Analysis, 66:101714, 2020.

Karl Pearson. Note on regression and inheritance in the case of two parents. Proceedings of
the Royal Society of London, 58:240–242, 1895.

Peter Peduzzi, John Concato, Elizabeth Kemper, Theodore R Holford, and Alvan R Fe-
instein. A simulation study of the number of events per variable in logistic regression
analysis. Journal of Clinical Epidemiology, 49:1373–1379, 1996.

Tunde Peto and Christine Tadros. Screening for diabetic retinopathy and diabetic macular
edema in the united kingdom. Current Diabetes Reports, 12:338–345, 2012.

Sheila Rae, Keziah Latham, and Maria F Katsou. Meeting the UK driving vision standards
with reduced contrast sensitivity. Eye, 30:89–94, 2016.

11



Anderson Corona Stankiewicz Habib Steel Obara

Ahmed Sermed Al Sakini, Abdulrahman Khaldoon Hamid, Zainab A Alkhuzaie, San-
dra Thair Al-Aish, Shahad Al-Zubaidi, Abduljaber A’Ed Tayem, Mohammed Ayad Alobi,
Anne Sermed Al Sakini, Rami Thair Al-Aish, Khayry Al-Shami, et al. Diabetic macular
edema (DME): dissecting pathogenesis, prognostication, diagnostic modalities along with
current and futuristic therapeutic insights. International Journal of Retina and Vitreous,
10:83, 2024.

Claude E Shannon. A mathematical theory of communication. Bell System Technical Jour-
nal, 27:379–423, 1948.

Francisco Rosa Stefanini, Emmerson Badaró, Paulo Falabella, Michael Koss, Michel Eid
Farah, and Maurício Maia. Anti-vegf for the management of diabetic macular edema.
Journal of Immunology Research, 2014:632307, 2014.

Jennifer K Sun, Michael M Lin, Jan Lammer, Sonja Prager, Rutuparna Sarangi, Paolo S
Silva, and Lloyd Paul Aiello. Disorganization of the retinal inner layers as a predictor of
visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmology,
132:1309–1316, 2014.

Dejia Wen, Zihao Yu, Zhengwei Yang, Chuanzhen Zheng, Xinjun Ren, Yan Shao, and
Xiaorong Li. Deep learning-based postoperative visual acuity prediction in idiopathic
epiretinal membrane. BMC Ophthalmology, 23:361, 2023.

Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and
quality challenges in deep learning: A data-centric AI perspective. The International
Journal on Very Large Data Bases, 32:791–813, 2023.

Steven M Williamson and Victor Prybutok. Balancing privacy and progress: a review of
privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare.
Applied Sciences, 14:675, 2024.

Dinah Zur, Matias Iglicki, Catharina Busch, Alessandro Invernizzi, Miriana Mariussi, Anat
Loewenstein, Zafer Cebeci, Jay Kumar Chhablani, Voraporn Chaikitmongkol, Aude Cou-
turier, et al. OCT biomarkers as functional outcome predictors in diabetic macular edema
treated with dexamethasone implant. Ophthalmology, 125:267–275, 2018.

12



Visual Acuity Prediction with Multimodal DL

Appendix A. Additional Figures and Tables

Table 4: Per-fold performance of the proposed model.

Fold
DIME Dataset INDEX Dataset

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑
Fold 1 3.72 4.67 0.81 2.89 3.14 0.84
Fold 2 3.12 4.11 0.78 0.77 0.86 0.99
Fold 3 1.93 2.43 0.95 5.12 5.86 0.25
Fold 4 2.41 3.27 0.85 9.06 11.17 0.13
Fold 5 4.17 5.66 0.47 3.17 3.35 0.87
Mean 3.07 4.03 0.77 4.20 4.87 0.61

Std. Dev. 0.82 1.12 0.16 2.79 3.52 0.36

Table 5: Predictive importance of clinical features for post-treatment VA in DIME using
different feature selection methods. Features selected for the proposed approach are indi-
cated in bold.

Feature Feature Selection Metrics
Pearson F-test Mutual Random Forest

Correlation ANOVA Information Importance
Primary Clinical Parameters
Baseline VA (ETDRS) 0.5220 11.6093 0.2965 0.2625
Age (years) 0.3575 4.5426 0.0947 0.1370
DM duration (years) 0.2652 2.3445 0.3366 0.2519

Anatomical Features
IRF Cysts 0.3374 3.9822 0.1149 0.0322
SRF Fluid 0.2614 2.2739 0.0251 0.0143
Deep Haemorrhages Within Macula 0.1527 0.7396 0.0000 0.0200
Exudates Within Macula 0.1309 0.5404 0.0164 0.0115

Morphometric Measurements
Baseline Macular Volume (mm3) 0.0705 0.1547 0.0565 0.1737
Baseline CST (µm) 0.0624 0.1210 0.0880 0.0875

Demographic Factors
DM type 0.1819 1.0611 0.0292 0.0023
Gender 0.1604 0.8186 0.0474 0.0070

Note: SRF = Subretinal Fluid; CST = Central Subfield Thickness. Pearson correlation values represent the
absolute correlation.
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Table 6: Predictive importance of clinical features for post-treatment VA in INDEX using
different feature selection methods. Features selected for the proposed approach are indi-
cated in bold.

Feature Feature Selection Metrics
Pearson F-test Mutual Random Forest

Correlation ANOVA Information Importance
Primary Clinical Parameters
Baseline VA (ETDRS) 0.5562 8.0615 0.4362 0.3483
DM duration (years) 0.3915 3.2587 0.1958 0.0978

Systemic Comorbidities
Heart Disease (yes/no) 0.5131 6.4323 0.1697 0.0669
Amputation (yes/no) 0.3410 2.3685 0.0000 0.0023
Kidney Disease (yes/no) 0.1037 0.1956 0.0000 0.0099
Stroke (yes/no) 0.0370 0.0247 0.0000 0.0033

Treatment History
Baseline Nonresponder Ozurdex (yes/no) 0.0688 0.0855 0.0000 0.0028
DM Treatment (tablet/insulin/combination) 0.3122 1.9445 0.1100 0.0453
Baseline Previous Anti-VEGF Injections (n) 0.2739 1.4599 0.0000 0.1071

Clinical Measurements
Baseline IOP (mmHg) 0.3471 2.4658 0.0864 0.0983
Baseline CST (µm) 0.0943 0.1616 0.2059 0.0394
HbA1c (%) 0.0196 0.0069 0.0055 0.0772

Demographic Factors
Age (years) 0.3271 2.1568 0.0000 0.0549
DM type 0.1957 0.7170 0.0000 0.0024
Gender 0.3329 2.2432 0.0387 0.0179

Note: CST = Central Subfield Thickness; HbA1c = Glycated Hemoglobin. Pearson correlation values
represent the absolute correlation.
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