Under review as a conference paper at ICLR 2026

A NEUROSYMBOLIC APPROACH TO NATURAL
LLANGUAGE FORMALIZATION AND VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models perform well at natural language interpretation and rea-
soning, but their inherent stochasticity limits their adoption in regulated industries
like finance and healthcare that operate under strict policies. To address this limi-
tation, we present a two-stage neurosymbolic framework that (1) uses LLMs with
optional human guidance to formalize natural language policies, allowing fine-
grained control of the formalization process, and (2) uses inference-time autofor-
malization to validate logical correctness of natural language statements against
those policies. When correctness is paramount, we perform multiple redundant
formalization steps at inference time, cross checking the formalizations for se-
mantic equivalence. Our benchmarks demonstrate that our approach exceeds 99%
soundness, indicating a near-zero false positive rate in identifying logical validity.
Our approach produces auditable logical artifacts that substantiate the verification
outcomes and can be used to improve the original text.

1 INTRODUCTION

The content generation and reasoning capabilities of Large Language Models (LLMs) continue
to advance rapidly, demonstrating unprecedented improvements in coherence and analytical accu-
racy (Wei et al.| 2022} Yao et al.| [2023; |[Lewis et al.| [2021). Despite these advances, their proba-
bilistic nature and tendency to generate plausible but incorrect information (hallucinations, cf. Xu
et al.|2024b) remain barriers to widespread adoption in regulated sectors. Industries such as health-
care, financial services, and legal practices have legal and regulatory obligations for accuracy and
auditability that current LLM technology has yet to meet (Haltaufderheide & Ranisch) 2024).

Companies develop institutional policies to ensure compliance with applicable laws and regula-
tions. Such policies are typically captured in natural language (NL) documents that define rules,
procedures, or guidelines. A challenge thus emerges when organizations look to deploy LLMs to
answer questions about such documents: can we develop guardrails to ensure that LLM outputs
conform to institutional policies? Consider an airline implementing a chatbot to assist customer ser-
vice representatives in navigating refund policies: if the chatbot incorrectly claims that a customer is
eligible for a refund when they are not, this could lead to legal exposure and loss of customer trust.

An effective guardrail would help representatives decide if they can rely on a chatbot response
without spending additional human effort to verify it. The key concern would be to ensure that when
the guardrail reports an answer is valid, it actually is. Inspired by the concept of soundness in logic,
we define soundness as (1 — p), where p is the overall probability of incorrect validity claims. High
soundness thus means that across all requests, incorrect approvals are rare. Following established
practices in safety-critical systems, where reliability is often measured in “nines” (e.g., 99% = “two
nines,” 99.9% = “three nines”), we target soundness levels of at least 99%, and secondarily focus
on recall to maximize the probability of accepting valid content. While aiming to maximize recall
under this requirement, we also pursue actionable feedback that steers LLMs toward content that a
conservative guardrail can accept.

A natural candidate for developing robust compliance guardrails are symbolic reasoning systems, as
they leverage formal logic to generate independently verifiable guarantees (Robinson & Voronkov,
2001). This approach aligns well with policy documents, which rely on logical, rule-like statements
(e.g., “if a flight is canceled or ..., then passengers are entitled to a refund”). However, symbolic

Under review as a conference paper at ICLR 2026

methods are inherently limited in interpreting natural language, which has triggered the develop-
ment of neurosymbolic approaches: hybrid solutions that combine the NL processing capabilities of
neural networks with the mathematical rigor of symbolic systems (Hitzler & Sarker, 2021)).

This paper presents LOGICAL REASONING GUARDRAILS (LRG), a neurosymbolic approach that
exceeds 99% soundness on datasets that it was not trained on—an assurance threshold unattain-
able by existing pure neural or neurosymbolic approaches. This high soundness is also reflected in
conventional metrics such as false positive rate and precision, where LRG outperforms competing
approaches. In addition, LRG delivers explainable verdicts and provides actionable feedback that
LLMs can utilize to refine their outputs. The mechanisms enabling 99% soundness establish a robust
foundation for future research aimed at pushing assurance boundaries to three nines and beyond.

LRG operates through two complementary components. The first, called POLICY MODEL CRE-
ATOR (PMC), combines LLMs with symbolic reasoning to translate NL policies into formal policy
models expressed in logic. The process begins with an autoformalization phase that generates an
initial policy model. This is followed by an optional vetting phase where domain experts review and
refine the policy model with assistance from the system. Through this vetting process, domain ex-
perts can resolve ambiguities and inconsistencies that may exist in the original documents, or correct
potential omissions and imprecisions from autoformalization. Policy model creation occurs offline,
where its computation cost will be amortized across subsequent verification tasks. Notably, policy
models serve as enduring sources of truth that provide definitive, unambiguous references within
their respective domains.

The second component, called ANSWER VERIFIER (AV), implements a guardrail that verifies NL
content against policy models. The AV uses LLMs to translate NL content into individual logical
claims over the vocabulary of the policy model. Each claim is analyzed separately and assigned a
verification result, together with detailed logical explanations and corrective guidance where appli-
cable. To increase reliability, the AV uses multiple LLMs to simultaneously formalize the same NL
content, then uses symbolic reasoning to compare formalizations and assign confidence scores. The
AV delivers auditable logical artifacts that substantiate the verification outcomes.

2 RELATED WORK

Recent approaches use LLMs as judges to evaluate factual accuracy (Jacovi et al. [2025)), though
these rely on the same probabilistic models that introduce errors. MiniCheck (Tang et al., [2024)
provides efficient fact-checking by decomposing claims. RefChecker (Hu et al,, [2024) intro-
duces knowledge-centric verification against structured knowledge bases. SelfCheckGPT (Manakul
et al.} 2023) leverages consistency across multiple responses to detect hallucinations. FactCheck-
GPT (Wang et al., 2024) provides comprehensive evaluation with fine-grained error categorization.
While promising, these methods operate within the probabilistic paradigm and cannot provide for-
mal guarantees. Our neurosymbolic framework formally verifies logical validity against explicit
policies, achieving near-zero false positives.

Neurosymbolic systems combine LLMs with symbolic reasoning, typically translating natural lan-
guage to formal representations solved by external reasoners (Pan et al., 2023; |Olausson et al.,
2023} [Callewaert et al., 2025 Ryu et al.| [2024). Some leverage LLMs’ reasoning through Chain-
of-Thought (Wei et al.| 2022)) or hybrid approaches (Xu et al., 2024a} |Liu et al., 2025} Xiong et al.,
2024])). Notable systems include approaches based on Answer Set Programming (ASP) (Ishay et al.,
2023} |Yang et al.l [2023; [Brewka et al., 2011)) that generate ASP representations. LINC (Olausson
et al.,[2023)) uses first-order logic with Prover9 (McCune}|2005). Verus-LM (Callewaert et al.| [2025))
provides a multi-paradigm framework with IDP-Z3 (Carbonnelle et al., [2022). SAT-LM (Ye et al.,
2023)) employs declarative prompting with SMT (De Moura & Bjgrner, [2008). Logic-LM (Pan
et al.| [2023) supports multiple formalisms with self-refinement. Autoformalization has been studied
in mathematics (Wang et al., 2018}, Szegedyl, [2020; [Wu et al.| 2022} Jiang et al., 2022). However,
existing neurosymbolic systems focus on single-shot problem solving. Unlike autoformalization
for mathematical statements with precise semantics, we handle policy ambiguities through a two-
stage approach: the PMC resolves ambiguity with human guidance during policy creation, while
the AV performs redundant translation with multiple LLMs to quantify confidence during valida-
tion. This separation enables verification of whether LLM-generated content logically follows from
established policies, which is crucial for regulated industries.

Under review as a conference paper at ICLR 2026

Policy Model]
Creator (PMC)

Text

Autoformalization Self Refinement
Span 1
o (Poli
Policy : Composition el
Document v " Model

Text Autoformalization H Self Refinement

Span N
Test Case 1
Logical Test Case R
Enumeration H LLM-Guided Repair

Test Case N Policy

Model
Conflict 1 (
: M

Conflict Detection User anual Repair
Feedback
Conflict N

Answer Verifier (AV) ()
Autoformalization 1))
N Legical Equivalence Jeriication Feedback Computation Verification Results
Question & Answer . Aggregation (SMT Solver)
@ : X

A A

v

Policy
Model

Autoformalization N :
J : { Policy }

7y Model

Figure 1: End-to-end architecture of LRG

3 METHODOLOGY

Fig. [T] shows our architecture’s two main components: the PMC (§3.1) and the AV (§3.2). We
illustrate our approach with an example NL policy about park admission fees:

General admission: The regular admission to the park is $50. The admission fee in the low season is
75% of the regular admission fee.

Discount: Seniors (age greater than 65) qualify for a 40% discount. Whenever a discount applies, there
will be a $10 flat discount processing fee.

Credit: You can use credit for up to 50% of your final admission (1 credit for 1 dollar). However, if
credits are used, then the discount rate is capped at 25%. You can purchase credit at a rate of $0.60 per
credit. You can only purchase credit in increments of 5 (cost 3$).

Tax: A federal tax of 10% applies to the final expense.

Suppose a user asks “I am a senior and want to visit the park in the low season, and I have a total
fund of $35.40. Can I visit the park?”, and we want to verify a chatbot’s answer of “No, $35.40 is
not enough.”

LRG tackles the verification problem in two stages. In the first stage, the PMC auto-formalizes the
policy into a so-called policy model: a set of logic rules, expressed in SMT-LIB (Barrett et al., 2016)),
together with a schema that defines variables with their types and NL descriptions. SMT-LIB is a
standardized logic language that uses prefix notation, where operators precede their arguments; e.g.,
“if z, then y” is written as (=> x vy). Fig.[2]shows snippets of the policy model. In the second stage,
the AV first auto-formalizes the statement under validation into logic formulas (over the variables
of the policy model), then uses an SMT solver to verify those formulas against the policy model.
A snippet of the validation feedback for our example is shown in Fig.[3] The feedback includes
the logic translation (with a confidence score between O and 1), the validation result, and further
feedback explaining the result (in this case, a counter-example to validity, shown in E]E]

3.1 PoLIcY MODEL CREATOR (PMC)

The PMC takes a policy document written in natural language and autoformalizes it into a policy
model (§3.1.1). It also provides an array of utilities to support users in policy vetting (§3.1.2).

The key, as indicated by the counter-example, is to use $15 worth of credit for payment: The admission
fee in the low season is $37.5 (75% of $50). After applying the 25% senior discount (capped at 25% because
of credit use) and adding the $10 discount processing fee, the actual admission fee becomes $38.125. This fee
can be paid by combining $15 of credit (cost: $9) with a $23.125 cash payment, for an expense of $32.125.
After adding a federal tax of 10%, the final expense becomes $35.3375, which is within the budget of $35.4.

>When we tested LLM judges (Claude Sonnet 3.7 and Opus 4.1, both with reasoning mode), they incorrectly
classified this answer as valid with plausible but incorrect reasoning (see Appendix Figs E] and EI)

Under review as a conference paper at ICLR 2026

Variable Type | Description
isLowSeason Bool | Whether the designated admission day is in the low season

admissionFeeAfterDiscount R Admission fee after discounts are applied but before tax

Rule 1: (=> isLowSeason (= admissionFee (x 0.75 baseFee)))

Rule2: (<= (x 2.0 customerCredits) admissionFeeAfterDiscount)

Figure 2: Snippets of policy model (top: variable schema; bottom: rules)
3.1.1 AUTOFORMALIZING NATURAL LANGUAGE DOCUMENTS

To handle the size and complexity of real-world policy documents in the face of known LLM rea-
soning limitations around context size and distractors (Rajeev et al., 2025} Levy et al.| [2024), the
PMC takes a divide-and-conquer approach to autoformalize documents into logic (see Fig. [1]).

The PMC first splits the input document into a set of text spans. These are processed using an
incremental, refinement-guided autoformalization procedure: A language model processes each
span and identifies statements that express coherent, formalizable meaning. For each statement,
the LLM translates the semantic content into a list of SMT-LIB datatypes, variables, and logical
constraints (rules). The LLM’s context maintains existing declarations within a span to avoid dupli-
cated or conflicting declarations. The complete formalization of a span is what we call a policy unit.
If this process introduces an error (e.g., malformed syntax), we provide the invalid declarations and
their failure causes to the LLM for repair in a refinement loop.

Once the PMC has formalized all text spans, it then composes the resulting policy units into a
single policy model. The PMC generates textual embeddings of variables and clusters them using
cosine similarity. Variables within a cluster are unified, while variables that share the same name but
are not clustered are renamed. Consistent replacement of original variables with unified variables
is performed for the rules of each policy unit, then the rules are aggregated, dropping syntactic
duplicates. The resulting policy model is a structured representation of the document, consisting of
three fields: datatypes, variables, and rules. Each variable is associated with an NL description that
explains its meaning in terms of the source document, as shown in Fig. 2] This initial policy model
is then vetted, as described in the next section. We measure the relationship between document size
and formalized policy size in §A.T.3]

3.1.2 PoLIiCY MODEL VETTING

The initial policy model that we automatically generate might contain errors, omissions, and im-
precisions. Additionally, NL policies often contain ambiguities that only subject matter experts can
resolve. We therefore provide users with several methods for vetting of their policy models: linting,
inspection, and testing (both manual and automatic). We also develop automated repair approaches
around these vetting methods.

Linting. We provide a linter for our policy models that checks integrity and consistency properties
beyond the simple malformedness errors caught during autoformalization. First, we perform syntax-
based checks. For example, we detect variables that are not used in the logical rules, and report them
as warnings to the user. Second, we perform semantics checks. For example, we use an SMT solver
to detect contradictory rules, which would lead to unexpected results from the AV. We show the
linting report to the user as a list of errors and warnings, which can then be addressed either directly
(e.g., by deleting an unused variable) or through more detailed policy inspection and repair.

Inspection. Manual inspection allows users to review their generated policy model and verify its
correctness, similar to code review in software development. Users can examine the policy variables
with their types and descriptions, as well as the logical rules themselves. We provide two views of
the rules for inspection: SMT-LIB for experts and structured English for non-experts. We generate
the structured English mechanically (based on templates like “if ... then ...”) without using an
LLM to avoid potential hallucinations and imprecisions in this critical step. If users uncover an
issue with a rule, they can provide NL feedback explaining what is wrong and how it should be fixed.
This triggers an automatic LLM-based policy repair step that adjusts the policy model based on the
provided feedback. Manual inspection provides strong correctness guarantees when all rules are
carefully reviewed, but it can be challenging with large numbers of complex rules that have intricate
interactions. The PMC therefore also provides testing as an additional policy vetting methodology.

Under review as a conference paper at ICLR 2026

Algorithm 1 AV Redundant Translation

1: procedure REDUNDANTTRANSLATION(mSg, policy, LLM s)

2 findings < 0; Ts < [Translate(msg, policy, llm) for every model llm € LLMs] ,
3 for T' € T's for every premise-conclusion pair (P, C) € T do

4: Supports + {T' | T' e Tsift T' = (P = C)and T" £ —P}

5: findings.add((P, C, conf)) where conf = |Supports|/|T's|

6 return findings

Logic Translation (Confidence: 1.0):

e Premise: (and (= ageClass SENIOR) isLowSeason (= totalAdmissionFund 35.4))
¢ Conclusion: (not isEntryAllowed)

Validation Result: Satisfiable (not Valid)

Counter-Example to Validity:

creditUnit = 3, customerCredits = 15.0, creditDollarValue = 9.0, cashAmount = 23.181, totalPayment-
Available = 38.181, finalAdmissionFee = 38.125, isEntryAllowed = true, ...

Figure 3: Snippet of validation feedback

Testing. Testing provides a systematic way to validate policy models through concrete exam-
ples. Similar to unit tests, test cases in the PMC are NL question-answer pairs with their expected
findings (e.g., valid, invalid). Test cases can either be provided manually by users or generated auto-
matically. The PMC offers automatic, symbolic test-case generation that leverages an SMT solver
to systematically explore the state space of the policy model. Since such test cases are generated
symbolically, each comes with its provably-correct expected finding. The PMC executes test cases
by running the AV on them to compute the actual findings. If the actual findings do not match the
expected ones, there is potentially an error in the policy model or in the AV translation. Users can
then examine the policy model and translation using the information provided by the AV (e.g., the
logical rules justifying the result) to root cause the issue and generate a repair.

3.2 ANSWER VERIFIER (AV)

The AV uses LLMs to translate natural language (typically, a question-answer pair) into premise-
conclusion pairs, where premises (abbreviated as P) and conclusions (abbreviated as C) are ex-
pressed in the logical vocabulary of the policy model. For example, a statement like “Since
you spent more than $100, you are eligible for a refund” might be translated into the premise
customer_spend > 100 and the conclusion eligible_for_refund. Premises are the contextual facts
and conditions established by the NL statement (“you spent more than $100”). Conclusions are the
logical consequences claimed to follow from those conditions (“you are eligible for a refund”). A
given text fragment may be translated into multiple premise-conclusion pairs (or none), as needed
to represent different claims that are asserted to follow from different conditions.

To increase translation confidence, the AV redundantly translates the NL statement using & LLMs
(Alg.[T). It compares the resulting premise-conclusion pairs semantically using an SMT solver, to
estimate a confidence score for each pair. Intuitively, the confidence score of a premise-conclusion
pair (P, C) is the proportion of the k translations that logically entail the implication P = C.

For example, consider the text under validation in §3|and the policy model shown in Fig.|2| Suppose
we run redundant translation with three LLMs that all produce identical translations containing the
premise-conclusion pair shown in Fig.[3] The confidence score for this pair is 3/3.

Now suppose one of the three LLMs produces a premise-conclusion pair with a different conclusion:
isEntryAllowed. Inthis case, AV would return two distinct premise-conclusion pairs: the original
pair from Fig. 3] with confidence 2/3, and the other one with confidence 1/3.

Validation Feedback. After translating the text into a list of premise-conclusion pairs with confi-
dence scores, the AV uses the SMT solver Z3 to provide detailed, logically grounded feedback to
help users understand the validation results, and (where appropriate) provide corrective guidance.
We validate each translated claim (consisting of premise P, conclusion C, and confidence score)
against the policy model M, and produce one of the following findings:

* Unknown: The LLM is unable to translate the text into the vocabulary of the policy model.

Under review as a conference paper at ICLR 2026

» TooComplex: Either the text or the translation into SMT-LIB requires too many tokens.

* Ambiguous: (P, C) has a confidence score below a configurable threshold (default: 3/3).

Impossible (M = —P): The premises alone contradict the policy model.

Invalid (M N P E —=C): The conclusion must be false given the policy model and premises.

* Satisfiable (M AN P ¥ C and M A P ¥ —C): The conclusion is consistent with, but doesn’t
necessarily follow from, the policy model and the premises.

* Valid (M A P = C): The conclusion must be true given the policy model and the premises.

For Impossible, Valid or Invalid findings, the findings include the relevant rules (i.e., the rules jus-
tifying the result) from the policy model, extracted from the SMT solver. For Satisfiable findings,
the feedback returns satisfying assignments (‘‘scenarios’) demonstrating how the premises could be
extended to become valid or invalid. For Impossible, Invalid, Valid, and Satisfiable findings, the
findings provide sufficient information that an independent third party could use a theorem prover
to re-derive the finding from the policy model. For Ambiguous findings, the feedback presents two
differing translations along with an assignment that is satisfiable in one translation but not the other.
Unknown findings return the relevant untranslatable text segments. Finally, logic warnings are sur-
faced if the premises or conclusions are always true or false irrespective of the policy rules.

Consider again the example shown in Sec. |3} where the AV is used to validate the conversation with
the question “I am a senior and want to visit the park in the low season, and I have a total fund of
$35.40. Can I visit the park?”, and the chatbot answer “No, $35.40 is not enough.” As shown in
Fig. 3| the AV returns a finding of Satisfiable and provides a variable assighment demonstrating a
concrete case in which the park admission is possible within the budget constraint (showing that
the provided answer can be wrong), along with a variable assignment showing what additional
information would make the answer correct.

4 EMPIRICAL EVALUATION

We evaluate LRG around the following research questions (RQs) to understand how effective LRG
is as a guardrail and how our design choices contribute to its performance.

RQ1 (RELIABILITY OF VALIDATING LOGICAL ACCURACY): How reliably does LRG validate
logical accuracy compared to alternative baselines?

RQ2 (IMPACT OF REDUNDANT TRANSLATION): How does redundant translation (§3.2)) impact
LRG’s performance?

RQ3 (IMPACT OF HUMAN POLICY VETTING): Does human policy vetting improve logical ac-
curacy validation enough to justify the additional effort?

RQ4 (EFFECTIVENESS OF LRG’S FEEDBACK): Is the feedback provided by LRG effective in
driving improvement of LLM output?

Metrics. We frame logical accuracy detection as a binary classification problem: decide whether
NL statements are Valid or not. All metrics we report reflect this binary setting. We evaluate LRG
using standard classification metrics (precision, recall, F1, accuracy), treating Valid as the positive
class and all other categories as negative. Our primary objective, however, is to maximize recall
while strictly limiting false positives across the entire pipeline. In safety-critical settings, rejecting
borderline cases (not-valid) is still favorable: such outputs can either be refined by the answer-
generating LLM using feedback from LR G, or escalated to human experts.

To capture this asymmetry, we define the soundness metric as the probability that content classified
as valid is actually valid, computed over all decisions as 1 — #}:‘;;‘27;‘;1?65. High soundness ensures
that incorrect content is rarely approved. When comparing alternative methods, Valid recall is used
as a tie-breaker under the requirement of maintaining high soundness. Note that soundness is notably
different from the standard performance metrics (e.g., FPR, precision, F3) as it operates directly over
the entire dataset (it is not conditional on output or label).

4.1 EVALUATION OF LOGICAL ACCURACY VALIDATION

Dataset. We extended the ConditionalQA dataset (Sun et al.,|2022) beyond its original binary clas-
sification (valid / not_answerable) into a richer evaluation set with several types of “not valid” exam-
ples. We introduce these additional categories to create variety in the dataset. The extended evalua-
tion set includes the following categories: Valid (logically correct), Invalid (incorrect due to wrong

Under review as a conference paper at ICLR 2026

Table 1: Comparison of logical accuracy detection performance on CONDITIONALQA-LOGIC (Sun et al.,
2022). The columns show soundness (S), false-positive rate (FPR), precision (Pr), recall (Re), F1 score (F1),
accuracy (Ac), and counts of true/false positives/negatives (TP/FP/TN/EN).

Method | St FPRJ | Pr? Re? FIt Act | TPt FPJ TNT FENJ
LRG (#3-ensemble, threshold=3/3) 992 25 | 926 156 267 427 | 163 13 506 884
LRG (#3-ensemble, threshold=2/3) 987 40 |91.0 203 333 454 | 213 21 498 834
LRG (without redundant translation) 986 42 | 938 317 474 529 | 332 22 497 715
LLMaJ (#3-ensemble, threshold=3/3) 983 50 | 921 290 442 509 | 304 26 493 743
LLMaJ (#3-ensemble, threshold=2/3) 963 112 | 901 50.1 644 630 | 525 58 461 522
LLMaJ (1x Sonnet3.7) 948 156 | 874 535 664 637 | 560 81 438 487

LLMalJ (1x Sonnet3.7 w/ extended thinking) | 94.9 154 | 8.2 57.1 693 662 | 598 80 439 449
FG Implicit span-level (Jacovi et al.|[2025) 96.4 11.0 90.5 52.0 660 642 | 544 57 462 503

FG JSON (Jacovi et al./[2025) 925 227 |83 712 780 732 | 745 118 401 302
FG Response-level (Jacovi et al.|[2025) 94.4 170 | 8.7 505 63.6 613 | 529 88 431 518
MiniCheck (Labs|[2024) 904 289 |89 693 755 699 | 726 150 369 321
RefChecker (Hu et al.[[2024) 844 472 | 789 876 83.0 761 | 917 245 274 130
SelfCheckGPT (Manakul et al.|[2023) 950 150 | 905 713 797 758 | 746 78 441 301

Logic-LM (Pan et al.|2023)

97.4 77 | 840 202 326 441 | 212 40 479 835

conditions), Satisfiable (missing necessary conditions), Impossible (contradictory conditions), and
Unknown (content that cannot be formalized, originally classified as not_answerable). These cate-
gories were created by systematically manipulating the conditional structure of original answers:
removing conditions (Valid — Satisfiable), applying incorrect conditions (Valid — Invalid), or
merging contradictory conditions (Valid — Impossible). The extended dataset (CONDITIONALQA -
LOGIC) contains 349 Valid and 173 examples that are not Valid (103 Invalid, 52 Satisfiable, 4 Im-
possible, and 14 Unknown).

RQI: Reliability of Validating Logical Accuracy. We evaluate different validation methods on
their end-to-end ability to predict validation labels for QA pairs about given NL policy documents.
This evaluation tests the complete LRG pipeline (PMC plus AV) without human involvement. Ta-
ble |1| reports performance comparison against alternative methods: LLM-as-Judge (LLMal) ap-
proaches with different prompting strategies, FACTS Grounding (FG) variants (Jacovi et al., 2025)),
fine-grained hallucination detection methods (Tang et al., [2024; [Labs|, 2024; [Manakul et al., 2023
Hu et al.,|[2024), and the neurosymbolic Logic-LM (Pan et al., [2023]).

Our evaluation shows that LRG consistently achieves the highest soundness, and the lowest false
positive rate, across all methods. At the most conservative threshold (3/3), it reaches 99.2% sound-
ness with a 2.5% false positive rate while achieving 92.6% precision. Alternative approaches did not
achieve the required soundness threshold of 99%, with the second best method (in terms of sound-
ness) being LLMalJ (#3-ensemble, threshold=3/3) at 98.3% soundness and 5.0% false positive rate,
twice that of LRG. The results also highlight a clear soundness-recall tradeoff: higher soundness
reduces the proportion of valid content that is accepted. For example, RefChecker has the highest
recall of 87.6%, but this comes at the cost of soundness dropping to just 84.4%, the lowest of all
methods. LRG’s reliability comes with lower recall (15.6% for the configuration with soundness
over 99%), but the tradeoff is intentional: in safety-critical domains where false approvals are far
more costly than false rejections, conservatism is a necessary design choice. This makes other meth-
ods unsuitable for applications where assurance guarantees are critical. These findings underscore
the importance of conservative guardrails in regulated domains, where avoiding false approvals is
more valuable than maximizing coverage. The results also highlight how soundness stands apart
from other metrics through its focus on minimizing false positives. For example, inspecting results
of RefChecker and LRG at a low confidence threshold (1/3), we see that they exhibit higher preci-
sion, F1 score and accuracy than LRG at the maximum threshold (3/3), but at the cost of 18x and
1.5x increase in false positives, respectively. In Appendix [A.1.T] we supplement this analysis with
an evaluation of mitigating identified logical inaccuracies with LRG compared to the baselines.

RQ2: Impact of Redundant Translation. LRG uses redundant translation (Alg. [1) to detect
ambiguity and increase confidence in NL-to-logic translations. The first 3 rows in Table [I] capture
the impact of redundant translation. Redundant translation improves soundness (from 98.6% to
99.2%) and reduces the false-positive rate from 4.2% to 2.5%. As discussed above, this comes at the
cost of reduced recall (31.7% down to 15.6%). The tradeoff can be tuned by adjusting the confidence
level “knob” in the AV: while a strict setting of 3/3 yields 99.2% soundness with only 15.6% recall,
lowering the confidence to 2/3 increases recall to 20.3% at the cost of bringing soundness to 98.7%.

Under review as a conference paper at ICLR 2026

Table 2: Effect of human vetting on logical accuracy detection for RyanAir’s customer service policy.

Method | St FPR) | Prt Ret F1t Act | TPt FP| TNt FN|
LRG with human vetting 100.0 0.0 100.0 455 625 613 20 0 18 24
LRG without any human vetting | 96.8 8.7 846 250 386 436 11 2 16 33

4.2 REFINING REAL-WORLD POLICY MODELS AND ANSWERS

CONDITIONALQA-LOGIC policies are small and self-contained, and our policy autoformalization
approach (§3.1.T) produces high-quality models without further review, resulting in the high sound-
ness seen in Table |I} Real-world policy documents can be much larger and more complex than
CONDITIONALQA-LOGIC policies. To understand the applicability of LRG to such real-world
policies, we collected a dataset of customer-facing policy documents (ranging from refund policies
to insurance policies) from six different businesses. These policies typically require human-in-the-
loop refinement (§3.1.2) to capture their nuances and support sound LRG validation. We explore
the impact of human vetting with a case study of one of the policies (RQ3). In a real-world setting,
users may deploy LLM-based chatbots to answer questions about these policies, requiring assurance
of answer correctness. To study the end-to-end impact of LRG in this setting, we evaluate iterated
self-refinement of LLM answers using feedback from LRG on the dataset (RQ4).

RQ3: Impact of Human Policy Vetting. We designed a case study to evaluate the support that
LRG provides for policy refinement and its impact on LRG’s performance as a guardrail. In our
study, we create and compare two formalizations of an airline’s refund policy: one using the PMC
to create a policy model without additional vetting, and one that is revised using a human-in-the-
loop (as described in @ To evaluate these two formalizations, we created a test suite balanced
across three sources: 1) verbatim statements from the original policy; 2) Q/A pairs generated by an
LLM; 3) Q/A pairs generated by three different individuals. The expected classification labels were
determined manually.

We found that clarification of ambiguities is a task that warrants human input. There were several
ambiguities and edge cases in the study document, such as when a passenger passes away on the day
of travel. The most notable ambiguity is where the policy states: “you may be entitled for a refund if
your scheduled time of departure is delayed by at least 5 hours”. It is unclear whether one is entitled
to such a refund only if they did not travel (a prerequisite the document clarifies in other cases).

The detailed finding categories were helpful in guiding policy revisions. Ambiguous or Unknown
findings typically indicated variables needed to be added or revised. Impossible findings, on the other
hand, consistently indicated subtle rule inconsistencies and triggered rule revisions. A recurring
pattern in this category is one where autoformalization fails to recognize valid exceptions to the
rules that may appear in a different section of the document. For example, the document begins with
a broad statement that “If your flight operated and you didn’t travel, you’re not entitled to a refund,”
but later on lists several special circumstances under which passengers may indeed qualify for a
refund even if their flight operated. As shown below, LRG correctly flags the displayed question-
answer pair as Impossible and identifies the problematic rules in the policy model.

Question-answer pair: LRG judgment: Impossible
Q: My flight operated but I did not travel because I was denied board-
ing. Am I eligible for a refund?

A: Yes, if you were denied boarding you are eligible for a refund. LRG returns two rules to explain this finding:
LRG interprets the question-answer as follows: I3 (= (ene clichlightOperate
(not didPassengerTravel))
Premise: (and didFlightOperate (not isRefundEligible))
(not didPassengerTravel)
(= flightDisruptionReason DENIED_BOARDING)) 2: (=> (= flightDisruptionReason
Conclusion: isRefundEligible DENIED_BOARDING) isRefundEligible)

The revision process was a non-trivial effort of several person-hours. As illustrated in Table
refinement played a central role in creating a policy that is effective as a guardrail. In fact, human
vetting increased soundness to 100% and the recall to 45.5%. Note that, even though some tests
were run during human vetting, about a third of the tests were held-out. Validation inaccuracies
were evenly spread across all classes. Since vetted policies can be reused across future validation
tasks, the cost is amortized over time, making human-in-the-loop vetting a practical and effective
complement to automated formalization with human oversight.

Under review as a conference paper at ICLR 2026

RQ4: Effectiveness of LRG’s Feedback. The =
formally-grounded feedback that LRG provides /R
(Section[3.2)), in addition to being helpful for human * ———

vetting and policy refinement as discussed above,
can also be used for automated answer revision. In
Figure 4] we prompt an LLM to iteratively revise
AV-judged non-Valid answers given LRG feedback

(#3-ensemble, threshold=3/3), and plot the relative ; ~ ;"n‘jgi‘;’:g';*
percentages of each finding type after each iteration. valid

We can see that after just three iterations of revision,
the LLM is able to go from 10.8% to 43.9% Valid an-
swers. Primarily, this comes from a sharp reduction AN = == -
in AV-judged Satisfiable answers (where the answer S e S O N AT S
could be true or false depending on additional con- oo

text that is not stated in the answer). Given LRG’s Figure 4: LRG validation finding distribution af-
feedback, which includes a logically-derived sce- ter k iterations of answer revision using LRG
nario that illustrates additional context that is needed ~feedback. At k& = 0, we plot the finding distri-
to make the answer Valid, the LLM is able to effec- Pution before any revisions.

tively revise these into Valid answers.

—e— Impossible
—e— Invalid

0 —e— Unknown
Satisfiable

Percentage (%)

LRG’s feedback is less effective in revising Ambiguous and Unknown answers. Analysis of the
revision trajectories shows that the correct revision in these cases would have been to revise the
policy model, not the answer; for example, the policy model could be missing variables, leading
to a failure to formalize the answer’s content, or the policy model could have ambiguous variables
that overlap in meaning, leading to a failure to generate a consistent formalization of the answer.
As discussed in RQ3, these forms of feedback can be effectively handled by human vetting. This
leads credence to the possibility of future automation of manual vetting effort by leveraging LRG’s
feedback to revise the policy model as well as the answer.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We presented LRG, a neurosymbolic guardrail that exceeds 99% (our “two nines” target) soundness
when validating LLM answers against policies, an assurance unattainable by existing approaches.
This soundness comes at the cost of recall, a tradeoff we believe appropriate for regulated industries.
Soundness of LRG heavily depends on the quality of the policy model that it uses for validation. For
this reason, LRG enables human oversight. Such oversight is particularly relevant when policies are
complex or very long documents. As we have shown, when domain experts refine policy models,
both soundness and recall improve significantly. Beyond metrics, our formal representations let ex-
perts resolve ambiguities in policy documents, which is something no LLM can do, as only humans
with authority can provide the definitive interpretation of what was intended.

While LRG achieves strong soundness guarantees, current implementation limitations include:

* Scalability: Policy models from documents with hundreds of pages can include hundreds-to-
thousands of rules, making them challenging for human vetting.

* Document types: Policies with numerical tables, cross-references, or implicit assumptions can be
challenging to formalize accurately without human vetting or background knowledge.

* Computational cost: Redundant translation requires multiple (3) LLM calls, resulting in average
5-15 second latency and increased API cost per Q/A validation with our current implementation.

* Autoformalization challenges: Subtle issues like ambiguous pronouns, implicit temporal or con-
ditional scoping, and complex nested clauses or negations can lead to incorrect formalizations that
propagate through the current pipeline.

* Human effort: The investment for human vetting of policies, while amortized over time, remains
a significant upfront cost.

Future work includes exploring automatic and confidence-aware focused vetting, fine-tuned transla-
tion models for improving accuracy and latency/costs, and improved logical formalisms to address
current limitations while targeting three nines soundness and beyond. Our approach directly benefits
from advances in LLMs and generative Al techniques: as models improve, their ability to formalize
natural language to logic will too. We are confident LRG will inherit these improvements while
maintaining the mathematical guarantees provided by symbolic reasoning.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To encourage reproducibility, we included experimental details in Appendix [A.2] implementation
details (including detailed prompt templates) in Appendix [A.3] as well as the following additional
resources as supplementary material:

¢ The extended CONDITIONALQA-LOGIC dataset.
* Detailed artifacts for the user study from Section .2} including source document, policy auto-
generated by PMC, policy after human vetting, and comprehensive tests.

ETHICS STATEMENT

The authors of this work acknowledge that they have read and commit to adhering to the ICLR Code
of Ethics.

REFERENCES

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

Gerhard Brewka, Thomas Eiter, and Mirostaw Truszczyniski. Answer set programming at a glance.
Communications of the ACM, 54(12):92-103, 2011.

Benjamin Callewaert, Simon Vandevelde, and Joost Vennekens. Verus-lm: a versatile framework
for combining llms with symbolic reasoning. arXiv preprint arXiv:2501.14540, 2025.

Pierre Carbonnelle, Simon Vandevelde, Joost Vennekens, and Marc Denecker. Interactive configu-
rator with fo (.) and idp-z3. arXiv preprint arXiv:2202.00343, 2022.

Leonardo De Moura and Nikolaj Bjgrner. Z3: an efficient smt solver. In Proceedings of the The-
ory and Practice of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337-340, 2008.

Joschka Haltaufderheide and Robert Ranisch. The ethics of chatgpt in medicine and healthcare: a
systematic review on large language models (Ilms). npj Digit. Medicine, 7(1), 2024. doi: 10.1038/
S41746-024-01157-X. URL https://doi.org/10.1038/s41746-024-01157-x.

Pascal Hitzler and Md. Kamruzzaman Sarker (eds.). Neuro-Symbolic Artificial Intelligence: The
State of the Art, volume 342 of Frontiers in Artificial Intelligence and Applications. 10S Press,
2021. ISBN 978-1-64368-244-0. doi: 10.3233/FAIA342. URL https://doi.org/10.
3233/FAIA342]

Xiangkun Hu, Dongyu Ru, Lin Qiu, Qipeng Guo, Tianhang Zhang, Yang Xu, Yun Luo, Pengfei
Liu, Yue Zhang, and Zheng Zhang. Knowledge-centric hallucination detection. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp. 6953-6975, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.395.
URLhttps://aclanthology.org/2024.emnlp-main.395/.

Adam Ishay, Zhun Yang, and Joohyung Lee. Leveraging large language models to generate answer
set programs. In Proceedings of the 20th International Conference on Principles of Knowledge
Representation and Reasoning, KR "23,2023. ISBN 978-1-956792-02-7. doi: 10.24963/kr.2023/
37. URL https://doi.org/10.24963/kr.2023/37.

Alon Jacovi, Andrew Wang, Chris Alberti, Connie Tao, Jon Lipovetz, Kate Olszewska, Lukas Haas,
Michelle Liu, Nate Keating, Adam Bloniarz, et al. The facts grounding leaderboard: Bench-
marking llms’ ability to ground responses to long-form input. arXiv preprint arXiv:2501.03200,
2025.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

10

https://doi.org/10.1038/s41746-024-01157-x
https://doi.org/10.3233/FAIA342
https://doi.org/10.3233/FAIA342
https://aclanthology.org/2024.emnlp-main.395/
https://doi.org/10.24963/kr.2023/37

Under review as a conference paper at ICLR 2026

Bespoke Labs. Bespoke-minicheck-7b, 2024. URL https://huggingface.co/
bespokelabs/Bespoke—-MiniCheck—"7B.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
on the reasoning performance of large language models, 2024. URL https://arxiv.org/
abs/2402.14848.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Tongxuan Liu, Wenjiang Xu, Weizhe Huang, Yuting Zeng, Jiaxing Wang, Xingyu Wang, Hailong
Yang, and Jing Li. Logic-of-thought: Injecting logic into contexts for full reasoning in large
language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pp. 10168-10185, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
6. doi: 10.18653/v1/2025.naacl-long.510. URL https://aclanthology.org/2025.
naacl-long.510/.

Potsawee Manakul, Adian Liusie, and Mark Gales. SelfCheckGPT: Zero-resource black-box hallu-
cination detection for generative large language models. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 9004-9017, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.557. URL https://aclanthology.org/2023.
emnlp-main.557/.

William McCune. Release of prover9. In Mile high conference on quasigroups, loops and nonasso-
ciative systems, Denver, Colorado, 2005.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenen-
baum, and Roger Levy. LINC: A neurosymbolic approach for logical reasoning by combining
language models with first-order logic provers. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 5153-5176, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.313. URL https://aclanthology.org/2023.
emnlp-main.313/l

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3806-3824, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.248. URL https://aclanthology.org/2023.
findings—-emnlp.248/.

Meghana Rajeev, Rajkumar Ramamurthy, Prapti Trivedi, Vikas Yadav, Oluwanifemi Bamgbose,
Sathwik Tejaswi Madhusudan, James Zou, and Nazneen Rajani. Cats confuse reasoning 1lm:
Query agnostic adversarial triggers for reasoning models, 2025. URL https://arxiv.org/
abs/2503.01781.

John Alan Robinson and Andrei Voronkov (eds.). Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001. ISBN 0-444-50813-
9. URL https://www.sciencedirect.com/book/9780444508133/
handbook-of-automated-reasoning.

Hyun Ryu, Gyeongman Kim, Hyemin S Lee, and Eunho Yang. Divide and translate: Composi-
tional first-order logic translation and verification for complex logical reasoning. arXiv preprint
arXiv:2410.08047, 2024.

Haitian Sun, William W Cohen, and Ruslan Salakhutdinov. Conditionalqa: A complex reading
comprehension dataset with conditional answers. arXiv preprint arXiv:2110.06884, 2021.

11

https://huggingface.co/bespokelabs/Bespoke-MiniCheck-7B
https://huggingface.co/bespokelabs/Bespoke-MiniCheck-7B
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://aclanthology.org/2025.naacl-long.510/
https://aclanthology.org/2025.naacl-long.510/
https://aclanthology.org/2023.emnlp-main.557/
https://aclanthology.org/2023.emnlp-main.557/
https://aclanthology.org/2023.emnlp-main.313/
https://aclanthology.org/2023.emnlp-main.313/
https://aclanthology.org/2023.findings-emnlp.248/
https://aclanthology.org/2023.findings-emnlp.248/
https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2503.01781
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning

Under review as a conference paper at ICLR 2026

Haitian Sun, William Cohen, and Ruslan Salakhutdinov. ConditionalQA: A complex reading com-
prehension dataset with conditional answers. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 3627-3637, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.253. URL https:
//aclanthology.org/2022.acl-1long.253/l

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence.
In International Conference on Intelligent Computer Mathematics, pp. 3—20. Springer, 2020.

Liyan Tang, Philippe Laban, and Greg Durrett. MiniCheck: Efficient fact-checking of LLMs on
grounding documents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
8818-8847, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.499. URL https://aclanthology.org/2024.
emnlp-main.499/.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of in-
formal to formal mathematics. In International Conference on Intelligent Computer Mathematics,
pp- 255-270. Springer, 2018.

Yuxia Wang, Revanth Gangi Reddy, Zain Muhammad Mujahid, Arnav Arora, Aleksandr Ruba-
shevskii, Jiahui Geng, Osama Mohammed Afzal, Liangming Pan, Nadav Borenstein, Aditya Pil-
lai, Isabelle Augenstein, Iryna Gurevych, and Preslav Nakov. Factcheck-bench: Fine-grained
evaluation benchmark for automatic fact-checkers. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 14199-14230, Miami, Florida, USA, November 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-emnlp.830. URL https://aclanthology.org/
2024.findings—emnlp.830/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in neural informa-
tion processing systems, 35:32353-32368, 2022.

Xuyuan Xiong, Simeng Han, Ziyue Zhou, and Arman Cohan. Hybridmind: Meta selection of
natural language and symbolic language for enhanced llm reasoning. 2024. URL https://
api.semanticscholar.org/CorpusID:273501516.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logi-
cal reasoning via symbolic chain-of-thought. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 13326-13365, Bangkok, Thailand, August 2024a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.720. URL |https:
//aclanthology.org/2024.acl-1long.720/l

Ziwei Xu, Sanjay Jain, and Mohan S. Kankanhalli. Hallucination is inevitable: An innate limitation
of large language models. CoRR, abs/2401.11817, 2024b. doi: 10.48550/ARXIV.2401.11817.
URLhttps://doi.org/10.48550/arXiv.2401.11817.

Zhun Yang, Adam Ishay, and Joohyung Lee. Coupling large language models with logic program-
ming for robust and general reasoning from text. arXiv preprint arXiv:2307.07696, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language models
using declarative prompting. In Proceedings of NeurlPS, 2023.

12

https://aclanthology.org/2022.acl-long.253/
https://aclanthology.org/2022.acl-long.253/
https://aclanthology.org/2024.emnlp-main.499/
https://aclanthology.org/2024.emnlp-main.499/
https://aclanthology.org/2024.findings-emnlp.830/
https://aclanthology.org/2024.findings-emnlp.830/
https://api.semanticscholar.org/CorpusID:273501516
https://api.semanticscholar.org/CorpusID:273501516
https://aclanthology.org/2024.acl-long.720/
https://aclanthology.org/2024.acl-long.720/
https://doi.org/10.48550/arXiv.2401.11817

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

A.1.1 EFFECTIVENESS OF FEEDBACK FOR MITIGATING LOGICAL INACCURACIES

Table [3] sheds light on how effective is LRG’s feedback compared to existing state-of-the-art meth-
ods for mitigating logical inaccuracies using the CONDITIONALQA-LOGIC dataset. We utilized a
uniform experimental methodology for each method M: raw feedback from M is incorporated into
an identical prompt for answer revision through an LLM for at most 10 revision iterations. In each
revision iteration k (0 < k < 10), the answer from the previous iteration is evaluated by M, and if
labeled as not Valid by M, a new revised answer is generated through an LLM (Claude Sonnet 3.7)
by incorporating the raw evaluation feedback from M in the Fig.[I0|prompt. Columns 2-6 (marked
under % Valid) report the percentage of answers classified as Valid by each method M after differ-
ent revision iterations k£ € 0,1,3,5,10. We further evaluated the final revised answers generated
after at most 10 revision iterations separately with top 3 judges from Table [T (in terms of sound-
ness), and report soundness and recall with respect to the corresponding judge J. Additionally, the
CONDITIONALQA-LOGIC dataset contains 14 questions labeled as not answerable from the source
text by human annotators from (Sun et al., 2021), for which we report the count of final revised
answers labeled as Valid by method M as false positives counts in the last column.

Table 3: Effectiveness of different methods in providing feedback to mitigate logical inaccuracies (as detected
by the same method) on CONDITIONALQA-LOGIC (Sun et al.,|2022). For each method, raw feedback is incor-
porated into an identical prompt for LLM-based refinement (Fig. [I0). We report the percentage of responses
classified as Valid by the method after at most 10 answer refinement iterations. Columns S & Re report sound-
ness and recall of final revised answers evaluated separately with top 3 judges from Table [T](w.r.t. soundness)
as ground truth. Column FPyuman reports false positives in the final revised answers for questions labeled as not
answerable by human annotators.

% Valid Judge J to evaluate final revised answers after 10 revision iterations Not ans
LRG (#3-ensemble) | LLMaJ (#3-ensemble) | FG Implicit span-level .
@) @l @3 @5 @I0 S Re S Re Re FPHuman

LRG (#3-ensemble) | 105 155 192 213 236 | — | 89.9 333 | 93.9 72 | 1

Method M

LLMal (#3-ensemble) | 23.8 682 734 759 776 | 32.2 30.9 — 91.4 95.5 9
FG Implicit span-level | 38.7 93.1 992 99.6 100.0 | 9.6 100.0 54.2 100.0 — 14
FG JSON 53.6 931 992 99.6 996 | 11.3 96.6 46.6 99.2 78.2 99.5 14
LLMaJ (1x Sonnet3.7) | 420 94.6 99.0 99.6 99.8 | 103 98.2 56.3 99.7 80.8 99.8 14

Examining the above results, we observe the following:

* LRG’s feedback helps drive the count of Valid answers (as evaluated by LRG) from 55 tests ini-
tially to 123 tests after 10 iterations. LRG remains cautious and conservative when passing revised
answers as Valid, and flags answers even in cases with minute/subtle errors or discrepancies.

* FG Implicit span-level, FG JSON, and LLMaJ (1x Sonnet3.7) methods remain much more liberal,
quickly reaching to answers evaluated by them as Valid for > 93% tests after just 1 revision
iteration, and for > 99% tests after 10 revision iterations.

* When comparing final revised answers through different judges, LRG stands out with the highest

overall soundness across all top 3 judges.

As expected, FG Implicit span-level, FG JSON, and LLMaJ (1x Sonnet3.7) methods show near-

perfect recall. However, the final revised answers from these methods show major soundness

gaps when evaluated with LRG or LLMaJ (#3-ensemble) judges, making them unsuitable for
high-stakes tasks.

For the 14 questions that are annotated as not answerable, LRG showed significantly lower false

positives compared to other methods.

Overall, the soundness-recall tradeoff persists across methods: LRG demonstrates the highest

soundness and agreements across judges, but at the cost of lower recall rates. LRG conservative

judgments and attention to minute and subtle details are well aligned for safety-critical domains
where false approvals are far more costly than false rejections.

13

Under review as a conference paper at ICLR 2026

A.1.2 UTILIZING PMC RULES BEYOND AV

In this experiment, we utilized rules generated by PMC for CONDITIONALQA-LOGIC, and
used them instead of or in addition to the source document text as in-context information for LLMalJ
method. Table E] summarizes the key results for: 1) with PMC rules instead of document text, and
2) with PMC rules in addition to the document text.

Table 4: Overall logical accuracy detection across types of in-context information for LLM baselines.

In-Context Information | St FPR) | Prt Ret F1t Act | TPt FP| TNt FN|
LLMal (#3-ensemble, threshold=3/3) | 98.3 5.0 92.1 29.0 442 509 304 26 493 743
1) with PMC rules, without Doc 98.9 35 93,5 247 39.1 485 259 18 501 788
2) with PMC rules, with Doc 97.6 7.1 90.6 342 49.7 53.6 | 358 37 482 689

A.1.3 PMC SCALING

In order to examine how PMC scales with respect to policy size, we run it over a large real-world
document consisting of 274 pages of content. Each page consists of approximately 500 tokens.
Figure 5] measures the number of datatypes, variables, rules with respect to document size.

2000
1800
1600
1400
1200

1000 —e—# Variables

Count

Datatypes

200 #Rules
600
400
200

0
5 10 14 16 21 27 30 35 42 45 48 53 60 68 70 74 78 83 89 95 97 103106108113 116 120 125 132 140 147 153 157 159 164 167 174 180 187 191 196 204 208 210 215 221 223 231 238 243 247 252 259 266 272

Number of Pages

Figure 5: Number of datatypes, variables, and rules with respect to number of unique pages of text formalized,
where each page is approximately 500 tokens.

We can see that PMC-produced policy size (in terms of counts of datatypes, variables, and rules)
scales smoothly with document size. The overall document amounts to 600 datatypes, 1968 vari-
ables, and 1467 rules.

A.2 EXPERIMENT DETAILS

Dataset Details (Section 4.I). The original ConditionalQA dataset provides binary labels (valid
or not-answerable) for question-answer pairs, suited for the task of answering complex questions
over long documents. However, the dataset’s defining characteristic—that answers are only correct
under specific stated conditions—presented a unique opportunity for more comprehensive evaluation
suited for our logical accuracy detection task. We systematically leveraged this conditional structure
to generate additional evaluation categories by using the relationship between answers and their
associated conditions:

Satisfiable: Answers with non-empty conditions deliberately removed or dropped—tests whether a
method can identify when necessary conditions are missing, even though the core answer content
remains logically satisfiable within the document context.

14

Under review as a conference paper at ICLR 2026

Invalid: Answers with incorrect alternative conditions applied—evaluates a method’s ability to
detect when conditions directly contradict the stated answer based on the document (e.g., flipping
yes/no responses while maintaining the original conditions).

Impossible: Contradictory yes/no answers with non-empty conditions merged—tests detection of
logical impossibilities by combining mutually exclusive responses (yes/no answers) under unified
condition sets.

Valid: Original answers with their stated conditions intact-represents the ground truth conditional
answers as provided in the dataset.

Unknown: Questions originally marked as not-answerable in the dataset—preserves the dataset’s
inherent cases for which an answer cannot be given based on the source text.

This systematic augmentation transformed the original dataset into a multi-dimensional evaluation
dataset for logical accuracy detection that tests conditional reasoning capabilities across various
logical relationships and edge cases.

Baseline Details (Section @.1). For a fair comparison, we evaluated all methods under comparable
configurations:

LLMaJ: For a comprehensive LLM-as-judge baseline that takes into account different validation
output types comparable to LRG, we developed a customized prompt[7] with explicit instructions
and details about the logical accuracy validation task. When coupled with majority voting as an
ensemble of 3 (i.e., LLMal (#-ensemble) in Table , we utilized a comparable ensemble con-
figuration as utilized in LRG (#-ensemble) (i.e., LRG with redundant translation using 3 LLM
calls).

FACTS Grounding: We utilized the exact same prompts as presented in (Jacovi et al., [2025) using
Claude Sonnet 3.7 as the LLM.

MiniCheck: We evaluated the method in its recommended default configuration as presented
in (Labs, [2024).

RefChecker: We utilized the accurate context setting from (Hu et al.,[2024) (input prompt provided
with the document) and evaluated under joint checking of claims using Claude Sonnet 3.7.
SelfCheckGPT: We configured the method from (Manakul et all [2023) with 3 samples using
Claude Sonnet 3.7.

Logic-LM: We adapted the method from (Pan et al., 2023} and configured with Proverqﬂ as the
solver.

A.3 IMPLEMENTATION DETAILS
A.3.1 FRAGMENT OF SMT-LIB UTILIZED BY LRG

LRG supports the autoformalization of natural language policy documents into quantifier-free
SMTLIB with non-linear arithmetic (QF_NRIA) as shown in Fig.[6] This logical fragment allows
us to express predicates over integers, real numbers, booleans, and datatypes (enumerated values).
We restrict our approach to this logical fragment because regulatory policy documents are typically
written for human consumption and thus lack complex quantification.

7:= Int |Real | Bool | k
d := (declare-datatype k (vi...vn)) | (declare-const z 7)
opi=+|—[/Ix|=1>[<[|<]|=
c := integers | reals | true | false
e:=z|v|c|(andee)|(oree)]|(note)|(=>ee)]|(opee)
s:= (assert e)
p:=di...dn;S1...5n
Figure 6: The fragment of SMTLIB expressed by our formalization.

*https://www.cs.unm.edu/~mccune/prover9/

15

https://www.cs.unm.edu/~mccune/prover9/

Under review as a conference paper at ICLR 2026

A.4 PROMPT TEMPLATES

A.4.1 LLM-AS-JUDGE OUTPUTS FOR RUNNING EXAMPLE

System prompt:

You are a logician that validate answer to question based on a given policy

User prompt:

Please consider the following policy:

<policy>

General admission: The regular admission to the park is $50. The admission fee in the low
season is 75% of the regular admission fee.

Discount: Seniors (age greater than 65) qualify for 40% discounts. Whenever a discount ap-
plies, there will be a $10 flat discount processing fee.

Credit: You can use credit for up to 50% of your final admission (1 credit for 1 dollar). However,
if credits are used, then the discount rate is capped at 25%. You can purchase credit at a rate of
$0.60 per credit. You can only purchase credit in increments of 5 (cost 3$).

Tax: A federal tax of 10% applies to the final expense.

</policy>

Please help validate the question and answer pair as valid or not.

<question> I am a senior citizen visiting park in the low season, I have $35.4 dollars as total
fund, will I be able to visit the park

</question>

<answer> No, $35.4 is not enough </answer>

Figure 7: LLM-as-Judge Prompt for the example in Sec.

Valid.

Reasoning:Let me calculate the cost for a senior citizen visiting the park in the low season:
Base admission price in the low season:

Regular admission: $50 low season rate: 75% of regular = $50 x 0.75 = $37.50 Senior discount:
Seniors get 40% discount = $37.50 x 0.60 = $22.50 Discount processing fee: +$10 Pre-tax
amount: $32.50 Tax calculation:

10% federal tax = $32.50 x 0.10 = $3.25 Final cost: $32.50 + $3.25 = $35.75 The visitor has
$35.40, which is $0.35 short of the required $35.75.

Using credits wouldn’t help because:

With credits, the discount would be capped at 25% (worse than the 40% senior discount) There
would be additional costs to purchase the credit.

The answer is valid. With $35.40, the senior citizen does not have enough money to visit the
park in the low season.

Figure 8: LLM-as-Judge Validation (Claude Sonnet 3.7)

16

Under review as a conference paper at ICLR 2026

Valid.

Reasoning: Looking at this problem, I need to calculate the minimum cost for a senior citizen
visiting in the low season.

Let me work through the calculation:

Step 1: Low Season Admission

Regular admission: $50 low season admission: 75% x $50 = $37.50 Step 2: Senior Discount
Seniors get 40% discount Discounted admission: $37.50 x (1 - 0.40) = $37.50 x 0.60 = $22.50
Add discount processing fee: $22.50 + $10 = $32.50 Step 3: Consider Credits Using credits
would cap the discount at 25% instead of 40%, making it more expensive, so the optimal choice
is NOT to use credits.

Step 4: Apply Tax

Subtotal: $32.50 Federal tax (10%): $32.50 x 1.10 = $35.75 Final Cost: $35.75

Since the visitor has $35.40 and needs $35.75, they are short by $0.35.

Validation Result: VALID

The answer ”No, $35.4 is not enough” is correct. The minimum amount needed is $35.75,
which exceeds the available funds by $0.35.

Figure 9: LLLM-as-Judge Validation (Claude Opus 4.1)

A.4.2 PROMPT TEMPLATE UTILIZED FOR LLM-BASED ANSWER REFINEMENT

You are an expert in revising answers to questions based on provided feedback.

Given a domain, a question, an original answer, and an explanation of why the original answer
is incorrect, your task is to revise the original answer based on the given explanation. Return
only the revised answer without any prefix. Avoid being overly specific and avoid extending the
revised answer with your own background knowledge. The revised answer should be consistent
with the provided source text.

DOMAIN: {domain}

SOURCE TEXT: {source_text}

QUESTION: {question}

ORIGINAL ANSWER: {original_answer}

FEEDBACK: {feedback}

REVISED ANSWER:

Figure 10: Prompt template utilized for LLM-based answer refinement.

17

Under review as a conference paper at ICLR 2026

A.4.3 PROMPT TEMPLATE UTILIZED FOR LLM-AS-JUDGE (LLMAJ) METHOD

You are an expert document validator. Your task is to determine whether a given answer to a question is
correct according to the provided policy document. When a test finishes, you’re provided with a set of
validation results to understand how your Automated Reasoning policy is performing. A test includes the
following information:

Query and Content: A question a user might ask your GenAl application and a possible response. You
define these if you manually create the test. Automated Reasoning defines these if you generated test
scenarios.

Confidence threshold: The minimum confidence level for logic validation that you set for your test. This
threshold determines how Automated Reasoning handles uncertainty in translating natural language to
formal logic. Content that meets or exceeds the threshold is considered a high-confidence finding that
can be validated with a definitive result (VALID or INVALID). Content that falls below the threshold is a
low-confidence finding that’s marked as TRANSLATION_AMBIGUOUS, indicating the system detected
ambiguity and chose not to provide a potentially incorrect validation result.

Validation results:

Expected result: The result you expect from running the test.

Actual result: The result from running the test.

Execution result: Indicates whether the test passed. If the expected and actual results align, the test
passed. If not, the test failed.

Findings: The output from an Automated Reasoning policy test is a set of findings. Findings represent
factual claims contained in your test question and answer. Use these to help you understand why a test
passed or failed.

Type: Translations can include a combination of claims and premises.

Premises: Provides context, assumptions, or conditions that affect how a claim should be evaluated. In
question-and-answer formats, the premise is often the question itself. Answers can also contain premises
that establish constraints or conditions. For example, in the question, "What numbers are divisible by
277 and answer, “Even numbers”, the premise is “numbers divisible by 2”. In the statement, "When the
traffic light turns green, you must go,” the premises is “traffic light is green”.

Claims: Factual statements that Automated Reasoning evaluates for accuracy. In a question-and-answer
format, the claim is typically the answer. In a standalone statement, the claim is the fact being asserted.
For example, in the question, ”What numbers are divisible by 2?” and answer, ”Even numbers”, the claim
is “even numbers”.

Result: Indicates how valid a finding’s claims are. For more information, see Test validation results.
Confidence: The confidence score (ranging from 0.0 to 1.0) that Automated Reasoning has in the
translation from natural language to formal logic, representing how certain the system is about correctly
interpreting the input text. Higher scores indicate greater certainty in the translation. For example, if a
translation has a confidence of ”1.0”, that indicates maximum certainty that the natural language was
accurately converted to formal logic. Lower confidence scores suggest the system has some uncertainty
about the translation that you may want to review.

Assignments: Variable assignments from your policy that prove the finding is valid or not. Translations
have logic statements that show how the natural language was converted to formal logic. These can be
more complex when there is nested logic. For example, hasDogHistoryOfAggression is false.

Rules: The extracted logic from your policy that supports the finding. A test provides you with enough
relevant rules from your policy to help you understand the finding result.

Figure 11: Prompt utilized for LLM-as-Judge (LLMal) method (Part 1/2)

18

Under review as a conference paper at ICLR 2026

The following list details possible validation results from an Automated Reasoning policy test:

VALID The claims in the model’s response are logically consistent with your policy rules and can be
mathematically proven correct. The response correctly follows all applicable logical constraints and the
reasoning from premises to conclusions is sound.

Example: If your policy states "Employees with 1+ year of service get parental leave” and the model
responds You qualify for parental leave since you’ve worked here for 18 months,” this would be VALID
because 18 months exceeds the 1-year requirement.

INVALID The claims in the model’s response contradict or violate your policy rules. The response con-
tains statements that are mathematically provable as incorrect based on your policy’s formal logic con-
straints.

Example: If your policy states "Employees with 1+ year of service get parental leave” and the model
responds ”You qualify for parental leave even though you’ve only worked here for 3 months,” this would
be INVALID because 3 months doesn’t meet the 1-year requirement.

SATISFIABLE Given the information provided in the policy, whether the claims in the model’s response
are correct or in violation of policy rules depends on additional information that is not specified in the
response. Without that additional information, the claims can neither be proven correct nor incorrect.
Example: If your policy states "Employees need 1+ year of service for parental leave AND must submit
form HR-101" and the model responds ”You qualify for parental leave since you’ve worked here for 2
years,” this would be SATISFIABLE because the response correctly addresses the service requirement
but doesn’t mention the form requirement (without contradicting it).

IMPOSSIBLE Automated Reasoning can’t make a statement about the claims. This can happen if the
premises are logically incorrect, or if there is a conflict within the Automated Reasoning policy itself.
Example: If your policy contains contradictory rules like ”All employees get vacation days” and “No
employees get vacation days,” or if the test question contains impossible premises like ”What benefits
do employees get if they work negative hours?”, the result would be IMPOSSIBLE because the logical
foundation is flawed.

TRANSLATION_AMBIGUOUS Detected an ambiguity in the translation meant it would be unsound
to continue with validity checking. Additional context or follow-up questions might be needed to get
translation to succeed.

Example: If your test question is ’Can they take leave?”” without specifying who “they” refers to, or if the
model response uses ambiguous pronouns like It depends on their situation” without clear referents, the
result would be TRANSLATION_AMBIGUOUS because the system cannot reliably translate the vague
language into formal logic.

TOO_COMPLEX The input contains too much information for Automated Reasoning to process within
its latency limits.

Example: If your test includes an extremely long model response with hundreds of interconnected claims
about employee benefits, vacation policies, health insurance, retirement plans, and performance reviews
all in a single response, the result might be TOO_COMPLEX because the logical analysis would exceed
processing time limits.

NO_TRANSLATIONS Identifies that some or all of the input prompt wasn’t translated into logic. This
can happen if the input isn’t relevant to the Automated Reasoning policy, or if the policy doesn’t have
variables to model relevant input. If Automated Reasoning can’t translate anything, you get a single
NO_TRANSLATIONS finding. You might also see a NO_TRANSLATIONS (along with other findings)
if some part of the validation isn’t translated.

Example: If your HR policy is designed to validate employee benefits but your test question asks "What’s
the weather like today?” or "How do I cook pasta?”, the result would be NO_.TRANSLATIONS because
the content is completely unrelated to your policy’s domain and variables.

POLICY DOCUMENT: {document}

QUESTION: {question}

ANSWER: {answer}

Based on the document above, classify this question-answer pair into exactly one of the QA validator
aggregate results

Analyze the question and answer carefully against the document. Consider: - Does the answer accurately
reflect what the document states? - Are there any conditions, exceptions, or edge cases the answer fails to
mention? - Is the answer always true, sometimes true, or never true according to the document?

Provide your classification as a single word from the list above in the format <answer>[...]</answer>
followed by a brief explanation.

CLASSIFICATION:

Figure 12: Prompt utilized for LLM-as-Judge (LLMal) method (Part 2/2)

19

	Introduction
	Related Work
	Methodology
	Policy Model Creator (PMC)
	Autoformalizing Natural Language Documents
	Policy Model Vetting

	Answer Verifier (AV)

	Empirical Evaluation
	Evaluation of Logical Accuracy Validation
	Refining Real-World Policy Models and Answers

	Conclusions, Limitations, and Future Work
	Appendix
	Additional experiments
	Effectiveness of feedback for mitigating logical inaccuracies
	Utilizing PMC rules beyond AV
	PMC scaling

	Experiment Details
	Implementation Details
	Fragment of SMT-LIB utilized by LRG

	Prompt Templates
	LLM-as-Judge Outputs for Running Example
	Prompt template utilized for LLM-based answer refinement
	Prompt template utilized for LLM-as-Judge (LLMaJ) method

