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Abstract

Accurately predicting customer Lifetime Value (LTV) is crucial for companies1

to optimize their revenue strategies. Traditional deep learning models for LTV2

prediction are effective but typically provide only point estimates and fail to cap-3

ture model uncertainty in modeling user behaviors. To address this limitation, we4

propose a novel approach that enhances the architecture of purely neural network5

models by incorporating the Monte Carlo Dropout (MCD) framework. We bench-6

marked the proposed method using data from Player Unknown’s Battlegrounds7

(PUBG) Mobile which is one of the most downloaded mobile games in the world,8

and demonstrated a substantial improvement in predictive Top 5% Mean Absolute9

Percentage Error compared to existing state-of-the-art methods. Additionally, our10

approach provides confidence metric as an extra dimension for performance evalu-11

ation across various neural network models, facilitating more informed business12

decisions.13

1 Introduction14

Customer Lifetime Value (LTV) is defined as the revenue generated by a customer over a specified15

time period T , where T may vary depending on the specific business applications. Accurate prediction16

of LTV has become crucial for companies seeking to optimize their service and plan revenue strategies.17

For instance, early identification of customers’ long-term purchasing potential allows for more precise18

targeted and customized service, thereby significantly increasing overall revenues.19

Existing approaches to LTV prediction generally fall into two categories: conventional RFM-based20

(Recency, Frequency, and Monetary) statistical methods [1, 2, 3] and machine learning (ML)-based21

predictive models [4, 5, 6, 7]. ML-based methods formulate LTV prediction as a supervised-learning22

problem. They usually outperform RFM-based statistical models by making use of more user features.23

They are especially useful in scenarios where users do not have prior purchasing history, making24

RFM-based models inapplicable. Deep learning models have demonstrated as effective tools for25

predicting LTV. However, these models typically generate only single numerical point estimates,26

which fail to capture the model uncertainty when characterizing user behavior [8, 9, 10, 11]. In27

practice, customer purchasing behavior is influenced by numerous factors that may not be fully28

captured by model structures and parameters. As a result, model uncertainty is inherent in LTV29

prediction. Single-point predictions do not account for the uncertainty and may result in biased30

estimates [12, 13, 14]. Consequently, relying on single-point predictions for LTV in production can31

potentially compromise overall operating revenues and diminishing positive customer feedback.32

To mitigate these risks, it is essential to complement the single-point prediction with additional33

statistical measures, such as the mean, variance, and distribution of the predictions. This approach34

enhances the accuracy of business decision-making processes and reduces the likelihood of potential35

financial losses [15, 16].36
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A common approach to addressing this issue in other research areas is incorporating traditional37

statistical modeling [17, 18, 19, 20]. For instance, integrating a Gaussian Process (GP) block at38

the end of DNNs can provide a distribution of forecasts along with other statistical information39

[21]. However, this method may introduce unacceptable time cost in runtime-sensitive applications,40

such as LTV prediction [22, 23, 24]. Gal et al. (2016) has proposed a theoretical framework that41

interprets dropout training in DNNs as approximate Bayesian inference in deep GPs, offering reduced42

computational time (see also [25]).43

The challenges associated with LTV prediction can be summarized as follows: 1) Traditional deep44

learning models provide only single-point predictions offering limited information. [9, 26, 27, 28]. 2)45

Incorporating explicit components to capture model uncertainty, such as a Gaussian Process block, can46

provide valuable confidence estimates, but it incurs significant computational cost [29, 30, 31, 32, 33].47

To address these limitations, we propose a novel approach that represents model uncertainty using48

stochastic dropout.49

The contributions of this paper are summarized as follows:50

1. To the best of our knowledge, it is the first LTV prediction model purely based on neural51

networks that provide uncertainty quantification without the need for additional modules.52

2. The proposed framework demonstrates significant improvements across multiple LTV53

metrics on different DNN architectures.54

3. The proposed framework provides confidence metric as an additional dimension of measure-55

ment for evaluating various LTV models (shows in Figure 1).56

2 Methodology57

Dropout training in DNNs can be framed as approximate Bayesian inference in deep Gaussian58

processes [15]. This approach enables researchers to obtain the quantification of model uncertainty59

in DNN predictions from a mathematically rigorous perspective, without modifying the backprop-60

agation process. Equation 1 illustrates the concept of treating Monte Carlo Dropout (MCD) as a61

Bayesian approximation, where predictions are obtained by averaging the results of multiple network62

evaluations under stochastic dropout conditions [25].63

ŷ =
1

T

T∑
j=1

f (x;w · dj) (1)

The parameters in Equation 1 are detailed as follows: x represents the input features; ŷ denotes64

the prediction output; T is the number of Monte Carlo trials; w represents the parameter weights;65

and dj is the dropout masks. The term f (x;w · dj) refers to the network’s output given input x66

and parameter weights, with element-wise multiplication by dropout masks. The pseudo-code for67

sampling in LTV prediction tasks using the MCD method is outlined in Algorithm 1.68

Algorithm 1 Implementation of MCD method
Input: test data Dtest containing input features of N samples, i.e., Dtest = {x1, x2, ..., xN}
Output: forecast with uncertainty measurement for N samples
for i = 1 to N do

take an individual sample xi

for j = 1 to T do
perform a single forward pass with dropout mask dj , obtaining ŷij = f (xi;w · dj)

end for
produce a result vector as [ŷi,1, ŷi,2, ŷi,3, . . . , ŷi,T ] for sample xi

calculate the mean ŷi and variance σ̂i of the result vector [ŷi,1, ŷi,2, ŷi,3, . . . , ŷi,T ]
end for
Return: Ŷ = [ŷ1, ŷ2, . . . , ŷN ] , σ̂ = [σ̂1, σ̂2, . . . , σ̂N ] for the N samples

Algorithm 1 illustrates the stochastic sampling process through multiple trials of random dropout.69

Specifically, T forward passes are conducted for each of the N samples drawn from the test set,70
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producing a set of predictions. Each sample xi (1 ≤ i ≤ N), from the test set yields a result vector of71

size T , denoted as [ŷi,1, ŷi,2, . . . , ŷi,T ]. Then the mean, and variance for each vector are calculated,72

facilitating the construction of forecasts with uncertainty quantification for individual input samples73

in the test set.74

3 Experiments75

In the previous section, we discussed the interpretation of dropout as a Bayesian approximation and76

provided a detailed breakdown of how to implement the MCD approach during the inference stage77

to extract uncertainties. In this section, we present several experiments to evaluate the proposed78

framework using the data from Player Unknown’s Battlegrounds (PUBG) Mobile which is one of the79

most played online games in the world having over 1 billion downloads. Both standard metrics for80

LTV prediction and the proposed new metric using confidence intervals are presented. Due to space81

constraints, we refer the reader to the Appendix A for additional details on standard LTV prediction82

metrics.83

3.1 Experimental Setup84

The prediction task was to estimate the purchasing amount for the subsequent month after a new user85

has engaged with the game for one week, and then select potential top spenders for downstream tasks.86

The dataset utilized in this study covered approximately 3 million users. To evaluate the effectiveness87

and generalizability of the proposed approach, the MCD framework is implemented on two base88

models: the Multi-Layer Perceptron (MLP) and the Deep and Cross Network v2 (DCNv2) [34]. MLP89

was selected due to its simplicity and moderate performance, providing a suitable baseline, while90

DCNv2 was chosen for its demonstrated state-of-the-art performance in recommender systems and91

LTV prediction research. Both models were trained using Mean Squared Error (MSE) loss on the92

log-transformed purchasing amounts.93

3.2 Main Results94

The first metric for evaluating the proposed method is confidence assessment, which has not been95

addressed in previous LTV prediction studies. Deep learning models producing incorrect predictions96

due to model uncertainty is inevitable. It is preferable for incorrect predictions to be associated97

with low confidence and correct predictions with high confidence. We benchmarked the model’s98

performance across various confidence levels.99

The confidence assessment in this chapter is represented by the accuracy versus confidence plot. The100

confidence intervals (CIs) for a sample xi are computed using the following equation: CI = ŷi±z σ̂i√
T

,101

where z (0 ≤ z ≤ 1) is the confidence threshold. For N samples, accuracy is defined as the proportion102

of samples of which the true label y falls in the range of CI . Thus, accuracy varies against the103

confidence threshold z, which is shown in Figure 1. The x-axis represents the confidence threshold z,104

while the y-axis shows the accuracy x% of predictions.105

Figure 1: Model accuracy across different confidence intervals
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As shown in Figure 1, the MCD-DCNv2 model exhibits higher accuracy across all confidence106

intervals. However, even at the optimal performance points of both models at z = 0.9, there remains107

a performance gap of 10%, with MCD-DCNv2 generating predictions with greater certainty.108

Selecting the superior model for production needs to take into account more metrics which we present109

in the rest of this section. Three common metrics of LTV prediction were compared: normalized Gini110

coefficient[4], Mean Absolute Percentage Error (MAPE), and hit-rate (a.k.a., precision). Normalized111

Gini coefficient and hit-rate reflect a model’s ability to generate the correct ranking of users. The112

former doesn’t require a threshold similar to AUC, whereas the later needs a threshold which we set113

as top 5%. MAPE reflects how far the predicted values deviate from the actual values. It is usually114

applied to the entire data set for regression problems. However, our data labels are inflated with115

zeros, making MAPE infinity. Therefore, we computed MAPE for users in the top 5th percentile.116

Best performed MCD settings were selected for both MLP and DCNv2. We compared the proposed117

method with raw models, as well as the well-established Ziln loss method from LTV prediction118

literature introduced by Google [4]. Results are shown in Table 1.119

Normalized Gini Coefficient Top5% MAPE Top5% Hit-Rate
MLP 0.9605 0.4835 35.95%

MCD-MLP 0.9638 0.1858 36.07%
DCNv2 0.9609 0.4226 36.12%

MCD-DCNv2 0.9637 0.2003 36.25%
Ziln 0.9581 0.7500 36.11%

Table 1: Comparison of three common metrics for LTV prediction: normalized Gini coefficient
(higher is better), MAPE (lower is better), and hit-rate (higher is better) across various model settings.

As presented in Table 1, the raw DCNv2 model outperforms the raw MLP model across all three120

metrics. However, the performance metrics shift after implementing the MCD framework. The121

proposed framework yields more substantial performance improvements in the MCD-MLP model122

compared to MCD-DCNv2, particularly in terms of the normalized Gini coefficient and top 5%123

MAPE. However, the MCD-DCNv2 model still achieves the highest top 5% hit rate.124

Compared to Ziln, MCD-DCNv2 demonstrates superior performance, especially in MAPE metric.125

This advantage may be attributed to the fact that, although the Ziln loss method was designed to126

address the severe label imbalance issue in zero-inflated data for LTV prediction, it assumes a127

lognormal distribution for non-zero labels, which does not align with the distribution characteristics128

of our real-world datasets.129

In business scenarios, models are evaluated holistically using multiple metrics and different models130

can be selected for production based on different priorities. First, the MCD framework offers131

significant performance enhancement, particularly within the MCD-MLP structure. Second, business132

stakeholders may prioritize a model that emphasizes robustness in confidence estimation to hedge133

risks, even at the expense of less performance gain in predicted values. In this case, MCD-DCNv2 is134

preferred.135

4 Conclusion and Future Work136

We proposed the MCD framework that represents the first application of a purely neural network-137

based prediction model in the LTV domain that incorporates uncertainty measurement without138

introducing additional modules. Experiments on a real-world dataset were conducted, illustrating139

that the proposed framework also improved the conventional metrics. We advocate the usage of140

uncertainty assessment for LTV applications to support more informed and reliable decision-making141

in business contexts.142

In future work, we aim to investigate the potential of incorporating uncertainty measures as features143

in user segmentation tasks, such as identifying high-value users in gaming contexts [7, 35, 36, 37].144

We also plan to benchmark the proposed MCD framework on more DNN architectures and investigate145

other uncertainty-aware models, such as deep ensembles [22, 38, 39] originally introduced by Google146

DeepMind.147
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A Appendix: Supplementary Figures247

In the previous results section, the optimal prediction outcomes generated by various model architec-248

tures were compared. We also investigated the impact of hyperparameter settings on the predictive249

performance of MCD models. We visualized the change in normalized Gini coefficient [4] and Top250

5% MAPE as the number of MCD trials increased in Figure 2. The performance of the raw models is251

also included as a baseline for comparison.252

Figure 2(a) presents the performance on normalized Gini coefficient. Raw DCNv2 (dash-dot line) and253

raw MLP (dotted line) models are shown as baseline references. Raw DCNv2 model outperforms the254

raw MLP model. However, following the integration of MCD into these models, MCD-MLP model255

achieves a higher normalized Gini improvement compared to the MCD-DCNv2 model. Furthermore,256

normalized Gini coefficients for both MCD models show a trend toward convergence as the MCD257

trial size increases.258

(a) Normalized Gini coefficient (b) MAPE

Figure 2: Major metrics using different MCD trials. Both the normalized Gini coefficient and MAPE
improved as the number of trials increased.

Figure 2(b) shows the performance on Top 5% MAPE. A lower MAPE value indicates that a model259

produces more accurate predictions. The Top 5% MAPE performance of the raw DCNv2 (dash-260

dot line) and raw MLP (dotted line) models is presented as baselines. It can be observed that261

implementation of the MCD framework results in an approximately 50% improvement in MAPE262

performance for both raw models. Additionally, consistent with the observed gains in the normalized263

Gini coefficient, the MCD-MLP model demonstrates a more substantial performance improvement264

compared to the MCD-DCNv2 model, even though the raw DCNv2 model initially outperforms265

the raw MLP model. Moreover, both MCD models exhibit a trend toward convergence in MAPE266

performance as the MCD sample size increases.267

One downstream application for LTV prediction is to design user acquisition marketing strategies.268

Gini and MAPE performance gains are not always the primary concerns for business owners. When269

market conditions decline and campaign funding is constrained, the reliability of a model and its270

ability to minimize uncertainties become critical factors in business decision-making. Therefore,271

considering the results shown in Figures 1 and 2, the MCD-DCNv2 model, compared to MCD-MLP,272

offers significantly higher confidence in its predictions, at the cost of only a 0.01% reduction in Gini273

and a 1.45% decrease in MAPE performance. This trade-off is straightforward and advantageous for274

consideration in business applications.275
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