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ABSTRACT

Reliable uncertainty quantification for time-to-event outcomes is challenging
when observations are censored and censoring depends on covariates. While
conformal prediction offers a distribution-free tool, existing methods for right-
censored data typically rely on fixed, global filtering rules that ignore how cen-
soring varies across individuals. We introduce a hybrid, model-agnostic frame-
work that combines flexible conditional quantile learning with a Data-Filtered
Threshold-adaptive (DFT-adaptive) conformal calibration scheme. A base learner,
instantiated as censored quantile regression forests, is trained with censoring ad-
dressed via localized Kaplan-Meier estimation; and conformity scores are cal-
ibrated nonparametrically using covariate-dependent-censoring thresholds. Our
development yields marginally valid lower predictive bound that adapts to hetero-
geneous censoring and scales to nonlinear settings without parametric assump-
tions on the censoring mechanism. We provide theoretical guarantees and sup-
porting experiments to demonstrate that the method effectively delivers adaptive,
interpretable, distribution-free uncertainty quantification for censored outcomes.

1 INTRODUCTION

Research on time-to-event data (often referred to as survival analysis) focuses on the time until a
specific event occurs, with extensive applications in many domains, including healthcare, reliability,
and online platforms. A defining feature that differentiates survival analysis from standard regres-
sion in statistics and supervised learning in machine learning is censoring, where the event is not
observed within the study window.

1.1 LITERATURE REVIEW

Time-to-event prediction is central to decision-making. Classical survival models (e.g., Cox pro-
portional hazards, accelerated failure time, and semiparametric transformation models) can perform
well when their structural assumptions (e.g., proportional hazards or specific parametric forms) hold
(Cox, (1972} |Kalbfleisch and Prentice||2002), but these assumptions are often violated in heteroge-
neous and nonlinear settings (Lee et al.||2018). At the other end of the spectrum, modern machine-
learning methods have matured. Conformal prediction provides model-agnostic procedures with
minimal assumptions (exchangeablility of data) (e.g.,| Vovk et al.[(2005); Barber et al.|(2021}2023)).
Practical refinements, such as split conformal prediction (e.g.,|Lei et al.|(2013); Oliveira et al.|(2024);
Romano et al.|(2020)), conformalized quantile regression (e.g.,,Romano et al.|(2019);|/Colombo and
Vovk| (2020)), and distributional conformal prediction (e.g., (Chernozhukov et al.| (2021); (Izbicki
et al.|(2022); Vovk and Bendtsen|(2018)), are scalable and adaptive to handle practical problems;
weighted/local variants further address covariate shift and heterogeneity (Tibshirani et al.| 2019}
Gibbs and Candes||2021}|Prinster et al.||2022)).

However, conformal prediction cannot be naively applied to censored data: uncensored observa-
tions are not representative of the full cohort, breaking exchangeability. Handling such data has
attracted recent interest, and a growing line of work therefore tailors conformal methods to censored



Under review as a conference paper at ICLR 2026

outcomes (Qin et al.}|2025). [Candes et al.|(2023) proposed conformalized survival analysis with a
global censoring cutoff and weighted split—conformal calibration to obtain finite-sample lower pre-
dictive bounds. |Gui et al.|(2024) introduced covariate-adaptive (data-filtered) cutoffs that calibrate
only on regions with observable outcomes, improving efficiency while retaining coverage on the
supported region. Moving beyond one-sided bounds, |Yi et al.|(2025) constructed two-sided predic-
tive intervals under random right-censoring by recovering the upper endpoint via inverse-probability
weighting, and proposed a resampling-based conformal scheme that yields one- and two-sided in-
tervals for right-censored data. Farina et al.|(2024) developed doubly robust and efficiency—oriented
calibration for prediction sets via influence—function ideas, targeting improved finite—sample effi-
ciency when either outcome or censoring models are well specified. |Davidov et al.|(2025) proposed
a conformalized survival framework by leveraging flexible nuisance estimation to calibrate lower
bounds beyond Type-I censoring. |Sesia and Svetnik| (2025) introduced conformal survival bands
for risk screening that calibrate group—level operating characteristics under right—censoring.

On the modeling side, tree-based learners and deep architectures provide flexible, scalable estima-
tors (Polsterl, |2020; |Prokhorenkova et al., [2018). Random forests (Breiman||[2001) and random
survival forests (RSF) (Ishwaran and Kogalur||2007) routinely deliver strong predictive accuracy,
as do neural survival models such as CQRNN (Pearce et al., |2022) and DeepEH (Zhong et al.|
2021). For conditional quantiles under censoring, censored quantile regression forests (CQREF, [Li
and Bradic| (2020)) combines forest locality with censoring adjustments to estimate survival quan-
tiles nonparametrically. Despite this natural synergy, principled integration of conformal calibration
with quantile-oriented learners tailored to censoring remains limited, and methods often rely on
global cutoffs or do not explicitly filter by a learned censoring horizon (Q1 et al.|[2024).

1.2 OUR CONTRIBUTIONS

We develop a hybrid, model-agnostic framework that couples a censoring-aware quantile learner
with a Data-Filtered Threshold—adaptive (DFT-adaptive) conformal calibration scheme, and refer to
it as DFT-cQRF. Our work differs from—and complements—existing approaches in two key ways.
First, we pair a quantile-oriented base learner tailored to censoring with a covariate-adaptive censor-
ing horizon learned nonparametrically; this contrasts with global-cutoff calibration (Candes et al.}
2023)) and with methods that do not explicitly filter by a learned horizon (Davidov et al.||2025;|Farina
et al.||2024;|Sesia and Svetnik}|2025). Second, we target sharp, distribution-free lower bounds under
heterogeneous censoring and analyze when the conformal correction vanishes asymptotically given
a consistent quantile learner; this provides a simple pipeline that complements resampling-based
or influence-function-based calibrations (Qin et al.}|2025} [Farina et al.| 2024). Empirically, this
hybridization (DFT—cQRF) improves the coverage—efficiency trade-off in settings where censoring
varies strongly with covariates, while remaining model-agnostic and assumption-lean. Specifically,
we make the following contributions:

* To capture individual-level heterogeneity, we estimate a covariate-dependent censoring
horizon (i.e., the latest time at which outcomes remain reliably observable). This local
filter removes unsupported regions with heavy censoring, which prevents overly conserva-
tive calibration while preserving validity and yielding sharper, individualized predictions.

* Instantiating the base learner with censored quantile regression forests and using localized
Kaplan—Meier-based inverse-probability-of-censoring weights, we obtain distribution-free
lower predictive bounds that handle heterogeneous censoring and remain simple to imple-
ment.

* We establish finite-sample marginal coverage on the observable region and show the con-
formal correction vanishes as the quantile learner becomes uniformly consistent, yielding
asymptotically sharp bounds. Across synthetic benchmarks and an EHR application, our
method (“DFT—cQRF”) achieves favorable coverage—efficiency trade-offs relative to con-
formal survival baselines and flexible learners without distribution-free guarantees.

2 METHODOLOGY AND ALGORITHM

Preliminaries For any subject, let 7" denote the event time, let X denote the associated p-
dimensional covariate vector, and let C' denote the censoring time. Let 6 = 1(T < C) de-



Under review as a conference paper at ICLR 2026

note indicator function, and let Y = min(7,C) denote the observed time. Let G(t | z) =
P(C > t | X = x) denote the conditional survivor function for the censoring time C' given
X = z. Forany 0 < o < 1, consider the conditional a-quantile function of 71" given X = z:
Qo(z) = inf{t e R*: P(T' <t| X =z) > a}. We define the covariate-dependent censoring
threshold function 7(z) as: 7(z) = sup{t € RT : P(C > ¢ | X = x) > 0}, which represents the
maximal time up to which an individual with covariate profile X = x may be observed (i.e., not
censored). It corresponds to the right endpoint of the support of the conditional distribution of C'
given X = x: Ift > 7(z), then P(C >t | X = z) = 0. Basically, 7(x) estimates the maximum re-
liable observation time at covariate value x, based on the censoring times observed in the data. 7(x)
tells us how far we can trust the observed Y for a given covariate profile xz, because if Y > 7(x)
then it may fall in a region with high or total censoring, and any inference beyond 7(z) becomes
statistically unreliable so that we cannot estimate quantiles or coverage well there. Consequently,
we call 7(x) the censoring horizon function.

Fori=1,...,n,let(X;,Y;,T;, C;, §;) denote random variables that are independent and identically
distributed that follow the same distribution as (X,Y, T, C, ). We use lowercase letters, x;, y;, t;
and ¢;, to denote realized values of the corresponding random variables. Let D,, = {(z;, yi, ¢, ;) :
i € T} denote available data, which are randomly split into a training set Dy = {(4, ¥s, ¢, 6;)
i € Z;} and a calibration set Dey = {(7, s, ¢4, 0;) : i € L.}, where Z, T;, and Z, denote the index
set for the data D,,, Dyain and Dey, respectively. Thatis, 7, UZ. = Z and Z; N Z, = (). Let n, n; and
n. denote the size of Z, 7, and Z.., respectively.

Methodology Given right-censored data, our goal is to construct an informative lower predictive
bound for a future subject’s event time, given covariates X = x, with distribution-free marginal
coverage. We adopt a hybrid framework, which combines a flexible base learner estimates condi-
tional survival quantiles and a Data-Filtered Threshold—adaptive (DFT-adaptive) conformal calibra-
tion step. Specifically, we (i) restrict prediction to the observable region defined by the estimated
censoring horizon 7(z); (ii) compute conformity scores that quantify how well calibration outcomes
align with the predicted quantiles under censoring; and (iii) calibrate these scores to obtain an em-
pirical adjustment. Our procedure consists of the following five steps:

Step 1 Estimate Covariate-Dependent Censoring Horizon:
To gain robustness, we use the kernel regression method to estimate 7(x) by:

L 1(c; > ) Kp(||z; — x
Frern () = sup {t e r+ . ez e 2 DE(] D o} (1)
>iez Kn(llzi — =[))
for x € X where K}, is a kernel function with bandwidth h, and 1(-) is the indicator

function.

Step 2 Train a Base Quantile Model:
To estimate the conditional quantile function @, (x) with right-censoring effects accounted
for, we fit a censored quantile regression forest (cQRF) on Dy, as detailed below:

(a) Let B denote the number of trees, which is a user-specified hyperparameter, typically
chosen through cross-validation or set to a default value (e.g., 100 or 500) to ensure
stability of the estimated quantiles; then we fit a forest using log-rank splitting rule, a
censoring-aware splitting rule.

(b) For z € X and i € Z;, calculate the forest weights:
- w;(x)
Wi(r) = =, 2
ZjeIt w; ()
where w;(z) = & Zle 1{x and x; are in same leaf of tree b}.

(c) We construct a localized-forest—based weights that measure the similarity between x
and covariates in the training data, leading to the estimator:

At | 2) =  Dier, Wilw) - 1{& = ¢y, 6 = 0}
G(t ‘ ) - H (1 ZZ‘GL IZ]Z(.Z’) . ]1{61‘ Z é(])}' > ’ (3)

Jie<t
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where ¢; = min(y;, Trern(2i)), and ¢(;) denotes the j-th ordered distinct value among
{¢; : i € Z;}. Then for i € Z; with §; = 1, we compute inverse probability censoring
weights (IPCW):
wi(z) = M
G(yi | i)
(d) Using the inverse probability of censoring weights IPCW), we estimate the a-quantile
of Q4 (x) by the weighted empirical quantile of {y; : ¢ € Z; }:

“4)

QORF (1) = inf {t eRT: Z wi(z) - 1{y; <t} > a} %)

i€Zy

for x € X, which can be implemented by the R package grf for quantile regression
forests and survival forests.

Step 3 Compute Conformity Scores:
For ¢ € 7., define the conformity score:

. — QEARF () —y; if 6; = Land y; < 7(x5),
‘ 00 otherwise.

Let Sniee = {8i : 8i < 00,7 € Z..} denote the finite scores for subjects in the calibration

set Z..

Step 4 Calibrate the Quantile:
Let m denote the cardinality of Sgyiee. Order the finite scores in Sgpite as s1) < < S(m)-
For given 0 < o < 1, compute the empirical (1 — a)-quantile of the conformity scores in
Shinite in Step 3 by setting

ko = [(1 —a)(m+ 1)1 and Qo = S(ka) (41— = +o0if m = 0).

Step 5 Construct the Lower Predictive Bound:
For a new test point X = x, define the lower predictive bound as:

T%(2) = Qi (2) = di—a-

Algorithm 1 DFT-cQRF: Distribution-Free Adaptive Conformal Lower Bound under Right Cen-
soring

Require: Data D,, = {(x;,y:,¢;,0;) : i € I}; significance level a.
. Split the subject index set Z into training set Z; and calibration set Z...
: for each training point ¢ € Z; do
(i) Estimate 7(x) using
(ii) Calculate w; () and and ;(z) as in
(iii) Estimate G(¢ | x) as in
(iv) With ¢; = 1, compute inverse probability censoring weights w;(x) as in
(v) Estimate Qq () using Q°@RF (z) in
end for
for each calibration point ¢ € 7, do
if ; = 1 and y; < 7(w;) then
Compute conformity score s; = QRF(z;) — y;
else
Set s; = o0
end if
: end for
: Let Spinite = {84 1 8; < o0}
: Compute G, as the (1 — «)-quantile of Sgpite )
: Return: For any test point z, output the lower predictive bound 7 () = Q°®F(z) — G, _,

PRNDINR2NT
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Algorithm 1: Distribution-Free Adaptive Conformal Lower Bound under Right Censoring (DF T-cQRF)

Data Dy, = {(®1, ¥s, €1, 8:) : & € I}: significance level o }—l

| Training set Z; ‘ ************************************************* P{ Calibration set set I:‘

Giree-based D ((#8: =land y; < 7(z)
- I— 5 =QF (z) —w =
ﬁshmcﬂ'a 7(z), o it — Compute S;
Caleulate wi(x) - else: / D /
/@lculam () N\ 5; = oo Let Stnite — {5: : 51 < o0}
iEstirnaTe G(t | =) /Compu?e G1-o ;

ﬁompufc wi(z) with 8; = y

ﬁ;ﬁrncﬂe Qal(z)

D T [F.,.. any test point . output the lower predictive bound T*(z) — Q3% (z) — G, _o.

Figure 1: Pipeline diagram for the proposed DFT-cQRF method.

We introduce the DFT—cQREF procedure, which hybridizes a censoring-aware quantile learner with a
data-filtered, threshold-adaptive conformal calibration scheme; pseudocode is given in Algorithm
and a pipeline diagram is presented in Figure

An open-source implementation will be released on GitHub upon acceptance. Our method differs
from prior conformal approaches in two main ways: conditional-quantile learning and covariate-
adaptive calibration. First, rather than the predominantly linear quantile estimators emphasized in
existing work (e.g.,|Gui et al|(2024)), we develop censored quantile regression forests (CQRF) that
form locally weighted, censoring-adjusted empirical quantiles by integrating forest weights with
inverse-probability-of-censoring weights (IPCW). This yields a model-agnostic learner that requires
no parametric assumptions on the censoring mechanism and accommodates both linear and nonlin-
ear regimes. Second, in contrast to the universal cutoff 7 commonly used in censored conformal
methods (e.g.,/Candes et al.||2023}|Gui et al.||2024), we estimate a covariate-dependent censoring
horizon 7(x) via kernel nonparametric regression. Our threshold yields a local, data-adaptive fil-
tering rule that handles censored and uncensored observations appropriately by calibrating only on
those expected to be observed at their covariate values. Consequently, our method delivers sharper
predictive lower bounds and improved efficiency under heterogeneous censoring, while retaining
interpretability.

3 THEORETICAL RESULTS

This section provides theoretical guarantees for the methodology in Section proofs and regularity
conditions are deferred to the appendix. First, we analyze the key estimators underlying the proce-
dure by establishing consistency for (i) the kernel-estimator 7, (2) of the censoring horizon 7(x),
(ii) the localized-forest-based weighted estimator G(t | z) of the censoring cumulative function
G(t | x), and (iii) the cQRF estimator Q°@RF () of the quantile function Qo ().

Proposition 1. Assume Conditions (KI1)—(K4) in Appendix[A] Then there exist constants ¢y and ¢y
depending on (K, L, fx) such that

log ny
Aern - =0 hY ;
S [Frern () = 7(2) ( e h)

where ~y is the Holder smoothness exponent in Condition (K3).

Uniform consistency of the kernel estimator 7., (x) can be established by properly choosing the
bandwidth h. It is immediate from Propositionthat taking h < (logny/n¢)Y 7P yields

Sup |Trern(x) — 7(x)] 50 as ng — 00.
xEX
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Proposition 2. Under Conditions — in Appendix for any fixed € > 0,

sup  sup |é(t |z) — G(t| z)| 25 0.
zeX t<t(z)—¢

The statement asserts uniform consistency of the localized-forest-based Kaplan—Meier estimator
G(t | x) on any interior time set [0, 7(x) — €]. The e-margin is essential: at t = 7(x) the risk set
degenerates (with G(t | z) close to 0), so uniform control cannot generally hold up to the boundary.
Proposition 3. Assume Conditions (A1)-(A3) in Appendix and those in Propositions (1| and
Then as ny — 00,

sup |Q;QRF(:U) — Qa(a:)‘ 20
reX

The result establishes uniform consistency of the cQRF base learner: its estimated conditional a-
quantiles converge in probability to @, (x) uniformly over . Practically, this means that plug-in
predictions are asymptotically unbiased for @), (x) everywhere on the covariate space. It provides
a reliable foundation for subsequent conformal calibration, whose theoretic analysis is provided
below.

Theorem 1. Assume that the regularity conditions in Proposition hold. Let o be a constant
between 0 and 1. Then as ny,n. — oo,

(a)~ qufa L> 0
(b). sup,c [T%(x) = Qa(x)] —= 0.

Remark 1. This theorem shows that for any fixed o« € (0,1), when the training and calibration
data sizes approach infinity, the empirical (1 — «) quantile of the finite conformity scores satisfies
G1—a —— 0, which reflects that no positive correction is needed asymptotically on the observable
region. The conformal lower predictive bound Te () converges uniformly to the true conditional
quantile @, (x). Hence the calibrated predictor is asymptotically sharp and unbiased for Q,, ().

Theorem 2. Assume that the conditions in AppendixE] hold and that random vector (X, T,C)

makes the distribution of Dyain U{X, T, C} and of {X, T, C} UD,, exchangeable. Then for T (z)
obtained in Section with I<a<l,

(a) Forany givenx € X, T (x) is non-decreasing in a almost surely;

(b) Given Dy, then for a future pair (Xp+1, Tnt1),
P{Tn+1 > Ta(Xn-&-l) Spy1 < 00, Dtrain} > 1-a

Remark 2. The theorem states that, conditionally on the test point being observable (i.e., Sp+1 <
00), the true event time exceeds the predicted lower bound T (X)) with probability at least 1 — a,
without distributional assumptions beyond exchangeability and the splitting scheme. Hence the
method is finite-sample and distribution-free even under right-censoring. Moreover, the lower bound
TQ(X ) is monotone in the miscoverage level a: as « increases, the lower bound weakly increases,
yielding nested, easy-to-interpret prediction sets across coverage levels.

Theorem 3. Assume the conditions in Theorem Given 0 < a < 1, let ¢ denote a positive constant
such that

P { Yn+1 Z QAZQRF(Xn+1) —C ’ Sn+1 < o0, Dtrain} 2 1-oa.

Then the split-conformal choice ¢ = §1—q is almost surely the smallest.

Remark 3. Among all constant shifts that achieve the target coverage, the split—conformal correction
G1— is minimal almost surely. Consequently, the calibrated lower bound T *(x) is the sharpest
(least conservative) distribution-free bound obtainable within the class of constant-shift adjustments:
any smaller ¢ would under-cover, while any larger c is unnecessarily conservative. This optimality
holds for finite-sample settings, conditional on Dy, and on the test point being observable (5,11 <
00).



Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

Implementation details. To assess the performance of DFT-cQRF (Section , we also consider
an alternative estimator of 7(x) obtained via a regression tree in|Step 1| We refer to the resulting
two variants as DFT-cQRF _k (kernel estimator of 7(z)) and DFT-cQRF _t (tree-based estimator
of 7(x)). We evaluate these variants against five benchmarks: Cox proportional hazards (Cox),
censored quantile regression forest (CQRF), conformalized survival analysis (CSA, (Candes et al.
(2023)), distribution-free adaptive cutoff (DFT-adaptive, |Gui et al.| (2024)), and random survival
forest (RSF). For visualization, we plot box plots of the lower predictive bound T (z) from
|§], with = 0.1. Each box-plot entry summarizes the replicate-level coverage over the evaluation

split, computed as in|Gui et al.|(2024): |£|~! 3, ¢ ]1{ y; > T (x;) }, where & = {i€Z. :6; =

1, y; < #(x;) }, with 7(z) representing an estimate of 7(z).

Real data. We evaluate our methods on two public survival datasets. The first is an EHR-based
cohort from the Kansas Health Information Network (KHIN) for suicide—risk prediction (Chen et al.}
2024), comprising anonymized longitudinal covariates, timestamps, and suicide—attempt indicators
from multiple health systems. The cohort exhibits right censoring due to incomplete follow-up and
spans January 1, 2014—December 31, 2017. Among 3,500 patients, 3,187 individuals did not attempt
suicide, yielding a censoring rate of 91.06%, where we define T as the days to first suicide attempt
(SA), and C as the administrative censoring time (days from study start to end of observation). The
second dataset is a machine-learning survival dataset from Kaggle containing global cancer patient
records (2015-2024), included for contrast, with only 0.454% censoring. Further details for both
datasets and exploratory data analysis can be found in Appendix@

Data are split into training and calibration sets using a ratio of either 75:25 or 50:50. To assess the
impact of covariate inclusion on the EHR data, we analyze four specifications: (i) age only; (ii)
gender only; (iii) age + gender; (iv) age + gender + F333 (major depressive disorder, recurrent) +
F341 (dysthymia), and report the results in Figure The red dashed line indicates the nominal 90%
target. Results are shown for 75:25 and 50:50 train—calibration splits; aquamarine denotes 75:25
and cyan denotes 50:50. Across all four cases, DFT-cQRF_t attains the highest coverage with the
narrowest interquartile range and no outliers; its entire box lies above the 90% line. DFT-cQRF _k
is similarly strong, with a comparably tight box. DFT-adaptive centers near 90%. The Cox model
is stable but below the line, whereas cQRF, CSA, and RSF show wider variability; RSF performs
worst, often below 50%.

Age Gender Age + Gender Age + Gender + F333 + F341

o by é# tr LTI | Hé 4 LTS ﬁ T | %Tﬁ g tome - 1

Coverage

Method

Data Split Ratio B 75:25 E3 50:50

Figure 2: Analysis EHR data: empirical coverage of all methods with different covariate sets.
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Setting 1 Setting 2 Setting 3

e : I% TTT*#"*':. -_W-I{-_;. Tﬁﬂrm—r--ﬁél---_Tﬁ_??_ﬁ?___

Coverage

0.8

Figure 3: Synthetic experiment: empirical coverage under linear, nonlinear, and heteroscedastic
relationships and different censoring proportions.

The results for the Kaggle data are presented in Figure(Appendix). They show that CSA attains
the best empirical performance, yet our methods remain competitive; in particular, DFT-cQRF _k
is among the top performers. CSA outperforms here because our methods are designed to handle
censored data, whereas this dataset has nearly no censoring. Even when event times are (near-)fully
observed, DFT—cQRF remains efficient while retaining robustness.

Synthetic Experiments. We complement the real-world analysis with controlled simulations to
systematically assess performance. By varying censoring rates and the covariate—outcome rela-
tionship (linear, nonlinear, heteroscedastic), we evaluate the robustness and efficiency of our meth-
ods against benchmarks used in the data analysis. We run R = 1000 replicates with sample size
n = 1000 for synthetic data generated as follows. For a single covariate, X ~ N (0, 1); for multiple
covariates, X ~ Ny(0,I). Event times are independently generated from an accelerated failure
time (AFT) model: log(T) = n(X) + &, where { ~ EV(0, 0¢) (extreme value distribution), which
corresponds to a Weibull baseline. We set the nominal level to & = 0.1. Right censoring is induced
independently via C' ~ Unif (0, 7), with 7 chosen to target three censoring regimes (CR): none
(Setting 1), 30% (Setting 2), and 70% (Setting 3) (tuned by pilot runs so that Pr(7" > C) ~ desired
rate). To probe robustness, we consider three covariate—outcome designs in the single-covariate case:
(i) Linear: 7(X) = 0.5X; (i) Nonlinear: n(X) = 0.5X — 0.2X?; and (iii) Heteroscedas-
ticc 7n(X) = 05X +¢e, e ~ N(0,0%(X)), o(X) = 0.2+ 0.3|X|. For multiple covariates,
we combined these effects across coordinates; for example, a linear—nonlinear two-covariate de-
sign is n(X) = 0.5X; — 0.2X2. Observed data D = {(y;,x;,¢;) : i € [n]} are realizations of
Y = min(T,C), X, and C; we randomly split D into training and calibration sets in a 50:50 ratio.

We first compare methods across three covariate—outcome regimes (linear, nonlinear, heteroscedas-
tic) and then vary censoring to assess robustness and coverage. In FigureEl, royal blue, plum, and
yellow-green denote the linear, nonlinear, and heteroscedastic scenarios, respectively. Our methods
(DFT-cQRF_t, DFT-cQRF k), especially DFT-cQRF, consistently achieve the highest coverage
with the shortest boxes (lowest variability). For DFT-cQRF, coverage is highest in the linear case
and lower under heteroscedasticity, nevertheless, the medians and IQRs for both variantes remain
above the 90% line in all scenarios. DFT-adaptive also performs well, with medians near or above
90% but more outliers. Cox, cQRF, CSA, and RSF generally below the line; CSA has the most
variation across settings.

With multiple covariates (all linear, all nonlinear, or all heteroscedastic), Figure (Appendix)
shows results consistent with Figure DFT-cQRF_t and DFT-cQRF _k remain stable with low vari-
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Figure 4: Synthetic experiment: average estimation error in setting 2 with CR = 0.3.

Table 1: Synthetic experiment: average estimation error with standard deviation in setting 2 with

CR =0.3.
Scenario n Cox CSA cQRF DFT-cQRF_t DFT-cQRF k DFT-adaptive RSF

500 1342 £0.149 0.054 £0.004 1.024 £0.080 0.050 £ 0.006 0.045 +0.006 0.918+0.136 0.922 4+ 0.068
1000 1.151 £0.067 0.049 & 0.003  0.997 £ 0.071  0.048 & 0.008  0.051 £ 0.008 0.924 & 0.075 0.859 £ 0.056
1500 1.288 £0.098 0.054 £0.006 1.026 £0.087 0.053 £0.004 0.056 + 0.005 0.922 + 0.030  0.909 + 0.081
2000 1278 £0.117 0.050 £0.005 1.017 £0.038 0.047 £0.002 0.050 + 0.003 0.962 + 0.050 0.889 + 0.043

500 1221 4£0.113  0.049 £0.011 0944 £0.168 0.052 & 0.006 0.049 £ 0.011 0.958 & 0.064 0.863 £ 0.145
1000 1.1954+0.079 0.050 £0.005 1.071 £0.117  0.049 £ 0.005  0.051 £ 0.003  0.935 £ 0.058 0.940 £ 0.135
1500 1294 £0.087 0.051 £0.003 1.056 +0.064 0.049 +£0.006 0.052 +0.008 0.929 +0.033 0.928 + 0.050
2000 1.25540.073 0.053 £0.005 1.060 £ 0.054 0.050 & 0.006 0.052 £ 0.008 0.985 & 0.058 0.921 £ 0.065

500 1278 £0.152 0.057 £0.010 1.068 & 0.124  0.054 & 0.014  0.060 £ 0.008 0.999 £ 0.093  0.957 £ 0.147
1000 1.195 £0.062 0.051 £0.003 1.051 £0.060 0.054 +0.004 0.051 +0.004 0.980 + 0.066 0.916 + 0.055
1500 1.302£0.182 0.053 £0.003 1.069 £ 0.057 0.049 £0.006 0.051 +0.005 0.973 +0.027 0.931 +0.048
2000 1.327 £0.130  0.052 4+ 0.004 1.069 £ 0.054  0.048 & 0.003  0.052 £ 0.003 0.989 & 0.074  0.929 £ 0.036

Linear

Nonlinear

Heteroscedastic

ability. cQRF and RSF improve with more covariates, whereas DFT-adaptive declines relative to
the single-covariate case. We also study mixed designs (linear + nonlinear, nonlinear + heteroscedas-
tic, heteroscedastic + linear, and all three combined). In Figure(Appendix), medium purple, dark
salmon, sea green, and dark gray mark these combinations. DFT-cQRF _t again achieves the highest
coverage; both of our methods show small between-scenario shifts, indicating robustness. DFT-
adaptive and Cox are comparatively stable; cQRF, and especially RSF, vary substantially. Across
Figures and Figuresand(Appendix), higher censoring produces wider boxes, longer tails,
and more outliers, reflecting less information and reduced precision. Between our two variants,
DFT-cQRF _k typically shows lower variance, whereas DFT-cQRF _t attains higher coverage.

Figure(Appendix) summarizes the average estimation error with standard deviations (reported
as mean =+ sd in parentheses) across all settings and scenarios. For readability, we highlight Set-
ting 2 in Figure and Table 1| Our methods achieve comparatively low error, underscoring their
competitiveness. These figures and additional tables are provided in Appendix @ Finally, we as-
sess computational cost. Figure (Appendix) reports average running times for sample sizes
n € {500, 1000, 1500, 2000}. As expected, Cox is consistently the fastest. DFT-cQRF _k requires
more time due to the additional steps in our procedure; however, this overhead is reasonable given
the gains in accuracy. DFT-cQRF't offers a favorable accuracy—efficiency trade-off.

5 LIMITATIONS AND FUTURE WORK

Despite the strengths demonstrated by our theoretical analysis and experiments, several extensions
remain. Our study focuses on one-sided lower bounds under right censoring with split conformal
calibration and assumes exchangeability between calibration and test data. Extending the framework
to two-sided prediction intervals warrants further investigation. We do not address other common
features of time-to-event data, such as left truncation or interval censoring. Future work includes
developing scalable conformal procedures that accommodate these settings.
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APPENDICES: TECHNICAL DETAILS AND ADDITIONAL EXPERIMENTS

A  REGULARITY CONDITIONS

Throughout, X C RP? is compact. Let fx denote the probability density (or mass) function of X.
The covariate X has density fx on X with

0< fmin < fX(x) < fmax < Q0.

Let fo|x denote the conditional probability density function of C' given X, and Fz| x denote the
conditional cumulative distribution function (CDF) of the censoring time C given X, i.e., F c|x (t |
X =) =1—G(t | z). Suppose that for x € X, fc|x has bounded support [0, 7(x)]. We assume
regularity conditions concerning kernel estimation, regression tree, and survival analysis that are
discussed in|Athey et al.|(2019), van der Vaart|(1998)), and|Kalbfleisch and Prentice| (2002)), which
include the following conditions.

REGULARITY CONDITIONS FOR Tgerr ()

(K1) Threshhold. 7(z) is continuous.

(K2) Kernel & bandwidth. K (-) is bounded, Lipschitz, compactly supported, [ K (u)du = 1;
h = hy, | 0,and n:h?/logns — oo as ny — oo.

(K3) Holder continuity of G(¢ | x) in x: There existy € (0,1] and L > 0 such that

sup |G(t|z) -Gt |2)| < L||lx— 2|7 forz,z’ € X.
t<r(z)AT(z')—¢

(K4) Positive density near the endpoint. There exist 7 > 0 and fc min > 0 such that
fC\X(t l l') Z fC,min
forallz € X and t € (7(z) — n, 7(x)).
In Condition , ~v € (0,1] is the Holder smoothness exponent in time, and L > 0 is a uniform

Holder constant (independent of z, s, and ¢) that bounds the fluctuation of G(¢ | ) on [0, 7(x)];
when v = 1, this reduces to a global Lipschitz condition, with L, being a Lipschitz constant.

REGULARITY CONDITIONS FOR G(t | z)

(C1) Uniform boundness of censoring horizon: sup,c, 7(z) < Tmax < 0o for a constant T ax.
(C2) Independence and positivity: We assume that

(i) Conditional independent right-censoring given X: T 1 C' | X.

(i1) At-risk positivity away from the tail: there exists ryi, > 0 such that

inf inf PY>t|X=2) > Tmin-

r€X 0<t<7(x)—c¢
(C3) Continuity and boundness
(i) Foreach x, Fx (- | ) is continuous on [0, 7(z)].
(i1) The cumulative censoring hazard

PAdP(Y < 5,6 =0| X =2)
AC(”“”):/O PY > 5| X =)

is uniformly bounded:

sup Ac(7(z) | ) < 0.
TEX

(C4) Weight regularity For each x, the weights w;(z) > 0 satisfy:

(i) Normalization: }_,; w;(z) = 1.

12
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(i1) For every € > 0,

sup Y i (2)1{]|X; — z]| > e} — 0.
TEX e,

(iii) Asny — oo

inf (Y @i(2)?) o d b (z) 2 0.
nf Zwl(az) 00 an 21612%%(101(17)

(iv) Conditional on {X; : ¢ € Z;}, the weights depend only on {X; : i € Z;} and are
independent of (Y;, C;,0;) : i € I, }.

ADDITIONAL CONDITIONS

(A1) Regularity about distribution of 7" given X

Let Frp x (t|x) and fr|x(t | =) denote the conditional cumulative distribution function (cdf)
and the density function of the event T' given X = xz, respectively. Forx € X and 0 < o < 1,

(i) Fr x (- | z) is continuous and strictly increasing near Q, ().

(ii) frix(- | z) is bounded away from 0 in a neighborhood of Q. ().
(A2) Continuity at the target quantile.

(i) The conditional cdf F*(t) := P(SX(X,T) <t | I* = 1) is continuous at its (1 — a)-

quantile ¢7_,.

(i) ;1)) > 0, where So(X,T) = Qu(X) =T, I* = 1{6 = 1, T < 7(X)}, and p* = P(I* =
(A3) Tree / forest weights:

(i) The partition is sufficiently fine:

A, = sup diam(£L(z)) 2= 0,
zeX

where £(x) denotes the terminal leaf containing x.
(ii). Leaf mass diverges: inf,cx #{i : X; € L(x)} £, .

B PROOFS OF PROPOSITIONS

Lemma 1 (Quantile mapping). Let {F,, : n = 1,2,...} be cdfs and F a cdf. Let F~(u) :=
inf{t € R: F(t) > u} denote the (left-continuous) quantile functional. Forn = 1,2, ..., define

¢ =F;'(v) and q=F ) for ue(0,1).
Suppose
(i) supyer | Fu(t) = F(t)] == 0;
(ii) F'is continuous and strictly increasing in a neighborhood of q.

Then ,
qn — 4.

Proof. Fix e > 0. By and continuity at g, there exists 7 > 0 such that F'(¢ — ¢) < u — n and

F(q+e¢) > u+n. Onthe event {sup, |F,,(t) — F(t)| < n} wehave F,,(¢—¢) < F(g—e)+n<u
and F,, (¢ + ) > F(q + ¢) — n > u. By monotonicity of F,,, ¢ — ¢ < g, < ¢+ ¢. Thus, by

P(|qnq|>5)§P<sup|FnF|2n> — 0.
t

13
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Al CONSISTENCY OF KERNEL ESTIMATOR 7gerr, ()

Proof of Proposition The proof can be carried out by modifying the existing work, as shown
below. The only changes we make here are two model-specific ingredients. First, our regression
target for the kernel estimator is the conditional survival function G(¢ | x) € [0, 1] rather than a mean
of a real response, the Nadaraya—Watson sup-norm rates apply verbatim since the responses 1(C >
t | X = x) are bounded and the arguments are uniform in (z, ¢) on a compact set. Second, passing
from sup || — G|| o to an endpoint error bound uses only the standard quantile/endpoint continuity
(van der Vaart’s lemma) plus a local density lower bound; we require a positive conditional density
near 7(z) to convert survival error into endpoint error, which is standard in quantile asymptotics.
Specifically, we proceed with the following three steps.

Step 1:
Define the Nadaraya—Watson estimator

N Eie t]l{ci Zt}Kh(xi—l’)
Ha(t) = Izz'ez,, Kp(z; — z) .

Then X
7A'Icern(sc) = Sup{t >0: Hz(t) > 0}

Applying standard sup-norm theory for the Nadaraya—Watson estimator on compact X’ with n.h? —
oo yields that there exist constants ¢; and ¢y depending on (K, L, fx) such that

sup  sup |H,(t) — G(t | x)| = Op(c1h” + car/logny/(nihr)) (A1)
TEX te[0,7(x)]

This is applied with the bounded “responses” 1{C > t}; the only adaptation is that the bound is
used uniformly in (x,t) over the compact set {(z,t) : ¢ < 7(z)}, which those references permit.
The detailed derivations are below.

Step 1.1: Bias.

Set
ia) = 5 Y KX~ ), (o) i= Eg(o) = [ Knu - ) fx(u)du,
i=1
f(x) := % , 1{C; >t} Kp(X; —x), p(x):= E(z) = /G(t | w)Kp(u — ) fx(u)du.

Then H, (t) = jie(x)/§(x). Add—subtract pus(z)/g(z):

(1) = Gt | 0) = [248 ~ G(t | )] + [ — @]

9(x) 9(x) g(z)

bias stochastic+denominator

Write
pi@) = [ K= ){G(t | 0) = Gt | 0)}x(w) du+ mu(a)g(a),
$O
G(t] z) _ S En(u—a){G(t| u) - G(t] 2)} fx (u) du
g(x) g(x)
By regularity conditions including Condition and compact support of K, ||u — z|| < ch on the
kernel support and

—G(t]x)

Gt |uw) = Gt [ 2)] < Llu—=||” < L(ch)"
uniformly in ¢. Since g(z) > ¢y > 0 for small A,

mle) | x)’ <.

su
b | 9@

14
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Step 1.2: Denominator concentration.

Standard kernel density arguments yield

suplg(a) —g()| = Op (555 ). b () > 0 >0,

and hence
P{inf §(z) > ¢p/2} — 1 as ng — 0o

Step 1.3: Stochastic term.
On the event {inf, (z) > c¢o/2},

ﬂ}(w) _ pe(x)

SUP| %) ~ 9@

x,t

< suplju(@) = u(@)] + sup|a(a) - g(x)].
It thus suffices to bound the first supremum. Consider the class
Fn = {(u,c) = >t} Kp(u—2): z€ X, te [O,Tmax]}.

The factor {1{c > t} : ¢t € R} is a VC class of dimension 1, and {Kx(- — z) : x € X'} has
polynomial covering numbers in 1/h by Lipschitzness and compact support. Hence F}, is VC-type
with entropy
log N (€, Fp, || - [loo) < plog(1/h) + log(1/e€).

Using symmetrization and Bernstein/Dudley bounds for uniformly bounded VC—type classes, to-
gether with

var(1{C > t} K,(X —2)) S EK}(X —x) < h™P,
we obtain

su%) () — Mt(x)‘ = Op( 12?;?)’
Z,

where the log n; term subsumes plog(1/h) under Condition .

Step 1.4: Combine.

Collecting bounds gives

sup [sup ]|IA{$(t) —G(t|z)| < sup #;t((;)) - G(t] x)‘ + sup ‘;t(—(f)) - %
zEX tE[0,Tmax T, x,
log n¢
= 0,17+ /o5,
Step 2:
By Condition (K4), for small u > 0,
G(r(z) —u | ) > fcminl. (A2)
Then taking u; = 2¢,,, / fo min» With €, = c1h" + ca+/log n./(n.h?), gives

G(r(x) —ug | x) > ep, uniformly in  z.
Combining with yields
Hy(r(z) —uy) > G(r(x) —ug | ©) —en, >0 with high probability,

hence
Trern(x) > 7(x) — uy  uniformly in x. (A3)

For the upper bound, note that for any fixed = and any n* € (0,7), and for all ¢ > 7(z) + 1 we have
G(t|z)=0.
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Because K (-) has compact support and & — 0 by Condition , the numerator » ;. 1{c; >
tYK ((z; — x)/h) in H,(t) is 0 with high probability while the denominator stays positive, so
H,(t)=0 for  t>7(z)+n"

and thus
Trern () < 7(2) + 1",
Letting n* | 0 gives Txern () < 7(x) with high probability.

Finally, mapping sup-norm survival error into an endpoint error bound is a direct application of
Lemma|T|using the density lower bound from Condition (K4).

O

A2 CONSISTENCY G(t | z)

To show the Proposition we first establish two lemmas. We write the weighted at-risk and censor-
ing subdistribution processes:

Rn,(t)z) = Zwl YI{Y; >t} and A, (t]z) = Zwl JI{Y; <t, §; =0},
i€Ly 1€y
together with their population counterparts:
Rit|z)=PY >t|X =x) and At |2)=PY <t,0=0] X =x).

Lemma 2. Assume conditions in Proposition Then for any fixed € > 0,

sup  sup |f€n, (t]z)— R(t] a:)| L0,
zeX t<t(x)—¢

sup  sup |Am(t |2) — A(t | z)| 250
r€X t<7(z)—¢
asng — oo.

Proof. Fix x. Conditional on {X; : i € T;} and the weights, the summands are bounded and
independent with means
E[{Y; =2t} | Xi] = P(Y 2 ¢ | X;)
and
E[1{Y; <t,0, =0} | X;] =P(Y <t,0 =0] X,),

by independent censoring given X in Condition (a) and the definition of Y and §. A weighted
LLN then yields

Ry, (t]2)— Z Wi (z)R(t | X;) =0 uniformly in t<7(x)—c¢,
1€Ly

because the effective size (e, wz(ar:)z)_1 £, oo and max;cz, W;(z) —— 0 (Condition
.(111)) together with honesty/stability (Condmon (1V)) A similar result holds for A

By localization (Condition .(11)) and continuity in x of the maps  — R(t | z), z — A(t | z)
(which follow from dominated convergence on the compact X', we have

Z Wi (z)R(t | Xi) = R(t | z) uniformly on {t,z) : t < 7(x) —¢, z € X}
i€Ly

and similarly for A(¢ | ). A covering argument on the compact set yields the claimed suprema. [J
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Lemma 3. Assume conditions in Proposition Then for any sequences (A,,, Ry,,) satisfying

sup sup ||A,,“(t | z) — A(¢ | a:)” -0
zEX t<T(z)—¢

and
sup sup HRm (t]z)— R(t] ac)” — 0,
zeX t<7(x)—¢

we have

dA,, (s | x) dA(s | z)
sup  sup 1—-————-5) — l———~72"+ —0 as mng — o0.
zeEX t<7(x)—¢ (10_[775]( Rn(s ‘ 37) ) (10_[7t]( R(S | £C) ) t

Proof. On {t < 7(z) — £}, Condition gives

R(t| x) > rmin > 0,

hence for n; large also
Rnt 2 'rmin/2~

Write the logs and use the bounded variation of A(¢ | ) (Condition ) to control the remainder:

oL Ret) e (- 5)

(0,4]
= ol (RS e (7))

log(1l —u) = —u— —9( )
with 6(u) bounded on [0, 1 — r,;,/2), one obtains a bound by the total variation of
’dAnt(s |2)  dA(s | =)
R (s|x)  R(s|z)

Uniform convergence of A,,(s | ) — A(s | z) and R,,(s | ) — R(s | =) then implies the
desired uniform convergence of the product integrals. O

Using

Proof of Proposition By definition of the product-integral, the (population) censoring survival

satisfies JA(t | 2)
t|x
G(t = 11— ———
o1 =TH{1- G
(0,t]
and the weighted Kaplan—-Meier (KM) estimator is

. dA,,(t | z)
G T) = 1—-——7 5.
(t]x) H{ Rm(ﬂx)}

(0,¢]

Apply Lemma to get uniform convergence of the weighted processes to (A, R) on the interior strip
{t < 7(x) — €}. Then invoke Lemrna to conclude that

sup sup ‘G’(t | z) — G(t | z)] —~250.
reEX t<7(x)—¢
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A3 UNIFORM CONSISTENCY OF Q¢QRF
Proof of Proposition For t < Tgern(2), define the localized IPCW cdf
3 sy <t
Fr(t|z) = Z wi(m)#,
i G(Y; | Xi)

where >, . wi(z) = 1.

By (A3),
Trern(x) > 7(x) — uy  uniformly in z,
so there exists € > 0 such that
Trern(x) > 7(x) — e > 0  with high probability (w.h.p.). (Ad)

First, consider the case with known 7(z). By the IPCW identity (Stute| 1993} Akritas||1994), a
weighted LLN for forest weights (honesty/localization) (Athey et al.}|2019;|Wager and Athey||2018)

and uniform consistency of G(t | ) on [0, 7(x) — €] in Proposition the uniform convergence of
Fr(-| z) to Fr(- | z) on [0, 7(z) — €] can be established:

sup  sup ’FT(t | z) — Fr(t| )| 250 (A5)
re€X t<7(x)—¢

on [0, 7(x) —¢].
When 7(x) is replaced by 7xern (), the only extra task is to guarantee that for all large n,
t<7(r)—e = t<7(z) forallz,
so that the same uniform arguments apply on [0, 7(z) — €]. This is indeed ensured by (A4).
By Condition (A1), the inverse map Fr + F'(a) is uniformly continuous near Q, (), hence
applying Lemmal|l|gives
sup ‘QEQRF(JC) — Qa(x)’ N}

since Qo () < 7(z) and € > 0 is arbitrary.

C PROOFS OF THEOREMS

To prove T heorem we first present several lemmas. For ¢ € Z,, let
S = QZ,QRF(Xi) -Y; and S; = Qa(X;) - T,

and define

Lemma 4. Assume regularity conditions in Proposition Then

1 1

— > L-1] 20 ad —> I 5 p.
€ iel, e ez,

Proof. When §; = 1 we have Y; = T;, so
By Proposition
sup |7ﬁke7'n(x) - T(l‘)‘ — 0,
and the indicator difference |I; — I7| can be nonzero only when T; lies in the band (7(z;) —
Ny T(25) + M) With 9, := sup,, [fxern(z) — 7(2)|. By continuity of the conditional law of T

given X and boundedness, the probability for 7" to fall in a vanishing band goes to zero uniformly
in x.

An application of the weak law of large numbers yields the first claim. The second follows by the
LLN since I}* are i.i.d. with strictly positive mean and I; — I’ is negligible in average. O
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Lemma 5 (Uniform score consistency on supported, uncensored points). Assume regularity condi-
tions in Propositions and Then as n; — 00,

sup | QSPM(X;) — Qa(Xs) | 2 0.
€L [F=1

Consequently,
sup  |S; — S| = 0.
€L =1
Proof. By Proposition|3]

sug |QZQRF(Q:) — Qu(2)] L0.
xTe

If I} =1thend; = 1and Y; = T}, 50 S; — S = QSORF (X)) — Q. (X;) and the claim follows. [
Lemma 6. Letm =), ez, 1i and define the empirical cdf based on the finite conformity scores
1
F(t) = — ; ; <
m(t) = — Z L1{S; <t}, teR,
i€l
with F,,, = 0 if m = 0. Assume regularity conditions in Propositionsand Then as ny — o0,

sup |, (t) — F*(t)] == 0.
teR
Proof. Write

() — F*(1)] = % S LIS, <t} — Fr(1)

€L,

1 1
<—§ L(1{S, <t} —1{SF < —E L — INH1{S <
_’m l( {Sl—t} {Sz —t})‘+‘m (1 z) {Sz —t}
(A) (B)
1 1
_ *1{SF < I *1{SF <
o Srst < - Y st <o)
()

1
R * * < S ni * Tk _ )
LY RS <0 - s )+ ) - P

(E)
(D)

Term (E) equals |p* — 1| F™*(t) but we interpret F), as a cdf conditioned on I* = 1, so we normalize
by m; using Lemma m/n. — p*, thus (E) is absorbed by (C).

For (A), by Lemma sup;.rr—q |Si — S7| 2, 0; the difference of indicators vanishes eventu-

ally except possibly when S} lies within an 0,(1)-band around ¢, whose contribution is negligible
uniformly in ¢ because F’* is cadlag and bounded.

For (B), use n% >\ — IF| = 0and m/n. — p* > 0to get (B) = 0p,(1) uniformly in ¢.

For (C)—(D), apply LLN with random normalization: by Lemma m/n. — p* and the Glivenko—
Cantelli theorem for the class {1{S* < ¢} : t € R} gives uniform convergence of the unnormalized
averages; Slutsky’s theorem yields uniform convergence after dividing by m. Combining the bounds
and taking the supremum in ¢ gives the claim. O

Proof of Theorem|l| (a). By Proposition for x € X, the estimator QEQRF(x) is consistent:
QW () 25 Qu(x) as  ny — 0.
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To evaluate the statistical behavior of conformity scores in[Step 3]in Section[2] we first consider their
oracle version

Sa(X,T) = Qa(X) =T,

defined in Condition || and let ¢f_, denote the (1 — «)-quantile of the conditional-on-
observability distribution Z* = L(S5(X,T)|é=1, T < 7(X)).

From|Step 3|and[Step 4]in Section[2] if Qo (z) were known, then
PSH(X,T)<0|X=2)=PT>Qu(x)| X=2)=1—aq, (A6)

where the last steps is due to the definition of @, (). Therefore, 0 is the unique (1 — «)-quantile of
the conditional-on-observability distribution £*, namely,

4i—o = 0.
Then, applying Lemma@ and Propositionleads to

Q—a £, 0, asn.— oo.

(b). Applying Proposition with ¢, _, —— 0, we obtain
T(z) = QZQRF(x) —G1—a = Qu(2) as  ng,Me — 00.

O

Proof of Theorem@ a) Forany z € X and 0 < a3 < ag < 1, by the construction of
QRF () in in Section

Q;?RF(x) < QZ?RF(x) a.s.
Clearly, by definition,
Qi—ay = qi—a; @.S.
Combining both, we obtain:
T () = Q5T (@) = G1-ay < Q¥ (2) = G1a, = T™(2) as.
(b) Let m denote the cardinality of Sgpje. Sort them in ascending order as

S(1) S8@2) S0 S S(m)-

For given 0 < « < 1, compute the empirical (1 — «)-quantile of the conformity scores in

Shinite in in Section[2|by setting
bo = [(1=a)(m +1)]
and

~ N S(ka)s ifm >0
Do = 400, if m=0.
For a new point (X, T, C') with censoring indicator J, calculate the conformity score:

o {QgQRF(X)Y, if6=1andY < #(X),

A7
0, otherwise. (A7

Observe that, for any ¢ > 0,
{Yp > QAZLQRF(Xn+1) —c} <= {Su1<c}
By sample splitting, conditional on Dy,.,;;, the multiset

{Si: i € Stnite} U {Snt1}
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is exchangeable on the event {.S,, 11 < oo}. Hence the rank
R = 14 #{i € Stnite : Si < Spt1}

is uniformly distributed on {1, ..., m+1} conditional on {S;,11 < 00, Dirain }. Therefore,

P{ Snt+1 < Sky) | Sny1 < 00, Dtrain} = P{ R <k,

k
- 2 21—04,
m+1

Sn+1 < oo, Dtrain}

where the last inequality uses the definition of k, = [(1 — «)(m + 1)]. Equivalently,
P{ Yn—i—l Z Q?XQRF(Xn—i-l) - qu—a Sn-l—l < 00, Dtrain} Z 1—oa.
O

Proof of Theorem E] Split the available data into a proper training set (used to fit the predictor) and

a calibration set. Fit the conditional a-quantile predictor QgQRF(-) on the proper training set only,
so that, conditional on Dx,.,i,, (Which includes the fitted predictor and the calibration covariates), the
calibration responses and the test point remain exchangeable.

Suppose ¢ > 0 satisfies
P{ Yn+1 Z QZQRF(XTL+1) —C ‘ SnJrl < 0, Dtrain} Z 1-— «,

ie.,
P{ Sn+1 <c ‘ Sn-‘rl < 00, Dtrain} > 1-a.

Ifc < S(ka), then necessarily

{Sns1 < ¢} S{Sns1 < St }»

and exchangeability (uniform rank) yields

P{ Sn—i—l S & Sn—i—l < 00, Dtrain} S P{ Sn+1 < S(ka) Sn—i—l < 00, Dtrain}
k—1
= < 1l—a,
m—+1

a contradiction. Hence any c that attains the desired conditional coverage must satisfy
c> S(ka) ={q1-« Aas.

Since we have already shown that ¢ = ¢;_, achieves coverage, it follows that ¢;_,, is a.s. the
smallest such constant.

Tie remark. If the conditional distribution of S;, 1 (given Di,,iy) is continuous, then ties among
{S; : i € Shnite} occur with probability zero and the smallest constant is unique. With ties, the
coverage function ¢ — P{S, 11 < ¢ | Sp4+1 < 00, Dirain} is right-continuous and jumps only at
{S(y 17 =1,...,m}, so the leftmost c achieving coverage is still S, ).

D ADDITIONAL EXPERIMENTS

EXPLORATORY DATA ANALYSIS

EHR data. The EHR cohort includes 3,500 patients and 116 features: a binary suicide-attempt
(SA) outcome, demographics (e.g., gender, age), and longitudinal ICD codes. Figureshows age
distributions among SA cases by gender. Overall patterns are similar across sexes, though among
those with SA, females exhibit a wider age range and a higher median age. We define 7" as days to
SA, with § = 1if SA occurs during follow-up and 0 otherwise (censored). In total, 3,187 individuals
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Figure Al: EHR data: age distribution by suicide-attempt status and gender.
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Figure A2: Machine-learning survival data: genetic-risk and target-severity score distributions by
death status and cancer stage.

did not attempt suicide, yielding a censoring rate of 91.06%. The censoring time C' is the number
of days from study start to end.

Machine-learning survival data. The cancer dataset contains 50,000 subjects and 14 features,
including survival years, year of diagnosis, demographics (age, gender, country/region), clinical
characteristics (cancer type and stage 0-IV), a composite severity score, risk factors (e.g., genetic
predisposition, air pollution, alcohol use, smoking, obesity), treatment cost (USD), and survival
outcomes. Figure displays genetic-risk and target-severity score distributions among deaths,
stratified by stage. Only 227 individuals remain alive at study end (censored), corresponding to
a 0.454% censoring rate. We focus on genetic risk and target severity score as covariates. Here,
T is survival time in years; 6 = 1 if death occurred and 0 otherwise; C' is time from diagnosis to
censoring (e.g., study end). The dataset is publicly available at Kaggle (https://www.kaggle.
com/datasets/zahidmughal2343/global-cancer-patients-2015-2024).
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Figure A3: Analysis of the the machine-learning survival dataset: empirical coverage of all methods
on.
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SYNTHETIC RESULTS

Additional figures and tables for the synthetic results; all are described in Section
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Figure A4: Synthetic experiment: empirical coverage with multiple covariates under linear, nonlin-
ear, and heteroscedastic relationships and different censoring proportions.
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Figure AS: Synthetic experiment: empirical coverage under mixed covariate—outcome relationships

and different censoring proportions.
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Average running time (s)
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Sample size n
Method
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2000

DFT-cQRF_k RSF

Figure A6: Synthetic experiment: running times (seconds) for the linear scenario in setting 2 with
CR = 0.3 (windows 10 x64; intel core i7-12700h (14¢/20t) using system.time() function).

Table Al: Synthetic experiment: average estimation error with standard deviation in setting 1 with

CR=0.

Scenario

Cox

CSA

cQRF

DFT-cQRF_t

DFT-cQRF k

DFT-adaptive

RSF

Linear

500

1000
1500
2000

1.255 £ 0415
1.220 £ 0.250
1.193 £0.155
1.257 £0.114

0.061 £ 0.009
0.056 + 0.002
0.060 £ 0.006
0.065 + 0.007

0.763 £ 0.090
0.790 £ 0.080
0.905 £ 0.118
1.144 £ 0.075

0.054 + 0.002
0.051 + 0.006
0.052 £ 0.004
0.062 + 0.008

0.057 £ 0.012
0.053 £ 0.005
0.058 £ 0.005
0.064 + 0.008

0.759 £ 0.108
0.817 £0.139
0.934 £ 0.115
1.121 £0.101

0.883 £0.183
0.949 £ 0.127
1.017 £0.103
1.115 £ 0.077

Nonlinear

500

1000
1500
2000

1.196 £ 0.143
1.328 £0.109
1.290 & 0.135
1.335 + 0.090

0.065 + 0.008
0.064 + 0.005
0.065 £ 0.009
0.068 + 0.004

0.999 £ 0.159
1.131 £0.078
1.165 + 0.131
1.182 £ 0.063

0.061 £ 0.006
0.063 = 0.004
0.058 + 0.007
0.067 £ 0.004

0.070 + 0.008
0.059 + 0.006
0.066 + 0.007
0.070 + 0.010

1.088 + 0.129
1.180 % 0.055
1.083 £ 0.070
1.111 + 0.062

1.128 £0.117
1.111 £ 0.076
1.136 = 0.127
1.152 £ 0.067

Heteroscedastic

500

1000
1500
2000

1.375 £ 0.099
1.318 £ 0.136
1.309 + 0.084
1.341 £0.106

0.063 + 0.007
0.070 £ 0.007
0.073 £ 0.007
0.068 + 0.006

1.113 £ 0.140
1.229 £ 0.092
1.268 & 0.078
1.225 £ 0.063

0.058 £ 0.009
0.072 £ 0.013
0.071 £ 0.007
0.064 £ 0.004

0.060 + 0.019
0.077 £ 0.011
0.074 + 0.005
0.070 + 0.007

1.127 £ 0.181
1.218 + 0.073
1.260 £ 0.105
1.180 £ 0.077

1.127 £ 0.142
1.199 £ 0.083
1.236 £ 0.074
1.198 + 0.064

Table A2: Synthetic experiment: average

estimation error with

standard deviation in setting 3 with

CR=0.7.

Scenario n Cox CSA cQRF DFT-cQRF_t DFT-cQRF_k DFT-adaptive RSF
500  1.3374+0.202 0.062+0.012 1.138 £0.135 0.057 & 0.014  0.061 £ 0.014 1.056 = 0.126  1.126 £ 0.128

Linear 1000 1.218 £0.087 0.065 £0.007 1.150 £0.091 0.065 £ 0.010 0.066 + 0.009 1.102 +0.107 1.126 & 0.086
1500 1305 £0.123  0.068 £0.005 1.198 £0.062  0.065 £ 0.008 0.066 + 0.008 1.187 +0.063 1.171 + 0.058
2000 1257 +0.114 0.065 4 0.007 1.144 £ 0.075 0.062 & 0.008  0.064 + 0.008 1.121 & 0.101  1.115 £ 0.077
500  1.196 £0.143  0.065 £0.008 1.139 £0.114 0.061 £ 0.006 0.070 +0.008 1.088 +0.129 1.128 +0.117

Nonlinear 1000 1.328 £0.109 0.064 £0.005 1.131 £0.078 0.063 £ 0.004 0.059 +0.006 1.180+0.055 1.111 +0.076
1500 1290 £0.135 0.065 £ 0.009 1.165 £+ 0.131  0.058 & 0.007  0.066 £ 0.007 1.083 & 0.070 1.136 £ 0.127
2000 1.335£0.090 0.068 £0.004 1.182+0.063 0.067 £0.004 0.070 £0.010 1.111 +£0.062 1.152 4+ 0.067
500  1.375+£0.099 0.063 £0.010 1.151£0.129 0.058 £0.009 0.060 +0.019 1.127 +0.181 1.127 +0.142

Heteroscedastic 1000 1318 £0.136  0.070 £ 0.007 1.229 £0.092 0.072 £ 0.013  0.077 £0.011 1.218 £0.073  1.199 £ 0.083
1500 1.309 £ 0.084 0.073 +0.007 1.268 £ 0.078 0.071 & 0.007  0.074 £ 0.005 1.260 & 0.105 1.236 £ 0.074
2000 1.341 £0.106 0.068 £0.006 1.225 +£0.063 0.064 £ 0.004 0.070 +0.007 1.180 +0.077 1.198 4+ 0.064
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Figure A7: Synthetic experiment: average estimation error across settings and scenarios.
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