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ABSTRACT

Reliable uncertainty quantification for time-to-event outcomes is challenging
when observations are censored and censoring depends on covariates. While
conformal prediction offers a distribution-free tool, existing methods for right-
censored data typically rely on fixed, global filtering rules that ignore how cen-
soring varies across individuals. We introduce a hybrid, model-agnostic frame-
work that combines flexible conditional quantile learning with a Data-Filtered
Threshold-adaptive (DFT-adaptive) conformal calibration scheme. A base learner,
instantiated as censored quantile regression forests, is trained with censoring ad-
dressed via localized Kaplan-Meier estimation; and conformity scores are cal-
ibrated nonparametrically using covariate-dependent-censoring thresholds. Our
development yields marginally valid lower predictive bound that adapts to hetero-
geneous censoring and scales to nonlinear settings without parametric assump-
tions on the censoring mechanism. We provide theoretical guarantees and sup-
porting experiments to demonstrate that the method effectively delivers adaptive,
interpretable, distribution-free uncertainty quantification for censored outcomes.

1 INTRODUCTION

Research on time-to-event data (often referred to as survival analysis) focuses on the time until a
specific event occurs, with extensive applications in many domains, including healthcare, reliability,
and online platforms. A defining feature that differentiates survival analysis from standard regres-
sion in statistics and supervised learning in machine learning is censoring, where the event is not
observed within the study window.

1.1 LITERATURE REVIEW

Time-to-event prediction is central to decision-making. Classical survival models (e.g., Cox pro-
portional hazards, accelerated failure time, and semiparametric transformation models) can perform
well when their structural assumptions (e.g., proportional hazards or specific parametric forms) hold
(Cox, 1972; Kalbfleisch and Prentice, 2002), but these assumptions are often violated in heteroge-
neous and nonlinear settings (Lee et al., 2018). At the other end of the spectrum, modern machine-
learning methods have matured. Conformal prediction provides model-agnostic procedures with
minimal assumptions (exchangeablility of data) (e.g., Vovk et al. (2005); Barber et al. (2021; 2023)).
Practical refinements, such as split conformal prediction (e.g., Lei et al. (2013); Oliveira et al. (2024);
Romano et al. (2020)), conformalized quantile regression (e.g., Romano et al. (2019); Colombo and
Vovk (2020)), and distributional conformal prediction (e.g., Chernozhukov et al. (2021); Izbicki
et al. (2022); Vovk and Bendtsen (2018)), are scalable and adaptive to handle practical problems;
weighted/local variants further address covariate shift and heterogeneity (Tibshirani et al., 2019;
Gibbs and Candès, 2021; Prinster et al., 2022)).

However, conformal prediction cannot be naively applied to censored data: uncensored observa-
tions are not representative of the full cohort, breaking exchangeability. Handling such data has
attracted recent interest, and a growing line of work therefore tailors conformal methods to censored
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outcomes (Qin et al., 2025). Candès et al. (2023) proposed conformalized survival analysis with a
global censoring cutoff and weighted split–conformal calibration to obtain finite-sample lower pre-
dictive bounds. Gui et al. (2024) introduced covariate-adaptive (data-filtered) cutoffs that calibrate
only on regions with observable outcomes, improving efficiency while retaining coverage on the
supported region. Moving beyond one-sided bounds, Yi et al. (2025) constructed two-sided predic-
tive intervals under random right-censoring by recovering the upper endpoint via inverse-probability
weighting, and proposed a resampling-based conformal scheme that yields one- and two-sided in-
tervals for right-censored data. Farina et al. (2024) developed doubly robust and efficiency–oriented
calibration for prediction sets via influence–function ideas, targeting improved finite–sample effi-
ciency when either outcome or censoring models are well specified. Davidov et al. (2025) proposed
a conformalized survival framework by leveraging flexible nuisance estimation to calibrate lower
bounds beyond Type–I censoring. Sesia and Svetnik (2025) introduced conformal survival bands
for risk screening that calibrate group–level operating characteristics under right–censoring.

On the modeling side, tree-based learners and deep architectures provide flexible, scalable estima-
tors (Pölsterl, 2020; Prokhorenkova et al., 2018). Random forests (Breiman, 2001) and random
survival forests (RSF) (Ishwaran and Kogalur, 2007) routinely deliver strong predictive accuracy,
as do neural survival models such as CQRNN (Pearce et al., 2022) and DeepEH (Zhong et al.,
2021). For conditional quantiles under censoring, censored quantile regression forests (cQRF, Li
and Bradic (2020)) combines forest locality with censoring adjustments to estimate survival quan-
tiles nonparametrically. Despite this natural synergy, principled integration of conformal calibration
with quantile-oriented learners tailored to censoring remains limited, and methods often rely on
global cutoffs or do not explicitly filter by a learned censoring horizon (Qi et al., 2024).

1.2 OUR CONTRIBUTIONS

We develop a hybrid, model-agnostic framework that couples a censoring-aware quantile learner
with a Data-Filtered Threshold–adaptive (DFT-adaptive) conformal calibration scheme, and refer to
it as DFT–cQRF. Our work differs from—and complements—existing approaches in two key ways.
First, we pair a quantile-oriented base learner tailored to censoring with a covariate-adaptive censor-
ing horizon learned nonparametrically; this contrasts with global-cutoff calibration (Candès et al.,
2023) and with methods that do not explicitly filter by a learned horizon (Davidov et al., 2025; Farina
et al., 2024; Sesia and Svetnik, 2025). Second, we target sharp, distribution-free lower bounds under
heterogeneous censoring and analyze when the conformal correction vanishes asymptotically given
a consistent quantile learner; this provides a simple pipeline that complements resampling-based
or influence-function-based calibrations (Qin et al., 2025; Farina et al., 2024). Empirically, this
hybridization (DFT–cQRF) improves the coverage–efficiency trade-off in settings where censoring
varies strongly with covariates, while remaining model-agnostic and assumption-lean. Specifically,
we make the following contributions:

• To capture individual-level heterogeneity, we estimate a covariate-dependent censoring
horizon (i.e., the latest time at which outcomes remain reliably observable). This local
filter removes unsupported regions with heavy censoring, which prevents overly conserva-
tive calibration while preserving validity and yielding sharper, individualized predictions.

• Instantiating the base learner with censored quantile regression forests and using localized
Kaplan–Meier-based inverse-probability-of-censoring weights, we obtain distribution-free
lower predictive bounds that handle heterogeneous censoring and remain simple to imple-
ment.

• We establish finite-sample marginal coverage on the observable region and show the con-
formal correction vanishes as the quantile learner becomes uniformly consistent, yielding
asymptotically sharp bounds. Across synthetic benchmarks and an EHR application, our
method (“DFT–cQRF”) achieves favorable coverage–efficiency trade-offs relative to con-
formal survival baselines and flexible learners without distribution-free guarantees.

2 METHODOLOGY AND ALGORITHM

Preliminaries For any subject, let T denote the event time, let X denote the associated p-
dimensional covariate vector, and let C denote the censoring time. Let ω = 1(T → C) de-
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note indicator function, and let Y = min(T,C) denote the observed time. Let G(t | x) =
P (C > t | X = x) denote the conditional survivor function for the censoring time C given
X = x. For any 0 < ε < 1, consider the conditional ε-quantile function of T given X = x:
Qω(x) = inf {t ↑ R+ : P (T → t | X = x) ↓ ε}. We define the covariate-dependent censoring
threshold function ϑ(x) as: ϑ(x) = sup {t ↑ R+ : P (C ↓ t | X = x) > 0}, which represents the
maximal time up to which an individual with covariate profile X = x may be observed (i.e., not
censored). It corresponds to the right endpoint of the support of the conditional distribution of C
given X = x: If t > ϑ(x), then P (C ↓ t | X = x) = 0. Basically, ϑ(x) estimates the maximum re-
liable observation time at covariate value x, based on the censoring times observed in the data. ϑ(x)
tells us how far we can trust the observed Y for a given covariate profile x, because if Y > ϑ(x)
then it may fall in a region with high or total censoring, and any inference beyond ϑ(x) becomes
statistically unreliable so that we cannot estimate quantiles or coverage well there. Consequently,
we call ϑ(x) the censoring horizon function.

For i = 1, . . . , n, let (Xi, Yi, Ti, Ci, ωi) denote random variables that are independent and identically
distributed that follow the same distribution as (X,Y, T, C, ω). We use lowercase letters, xi, yi, ti
and ci, to denote realized values of the corresponding random variables. Let Dn = {(xi, yi, ci, ωi) :
i ↑ I} denote available data, which are randomly split into a training set Dtrain ↭ {(xi, yi, ci, ωi) :
i ↑ It} and a calibration set Dcal ↭ {(xi, yi, ci, ωi) : i ↑ Ic}, where I, It, and Ic denote the index
set for the data Dn, Dtrain and Dcal, respectively. That is, It ↔Ic = I and It ↗Ic = ↘. Let n, nt and
nc denote the size of I, It and Ic, respectively.

Methodology Given right-censored data, our goal is to construct an informative lower predictive
bound for a future subject’s event time, given covariates X = x, with distribution-free marginal
coverage. We adopt a hybrid framework, which combines a flexible base learner estimates condi-
tional survival quantiles and a Data-Filtered Threshold–adaptive (DFT-adaptive) conformal calibra-
tion step. Specifically, we (i) restrict prediction to the observable region defined by the estimated
censoring horizon ϑ(x); (ii) compute conformity scores that quantify how well calibration outcomes
align with the predicted quantiles under censoring; and (iii) calibrate these scores to obtain an em-
pirical adjustment. Our procedure consists of the following five steps:

Step 1 Estimate Covariate-Dependent Censoring Horizon:
To gain robustness, we use the kernel regression method to estimate ϑ(x) by:

ϑ̂kern(x) = sup

{
t ↑ R+ :

∑
i→I 1(ci ↓ t)Kh(≃xi ⇐ x≃)∑

i→I Kh(≃xi ⇐ x≃) > 0

}
(1)

for x ↑ X where Kh is a kernel function with bandwidth h, and 1(·) is the indicator
function.

Step 2 Train a Base Quantile Model:
To estimate the conditional quantile function Qω(x) with right-censoring effects accounted
for, we fit a censored quantile regression forest (cQRF) on Dtrain, as detailed below:

(a) Let B denote the number of trees, which is a user-specified hyperparameter, typically
chosen through cross-validation or set to a default value (e.g., 100 or 500) to ensure
stability of the estimated quantiles; then we fit a forest using log-rank splitting rule, a
censoring-aware splitting rule.

(b) For x ↑ X and i ↑ It, calculate the forest weights:

w̃i(x) =
wi(x)∑

j→It
wj(x)

, (2)

where wi(x) =
1
B

∑B
b=1 1{x and xi are in same leaf of tree b}.

(c) We construct a localized-forest–based weights that measure the similarity between x
and covariates in the training data, leading to the estimator:

Ĝ(t | x) =
∏

j:c̃(j)↑t

(
1⇐

∑
i→It

w̃i(x) · 1{c̃i = c̃(j), ωi = 0}
∑

i→It
w̃i(x) · 1{c̃i ↓ c̃(j)}

)
, (3)
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where c̃i = min(yi, ϑ̂kern(xi)), and c̃(j) denotes the j-th ordered distinct value among
{c̃i : i ↑ It}. Then for i ↑ It with ωi = 1, we compute inverse probability censoring
weights (IPCW):

ϖi(x) =
w̃i(x)

Ĝ(yi | xi)
. (4)

(d) Using the inverse probability of censoring weights (IPCW), we estimate the ε-quantile
of Qω(x) by the weighted empirical quantile of {yi : i ↑ It}:

Q̂cQRF
ω (x) = inf

{
t ↑ R+ :

∑

i→It

ϖi(x) · 1{yi → t} ↓ ε

}
(5)

for x ↑ X , which can be implemented by the R package grf for quantile regression
forests and survival forests.

Step 3 Compute Conformity Scores:
For i ↑ Ic, define the conformity score:

si =

{
Q̂cQRF

ω (xi)⇐ yi if ωi = 1 and yi → ϑ̂(xi),
⇒ otherwise.

Let Sfinite = {si : si < ⇒, i ↑ Ic} denote the finite scores for subjects in the calibration
set Ic.

Step 4 Calibrate the Quantile:
Let m denote the cardinality of Sfinite. Order the finite scores in Sfinite as s(1) → · · · → s(m).
For given 0 < ε < 1, compute the empirical (1 ⇐ ε)-quantile of the conformity scores in
Sfinite in Step 3 by setting

kω =
⌈
(1⇐ ε)(m+ 1)

⌉
and q̂1↓ω := s(kω) (q̂1↓ω = +⇒ if m = 0).

Step 5 Construct the Lower Predictive Bound:
For a new test point X = x, define the lower predictive bound as:

T̂ω(x) = Q̂cQRF
ω (x)⇐ q̂1↓ω.

Algorithm 1 DFT–cQRF: Distribution-Free Adaptive Conformal Lower Bound under Right Cen-
soring
Require: Data Dn = {(xi, yi, ci, ωi) : i ↑ I}; significance level ε.

1: Split the subject index set I into training set It and calibration set Ic.
2: for each training point i ↑ It do
3: (i) Estimate ϑ(x) using (1)
4: (ii) Calculate wi(x) and and w̃i(x) as in (2)
5: (iii) Estimate G(t | x) as in (3)
6: (iv) With ωi = 1, compute inverse probability censoring weights ϖi(x) as in (4)
7: (v) Estimate Qω(x) using Q̂cQRF

ω (x) in (5)
8: end for
9: for each calibration point i ↑ Ic do

10: if ωi = 1 and yi → ϑ̂(xi) then
11: Compute conformity score si = Q̂cQRF

ω (xi)⇐ yi
12: else
13: Set si = ⇒
14: end if
15: end for
16: Let Sfinite = {si : si < ⇒}
17: Compute q̂1↓ω as the (1⇐ ε)-quantile of Sfinite)
18: Return: For any test point x, output the lower predictive bound T̂ω(x) = Q̂cQRF

ω (x)⇐ q̂1↓ω

4
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Figure 1: Pipeline diagram for the proposed DFT-cQRF method.

We introduce the DFT–cQRF procedure, which hybridizes a censoring-aware quantile learner with a
data-filtered, threshold-adaptive conformal calibration scheme; pseudocode is given in Algorithm 1
and a pipeline diagram is presented in Figure 1.

An open-source implementation will be released on GitHub upon acceptance. Our method differs
from prior conformal approaches in two main ways: conditional-quantile learning and covariate-
adaptive calibration. First, rather than the predominantly linear quantile estimators emphasized in
existing work (e.g., Gui et al. (2024)), we develop censored quantile regression forests (cQRF) that
form locally weighted, censoring-adjusted empirical quantiles by integrating forest weights with
inverse-probability-of-censoring weights (IPCW). This yields a model-agnostic learner that requires
no parametric assumptions on the censoring mechanism and accommodates both linear and nonlin-
ear regimes. Second, in contrast to the universal cutoff ϑ commonly used in censored conformal
methods (e.g., Candès et al., 2023; Gui et al., 2024), we estimate a covariate-dependent censoring
horizon ϑ̂(x) via kernel nonparametric regression. Our threshold yields a local, data-adaptive fil-
tering rule that handles censored and uncensored observations appropriately by calibrating only on
those expected to be observed at their covariate values. Consequently, our method delivers sharper
predictive lower bounds and improved efficiency under heterogeneous censoring, while retaining
interpretability.

3 THEORETICAL RESULTS

This section provides theoretical guarantees for the methodology in Section 2; proofs and regularity
conditions are deferred to the appendix. First, we analyze the key estimators underlying the proce-
dure by establishing consistency for (i) the kernel-estimator ϑ̂kern(x) of the censoring horizon ϑ(x),
(ii) the localized-forest–based weighted estimator Ĝ(t | x) of the censoring cumulative function
G(t | x), and (iii) the cQRF estimator Q̂cQRF

ω (x) of the quantile function Qω(x).
Proposition 1. Assume Conditions (K1)–(K4) in Appendix A. Then there exist constants c1 and c2
depending on (K,L, fX) such that

sup
x→X

∣∣ϑ̂kern(x)⇐ ϑ(x)
∣∣ = Op

(
c1h

ε + c2

√
log nt

nthp

)
,

where ϱ is the Hölder smoothness exponent in Condition (K3).

Uniform consistency of the kernel estimator ϑ̂kern(x) can be established by properly choosing the
bandwidth h. It is immediate from Proposition 1 that taking h ⇑ (log nt/nt)1/(2ε+p) yields

sup
x→X

|ϑ̂kern(x)⇐ ϑ(x)| p⇐⇓ 0 as nt ⇓ ⇒.
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Proposition 2. Under Conditions (C1)–(C4) in Appendix A, for any fixed ς > 0,

sup
x→X

sup
t↑ϑ(x)↓ϖ

∣∣Ĝ(t | x)⇐G(t | x)
∣∣ p⇐⇐⇓ 0.

The statement asserts uniform consistency of the localized-forest–based Kaplan–Meier estimator
Ĝ(t | x) on any interior time set [0, ϑ(x) ⇐ ς]. The ς-margin is essential: at t = ϑ(x) the risk set
degenerates (with G(t | x) close to 0), so uniform control cannot generally hold up to the boundary.
Proposition 3. Assume Conditions (A1)-(A3) in Appendix A and those in Propositions 1 and 2.

Then as nt ⇓ ⇒,

sup
x→X

∣∣Q̂cQRF
ω (x)⇐Qω(x)

∣∣ p⇐⇐⇓ 0.

The result establishes uniform consistency of the cQRF base learner: its estimated conditional ε-
quantiles converge in probability to Qω(x) uniformly over x. Practically, this means that plug-in
predictions are asymptotically unbiased for Qω(x) everywhere on the covariate space. It provides
a reliable foundation for subsequent conformal calibration, whose theoretic analysis is provided
below.
Theorem 1. Assume that the regularity conditions in Proposition 3 hold. Let ε be a constant

between 0 and 1. Then as nt, nc ⇓ ⇒,

(a). q̂1↓ω
p⇐⇐⇓ 0

(b). supx→X
∣∣T̂ω(x)⇐Qω(x)

∣∣ p⇐⇐⇓ 0.

Remark 1. This theorem shows that for any fixed ε ↑ (0, 1), when the training and calibration
data sizes approach infinity, the empirical (1 ⇐ ε) quantile of the finite conformity scores satisfies
q̂1↓ω

p⇐⇐⇓ 0, which reflects that no positive correction is needed asymptotically on the observable
region. The conformal lower predictive bound T̂ω(x) converges uniformly to the true conditional
quantile Qω(x). Hence the calibrated predictor is asymptotically sharp and unbiased for Qω(·).
Theorem 2. Assume that the conditions in Appendix A hold and that random vector (X,T,C)
makes the distribution of Dtrain ↔ {X,T,C} and of {X,T,C}↔Dcal exchangeable. Then for T̂ω(x)
obtained in Section 2 with 0 < ε < 1,

(a) For any given x ↑ X , T̂ω(x) is non-decreasing in ε almost surely;

(b) Given Dtrain, then for a future pair (Xn+1, Tn+1),

P
{
Tn+1 ↓ T̂ω(Xn+1)

∣∣∣ Sn+1 < ⇒, Dtrain

}
↓ 1⇐ ε.

Remark 2. The theorem states that, conditionally on the test point being observable (i.e., Sn+1 <
⇒), the true event time exceeds the predicted lower bound T̂ω(X) with probability at least 1 ⇐ ε,
without distributional assumptions beyond exchangeability and the splitting scheme. Hence the
method is finite-sample and distribution-free even under right-censoring. Moreover, the lower bound
T̂ω(X) is monotone in the miscoverage level ε: as ε increases, the lower bound weakly increases,
yielding nested, easy-to-interpret prediction sets across coverage levels.
Theorem 3. Assume the conditions in Theorem 2. Given 0 < ε < 1, let c denote a positive constant

such that

P
{
Yn+1 ↓ Q̂cQRF

ω (Xn+1)⇐ c
∣∣∣ Sn+1 < ⇒, Dtrain

}
↓ 1⇐ ε.

Then the split-conformal choice c = q̂1↓ω is almost surely the smallest.

Remark 3. Among all constant shifts that achieve the target coverage, the split–conformal correction
q̂1↓ω is minimal almost surely. Consequently, the calibrated lower bound T̂ω(x) is the sharpest

(least conservative) distribution-free bound obtainable within the class of constant-shift adjustments:
any smaller c would under-cover, while any larger c is unnecessarily conservative. This optimality
holds for finite-sample settings, conditional on Dtrain and on the test point being observable (Sn+1 <
⇒).
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4 EXPERIMENTS

Implementation details. To assess the performance of DFT-cQRF (Section 2), we also consider
an alternative estimator of ϑ(x) obtained via a regression tree in Step 1. We refer to the resulting
two variants as DFT–cQRF k (kernel estimator of ϑ(x)) and DFT–cQRF t (tree-based estimator
of ϑ(x)). We evaluate these variants against five benchmarks: Cox proportional hazards (Cox),
censored quantile regression forest (cQRF), conformalized survival analysis (CSA, Candès et al.
(2023)), distribution-free adaptive cutoff (DFT-adaptive, Gui et al. (2024)), and random survival
forest (RSF). For visualization, we plot box plots of the lower predictive bound T̂ω(x) from Step
5, with ε = 0.1. Each box-plot entry summarizes the replicate-level coverage over the evaluation
split, computed as in Gui et al. (2024): |E|↓1

∑
i→E 1

{
yi ↓ T̂ω(xi)

}
, where E =


i ↑ Ic : ωi =

1, yi → ϑ̂(xi)


, with ϑ̂(x) representing an estimate of ϑ(x).

Real data. We evaluate our methods on two public survival datasets. The first is an EHR-based
cohort from the Kansas Health Information Network (KHIN) for suicide–risk prediction (Chen et al.,
2024), comprising anonymized longitudinal covariates, timestamps, and suicide–attempt indicators
from multiple health systems. The cohort exhibits right censoring due to incomplete follow-up and
spans January 1, 2014–December 31, 2017. Among 3,500 patients, 3,187 individuals did not attempt
suicide, yielding a censoring rate of 91.06%, where we define T as the days to first suicide attempt
(SA), and C as the administrative censoring time (days from study start to end of observation). The
second dataset is a machine-learning survival dataset from Kaggle containing global cancer patient
records (2015–2024), included for contrast, with only 0.454% censoring. Further details for both
datasets and exploratory data analysis can be found in Appendix D.

Data are split into training and calibration sets using a ratio of either 75:25 or 50:50. To assess the
impact of covariate inclusion on the EHR data, we analyze four specifications: (i) age only; (ii)
gender only; (iii) age + gender; (iv) age + gender + F333 (major depressive disorder, recurrent) +
F341 (dysthymia), and report the results in Figure 2. The red dashed line indicates the nominal 90%
target. Results are shown for 75:25 and 50:50 train–calibration splits; aquamarine denotes 75:25
and cyan denotes 50:50. Across all four cases, DFT–cQRF t attains the highest coverage with the
narrowest interquartile range and no outliers; its entire box lies above the 90% line. DFT–cQRF k
is similarly strong, with a comparably tight box. DFT-adaptive centers near 90%. The Cox model
is stable but below the line, whereas cQRF, CSA, and RSF show wider variability; RSF performs
worst, often below 50%.

Figure 2: Analysis EHR data: empirical coverage of all methods with different covariate sets.
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Figure 3: Synthetic experiment: empirical coverage under linear, nonlinear, and heteroscedastic
relationships and different censoring proportions.

The results for the Kaggle data are presented in Figure A3 (Appendix). They show that CSA attains
the best empirical performance, yet our methods remain competitive; in particular, DFT–cQRF k
is among the top performers. CSA outperforms here because our methods are designed to handle
censored data, whereas this dataset has nearly no censoring. Even when event times are (near-)fully
observed, DFT–cQRF remains efficient while retaining robustness.

Synthetic Experiments. We complement the real-world analysis with controlled simulations to
systematically assess performance. By varying censoring rates and the covariate–outcome rela-
tionship (linear, nonlinear, heteroscedastic), we evaluate the robustness and efficiency of our meth-
ods against benchmarks used in the data analysis. We run R = 1000 replicates with sample size
n = 1000 for synthetic data generated as follows. For a single covariate, X ⇔ N (0, 1); for multiple
covariates, X ⇔ Nd(0, I). Event times are independently generated from an accelerated failure
time (AFT) model: log(T ) = φ(X) + ↼, where ↼ ⇔ EV(0,↽ϱ) (extreme value distribution), which
corresponds to a Weibull baseline. We set the nominal level to ε = 0.1. Right censoring is induced
independently via C ⇔ Unif(0, ϑ), with ϑ chosen to target three censoring regimes (CR): none
(Setting 1), 30% (Setting 2), and 70% (Setting 3) (tuned by pilot runs so that Pr(T > C) ↖ desired
rate). To probe robustness, we consider three covariate–outcome designs in the single-covariate case:
(i) Linear: φ(X) = 0.5X; (ii) Nonlinear: φ(X) = 0.5X ⇐ 0.2X2; and (iii) Heteroscedas-
tic: φ(X) = 0.5X + ς, ς ⇔ N


0,↽2(X)


, ↽(X) = 0.2 + 0.3|X|. For multiple covariates,

we combined these effects across coordinates; for example, a linear–nonlinear two-covariate de-
sign is φ(X) = 0.5X1 ⇐ 0.2X2

2 . Observed data D = {(yi, xi, ci) : i ↑ [n]} are realizations of
Y = min(T,C), X , and C; we randomly split D into training and calibration sets in a 50:50 ratio.

We first compare methods across three covariate–outcome regimes (linear, nonlinear, heteroscedas-
tic) and then vary censoring to assess robustness and coverage. In Figure 3, royal blue, plum, and
yellow-green denote the linear, nonlinear, and heteroscedastic scenarios, respectively. Our methods
(DFT-cQRF t, DFT-cQRF k), especially DFT-cQRF, consistently achieve the highest coverage
with the shortest boxes (lowest variability). For DFT-cQRF, coverage is highest in the linear case
and lower under heteroscedasticity, nevertheless, the medians and IQRs for both variantes remain
above the 90% line in all scenarios. DFT-adaptive also performs well, with medians near or above
90% but more outliers. Cox, cQRF, CSA, and RSF generally below the line; CSA has the most
variation across settings.

With multiple covariates (all linear, all nonlinear, or all heteroscedastic), Figure A4 (Appendix)
shows results consistent with Figure 3: DFT-cQRF t and DFT-cQRF k remain stable with low vari-
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Figure 4: Synthetic experiment: average estimation error in setting 2 with CR = 0.3.

Table 1: Synthetic experiment: average estimation error with standard deviation in setting 2 with
CR = 0.3.

Scenario n Cox CSA cQRF DFT-cQRF t DFT-cQRF k DFT-adaptive RSF

Linear

500 1.342 ± 0.149 0.054 ± 0.004 1.024 ± 0.080 0.050 ± 0.006 0.045 ± 0.006 0.918 ± 0.136 0.922 ± 0.068
1000 1.151 ± 0.067 0.049 ± 0.003 0.997 ± 0.071 0.048 ± 0.008 0.051 ± 0.008 0.924 ± 0.075 0.859 ± 0.056
1500 1.288 ± 0.098 0.054 ± 0.006 1.026 ± 0.087 0.053 ± 0.004 0.056 ± 0.005 0.922 ± 0.030 0.909 ± 0.081
2000 1.278 ± 0.117 0.050 ± 0.005 1.017 ± 0.038 0.047 ± 0.002 0.050 ± 0.003 0.962 ± 0.050 0.889 ± 0.043

Nonlinear

500 1.221 ± 0.113 0.049 ± 0.011 0.944 ± 0.168 0.052 ± 0.006 0.049 ± 0.011 0.958 ± 0.064 0.863 ± 0.145
1000 1.195 ± 0.079 0.050 ± 0.005 1.071 ± 0.117 0.049 ± 0.005 0.051 ± 0.003 0.935 ± 0.058 0.940 ± 0.135
1500 1.294 ± 0.087 0.051 ± 0.003 1.056 ± 0.064 0.049 ± 0.006 0.052 ± 0.008 0.929 ± 0.033 0.928 ± 0.050
2000 1.255 ± 0.073 0.053 ± 0.005 1.060 ± 0.054 0.050 ± 0.006 0.052 ± 0.008 0.985 ± 0.058 0.921 ± 0.065

Heteroscedastic

500 1.278 ± 0.152 0.057 ± 0.010 1.068 ± 0.124 0.054 ± 0.014 0.060 ± 0.008 0.999 ± 0.093 0.957 ± 0.147
1000 1.195 ± 0.062 0.051 ± 0.003 1.051 ± 0.060 0.054 ± 0.004 0.051 ± 0.004 0.980 ± 0.066 0.916 ± 0.055
1500 1.302 ± 0.182 0.053 ± 0.003 1.069 ± 0.057 0.049 ± 0.006 0.051 ± 0.005 0.973 ± 0.027 0.931 ± 0.048
2000 1.327 ± 0.130 0.052 ± 0.004 1.069 ± 0.054 0.048 ± 0.003 0.052 ± 0.003 0.989 ± 0.074 0.929 ± 0.036

ability. cQRF and RSF improve with more covariates, whereas DFT-adaptive declines relative to
the single-covariate case. We also study mixed designs (linear + nonlinear, nonlinear + heteroscedas-
tic, heteroscedastic + linear, and all three combined). In Figure A5 (Appendix), medium purple, dark
salmon, sea green, and dark gray mark these combinations. DFT-cQRF t again achieves the highest
coverage; both of our methods show small between-scenario shifts, indicating robustness. DFT-
adaptive and Cox are comparatively stable; cQRF, and especially RSF, vary substantially. Across
Figures 3, and Figures A4 and A5 (Appendix), higher censoring produces wider boxes, longer tails,
and more outliers, reflecting less information and reduced precision. Between our two variants,
DFT-cQRF k typically shows lower variance, whereas DFT-cQRF t attains higher coverage.

Figure A7 (Appendix) summarizes the average estimation error with standard deviations (reported
as mean ± sd in parentheses) across all settings and scenarios. For readability, we highlight Set-
ting 2 in Figure 4 and Table 1. Our methods achieve comparatively low error, underscoring their
competitiveness. These figures and additional tables are provided in Appendix D. Finally, we as-
sess computational cost. Figure A6 (Appendix) reports average running times for sample sizes
n ↑ {500, 1000, 1500, 2000}. As expected, Cox is consistently the fastest. DFT–cQRF k requires
more time due to the additional steps in our procedure; however, this overhead is reasonable given
the gains in accuracy. DFT–cQRF t offers a favorable accuracy–efficiency trade-off.

5 LIMITATIONS AND FUTURE WORK

Despite the strengths demonstrated by our theoretical analysis and experiments, several extensions
remain. Our study focuses on one-sided lower bounds under right censoring with split conformal
calibration and assumes exchangeability between calibration and test data. Extending the framework
to two-sided prediction intervals warrants further investigation. We do not address other common
features of time-to-event data, such as left truncation or interval censoring. Future work includes
developing scalable conformal procedures that accommodate these settings.
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APPENDICES: TECHNICAL DETAILS AND ADDITIONAL EXPERIMENTS

A REGULARITY CONDITIONS

Throughout, X → Rp is compact. Let fX denote the probability density (or mass) function of X .
The covariate X has density fX on X with

0 < fmin ↑ fX(x) ↑ fmax < ↓.

Let fC|X denote the conditional probability density function of C given X , and FC|X denote the
conditional cumulative distribution function (CDF) of the censoring time C given X , i.e., FC|X(t |
X = x) = 1↔G(t | x). Suppose that for x ↗ X , fC|X has bounded support [0, ω(x)]. We assume
regularity conditions concerning kernel estimation, regression tree, and survival analysis that are
discussed in Athey et al. (2019), van der Vaart (1998), and Kalbfleisch and Prentice (2002), which
include the following conditions.

REGULARITY CONDITIONS FOR ω̂kern(x)

(K1) Threshhold. ω(x) is continuous.
(K2) Kernel & bandwidth. K(·) is bounded, Lipschitz, compactly supported,

∫
K(u)du = 1;

h = hnt ↘ 0, and nthp/ lognt ≃ ↓ as nt ≃ ↓.
(K3) Hölder continuity of G(t | x) in x: There exist ε ↗ (0, 1] and L > 0 such that

sup
t→ω(x)↑ω(x→)↓ε

|G(t | x)↔G(t | x↔)| ↑ L⇐x↔ x↔⇐ϑ for x, x↔ ↗ X .

(K4) Positive density near the endpoint. There exist ϑ > 0 and fC,min > 0 such that

fC|X(t | x) ⇒ fC,min

for all x ↗ X and t ↗ (ω(x)↔ ϑ, ω(x)).

In Condition (K3), ε ↗ (0, 1] is the Hölder smoothness exponent in time, and L > 0 is a uniform
Hölder constant (independent of x, s, and t) that bounds the fluctuation of G(t | x) on [0, ω(x)];
when ε = 1, this reduces to a global Lipschitz condition, with Lx being a Lipschitz constant.

REGULARITY CONDITIONS FOR Ĝ(t | x)
(C1) Uniform boundness of censoring horizon: supx↗X ω(x) ↑ ωmax < ↓ for a constant ωmax.
(C2) Independence and positivity: We assume that

(i) Conditional independent right-censoring given X: T ⇑ C | X .
(ii) At-risk positivity away from the tail: there exists rmin > 0 such that

inf
x↗X

inf
0→t→ω(x)↓ε

P (Y ⇒ t | X = x) ⇒ rmin.

(C3) Continuity and boundness
(i) For each x, FC|X(· | x) is continuous on [0, ω(x)].

(ii) The cumulative censoring hazard

!C(t | x) =
∫ t

0

dP (Y ↑ s, ϖ = 0 | X = x)

P (Y ⇒ s | X = x)

is uniformly bounded:
sup
x↗X

!C(ω(x) | x) < ↓.

(C4) Weight regularity For each x, the weights w̃i(x) ⇒ 0 satisfy:
(i) Normalization:

∑
i↗It

w̃i(x) = 1.

12
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(ii) For every ϱ > 0,
sup
x↗X

∑

i↗It

w̃i(x)1{⇐Xi ↔ x⇐ > ϱ} p↔↔≃ 0.

(iii) As nt ≃ ↓

inf
x↗X

(∑

i↗It

w̃i(x)
2
)↓1 p↔↔≃ ↓ and sup

x↗X
max
i↗It

w̃i(x)
p↔↔≃ 0.

(iv) Conditional on {Xi : i ↗ It}, the weights depend only on {Xi : i ↗ It} and are
independent of (Yi, Ci, ϖi) : i ↗ It}.

ADDITIONAL CONDITIONS

(A1) Regularity about distribution of T given X
Let FT |X(t|x) and fT |X(t | x) denote the conditional cumulative distribution function (cdf)
and the density function of the event T given X = x, respectively. For x ↗ X and 0 < ς < 1,

(i) FT |X(· | x) is continuous and strictly increasing near Qϖ(x).
(ii) fT |X(· | x) is bounded away from 0 in a neighborhood of Qϖ(x).

(A2) Continuity at the target quantile.
(i) The conditional cdf F ϱ(t) := P (S↘

ϖ(X,T ) ↑ t | Iϱ = 1) is continuous at its (1 ↔ ς)-
quantile qϱ1↓ϖ.

(ii) p↘ > 0, where Sϖ(X,T ) = Qϖ(X)↔ T , Iϱ = 1{ϖ = 1, T ↑ ω(X)}, and p↘ = P (Iϱ =
1).

(A3) Tree / forest weights:
(i) The partition is sufficiently fine:

”n := sup
x↗X

diam(L(x)) p↔↔≃ 0,

where L(x) denotes the terminal leaf containing x.
(ii). Leaf mass diverges: infx↗X #{i : Xi ↗ L(x)} p↔↔≃ ↓.

B PROOFS OF PROPOSITIONS

Lemma 1 (Quantile mapping). Let {Fn : n = 1, 2, . . .} be cdfs and F a cdf. Let F↓1(u) :=
inf{t ↗ R : F (t) ⇒ u} denote the (left-continuous) quantile functional. For n = 1, 2, . . ., define

qn = F↓1
n (u) and q = F↓1(u) for u ↗ (0, 1).

Suppose

(i) supt↗R |Fn(t)↔ F (t)| p↔↔≃ 0;

(ii) F is continuous and strictly increasing in a neighborhood of q.

Then

qn
p↔↔≃ q.

Proof. Fix φ > 0. By (ii) and continuity at q, there exists ϑ > 0 such that F (q ↔ φ) ↑ u ↔ ϑ and
F (q+ φ) ⇒ u+ϑ. On the event {supt |Fn(t)↔F (t)| < ϑ} we have Fn(q↔ φ) ↑ F (q↔ φ)+ϑ ↑ u
and Fn(q + φ) ⇒ F (q + φ)↔ ϑ ⇒ u. By monotonicity of Fn, q ↔ φ ↑ qn ↑ q + φ. Thus, by (i)

P (|qn ↔ q| > φ) ↑ P

(
sup
t

|Fn ↔ F | ⇒ ϑ

)
≃ 0.

13
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A1 CONSISTENCY OF KERNEL ESTIMATOR ω̂kern(x)

Proof of Proposition 1. The proof can be carried out by modifying the existing work, as shown
below. The only changes we make here are two model-specific ingredients. First, our regression
target for the kernel estimator is the conditional survival function G(t | x) ↗ [0, 1] rather than a mean
of a real response, the Nadaraya–Watson sup-norm rates apply verbatim since the responses 1(C ⇒
t | X = x) are bounded and the arguments are uniform in (x, t) on a compact set. Second, passing
from sup ⇐Ĥ↔G⇐≃ to an endpoint error bound uses only the standard quantile/endpoint continuity
(van der Vaart’s lemma) plus a local density lower bound; we require a positive conditional density
near ω(x) to convert survival error into endpoint error, which is standard in quantile asymptotics.
Specifically, we proceed with the following three steps.

Step 1:
Define the Nadaraya–Watson estimator

Ĥx(t) =

∑
i↗It

1{ci ⇒ t}Kh(xi ↔ x)
∑

i↗It
Kh(xi ↔ x)

.

Then
ω̂kern(x) = sup{t ⇒ 0 : Ĥx(t) > 0}.

Applying standard sup-norm theory for the Nadaraya–Watson estimator on compact X with nthp ≃
↓ yields that there exist constants c1 and c2 depending on (K,L, fX) such that

sup
x↗X

sup
t↗[0,ω(x)]

|Ĥx(t)↔G(t | x)| = Op

(
c1h

ϑ + c2
√

log nt/(nthp)
)

(A1)

This is applied with the bounded “responses” 1{C ⇒ t}; the only adaptation is that the bound is
used uniformly in (x, t) over the compact set {(x, t) : t ↑ ω(x)}, which those references permit.
The detailed derivations are below.

Step 1.1: Bias.
Set

ĝ(x) :=
1

n

n∑

i=1

Kh(Xi ↔ x), g(x) := Eĝ(x) =

∫
Kh(u↔ x)fX(u) du,

µ̂t(x) :=
1

n

n∑

i=1

1{Ci ⇒ t}Kh(Xi ↔ x), µt(x) := Eµ̂t(x) =

∫
G(t | u)Kh(u↔ x)fX(u)du.

Then Ĥx(t) = µ̂t(x)/ĝ(x). Add–subtract µt(x)/g(x):

Ĥx(t)↔G(t | x) =
[
µt(x)
g(x) ↔G(t | x)

]

︸ ︷ 
bias

+
[
µ̂t(x)
ĝ(x) ↔ µt(x)

g(x)

]

︸ ︷ 
stochastic+denominator

.

Write
µt(x) =

∫
Kh(u↔ x){G(t | u)↔G(t | x)}fX(u) du+mt(x)g(x),

so
G(t | x)
g(x)

↔G(t | x) =
∫
Kh(u↔ x){G(t | u)↔G(t | x)}fX(u) du

g(x)
.

By regularity conditions including Condition (K3) and compact support of K, ⇐u↔ x⇐ ↑ ch on the
kernel support and

|G(t | u)↔G(t | x)| ↑ L⇐u↔ x⇐ϑ ↑ L(ch)ϑ

uniformly in t. Since g(x) ⇒ c0 > 0 for small h,

sup
x,t

µt(x)
g(x) ↔G(t | x)

 ↭ hϑ .

14
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Step 1.2: Denominator concentration.
Standard kernel density arguments yield

sup
x↗X

ĝ(x)↔ g(x)
 = Op

(
lognt

nthp

)
, inf

x↗X
g(x) ⇒ c0 > 0,

and hence
P{inf

x
ĝ(x) ⇒ c0/2} ≃ 1 as nt ≃ ↓

Step 1.3: Stochastic term.
On the event {infx ĝ(x) ⇒ c0/2},

sup
x,t

 µ̂t(x)
ĝ(x) ↔ µt(x)

g(x)

 ↭ sup
x,t

µ̂t(x)↔ µt(x)
 + sup

x

ĝ(x)↔ g(x)
.

It thus suffices to bound the first supremum. Consider the class

Fh =

(u, c) ⇓≃ 1{c ⇒ t}Kh(u↔ x) : x ↗ X , t ↗ [0, ωmax]


.

The factor {1{c ⇒ t} : t ↗ R} is a VC class of dimension 1, and {Kh(· ↔ x) : x ↗ X} has
polynomial covering numbers in 1/h by Lipschitzness and compact support. Hence Fh is VC–type
with entropy

logN(ϱ,Fh, ⇐ · ⇐≃) ↭ p log(1/h) + log(1/ϱ).

Using symmetrization and Bernstein/Dudley bounds for uniformly bounded VC–type classes, to-
gether with

var(1{C ⇒ t}Kh(X ↔ x)) ↭ EK2
h(X ↔ x) ⇔ h↓p,

we obtain
sup
x,t

µ̂t(x)↔ µt(x)
 = Op

(
lognt

nthp

)
,

where the log nt term subsumes p log(1/h) under Condition (K2).

Step 1.4: Combine.
Collecting bounds gives

sup
x↗X

sup
t↗[0,ωmax]

Ĥx(t)↔G(t | x)
 ↑ sup

x,t

µt(x)
g(x) ↔G(t | x)

+ sup
x,t

 µ̂t(x)
ĝ(x) ↔ G(t|x)

g(x)



= Op

(
hϑ +


lognt

nthp

)
.

Step 2:
By Condition (K4), for small u > 0,

G(ω(x)↔ u | x) ⇒ fC,minu. (A2)

Then taking ut = 2φnt/fC,min, with φnt = c1hϑ + c2
√
log nt/(nthp), (A2) gives

G(ω(x)↔ ut | x) ⇒ φnt uniformly in x.

Combining with (A1) yields

Ĥx(ω(x)↔ ut) ⇒ G(ω(x)↔ ut | x)↔ φnt ⇒ 0 with high probability,

hence
ω̂kern(x) ⇒ ω(x)↔ ut uniformly in x. (A3)

For the upper bound, note that for any fixed x and any ϑ↘ ↗ (0, ϑ), and for all t ⇒ ω(x) + ϑ we have

G(t | x) = 0.
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Because K(·) has compact support and h ≃ 0 by Condition (K2), the numerator
∑

i↗It
1{ci ⇒

t}K((xi ↔ x)/h) in Ĥx(t) is 0 with high probability while the denominator stays positive, so

Ĥx(t) = 0 for t ⇒ ω(x) + ϑ↘

and thus
ω̂kern(x) ↑ ω(x) + ϑ↘.

Letting ϑ↘ ↘ 0 gives ω̂kern(x) ↑ ω(x) with high probability.

Finally, mapping sup-norm survival error into an endpoint error bound is a direct application of
Lemma 1 using the density lower bound from Condition (K4).

A2 CONSISTENCY Ĝ(t | x)

To show the Proposition 2, we first establish two lemmas. We write the weighted at-risk and censor-
ing subdistribution processes:

R̂nt(t | x) :=
∑

i↗It

w̃i(x)1{Yi ⇒ t} and Ânt(t | x) :=
∑

i↗It

w̃i(x)1{Yi ↑ t, ϖi = 0},

together with their population counterparts:

R(t | x) := P (Y ⇒ t | X = x) and A(t | x) := P (Y ↑ t, ϖ = 0 | X = x).

Lemma 2. Assume conditions in Proposition 2. Then for any fixed φ > 0,

sup
x↗X

sup
t→ω(x)↓ε

R̂nt(t | x)↔R(t | x)
 p↔↔≃ 0,

sup
x↗X

sup
t→ω(x)↓ε

Ânt(t | x)↔A(t | x)
 p↔↔≃ 0

as nt ≃ ↓.

Proof. Fix x. Conditional on {Xi : i ↗ Tt} and the weights, the summands are bounded and
independent with means

E[1{Yi ⇒ t} | Xi] = P (Y ⇒ t | Xi)

and
E[1{Yi ↑ t, ϖi = 0} | Xi] = P (Y ↑ t, ϖ = 0 | Xi),

by independent censoring given X in Condition (C2)(a) and the definition of Y and ϖ. A weighted
LLN then yields

R̂nt(t | x)↔
∑

i↗It

w̃i(x)R(t | Xi)
p↔↔≃ 0 uniformly in t ↑ ω(x)↔ φ,

because the effective size
(∑

i↗It
w̃i(x)2

)↓1 p↔↔≃ ↓ and maxi↗It w̃i(x)
p↔↔≃ 0 (Condition

(C4)(iii)), together with honesty/stability (Condition (C4)(iv)). A similar result holds for Ânt .

By localization (Condition (C4)(ii)) and continuity in x of the maps x ⇓≃ R(t | x), x ⇓≃ A(t | x)
(which follow from dominated convergence on the compact X , we have

∑

i↗It

w̃i(x)R(t | Xi)
p↔↔≃ R(t | x) uniformly on {(t, x) : t ↑ ω(x)↔ φ, x ↗ X}

and similarly for A(t | x). A covering argument on the compact set yields the claimed suprema.
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Lemma 3. Assume conditions in Proposition 2. Then for any sequences (Ant , Rnt) satisfying

sup
x↗X

sup
t→ω(x)↓ε

Ant(t | x)↔A(t | x)
 ≃ 0

and

sup
x↗X

sup
t→ω(x)↓ε

Rnt(t | x)↔R(t | x)
 ≃ 0,

we have

sup
x↗X

sup
t→ω(x)↓ε





(0,t]

(
1↔ dAnt(s | x)

Rn(s | x)

)
↔



(0,t]

(
1↔ dA(s | x)

R(s | x)

)

↔≃ 0 as nt ≃ ↓.

Proof. On {t ↑ ω(x)↔ φ}, Condition (C2) gives

R(t | x) ⇒ rmin > 0,

hence for nt large also
Rnt ⇒ rmin/2.

Write the logs and use the bounded variation of A(t | x) (Condition (C3)) to control the remainder:

log


(0,t]

(
1↔ dAnt(s | x)

Rnt(s | x)

)
↔ log



(0,t]

(
1↔ dA(s | x)

R

)

=

∫

(0,t]


log

(
1↔ dAnt(s | x)

Rnt(s | x)

)
↔ log

(
1↔ dA(s | x)

R(s | x)

)
.

Using
log(1↔ u) = ↔u↔ u2

2 ↼(u)

with ↼(u) bounded on [0, 1↔ rmin/2), one obtains a bound by the total variation of

dAnt(s | x)
Rnt(s | x)

↔ dA(s | x)
R(s | x)

 .

Uniform convergence of Ant(s | x) ≃ A(s | x) and Rnt(s | x) ≃ R(s | x) then implies the
desired uniform convergence of the product integrals.

Proof of Proposition 2. By definition of the product-integral, the (population) censoring survival
satisfies

G(t | x) =


(0,t]


1↔ dA(t | x)

R(t | x)


,

and the weighted Kaplan–Meier (KM) estimator is

Ĝ(t | x) =


(0,t]


1↔ dÂnt(t | x)

R̂nt(t | x)


.

Apply Lemma 2 to get uniform convergence of the weighted processes to (A,R) on the interior strip
{t ↑ ω(x)↔ φ}. Then invoke Lemma 3 to conclude that

sup
x↗X

sup
t→ω(x)↓ε

Ĝ(t | x)↔G(t | x)
 p↔↔≃ 0.
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A3 UNIFORM CONSISTENCY OF Q̂cQRF
ϖ

Proof of Proposition 3. For t ↑ ω̂kern(x), define the localized IPCW cdf

F̂T (t | x) :=
∑

i↗It

w̃i(x)
ϖi1{Yi ↑ t}
Ĝ(Yi | Xi)

,

where
∑

i↗It
w̃i(x) = 1.

By (A3),
ω̂kern(x) ⇒ ω(x)↔ ut uniformly in x,

so there exists ϱ > 0 such that
ω̂kern(x) ⇒ ω(x)↔ ϱ > 0 with high probability (w.h.p.). (A4)

First, consider the case with known ω(x). By the IPCW identity (Stute, 1993; Akritas, 1994), a
weighted LLN for forest weights (honesty/localization) (Athey et al., 2019; Wager and Athey, 2018)
and uniform consistency of Ĝ(t | x) on [0, ω(x) ↔ φ] in Proposition 2, the uniform convergence of
F̂T (· | x) to FT (· | x) on [0, ω(x)↔ φ] can be established:

sup
x↗X

sup
t→ω(x)↓ε

F̂T (t | x)↔ FT (t | x)
 p↔↔≃ 0 (A5)

on [0, ω(x)↔ φ].

When ω(x) is replaced by ω̂kern(x), the only extra task is to guarantee that for all large nt,
t ↑ ω(x)↔ φ =↖ t ↑ ω̂(x) for all x,

so that the same uniform arguments apply on [0, ω(x)↔ φ]. This is indeed ensured by (A4).

By Condition (A1), the inverse map FT ⇓≃ F↓1
T (ς) is uniformly continuous near Qϖ(x), hence

applying Lemma 1 gives
sup
x

Q̂cQRF
ϖ (x)↔Qϖ(x)

 p↔↔≃ 0.

since Qϖ(x) ↑ ω(x) and φ > 0 is arbitrary.

C PROOFS OF THEOREMS

To prove Theorem 1, we first present several lemmas. For i ↗ Ic, let
Si = Q̂cQRF

ϖ (Xi)↔ Yi and Sϱ
i = Qϖ(Xi)↔ Ti,

and define
Ii = 1{ϖi = 1, Yi ↑ ω̂(Xi)} and Iϱi = 1{ϖi = 1, Ti ↑ ω(Xi)}.

Lemma 4. Assume regularity conditions in Proposition 1. Then

1

nc

∑

i↗Ic

|Ii ↔ Iϱi |
p↔↔≃ 0 and

1

nc

∑

i↗Ic

Ii
p↔↔≃ p↘.

Proof. When ϖi = 1 we have Yi = Ti, so
Ii = 1{Ti ↑ ω̂(Xi)} and Iϱi = 1{Ti ↑ ω(Xi)} on {ϖi = 1}.

By Proposition 1,
sup
x

|ω̂kern(x)↔ ω(x)| p↔↔≃ 0,

and the indicator difference |Ii ↔ Iϱi | can be nonzero only when Ti lies in the band (ω(xi) ↔
ϑn, ω(xi) + ϑn] with ϑn := supx |ω̂kern(x) ↔ ω(x)|. By continuity of the conditional law of T
given X and boundedness, the probability for T to fall in a vanishing band goes to zero uniformly
in x.

An application of the weak law of large numbers yields the first claim. The second follows by the
LLN since Iϱi are i.i.d. with strictly positive mean and Ii ↔ Iϱi is negligible in average.
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Lemma 5 (Uniform score consistency on supported, uncensored points). Assume regularity condi-

tions in Propositions 1 and 3. Then as nt ≃ ↓,

sup
i↗Ic: Iω

i =1

 Q̂cQRF
ϖ (Xi)↔Qϖ(Xi)

 p↔↔≃ 0.

Consequently,

sup
i↗Ic: Iω

i =1
|Si ↔ Sϱ

i |
p↔↔≃ 0.

Proof. By Proposition 3,
sup
x↗X

|Q̂cQRF
ϖ (x)↔Qϖ(x)|

p↔↔≃ 0.

If Iϱi = 1 then ϖi = 1 and Yi = Ti, so Si↔Sϱ
i = Q̂cQRF

ϖ (Xi)↔Qϖ(Xi) and the claim follows.

Lemma 6. Let m =
∑

i↗Ic
Ii and define the empirical cdf based on the finite conformity scores

Fm(t) :=
1

m

∑

i↗Ic

Ii1{Si ↑ t}, t ↗ R,

with Fm ↙ 0 if m = 0. Assume regularity conditions in Propositions 1 and 3. Then as nt ≃ ↓,

sup
t↗R

|Fm(t)↔ F ϱ(t)| p↔↔≃ 0.

Proof. Write

|Fm(t)↔ F ϱ(t)| =


1

m

∑

i↗Ic

Ii1{Si ↑ t}↔ F ϱ(t)



↑

1

m

∑
Ii
(
1{Si ↑ t}↔ 1{Sϱ

i ↑ t}
)

︸ ︷ 
(A)

+


1

m

∑
(Ii ↔ Iϱi )1{Sϱ

i ↑ t}


︸ ︷ 
(B)

+


1

m

∑
Iϱi 1{Sϱ

i ↑ t}↔ 1

nc

∑
Iϱi 1{Sϱ

i ↑ t}


︸ ︷ 
(C)

+


1

nc

∑
Iϱi 1{Sϱ

i ↑ t}↔ pϱF ϱ(t)


︸ ︷ 

(D)

+ |pϱF ϱ(t)↔ F ϱ(t)|︸ ︷ 
(E)

.

Term (E) equals |pϱ ↔ 1|F ϱ(t) but we interpret Fn as a cdf conditioned on Iϱ = 1, so we normalize
by m; using Lemma 4, m/nc ≃ pϱ, thus (E) is absorbed by (C).

For (A), by Lemma 5, supi:Iω
i =1 |Si ↔ Sϱ

i |
p↔↔≃ 0; the difference of indicators vanishes eventu-

ally except possibly when Sϱ
i lies within an op(1)-band around t, whose contribution is negligible

uniformly in t because F ϱ is cadlag and bounded.

For (B), use 1
nc

∑
|Ii ↔ Iϱi | ≃ 0 and m/nc ≃ pϱ > 0 to get (B) = op(1) uniformly in t.

For (C)–(D), apply LLN with random normalization: by Lemma 4, m/nc ≃ pϱ and the Glivenko–
Cantelli theorem for the class {1{Sϱ ↑ t} : t ↗ R} gives uniform convergence of the unnormalized
averages; Slutsky’s theorem yields uniform convergence after dividing by m. Combining the bounds
and taking the supremum in t gives the claim.

Proof of Theorem 1. (a). By Proposition 3, for x ↗ X , the estimator Q̂cQRF
ϖ (x) is consistent:

Q̂cQRF
ϖ (x)

p↔↔≃ Qϖ(x) as nt ≃ ↓.
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To evaluate the statistical behavior of conformity scores in Step 3 in Section 2, we first consider their
oracle version

S↘
ϖ(X,T ) = Qϖ(X)↔ T,

defined in Condition (A3), and let q↘1↓ϖ denote the (1 ↔ ς)-quantile of the conditional-on-
observability distribution L↘ ↙ L(S↘

ϖ(X,T ) | ϖ = 1, T ↑ ω(X)) .

From Step 3 and Step 4 in Section 2, if Qϖ(x) were known, then

P (S↘
ϖ(X,T ) ↑ 0 | X = x) = P (T ⇒ Qϖ(x) | X = x) = 1↔ ς, (A6)

where the last steps is due to the definition of Qϖ(x). Therefore, 0 is the unique (1↔ ς)-quantile of
the conditional-on-observability distribution L↘, namely,

q↘1↓ϖ = 0.

Then, applying Lemma 6 and Proposition 1 leads to

q̂1↓ϖ
p↔↔≃ 0, as nc ≃ ↓.

(b). Applying Proposition 3 with q̂1↓ϖ
p↔↔≃ 0, we obtain

T̂ϖ(x) = Q̂cQRF
ϖ (x)↔ q̂1↓ϖ

p↔↔≃ Qϖ(x) as nt, nc ≃ ↓.

Proof of Theorem 2. (a) For any x ↗ X and 0 < ς1 < ς2 < 1, by the construction of
Q̂cQRF

ϖ (x) in Step 2 in Section 2:

Q̂cQRF
ϖ1

(x) ↑ Q̂cQRF
ϖ2

(x) a.s.

Clearly, by definition,
q̂1↓ϖ1 ⇒ q̂1↓ϖ2 a.s.

Combining both, we obtain:

T̂ϖ1(x) = Q̂cQRF
ϖ1

(x)↔ q̂1↓ϖ1 ↑ Q̂cQRF
ϖ2

(x)↔ q̂1↓ϖ2 = T̂ϖ2(x) a.s.

(b) Let m denote the cardinality of Sfinite. Sort them in ascending order as

s(1) ↑ s(2) ↑ · · · ↑ s(m).

For given 0 < ς < 1, compute the empirical (1 ↔ ς)-quantile of the conformity scores in
Sfinite in Step 3 in Section 2 by setting

kϖ =

(1↔ ς)(m+ 1)



and
q̂1↓ϖ =


s(kε), if m > 0
+↓, if m = 0.

For a new point (X,T,C) with censoring indicator ϖ, calculate the conformity score:

S =


Q̂cQRF

ϖ (X)↔ Y, if ϖ = 1 and Y ↑ ω̂(X),
↓, otherwise.

(A7)

Observe that, for any c ⇒ 0,

{Yn+1 ⇒ Q̂cQRF
ϖ (Xn+1)↔ c } ∝↖ {Sn+1 ↑ c }.

By sample splitting, conditional on Dtrain the multiset

{Si : i ↗ Sfinite} ′ {Sn+1}
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is exchangeable on the event {Sn+1 < ↓}. Hence the rank

R := 1 + #{i ↗ Sfinite : Si ↑ Sn+1}

is uniformly distributed on {1, . . . ,m+1} conditional on {Sn+1 < ↓, Dtrain}. Therefore,

P

Sn+1 ↑ S(kε)

 Sn+1 < ↓, Dtrain


= P


R ↑ kϖ

 Sn+1 < ↓, Dtrain



=
kϖ

m+ 1
⇒ 1↔ ς,

where the last inequality uses the definition of kϖ = ∞(1↔ ς)(m+ 1)∈. Equivalently,

P

Yn+1 ⇒ Q̂cQRF

ϖ (Xn+1)↔ q̂1↓ϖ

 Sn+1 < ↓, Dtrain


⇒ 1↔ ς.

Proof of Theorem 3. Split the available data into a proper training set (used to fit the predictor) and
a calibration set. Fit the conditional ς-quantile predictor Q̂cQRF

ϖ (·) on the proper training set only,
so that, conditional on Dtrain (which includes the fitted predictor and the calibration covariates), the
calibration responses and the test point remain exchangeable.

Suppose c ⇒ 0 satisfies

P

Yn+1 ⇒ Q̂cQRF

ϖ (Xn+1)↔ c
 Sn+1 < ↓, Dtrain


⇒ 1↔ ς,

i.e.,
P

Sn+1 ↑ c

 Sn+1 < ↓, Dtrain


⇒ 1↔ ς.

If c < S(kε), then necessarily

{Sn+1 ↑ c} ∋ {Sn+1 < S(kε)},

and exchangeability (uniform rank) yields

P

Sn+1 ↑ c

 Sn+1 < ↓, Dtrain


↑ P


Sn+1 < S(kε)

 Sn+1 < ↓, Dtrain



=
k ↔ 1

m+ 1
< 1↔ ς,

a contradiction. Hence any c that attains the desired conditional coverage must satisfy

c ⇒ S(kε) = q̂1↓ϖ a.s.

Since we have already shown that c = q̂1↓ϖ achieves coverage, it follows that q̂1↓ϖ is a.s. the
smallest such constant.

Tie remark. If the conditional distribution of Sn+1 (given Dtrain) is continuous, then ties among
{Si : i ↗ Sfinite} occur with probability zero and the smallest constant is unique. With ties, the
coverage function c ⇓≃ P{Sn+1 ↑ c | Sn+1 < ↓,Dtrain} is right-continuous and jumps only at
{S(j) : j = 1, . . . ,m}, so the leftmost c achieving coverage is still S(kε).

D ADDITIONAL EXPERIMENTS

EXPLORATORY DATA ANALYSIS

EHR data. The EHR cohort includes 3,500 patients and 116 features: a binary suicide-attempt
(SA) outcome, demographics (e.g., gender, age), and longitudinal ICD codes. Figure A1 shows age
distributions among SA cases by gender. Overall patterns are similar across sexes, though among
those with SA, females exhibit a wider age range and a higher median age. We define T as days to
SA, with ϖ = 1 if SA occurs during follow-up and 0 otherwise (censored). In total, 3,187 individuals
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Figure A1: EHR data: age distribution by suicide-attempt status and gender.

Figure A2: Machine-learning survival data: genetic-risk and target-severity score distributions by
death status and cancer stage.

did not attempt suicide, yielding a censoring rate of 91.06%. The censoring time C is the number
of days from study start to end.

Machine-learning survival data. The cancer dataset contains 50,000 subjects and 14 features,
including survival years, year of diagnosis, demographics (age, gender, country/region), clinical
characteristics (cancer type and stage 0–IV), a composite severity score, risk factors (e.g., genetic
predisposition, air pollution, alcohol use, smoking, obesity), treatment cost (USD), and survival
outcomes. Figure A2 displays genetic-risk and target-severity score distributions among deaths,
stratified by stage. Only 227 individuals remain alive at study end (censored), corresponding to
a 0.454% censoring rate. We focus on genetic risk and target severity score as covariates. Here,
T is survival time in years; ϖ = 1 if death occurred and 0 otherwise; C is time from diagnosis to
censoring (e.g., study end). The dataset is publicly available at Kaggle (https://www.kaggle.
com/datasets/zahidmughal2343/global-cancer-patients-2015-2024).
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Figure A3: Analysis of the the machine-learning survival dataset: empirical coverage of all methods
on .
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SYNTHETIC RESULTS

Additional figures and tables for the synthetic results; all are described in Section 4.

Figure A4: Synthetic experiment: empirical coverage with multiple covariates under linear, nonlin-
ear, and heteroscedastic relationships and different censoring proportions.

Figure A5: Synthetic experiment: empirical coverage under mixed covariate–outcome relationships
and different censoring proportions.
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Figure A6: Synthetic experiment: running times (seconds) for the linear scenario in setting 2 with
CR = 0.3 (windows 10 x64; intel core i7-12700h (14c/20t) using system.time() function).

Table A1: Synthetic experiment: average estimation error with standard deviation in setting 1 with
CR = 0.

Scenario n Cox CSA cQRF DFT-cQRF t DFT-cQRF k DFT-adaptive RSF

Linear

500 1.255 ± 0.415 0.061 ± 0.009 0.763 ± 0.090 0.054 ± 0.002 0.057 ± 0.012 0.759 ± 0.108 0.883 ± 0.183
1000 1.220 ± 0.250 0.056 ± 0.002 0.790 ± 0.080 0.051 ± 0.006 0.053 ± 0.005 0.817 ± 0.139 0.949 ± 0.127
1500 1.193 ± 0.155 0.060 ± 0.006 0.905 ± 0.118 0.052 ± 0.004 0.058 ± 0.005 0.934 ± 0.115 1.017 ± 0.103
2000 1.257 ± 0.114 0.065 ± 0.007 1.144 ± 0.075 0.062 ± 0.008 0.064 ± 0.008 1.121 ± 0.101 1.115 ± 0.077

Nonlinear

500 1.196 ± 0.143 0.065 ± 0.008 0.999 ± 0.159 0.061 ± 0.006 0.070 ± 0.008 1.088 ± 0.129 1.128 ± 0.117
1000 1.328 ± 0.109 0.064 ± 0.005 1.131 ± 0.078 0.063 ± 0.004 0.059 ± 0.006 1.180 ± 0.055 1.111 ± 0.076
1500 1.290 ± 0.135 0.065 ± 0.009 1.165 ± 0.131 0.058 ± 0.007 0.066 ± 0.007 1.083 ± 0.070 1.136 ± 0.127
2000 1.335 ± 0.090 0.068 ± 0.004 1.182 ± 0.063 0.067 ± 0.004 0.070 ± 0.010 1.111 ± 0.062 1.152 ± 0.067

Heteroscedastic

500 1.375 ± 0.099 0.063 ± 0.007 1.113 ± 0.140 0.058 ± 0.009 0.060 ± 0.019 1.127 ± 0.181 1.127 ± 0.142
1000 1.318 ± 0.136 0.070 ± 0.007 1.229 ± 0.092 0.072 ± 0.013 0.077 ± 0.011 1.218 ± 0.073 1.199 ± 0.083
1500 1.309 ± 0.084 0.073 ± 0.007 1.268 ± 0.078 0.071 ± 0.007 0.074 ± 0.005 1.260 ± 0.105 1.236 ± 0.074
2000 1.341 ± 0.106 0.068 ± 0.006 1.225 ± 0.063 0.064 ± 0.004 0.070 ± 0.007 1.180 ± 0.077 1.198 ± 0.064

Table A2: Synthetic experiment: average estimation error with standard deviation in setting 3 with
CR = 0.7.

Scenario n Cox CSA cQRF DFT-cQRF t DFT-cQRF k DFT-adaptive RSF

Linear

500 1.337 ± 0.202 0.062 ± 0.012 1.138 ± 0.135 0.057 ± 0.014 0.061 ± 0.014 1.056 ± 0.126 1.126 ± 0.128
1000 1.218 ± 0.087 0.065 ± 0.007 1.150 ± 0.091 0.065 ± 0.010 0.066 ± 0.009 1.102 ± 0.107 1.126 ± 0.086
1500 1.305 ± 0.123 0.068 ± 0.005 1.198 ± 0.062 0.065 ± 0.008 0.066 ± 0.008 1.187 ± 0.063 1.171 ± 0.058
2000 1.257 ± 0.114 0.065 ± 0.007 1.144 ± 0.075 0.062 ± 0.008 0.064 ± 0.008 1.121 ± 0.101 1.115 ± 0.077

Nonlinear

500 1.196 ± 0.143 0.065 ± 0.008 1.139 ± 0.114 0.061 ± 0.006 0.070 ± 0.008 1.088 ± 0.129 1.128 ± 0.117
1000 1.328 ± 0.109 0.064 ± 0.005 1.131 ± 0.078 0.063 ± 0.004 0.059 ± 0.006 1.180 ± 0.055 1.111 ± 0.076
1500 1.290 ± 0.135 0.065 ± 0.009 1.165 ± 0.131 0.058 ± 0.007 0.066 ± 0.007 1.083 ± 0.070 1.136 ± 0.127
2000 1.335 ± 0.090 0.068 ± 0.004 1.182 ± 0.063 0.067 ± 0.004 0.070 ± 0.010 1.111 ± 0.062 1.152 ± 0.067

Heteroscedastic

500 1.375 ± 0.099 0.063 ± 0.010 1.151 ± 0.129 0.058 ± 0.009 0.060 ± 0.019 1.127 ± 0.181 1.127 ± 0.142
1000 1.318 ± 0.136 0.070 ± 0.007 1.229 ± 0.092 0.072 ± 0.013 0.077 ± 0.011 1.218 ± 0.073 1.199 ± 0.083
1500 1.309 ± 0.084 0.073 ± 0.007 1.268 ± 0.078 0.071 ± 0.007 0.074 ± 0.005 1.260 ± 0.105 1.236 ± 0.074
2000 1.341 ± 0.106 0.068 ± 0.006 1.225 ± 0.063 0.064 ± 0.004 0.070 ± 0.007 1.180 ± 0.077 1.198 ± 0.064
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Figure A7: Synthetic experiment: average estimation error across settings and scenarios.
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