
Probing the Limits of Mathematical World Models in LLMs

Henry Kvinge 1 2 * Elizabeth Coda 1 3 * Eric Yeats 1 * Davis Brown 1 4 John Buckheit 1 Sarah Scullen 1

Brendan Kennedy 1 Loc Truong 1 Bill Kay 1 Cliff Joslyn 1 Tegan Emerson 1 5 6 Michael Henry 1

John Emanuello 7

Abstract

There are now many studies supporting the idea
that even when they are trained on a broad corpus
of textual data scraped from the internet, large
language models (LLMs) are (sporadically) ca-
pable of non-trivial mathematical tasks. This
observation and a collection of studies from the
interpretability community together suggest that
LLMs extract surprisingly rich internal represen-
tations of mathematical objects. In this paper we
ask the extent to which LLMs contain mathemat-
ical ‘world models’ that align with the way that
mathematicians understand and think about math-
ematics. We focus on simple binary operations
⋆ : X ×X → X like addition and multiplication
which take two inputs a and b from a space X
and produce a third element a ⋆ b = c. Instead
of assessing the correctness of the LLM response,
we explore the extent to which the model captures
the geometric structure of X , simple number-
theoretic properties of a and b, and the algebraic
properties of ⋆. We report mixed results. While
the LLMs we tested tended to store substantial
amounts of information (such as the divisibility
properties of integers a and b in the expression
a × b) and sometimes extracted representations
that aligned with existing mathematical structures
(reconstructing a patch of R2 for example), these
representations tended to be local in nature and
lack robustness.
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1. Introduction
Though substantial progress has been made over the course
of the last 5 years, the problem of understanding the internal
mechanisms that underlie large language model’s (LLM’s)
remarkable ability to produce fluent textual output remains
a major area of research. Though the sheer scale of modern
networks may be the most obvious challenge in this project,
the complexity and ambiguity of tasks that we expect LLMs
to assist with is also a major barrier to developing a com-
prehensive understanding of these models. For example,
since it would likely be challenging for a human to describe
the granular steps they take when writing a poem, we can
expect it to be even more challenging to analyze this pro-
cess within the alien intelligence of an LLM. Given this,
mathematical tasks where multiple rigorously defined algo-
rithms are known have proven to be a valuable testbed for
the interpretability community.

Figure 1. PCA projections of the representation of the ‘=’ token in
the prompt ‘a * b =’ following the third block of Llama3-8B.
Here a and b take all integer values between 0 to 100. (Left)
Points colored by the magnitude of a. (Right) Points colored by
the magnitude of b.

The majority of work in this line of research focuses on the
actual computations involved in mathematical tasks (Nanda
et al., 2023; Quirke & Barez, 2023; Nikankin et al., 2024;
Zhou et al., 2024; Stolfo et al., 2023). How does a model
take 42 and 36 and then produce 42× 36? However, math-
ematical operations also come with a rich and rigorously
defined supporting framework that is essential to mathemati-
cian’s intuition and understanding. For instance, when a
mathematician specifies a function f , they specify its do-
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main X and range Y , f : X → Y . Each of these come with
their own geometry and topology which may be known to
the mathematician and can constrain the behavior of f . A
mathematician would also utilize a rich collection of ana-
lytic concepts to understand f at a high-level. For instance,
notions of continuity and smoothness. We interpret this
entire package as constituting what we call a mathemati-
cal world model. These have the value of being crisp and
rigorous unlike the world models associated with fuzzier,
real-world tasks. This makes them ideal for developing tools
to assess world models more broadly.

In this work, we focus on world models associated with
familiar binary operations ⋆ : X ×X → X like addition
and multiplication which even small LLMs can perform with
some success. We analyze three aspects of these tasks (i) the
geometry of X , (ii) properties of inputs a and b, and (iii) the
algebraic properties of ⋆ (e.g., commutativity). Highlights
include the observation that LLMs contain internal models
that capture the linear structure of R2 that manifest when
the model is prompted to solve a binary operation. We also
find that when X = Z, an LLM’s representation of a × b
contains extensive information about the divisibility of a
and b. Finally, we describe inconclusive results relating to
whether LLMs ‘understand’ if an operation is commutative
or not (e.g., a ⋆ b = b ⋆ a).

Overall, our experiments suggest that LLM internal world
models for basic binary operations share some features
with frameworks used by human mathematicians. However,
agreeing with other works in the field such as (Nikankin
et al., 2024), we find that LLM representations tend to be
more local in nature, less organized, and lack the robustness
of the representations designed by human mathematicians.

2. Binary Operations as Small World Models
Binary operations are a fundamental construction across
mathematics. They can be formalized as functions that
take in a pair of elements from some space X and return
a third element from X . For example, multiplication of
integers takes two integers a, b ∈ Z and produces a third
a× b = c ∈ Z. Other basic examples of binary operations
include addition, subtraction, and division (when we exclude
0) of Z or R, addition or multiplication of square matrices,
or the union or intersection of sets. In this work we use the
symbol ⋆ to denote an unspecified binary operation and a
and b for arbitrary elements of X . We also let [a, b] denote
the closed interval from a to b (whether this includes only
integers or all real numbers will be made clear from the
context).

We view a fixed binary operation and its supporting speci-
fications as defining a small world model. Aspects of this
world model that we focus on include: the geometry of

the input space X ×X , properties of the arguments a and
b, and the algebraic properties of the operation ⋆. We do
not analyze the actual process by which the model gener-
ates an answer as significant research effort continues to
be aimed at understanding this (Kantamneni & Tegmark,
2025; Nikankin et al., 2024; Zhou et al., 2024), but note that
in certain cases, one may be able to derive aspects of the
world model from mechanisms by which a model performs
computation.

2.1. Capturing the Structure of Input Space

The geometry of X (especially when ⋆ satisfies conditions
such as continuity or smoothness) often provides useful
heuristics that can help with computation of a binary oper-
ation. As a simple example, when X = R, the geometric
notion of magnitude can help us predict a × b. If a and b
both have large magnitude so will a × b. Given this, it is
not unreasonable to ask about the extent to which LLMs
incorporate aspects of the geometry of X ×X in their rep-
resentation of an expression like a ⋆ b.

Naive visualization of the representations of ’=’ in ‘a * b
=’ across many values of a and b suggests that several com-
mon LLMs contain an internal model of subsets of X ×X .
In Figure 1 for instance, we show two PCA visualizations
of representations of the ‘=’ token drawn from the residual
stream after the 3rd block of Llama3-8B (Grattafiori et al.,
2024) where a and b take values between 0 and 100. In the
first visualization we color points by the magnitude of the
integer a and in the second we color them by the magnitude
of integer b. As can be seen by the colors, the first two prin-
cipal components approximately capture the linear structure
of the coordinate plane as defined by (a, b).

To measure this more quantitatively, we collect 10, 000 hid-
den activations for ‘=’ in ‘a * b =’ following each trans-
former block in an LLM, where a and b are integers be-
tween 0 and 100. We split the data recorded from each layer
into train and test sets, and use the training set to train a
linear regression model M : Rn → R2 to map the represen-
tations of the token ‘=’ to the coordinates (a, b) in R2. The
idea is that if the model actually organizes representations
of ‘=’ according to the linear structure of R2 (as suggested
by Figure 1) then we will be able to effectively learn the
map M . If the model organized each ‘=’ nonlinearly or
in a linear manner that did not respect the parametrization
by (a, b), M would not be performant (as happens if one
shuffles the (a, b) labels on each ‘=’ representation). In-
deed, the existence of a performant M at a point in the
residual stream Rn implies that this space decomposes as
Rn ∼= ker(M) ⊕ im(M), where ker(M) is the kernel of
M and im(M) is the image of M . The latter is a subspace
of Rn where each representation of ‘=’ is parametrized by
coordinates (a, b) (at least for values of a and b represented
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in the experiment). We measure fit of M by the coefficient
of determination, R2.

Figure 2. R2 scores for a linear regression model trained to predict
coordinates (a, b) from the token ‘=’ in ‘a * b =’ across the
layers of various LLMs.

The results of this experiment are shown, layer by layer, for
several models in Figure 2. As can be seen, a linear map
can very effectively predict a and b from the representation
of ‘=’, suggesting that prompting with ‘a * b =’ causes
these LLMs to carry a copy of the input space ([0, 100] ×
[0, 100]) throughout the residual stream. For a given subset
U ∈ R2, we call this a model’s internal copy of U and
denote the corresponding subspace in the residual stream
by I(U, f, i, P ), where f denotes the model, i denotes the
block after which the representations were extracted, and P
denotes the input prompt set (which is assumed to terminate
with ‘=’).

In the remainder of this section we pose a series of questions
and answers to better understand I(U, f, i, P ) with a focus
on the dependence on P , the universality of I(U, f, i, P )
across scales of R2, and its robustness. All the results shown
are for Gemma-7b (Team et al., 2024) though we found
similar results for other models in this size range.

Is an internal representation of U only extracted when
computing binary operations, or is this a more gen-
eral phenomenon? Is the copy of I(U, f, i, P ) the same
between different binary operations? We re-ran our
experiments after replacing ‘*’ with: ‘+’, ‘-’, ‘%’, ‘,’,
‘ ’, ‘mod’, ‘ is a number, another number is
’, and ‘(&*&%̂*&’ (Figure 6). We were able to consistently
detect I(U, f, i, P ) for each of these variants of the orig-
inal prompt set, even when the input does not relate to
a binary operation or mathematics at all. This suggests
that I(U, f, i, P ) is extracted in a wide range of circum-
stances, contingent only on the presence of two numbers in

the prompt. Interestingly, while the representation remains
robust across input variations, the instances where it decays
most are those where the model effectively uses information
about the two numbers for a mathematical operation (e.g.,
addition, multiplication, and subtraction).

To understand whether I(U, f, i, P1) and I(U, f, i, P2) are
the same between prompts sets P1 and P2 with different
binary operations, we measured the R2 score of a linear
classifier M trained to predict (a, b) from the representation
of ‘=’ in the prompt ‘a * b =’ when it was applied to
‘=’ from the prompt ‘a operation b =’ where ‘op’
is either replaced by text unrelated to multiplication or is
replaced by a symbol or word that denotes multiplication
but is not ‘*’ (e.g., ‘times’). As shown in Figure 12,
the performance of M degrades across all instances but
the degradation is generally greater when the operation (or
non-operation) is not multiplication, suggesting that as a
subspace, I(U, f, i, P ) carries some semantic information
about P .

Does the linear connection M between U and
I(U, f, i, P ) extend beyond the values of ‘a’ and ‘b’ used
to train it? By necessity, ‘a’ and ‘b’ are always sampled
from some finite range U . While high accuracy on test
examples from U shows that I(U, f, i, P ) effectively cap-
tures U , we have provided no evidence that the connection
captures a larger region of R2. That is, can M accurately
predict (a, b) from ‘=’ when ‘a’ and ‘b’ are not in U? This
is important as a measure of the robustness and universality
of I(U, f, i, P ). It also represents an important value in
mathematics, where structures should be made as general
as possible.

To better understand this, we evaluate M on a different
set V than it was trained for. We find that across layers
and for many different values of U and V , M consistently
fails on even moderately out-of-distribution data. This even
holds when elements of V are bounded by elements of U
so that learned I(U, f, i, P ) fails mild interpolation. As an
example, in Figure 3 we show predictions of a from (a, b)
for M trained on pairs of integers a, b drawn from [0, 19] ∪
[30, 49] and then evaluated on pairs of integers drawn from
the interval [20, 29]. We conjecture that I(U, f, i, P ) is
closely related to the base 10 representation of numbers in
U . So if M hasn’t seen a particular digit appearing at a
particular place (e.g., a 2 in the tens place), it will fail. This
would align with results from (Levy & Geva, 2024))

In Appendix A.1 we describe additional experiments that
include the difference between I(U, f, i, P ) from block to
block in a single model, I(U, f, i, P ) for different values of
U , and high-dimensional analogues of I(U, f, i, P ) when
more than two arguments are present in an expression.
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Figure 3. The first coordinate predicted by M (orange) vs. the
true first coordinate (blue) for the task of predicting (a, b) from
the token ‘=’ in the prompt ‘a * b =. The model was trained
on a, b from [0, 19] ∪ [30, 49] and then evaluated on a, b from
the whole interval [0, 49]. The area where blue and orange are
different corresponds to data from [20, 29] where there was no
training data.

2.2. Do LLMs Extract Divisibility Properties from
Arguments in a Binary Operation?

Despite their elementary nature, we can ascribe a rich set of
properties to a given integer1. We view these properties as
part of the broader mathematical world. We here explore the
extent to which LLMs contain information about the most
familiar of these: divisibility. Similar to our experiments
above we explore the representations of ‘=’ in the prompt
‘a * b = ’ at different layers of the model. We use linear
probing to look for evidence that an LLM ‘knows’ about
divisibility properties of a or b.

Probing results on Gemma-7b representations for divisibility
of a drawn from 0 ≤ a, b ≤ 100 are shown Figure 4. Here
the x-axis corresponds to the layer at which the probing
is performed. The y-axis corresponds to the divisor q, the
integer we are probing for divisibility with respect to (so
the first row corresponds to predicting whether a is even
or odd). The color of the cell is the F1-score (we use F1-
score because for large q, most a will not be divisible by q
leading to imbalance training and test sets). We see that a
logistic regression classifier is highly performant, especially
following block 21. We found similar results for Llama3-
8B.

1Recall Ramanujan’s reply to Hardy’s claim that the number
on a taxi (1729) was “dull”: ‘ it is a very interesting number; it is
the smallest number expressible as the sum of two cubes in two
different ways.” (Hardy, 1999).

Prior work has suggested that LLMs represent numbers via
Fourier features (Zhou et al., 2024) or generalized helices
(Kantamneni & Tegmark, 2025). Both of these implicitly
encode divisibility information so in that sense these results
are not surprising. On the other hand, these works focus on
frequencies related to q = 2, 5, 10, etc. Our results show
that LLMs capture a far broader set of divisibility proper-
ties than just this. Furthermore, in Appendix B we show
that these feature appear to be important in multiplication.
Perturbing the representation of ‘=’ toward a feature ‘a is
divisible by 5’ leads the model to predict that a × b is a
multiple of 5, even when it is not. Interestingly, we find that
these divisibility properties are somewhat weaker when the
task is addition, providing evidence that their emergence
is also somewhat responsive to their usefulness in the task
(Figure 7).

Figure 4. F1-scores for probes trained to classify whether a is
divisible by a value q using the representation of the token ‘=’ in
the prompt ‘a * b =’ at different layers in Gemma-7b.

2.3. The Algebraic Properties of the Binary Operation

At a high-level, mathematicians group binary operations
based on their algebraic properties. The most familiar of
these is commutativity which says that a ⋆ b = b ⋆ a. Some
operations like addition and multiplication of real numbers
satisfy commutativity, while others like division, subtraction,
or the multiplication of square matrices do not.

Do LLMs understand commutativity? To investigate
this, we provided the model with pairs of prompts: ‘a
operation b =’ and ‘b operation a =’, where in
this case a and b were random lowercase Latin characters
and operation was one of the operations *, %, +, -. We
then measured the cosine similarity between representations
of the tokens ‘=’ for each pair throughout layers of Gemma-
7b. The idea is that if the LLM understands commutativity,
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Figure 5. The cosine similarity between representations of the token ‘=’ in the prompts ‘a operation b =’ and ‘b operation
a=’ where 0 ≤ a, b ≤ 50. The different operations are specified in the legend. Shaded regions indicate 95% confidence intervals over all
cosine similarity values calculated at that layer for the given operation.

then representations of the two prompts ‘a operation
b =’ and ‘b operation a =’ should show grater sim-
ilarity when the operation is commutative as opposed to
when it is not. The reason we did not provide numbers in
the prompts is that we wanted to understand if the model has
internalized commutativity at an abstract level. Otherwise,
representations might appear similar because in each case
the solution to both prompts is the same. That is, do ‘12
* 56 =’ and ‘56 * 12 =’ have similar representations
because the model has an abstract sense of commutativity
or because the solution to both problems is 672?

Our results, shown in Figure 5, are somewhat ambigu-
ous. On the one hand, if one considers (+,−) and (×,%)
to be pairs, then the commutative operations (+ and ×)
tend to show marginally greater similarity between ‘=’
in the prompts ‘a operation b’ and ‘b operation
a’. On the other hand, this difference seems to be fairly
marginal and in the case of (+,−), vanishes a third of the
way through the model.

3. Conclusion and Limitations
In this work we probe the mathematical world models of
some small LLMs to understand the extent to which their
internal representations align with formal mathematical rep-
resentations. We focus on the case of binary operations on
integers and real numbers. Our results suggest that these
models often contain rich and interesting mathematics en-
coded in their representations, but we do not find evidence
that these representations are robust, general, and global in
the same ways that the constructions developed by human
mathematicians are.

We end by noting a number of limitations in our study.

The first is that we do not investigate larger LLMs which
may have internal representations that align more with the
mathematical frameworks developed by humans. We also
note that while the methods that we used can often detect
structures, they cannot prove that something does not exist.
For example, the fact that we did not find I(U, f, i, P ) that
generalize well beyond their training set does not imply that
this structure does not exist in the model.
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Figure 6. R2 scores on held-out test data for linear maps trained to take the representation of the ‘=’ token in the prompt ‘a operation
b =’ following the third block of Gemma-7b to the point (a, b) ∈ R2, where operation takes values ‘+’, ‘-’, ‘%’, ‘,’, ‘ ’, ‘mod’,
‘ is a number, another number is ’, and ‘(&*&%̂*&’. The model was trained on 80% of integers pairs (a, b) where
0 ≤ a, b ≤ 100. As can be seen from the plot, residual stream has a subspace where the representation of the ‘=’ token stores a copy of
R2.

A. Related Work
Mathematics has become an important tool for better understanding LLMs. Mathematics based benchmarks (of America ,
MAA; Cobbe et al., 2021) provide an opportunity to evaluate models on questions whose answer has very little ambiguity,
with large LLMs increasingly able to solve hard graduate level questions (Glazer et al., 2024). There is also growing interest
in using them to address open problems (Romera-Paredes et al., 2024; Chau et al., 2025).

The fact that we know low level algorithms for mathematics problems also makes mathematics a useful testbed for
understanding how LLMs solve problems at a mechanistic level. For example, (Nanda et al., 2023) provided an in-depth
analysis of modular addition in small 2-layer transformers, showing that these models use frequency-based arithmetic to
solve the problem (or in algebraic terms, they work with the irreducible representations of the cyclic group (Serre et al.,
1977)). The work uses this analysis to better understand the phenomenon of grokking in a toy setting. Multidigit arithmetic
was explored in (Quirke & Barez, 2023), where experiments suggest that in some situations, small transformers trained for
arithmetic tasks converge on the same algorithm across multiple training runs.

Research has not been restricted to small transformers. (Kantamneni & Tegmark, 2025; Zhou et al., 2024) provide evidence
that LLMs also use frequency-based ‘clock arithmetic’ (similar to (Nanda et al., 2023)) to perform addition and other basic
operations. On the other hand, there is substantial evidence that large models trained from varied textual sources do not use
a single method to solve a given type of problem (as mathematicians would program a computer to do) but that they rather
rely on a ‘bag of heuristics’ (Nikankin et al., 2024) that each address special, local cases. There has also been research into
the ways that LLMs represent numbers (Levy & Geva, 2024). This has shown that LLMs utilize specific aspects of the base
10 representation and that model errors in arithmetic problems tend to reflect this.

Similar to the present work, there is a broad research thrust towards characterizing geometric structures and properties of
LLM representations. This includes measuring geometric characteristics such as intrinsic dimension (Valeriani et al., 2023;
Yin et al., 2024) or curvature (Robinson et al., 2024; Skean et al., 2025) as well as looking for specific structures. (Engels
et al., 2024) found that LLMs sometimes represent cyclical phenomena (such as the months of the year) as circles in their
internal representations.

A.1. Additional Results and Figures Related to Representations of Input Space

• Does the same copy of I(U, f, i, P ) persist throughout the residual stream of a model? In the models that we
investigated we find that it does not. This can be seen in the heatmaps Figure 8 and Figure 9 corresponding to
Llama3-8B and Gemma-7B and integers a and b in [0, 100] × [0, 100]. In these, an entry at position (i, j) is the
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Figure 7. F1-scores for probes trained to classify whether a is divisible by a value q using the representation of the token ‘=’ in the prompt
‘a + b =’ at different layers in Gemma-7b.

R2 score obtained by taking the linear map M : Rn → R2 trained on layer i and applying it to the corresponding
activations from layer j. If I(U, f, i, {‘a * b =’}) was similar between layers we would expect that the linear map
M corresponding to layer i would achieve reasonable accuracy on layer j. As can be seen from the figures, this does
not happen. So, while an internal representation I(U, f, i, {‘a * b =’}) exists throughout the residual stream, it is
not the same subspace. We conjecture that the model continues to extract distinct but isomorphic internal copies of R2

throughout transformer blocks in the model.

• Can subspaces I(U, f, i, P ) be found for subsets of R2 outside of U = [0, 100]× [0, 100]?: In Figure 10 we show
R2 scores for linear maps M trained on ‘a’ and ‘b’ from various U including U = [−100, 0], U = [0, 1] (using float
representations of real numbers), U = [0, 10, 000], U = [0, 100, 000], U = [0, 100, 000, 000], and U = [0, 1× 1014].
In each case we sample 10, 000 pairs (a, b) uniformly from the interval. We find that in all the cases that we tested, a
map M can be found which achieves high R2 score. This is surprising since the majority of numbers in these latter U
are far beyond the scale that our models are capable of reliably manipulating. Rather, based on this result we conjecture
that I(U, f, i, P ) may arise directly from the way that LLMs use the base 10 representation of numbers (Levy & Geva,
2024).

• Do higher dimensional I(U, f, i, P ) manifest for operations involving more than two arguments? Another way to
expand this study is to look at higher-dimensional analogues of I(U, f, i, P ). If we apply a binary operation repeatedly
we can include k arguments (e.g., ‘42 * 36 * 72 =’ for k = 3). Can we find an internal representation of Rk in
this case? To test this we run the same test as we did in the body of Section 2.1, but instead of using prompts a * b
=, we use prompts with k arguments for k = 2, 3, 4, 5. In Figure 11 we see that adding any more than two arguments
results in significant drops of performance of M at later layers of the network. Learning a map from Rn to Rk may
require more data when k is larger which may account for some of this decline but it may also relate to LLM’s inability
to track and manipulate many numbers at once.
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Figure 8. A plot capturing the extent to which subspaces I(U, f, i, P ) transfer between layers in Llama-3-8B. Each cell in the heatmap is
an R2 score representing performance of a linear maps trained on representations following block i but evaluated on representations
following block j. We scale cell colors to range from 0 to 1. As can be seen, while some transfer occurs, copies I(U, f, i, P ) are at least
somewhat specific to each layer.

B. Example: Perturbing Representations of Argument Divisibility to Changes Model Outputs
To understand whether or not the divisibility features that we detected with our logistic regression classifier in Section 2.2
have an effect on model computation (rather than just being incidental) we systematically perturbed representations of the
token ‘=’ toward an ‘a is divisible by 5’ direction. We found this direction by taking the centroid C of 100 representatives of
the ‘=’ token from prompts where a was a multiple of 5. We then perturbed the representation of the ‘=’ token from an
arbitrary expression ‘a * b =’ by adding 10C to it.

The result of doing this to the prompt ‘49 * b =’ across layers of Llama3-8B-instruct and 0 ≤ b ≤ 100, is shown in
Figure 14. The unperturbed version can be found in Figure 13. In both, the color of the cell in the grid shows whether
the final output of the model was divisible by 5 (green), not divisible by 5 (red), or not an integer (blue). We used top-50
sampling which is why there is some variation in the column corresponding to b = 85 in Figure 13. As can be seen,
perturbing toward ‘a divisible by 5’ (at least at layers 15 through 26), changes the model’s answer to be a multiple of 5
suggesting that LLMs do use these divisibility features when solution multiplication tasks.
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Figure 9. A plot capturing the extent to which subspaces I(U, f, i, P ) transfer between layers in Gemma-7b. Each cell in the heatmap is
an R2 score representing performance of a linear maps trained on representations following block i but evaluated on representations
following block j. We scale cell colors to range from 0 to 1. As can be seen, while some transfer occurs, copies I(U, f, i, P ) are at least
somewhat specific to each layer.

Figure 10. R2 scores for a linear regression model trained to predict coordinates (a, b) from the token ‘=’ in ‘a * b =’ where a and b
are taken from different ranges (identified in the legend). For instance, 0− 10, 000 indicates that a and b are sampled uniformly from the
closed interval [0, 10, 000].
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Figure 11. R2 scores on held-out test data for linear maps trained to take the representation of the ‘=’ token in the prompt ‘a 1
operation a 2 ... a k-1 operation a k =’ to the point (a1, . . . , ak) ∈ Rk. Different lines correspond to different values
of k.

Figure 12. R2 scores for a linear regression model trained to predict coordinates (a, b) from the token ‘=’ in ‘a * b =’ and then
evaluated on ‘a operation b =’ where ‘operation’ varies. Note that some operation are synonymous with multiplication
and some are not.
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Figure 13. A figure showing whether a Llama3-8B-instruct prediction of ‘49 * b =’ is a multiple of 5 (green), not a multiple of 5 (red),
or not a number (blue) for 0 ≤ b ≤ 50. Non-greedy sampling accounts for the variation in the column b = 85.

Figure 14. A figure showing whether a Llama3-8B-instruct prediction of ‘49 * b =’ is a multiple of 5 (green), not a multiple of 5 (red),
or not a number (blue) for 0 ≤ b ≤ 50. In this case the representation of ‘=’ has been perturbed toward the direction ‘a is divisible by 5’
at a given layer specified by the y-axis.
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