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ABSTRACT

Noisy labels are practical in real-world applications and cause severe performance
degeneration. In this paper, first the validity of the small loss trick which plenty
of noisy methods utilize is challenged. Then an empirical phenomenon named
malignant bias is studied which results from the spurious correlation between noisy
labels and background representation. To address this problem, unlike previous
works based on statistical and regularization methods, we revisit the task from
a causal perspective. A causal intervention model named deconfounded noisy
labels learning (DeNLL) is applied to explicitly deconfound noisy label learning
with causal adjustment, which eliminates the spurious correlation between labels
and background representation and preserves true causal effect between labels
and foreground representation. DeNLL implements the derived adjustment by a
localization module (LM) and a debiased interaction module (DIM). LM adaptively
discriminates foreground from background, and DIM dynamically encourages
the interaction between the original representation and a debiased factor of the
representation, which accords with the causal intervention. Experiments are carried
out on five public noisy datasets including synthetic label noise, human label noise
and real-world label noise. The proposed method achieves the state-of-the-art
accuracy and exhibits clear improvements. Also, the proposed method is model-
agnostic which improves the performances consistently on different backbones.

1 INTRODUCTION

Noisy labels are ubiquitous in practical datasets partly because of the large expense of clean human
annotation and the popularity of crowdsourcing and online queries Frénay & Verleysen (2013); Algan
& Ulusoy (2021). Noisy labels inevitably degenerate the robustness of deep neural networks and
cause severe decrease in model performances Cordeiro & Carneiro (2020); Karimi et al. (2020). Thus,
noisy labels learning is a vibrant and significant topic in recent years.

Plenty of noisy labels learning works Han et al. (2018); Yu et al. (2019); Chen et al. (2019); Jiang
et al. (2018); Zhang et al. (2019); Li et al. (2019); Wei et al. (2020); Karim et al. (2022); Nishi et al.
(2021) depend on an empirical trick named the small loss trick, which assumes that the samples with
smaller loss have a higher possibility to be clean. Based on this trick, the previous works utilize the
loss value to divide the dataset into a clean set and a noisy set, and further discard the noisy samples
Han et al. (2018); Yu et al. (2019); Chen et al. (2019); Jiang et al. (2018), correct the noisy samples
Zhang et al. (2019) or remove the labels and keep the images Li et al. (2019); Wei et al. (2020); Karim
et al. (2022); Nishi et al. (2021), which turns out to be a semi-supervised learning problem. Small
loss trick is reasonable (Fig.1(c)) since the network tends to first learn simple and clean patterns and
then learn complicated and probably noisy patterns later Arpit et al. (2017); Zhang et al. (2021a).

However, small loss trick loses its validity in the following two circumstances (Fig.1(c)). 1) Datasets
with high ratio of label noise. With large proportion of noisy samples, clean patterns can hardly be
studied at early period of training and clean samples exhibit large loss. Simply using this trick results
in the incorrect dataset division and degeneration (30% as in Tab.2) 2) Harder classification datasets
with large intra-class variance and small inter-class variance. For example, in gait recognition Wang
et al. (2003) or person-re-identification, samples from the same class are visually dissimilar since
the different viewing angles, while samples from different classes are similar due to similar body
proportions. In these cases, samples within a class distribute evenly. Thus the samples with large loss
not necessarily be noisy. Further, we challenge that recent works depend highly on this empirical
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effects and singularize the noisy labels learning problem into a fixed paradigm. Addressing this issue
is essential for a healthy ecosystem of noisy labels learning in the long run.

In this paper, a different empirical phenomenon named malignant bias is studied. As illustrated
in Fig.1(a), we compute the average correlation coefficient between the image representation and
background representation on clean dataset, noisy dataset with baseline method Bai et al. (2021),
noisy dataset with DeNLL. On the clean dataset, feature representation depends more on foreground.
However, when on noisy datasets, it turns out that feature representation depends highly on back-
ground representation, and a spurious correlation between background information and noisy labels
is established. We name it malignant bias since we would like to discriminate this bias from the
benign bias in clean dataset. Bias denotes the correlation on background representation. In ideal
conditions, the dataset is unbiased on background and the prediction depends only on foreground. In
clean datasets, although the bias exists, it is benign since data distribution shares the same in train and
test sets. Malignant bias degenerates the model and prevent the model to learn from true correlation.
Similar observation (Fig.1(b)) is made in a different perspective in previous works Yi et al. (2022);
Rao et al. (2021).
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Figure 1: (a) Spurious correlation caused by noisy labels. The correlation coefficient between
background representation and image representation (purple), between foreground representation and
image representation. Respectively on clean CIFAR-100 (first row), synthetic label noise CIFAR-100
with baseline (second row), and synthetic label noise CIFAR-100 with DeNLL (third row). (b)
Grad-Cam visualization. DeNLL (first row), baseline (second row), orginal image (third row). (c)
The histogram of loss values on different datasets and different ratios. X-axis is the normalized loss
values since absolute loss is not comparable among different datasets. We randomly sample 1000
clean samples and 1000 ∗ noise ratio noisy samples for depicting the loss distribution.

Based on the empirical malignant bias, we revisit the noisy labels learning from a causal perspective.
Noisy labels learning is formulated as a causal model Pearl (2009) (Fig.2), and noisy labels affects
the representation of background and foreground representations and serves as their parent node.
To address the spurious correlation and deconfound the biased estimation of the noisy labels on
representations we propose a deconfounded noisy labels learning method (DeNLL). First, we derive
the traditional noisy labels learning and show why it is biased by the spurious correlation. Then,
DeNLL is proposed to address this by causal intervention, and corresponding probability is estimated.
DeNLL implement the deconfounded solution in deep neural networks by a localization module (LM)
and a debiased interaction module (DIM). LM adaptively discriminates foreground from background,
and DIM dynamically encourages the interaction between the original representation and a debiased
factor of the representation. The proposed method achieves the state-of-the-art accuracy on five
popular benchmarks, showing that DeNLL establishes a better debiased correlation among variables.

Our main contributions are summarized as below:
• We challenge and do not depend on a ubiquitous small loss trick. Instead, an empirical phenomenon
malignant bias is studied. Addressing this issue is essential for a healthy ecosystem of noisy labels
learning in the long run.
• To the best of our knowledge, for the first time, the problem of noisy labels learning is studied
from a causal-effect view. A deconfounded noisy labels learning method named DeNLL is proposed,
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which derives from a causal intervention between noisy labels and background representation and
unbias the spurious correlation. DeNLL contains a localization module adaptively determining
the foreground from the background and a debiased interaction module encouraging the mutual
information exchange between the debiased factor and original representations.
• Extensive experiments are conducted on five popular benchmarks, and DeNLL achieves the state-
of-the-art performances, which demonstrates its effectiveness. DeNLL is also model-agnostic and
improves the performances on different backbones consistently.
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Figure 2: The causal graph of noisy image classification. (a) Ideal image classification, where the
output logits depends solely on the foreground object. (b) Image classification with clean labels.
Although the model depends on the background information, the test set and train set are sampled
from the same distribution, and the bias on background representation is treated as the benign bias.
(c) Image classification with noisy labels, where the bias on background representation is malignant
bias, and the spurious relation between Zb, Zf and Y

′ appears as in Eq.1. (d) Deconfounded noisy
labels learning, where the spurious correlation is debiased.

2 RELATED WORKS

Noisy labels learning. Due to the existence crowd-sourcing, data acquired on the web and social
media, label noise is common and inescapable in real-world datasets. Noisy labels lead to model
degeneration and overfitting Wang et al. (2019b); Berthelot et al. (2019); Li et al. (2019). Previous
noisy labels learning methods address these from multiple aspects Song et al.; Algan & Ulusoy (2021)
and can be divided into three categories. The first type of methods Jiang et al. (2018); Lee et al.
(2018); Jaehwan et al. (2019) utilizes a re-annotated subset to help obtain noise-identifying ability.
The second type doesn’t require a clean subset, but have assumptions or prior knowledge on noise
pattern, and tend to add additional noise adaption layers to implicitly or explicitly construct noise
transition matrix Goldberger & Ben-Reuven; Patrini et al. (2017). The third type without the need of
neither clean sets nor noise knowledge mainly focuses on regularization methods Zhang et al. (2018),
robust loss design Wang et al. (2019b), meta-learning Algan & Ulusoy (2020) or ensemble methods.

Previous noisy labels learning methods greatly depend on an empirical trick named small loss trick.
However, small loss trick is not always applicable and a new perspective to model noisy labels
learning is necessary. Thus, we propose a different empirical phenomenon and a corresponding
method to address the problem. Note that the proposed method needs neither clean sets nor noise
knowledge and falls in the third type.

Causal Inference in Deep Learning. Causal inference is now a critical research topic which could
endow deep learning models the ability to learn the true casual effects instead of the statistical
spurious correlation. Causal inference can be applied to many domains, such as computer vision (CV)
Lopez-Paz et al. (2017); Niu et al. (2021); Wang et al. (2020); Tang et al. (2020), natural language
processing (NLP) Wei & Zou (2019); Schuster et al. (2019); Mahabadi et al. (2019), recommendations
Schnabel et al. (2016); Wang et al. (2019a); Zhang et al. (2021b) and so on.

For example, Niu et al. (2021) proposed to eliminate the language bias, and only capture the direct
causal effect of questions on answers by subtracting the direct language effect from the total causal
effect. Tang et al. (2020) utilized counterfactual inference to remove the bias introduced by the
image content in scene graph generation task. Mahabadi et al. (2019) employed a bias-only model to
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identify dataset biases. Schnabel et al. (2016) utilized the traditional Inverse Propensity Weighting
(IPW) method to handle selection biases in recommendations.

3 METHODOLOGY

3.1 BENIGN BIAS AND MALIGNANT BIAS IN NOISY LABELS LEARNING

In this section, firstly the small loss experimental phenomenon that most works Han et al. (2018); Yu
et al. (2019); Chen et al. (2019); Jiang et al. (2018); Zhang et al. (2019); Li et al. (2019); Wei et al.
(2020); Karim et al. (2022); Nishi et al. (2021) utilize is challenged. Then an empirical phenomenon
named malignant bias is studied and it results from spurious relation caused by noisy labels. After
this, we formulate the noisy labels learning from the causal perspective and a causal graph is built
up to explicitly analyze the causal relations in the conventional noisy labels learning task. Then we
derive a solution In the Section 3.2 and propose the implementation in deep neural network in the
Section 3.3.

As shown in the Fig.1(c), small loss trick works with a prerequisite, where the loss values of clean
samples are clustered at low value interval while the loss of noisy samples are clustered at high
value interval. However, with two counterexamples of different noisy datasets and different noise
settings, small loss trick loses its effectiveness under two circumstances. First, in the large noise ratio
case, the network hardly learns any meaningful patterns at all training periods, where the network
easily overfits to the noise and the differences between loss of clean samples and noisy samples
are narrowed down (Fig.1(c)). Almost 40% noisy data also has small loss values. And the large
performance degeneration (25% on CIFAR-10) Zhang et al. (2018); Li et al. (2019) also demonstrates
the failure of the effectiveness. Second, in the datasets with large intra-class variance and small
inter-class variance, due to the visual dissimilarity within a class (e.g., images of the same person but
taken from different view points), a proportion of the clean samples have large loss values while the
noisy samples can be of small loss values. In these cases, the small loss trick does not necessarily
hold and the methods based on the trick do not work well.

Instead of utilizing small loss trick, a different empirical phenomenon is observed and modeled. 1)
Unbiased dataset. In the ideal image classification, we expect the output image class logits L to be
irrelevant to the background feature representation B. Whatever the background is, the foreground
information is enough for the network to determine the output class. Thus, the data and the correlation
is unbiased, as in P (L∣f, b) = P (L∣f). 2) Benign biased dataset. Obviously, it’s impractical for
the dataset to be totally unbiased on the background due to the limited number of samples, as well as
the uneven distribution of backgrounds within classes. E.g. class ‘dog’ has a preference for grass
ground and class ‘cat’ has a preference for indoor environments. However, the bias in background
can be benign bias for the whole task since the data distribution shares the same when in the train
set and test set. In this case, Ptrain(L∣f, b) = Ptest(L∣f, b) ≠ P (L∣f), which indeed improves the
performance.

Malignant biased dataset. However, in noisy labels learning, as shown in Fig.2, the situation
becomes complicated. Firstly, the bias becomes malignant since the noisy train set and the clean test
set no more shares the same data distribution. Malignant bias causes overfitting and results in severe
performance degeneration. Secondly, an empirical phenomenon resulting from spurious relation
among noisy labels and background representation is observed. Since the foreground shares little
similarity with the noisy label, the network tends to focus on background instead and extract spurious
background features to represent the class of the given image. Through our experiments, training
on clean dataset, the feature representation and the foreground representation are highly correlated,
while in noisy label learning, the feature representation and the background representation are highly
correlated. This spurious correlation caused by noisy labels confuses the learning period and causes
overfitting.

Thus, we consider the following structural model to describe the spurious correlation mechanism.
Uppercase character (e.g. B) denotes a random variable and lowercase character (e.g. b) denotes
its specific value; calligraphic font (e.g., B) denotes the sample space of the corresponding random
variable, and f(⋅) represents probability distribution of a random variable.
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As shown in Fig.2, in the directed acyclic graph G = {N,E}, there are four variables: Y ′, Zb, Zf , L,
and the edges in the graph describe the causal relations between variables, e.g., Y ′ → Zf means that
Y

′ has a direct causal effect Pearl (2009) on Zf , i.e., changes on Y
′ will affect the representation of

Zf .
• Y and Y

′ is respectively the clean label and the noisy label. Y is unknown in the task of noisy
labels learning. Here, we do not make any assumptions about the label noise distribution or label
noise rate.
• Zb and Zf is the representation feature of the background and foreground of the given image.
• L is the output classification prediction logits of the given image.
• Y

′ → Zf and Y
′ → Zb. The noisy labels affect the representation of the background/foreground

representation since the noisy labels supervise the network to update its parameters.
• Zb → Zf , the background representation affects the foreground representation, which accords with
malignant bias. When the label is clean, the network tends to focus on the right foreground and the
background features are close to a random variable. Otherwise when the label is noisy, the network
tends to focus on the background and thus id-irrelevant background details are learnt.
• Zb → L and Zf → L, background and foreground representations both affect the output classifica-
tion predictions.

According to the causal theory Pearl (2009), Y ′ is a confounder between Zf and Y , resulting in the
spurious correlation.

The malignant bias is formulated as:

Zf = m1(Y ′
, Zb) = m2(Y,Zb, η), η ⫫ Zb, Zb ⫫ Y

′ ∣ Y, η ∼ F (1)

where Zf and Zb are the representations of foreground and background, η denotes the noise, m1(⋅, ⋅)
and m2(⋅, ⋅, ⋅) demotes the unknown structual functions. Note that every variable here are a random
variable with a certain distribution. The noise η is independent of the representation. And given the
clean unknown label Y , the foreground feature Zf is is independent of noisy label Y ′. F indicates
the noise distribution.

Although the function m2(⋅) has better properties of independence, in the noisy labels setting, the
clean label Y is unknown, and in our setting, the noisy distribution F is also unknown, which further
make the estimation of m(⋅) intractable. To address the malignant bias caused by noisy labels, we
then propose the following causal model.

3.2 CAUSAL INTERVENTION IN NOISY LABELS LEARNING

In this section, first we estimate the conditional probability based on the conventional noisy labels
learning, as follows.

P (L∣Zf = f, Zb = b) (a)
=

∑y′
∈Y ′ P (y′)P (b∣y′)P (f∣y′, b)P (L∣f, b)

P (b)P (f∣b)
(b)
=

∑y′
∈Y ′ P (y′∣b)P (f∣y′, b)P (L∣f, b)

P (f∣b)
(c)
=

∑y′
∈Y ′ P (y′∣b)P (m1(y′, Zb) = f)P (L∣m1(y′, Zb), b)

∑y′
∈Y ′ P (m1(y′, Zb) = f)P (y′)

(2)

where (a) is the law of total probability, (b) follows the Bayes rule. In (c), we substitute the probability
with the Eq.1.

The term P (y′∣b)P (m1(y′, Zb) = f) is a weighting coefficient of the probability P (L∣f, b), and the
weighting term is corrupted by the spurious correlation m(⋅). To be specific, the noisy labels upon
distribution of background information serves as an incorrect confusing term of correct probabilities.
For example, given a representation of a dog and a grassland, the correct prediction P (L∣f, b) depends
mainly on the dog foreground and predict the logits (0.8, 0.2) with dog and cat class. However, given
the P (m1(y′, Zb) = f), which is corrupted by noisy samples with grassland background labeled as
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cat. P (m1(y′, Zb) = f) confuses the network by making incorrect weighting (0.5, 3) and results in
a logits (0.4, 0.6). The spurious correlation is the caused by the misleading noisy labels and can be
alleviated by utilizing the tool of causal intervention.

To unbias the correlation between noisy labels and the background information, we estimate the
causal effect of labels and background information and adapt causal adjustment, which can be derived
as:

P (Y ∣do(Zb = b), Zf = f) (a)
=

∑y′
∈Y ′ P (y′)P (b)P (f∣y′, do(b))P (L∣f, do(b))

P (f∣b)P (b)
(b)
=

∑y′
∈Y ′ P (y′)P (f∣y′, do(b))P (L∣f, do(b))

P (f∣b)
(c)
=

∑y′
∈Y ′ P (f, y′∣b)P (L∣m1(y′, b), b)

∑y′
∈Y ′ P (m1(y′, Zb) = f)P (y′)

(3)

where similar to the statistical equation, (a) is the law of total probability, (b) follows the Bayes
rule.(c) is because the independence after the do operation: P (f, y′∣b) = P (f∣b, y′)P (y′∣b) =

P (f∣b, y′)P (y′).

Compare Eq.2(c) with Eq.3(c), the probability is deconfounded without a m(⋅) as a weighting term
and P (f, y′∣b) can be estimated by sampling strategies.
Approximation of Causal Intervention. To implement the causal intervention in the noisy labels
learning tasks, approximation is made, which accords with the practical situations in most cases.
Suppose the number of samples of different classes is balanced, then the denominator can be
simplified as 1/N ∗∑y′

∈Y ′ P (m1(y′, Zb) = f). Further, by uniformly sampling y
′, the denominator

can be approximated by the following equation 1/N(∑P (m1(C0, Zb) = f)+∑P (m1(C1, Zb) =
f)+ ...+∑P (m1(CN , Zb) = f), where Ci denotes the ith class. By replacing the possibility with a
designed network h(⋅) and moving the expectation into the input of the function, ∑P (m1(C0, Zb) =
f) ≈ ∑h(C0, Zb) ≈ h(C0,∑b∈B̂ Zb), where B̂ denotes the class background, which is a subset
of B. Hence, the denominator is approximated by a designed module with a averaged background
representation.

∑
y′
∈Y ′

P (m1(y′, Zb) = f)P (y′) ≈ 1/N(
N

∑
i=0

h(Ci, ∑
b∈B̂

Zb)) (4)

where N denotes the class numbers. And the error of the approximation can be bounded by
∣h(x)−h(µ)∣

∣x−µ∣a+∣x−µ∣b , where the µ is the expectation of x, a is the big-O upper-bound of h(x) approximating
h(µ), b is the big-O upper-bound of h(x) approximating h(∞), and the proof can be found in
Appendix and similar approximations Wang et al. (2021); Gao et al. (2017).

Given the background representation Zb, the class condition serves as a unbiased weighting parameter,
and is estimated by sampling.

Advantages of Causal Intervention. In spite of making approximations and using frequency to
approximate probability, the causal intervention benefits noisy labels learning from the following
aspects.
• After the do operation, the bias of background representation on noisy label is alleviated, as can be
shown in Eq.2(b) and Eq.3(b). The background information is disentangled from the noisy labels by
an expectation of the class background in Eq.4.
• By cutting off the undesirable edge between labels and background representation and preserving
the useful edge between labels and foreground representation, the model mines the true correlation
and is able to alleviate malignant bias.
• The causal-effect based method does not require prior knowledge about noise distribution or noise
rate, which makes it more practical and easier to utilize. The causal-effect based method is model
agnostic, which can be implemented differently with flexibility. The causal-effect based method does
not rely on the small loss trick.
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Table 1: Experimental results on CIFAR-10 and CIFAR-100 (without semi-supervised learning). The
mean and standard deviation are computed over five runs.

Dataset Method Symmetric Pairflip Instance
20% 50% 45% 20% 40%

CIFAR10

CE 84.00±0.66 75.51±1.24 63.34±6.03 85.10±0.68 77.00±2.17
Co-teaching 87.16±0.11 72.80±0.45 70.11±1.16 86.54±0.11 80.98±0.39

Forward 85.63±0.52 77.92±0.66 60.15±1.97 85.29±0.38 74.72±3.24
Joint Optim 89.70±0.11 85.00±0.17 82.63±1.38 89.69±0.42 82.62±0.57
T-revision 89.63±0.13 83.40±0.65 77.06±6.47 90.46±0.13 85.37±3.36

DMI 88.18±0.36 78.28±0.48 57.60±14.56 89.14±0.36 84.78±1.97
CDR 89.72±0.38 82.64±0.89 73.67±0.54 90.41±0.34 83.07±1.33
PES 92.38±0.40 87.45±0.35 88.43±1.08 92.69±0.44 89.73±0.51
Ours 93.96±0.21 89.10±0.77 90.73±0.17 93.24±0.32 91.20±0.58

CIFAR100

CE 51.43±0.58 37.69±3.45 34.10±2.04 52.19±1.42 42.26±1.29
Co-teaching 59.28±0.47 41.37±0.08 33.22±0.48 57.24±0.69 45.69±0.99

Forward 57.75±0.37 44.66±1.01 27.88±0.80 58.76±0.66 44.50±0.72
Joint Optim 64.55±0.38 50.22±0.41 42.61±0.61 65.15±0.31 55.57±0.41
T-revision 65.40±1.07 50.24±1.45 41.10±1.95 60.71±0.73 51.54±0.91

DMI 58.73±0.70 44.25±1.14 26.90±0.45 58.05±0.20 47.36±0.68
CDR 66.52±0.24 55.30±0.96 43.87±1.35 67.33±0.67 55.94±0.56
PES 68.89±0.45 58.90±2.72 57.18±1.44 70.49±0.79 65.68±1.41
Ours 71.59±0.44 63.01±0.51 57.35±0.13 72.05±0.07 66.41±1.39

3.3 DECONFOUNDED IMPLEMENTATION IN DEEP NEURAL NETWORKS

The training structure and the testing structure remains the same and trained in an end-to-end
manner, which is different from some causal literature Wang et al. (2021); Zhang et al. (2021b). The
accordance of training and testing though brings less space for adjusting parameters and is easier to
apply and interpret. In this paper, DeNLL is implemented as follows.

As stated in the previous paragraph, the causal intervention can be intractable to directly calculated
since the unavailable prior knowledge about the noise and the input distribution. In DeNLL, firstly
a localization module generate input for the node f and b respectively, then the denominator and
the numerator is predicted from two networks with mutual information share in replace of a direct
division which accumulates the noise.

Localization Module (LM). In order to mimic the foveation of the human eye to discriminate the
foreground from background, inspired by Huang et al. (2021), DeNLL contains a localization module
as in Eq.5 to predict a Gaussian mask with a center (p, q) and isotropic variance σ

2.

M(i, j) = exp(
−(i − px)2 − (j − py)2

2σ2
)

Gf [x, y] = Relu(M(i, j) ∗ I[i, j] −m(M(i, j) ∗ I[i, j]))
Gb[x, y] = Relu(−M(i, j) ∗ I[i, j] +m(M(i, j) ∗ I[i, j]))

(5)

where (i, j) is the spatial index of a point in the input image. m(⋅) denotes a function to get a median
value of a set.

Debiased Interaction Module (DIM). Direct division in Eq.3(c) causes two problems in experimental
performances. One is that the denominator prediction with a near-zero value leads to unstable training.
The other is the noise aggregation due to the sum of multiple terms in both denominator and
numerator. Thus, instead of calculating a division here, DeNLL utilizes two networks for predicting
the probability as well as enforcing two levels of feature interaction, as in Eq.6. One network learns
the represention as in Eq.4 for debiased prediction.

L(g1(f, b), g2(f,∑
Ci

b), y′) = L(dy1(g1(f, b), g2(f,∑
Ci

b), dy2(g1(f, b), g2(f,∑
Ci

b)), y′) (6)

where g1(⋅) and g2(⋅) denotes two networks for predicting probability given a fixed background and
a deconfounded background (Eq.4). dy1(⋅, ⋅) and dy2(⋅, ⋅) denotes two mutual information dynamic
gate for estimating the output logits.
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Table 2: Experimental results on CIFAR-10 and CIFAR-100 with symmetric, instance-dependent and
pairflip label noise from different levels (semi-supervised learning). Results are token from Bai et al.
(2021). The mean and standard deviation are computed over three runs.

Dataset CIFAR-10 CIFAR-100

Methods / Noise Sym-20% Sym-50% Sym-80% Pair-45% Sym-20% Sym-50% Sym-80% Pair-45%

CE 86.5±0.6 80.6±0.2 63.7±0.8 74.9±1.7 57.9±0.4 47.3±0.2 22.3±1.2 38.5±0.6
MixUp 93.2±0.3 88.2±0.3 73.3±0.3 82.4±1.0 69.5±0.2 57.1±0.6 34.1±0.6 44.2±0.5

M-correction* 94.0 92.0 86.8 - 73.9 66.1 48.2 -
DivideMix* 95.2 94.2 93.0 - 75.2 72.8 58.3 -
DivideMix 95.6±0.1 94.6±0.1 92.9±0.3 85.6±1.7 75.3±0.1 72.7±0.6 56.4±0.3 48.2±1.0

ELR+ 94.9±0.2 93.6±0.1 90.4±0.2 86.1±1.2 75.5±0.2 71.0±0.2 50.4±0.8 65.3±1.3
PES 95.9±0.1 95.1±0.2 93.1±0.2 94.5±0.3 77.4±0.3 74.3±0.6 61.6±0.6 73.6±1.7

Ours (Semi) 95.57±0.15 95.59±0.05 94.38±0.06 94.9±0.10 78.75±0.07 76.58±0.28 64.06±0.41 75.83±0.85

4 EXPERIMENTS

Datasets. We verify the effectiveness of our approach on five benchmark datasets: synthetic noise
on CIFAR10 and CIFAR-100 Krizhevsky et al. (2009), human-annotated real-world noisy labels
CIFAR-10N and CIFAR-100N Wei et al. (2022), and Clothing-1M Xiao et al. (2015), which are
widely used for evaluation of noisy labels in previous literature Bai et al. (2021); Li et al. (2019). The
detail description of the noisy datasets are described in Appendix.

Network structures and training hyperparameters are described in detail in Appendix.

Baselines. Methods based on semi-supervised learning usually outperforms methods without semi-
supervised learning, but the former takes more than 3 times computational resources/time as much as
the latter. Thus, following previous works Bai et al. (2021); Liu et al. (2022) we both implement our
method on semi-supervised learning and without semi-supervised learning. Note that the method is
model agnostic, and we implement the method on two Reset based architecture, PES Bai et al. (2021)
and SOP Liu et al. (2022). The experimental parameters remain the same as in the original works.

Compare with State-Of-The-Art Methods on Synthetic CIFAR10 and CIFAR-100. For semi-
supervised learning, in Table 2, we compare DeNLL with other semi-supervised methods including
Mixup Zhang et al. (2018), M-correlation Arazo et al. (2019), DivideMix Li et al. (2019), Early-
learning regularization (ELR+) Liu et al. (2020), PES Bai et al. (2021). The proposed DeNLL
outperforms other semi-supervised methods across nearly all noise ratios, which demonstrate the
effectiveness of DeNLL. In Table 2 shows experimental results on CIFAR-10 and CIFAR-100 with
instance-dependent and pairflip label noise from different levels. The proposed DeNLL exhibits a
clear improvement compared with other semi-supervised methods across nearly all noise ratios.

Table 1 shows the results on synthetic CIFAR-10 and CIFAR-100 without semi-supervised learning.
DeNLL outperforms state-of-the-art methods (without semi-supervised learning) including Co-
teaching Han et al. (2018), Joint Optim Tanaka et al. (2018), T-revision Xia et al. (2019), DMI
Xu et al. (2019), CDR Xia et al. (2020), PES Bai et al. (2021) across nearly all noise ratios. The
above results show that DeNLL can make improvements on both semi-supervised and without
semi-supervised pipelines.

Compare with State-Of-The-Art Methods on CIFAR-10N and CIFAR-100N. Table 3 shows the
results on CIFAR-10N and CIFAR-100N with different generation methods of label noise. We report
the last epoch test accuracy over the 5 independent runs. DeNLL is compared to Co-teaching, JoCoR
Wei et al. (2020), ELR+, DivideMix, CORES Cheng et al. (2020), SOP, PES. We can safely draw the
following observations. 1) DeNLL outperforms state-of-the-art methods across all noise settings. 2)
the improvement is substantial (2.5% in accuracy) for the more challenging CIFAR-100 with high
noise ratios, which accords with the analysis before. With harder noisy datasets, the small loss trick
does not work so well, and a causal view of mining the real correlation is needed. 3) DeNLL exhibits
a stable performance and a smaller deviation in most cases, which again demonstrate the effectiveness
of the proposed method.
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Table 3: Experimental results on human label noise CIFAR-10N and CIFAR-100N. Mean and
standard deviation over 5 independent runs are reported. The results of the baseline methods are
taken from Wei et al. (2022) which all use ResNet34 as the architecture.

Methods CIFAR-10N CIFAR-100N
Random 1 Random 2 Random 3 Aggregate Worst Noisy Fine

CE 85.02±0.65 86.46±1.79 85.16±0.61 87.77±0.38 77.69±1.55 55.50±0.66
Forward 86.88±0.50 86.14±0.24 87.04±0.35 88.24±0.22 79.79±0.46 57.01±1.03
Co-teaching 90.33±0.13 90.30±0.17 90.15±0.18 91.20±0.13 83.83±0.13 60.37±0.27
JoCoR 90.30±0.20 90.21±0.19 90.11±0.21 91.44±0.05 83.37±0.30 59.95±0.24
ELR+ 94.43±0.41 94.20±0.24 94.34±0.22 94.83±0.10 91.09±1.60 66.72±0.07
DivideMix 95.16±0.19 95.23±0.07 95.21±0.14 95.01±0.71 92.56±0.42 71.13±0.48
CORES∗

94.45±0.14 94.88±0.31 94.74±0.03 95.25±0.09 91.66±0.09 55.72±0.42
SOP 95.28±0.13 95.31±0.10 95.39±0.11 95.61±0.13 93.24±0.21 67.81±0.23
PES(semi) 95.06±0.15 95.19±0.23 95.22±0.13 94.66±0.18 92.68±0.22 70.36±0.33

Ours 96.01±0.09 96.11±0.09 96.16±0.14 95.81±0.11 94.52±0.14 72.96±0.34

Table 4: Experimental results of abaltion study on synthetic
noise CIFAR-100 (without semi-supervised learning).

Ours w/o LM w/o DIM

Symm 20% 71.59±0.44 68.47±1.61 70.95±0.16
50% 63.01±0.51 57.34±1.41 55.53±2.60

Pair 45% 57.35±0.13 48.16±0.23 53.04±1.40

Inst 20% 72.05±0.07 67.46±1.37 68.43±0.32
40% 66.41±1.39 62.61±1.04 64.26±0.39

Table 5: Experimental results on
Clothing-1M.

Method Accuracy

CE 69.21
Forward 69.84
ELR+ 74.81
SOP 73.55
Baseline 73.68
Ours 74.45

Compare with State-Of-The-Art Methods on Clothing1M. Table 5 shows the results on a real-
world noisy labels dataset Clothing1M. DeNLL compares with other recent methods including CE,
Forward, Joint-Optim, DMI, and T-revision, DivideMix, ELR+ and PES. The baseline results are our
reproduction of PES. DeNLL improves the accuracy about 0.8%, showing that it works well with
real-world noise problem.

Model-agnostic results. Since DeNLL does not have constraints on the baseline architecture, we
conduct experiments on different baselines methods. Experimental results based on PES without
semi-supervised (Table.2) and based on DivideMix with semi-supervised (Table.1) shows the method
improve the results regardless of the backbones. In SOP implementation, DeNLL achieves an accuracy
of 80.7% with asymmetric (with 40%) label noise on CIFAR-100, with a significant improvement of
2.7%, which again demonstrates the effectiveness of causal intervention.

Ablation Study As shown in Table. 4, the following conclusions are made. 1) In the experiment
without a localization module, the foreground and background are generated with a fixed mask 24∗24
in the center. Compare the DeNLL with DeNLL without LM, we can see the localization module
improves the performance, since it is automatic and can adaptively adjust to the input. 2) Experiment
without DIM lacks one factor in the causal intervention, which shows a decrease compared to the
DeNLL. This again demonstrates causal inference is beneficial in noisy labels learning.

5 CONCLUSION

In this paper, firstly a phenomenon named malignant bias causef by noisy labels is proposed, where
the background representation and the noisy labels exhibit a spurious correlation. To address the
spurious correlation as well as the biased dataset, noisy labels learning is revisited from a causal-effect
view and the deconfounded equations are derived. Based on the direction of the causal equation,
the method DeNLL is proposed, which contains a location module to discriminate foreground and
background and a dynamic mutual information exchange between two networks for estimating the
final probability. By using the causal deconfounded method, spurious correlation is alleviated while
the real correlation is preserved. DeNLL is evaluated on five different benchmarks and achieves
the state-of-the-art performances. Moreover, DeNLL is model-agnostic and improves performances
regardless of the baseline models.
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