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ABSTRACT

Bipartite knowledge graphs in niche domains are typically data-poor and edge-
sparse, which hinders link prediction. We introduce AEGIS (Authentic Edge
Growth In Sparsity), an edge-only augmentation framework that resamples ex-
isting training edges—either uniformly simple or with inverse-degree bias de-
gree aware—thereby preserving the original node set and sidestepping fabricated
endpoints. To probe authenticity across regimes, we consider naturally sparse
graphs (game design pattern’s game–pattern network) and induce sparsity in
denser benchmarks (Amazon, MovieLens) via high-rate bond percolation. We
evaluate augmentations on two complementary metrics: AUC-ROC (higher is bet-
ter) and the Brier score (lower is better), using two-tailed paired t-tests against
sparse baselines. On Amazon and MovieLens, copy-based AEGIS variants match
the baseline while the semantic KNN augmentation is the only method that re-
stores AUC and calibration; random and synthetic edges remain detrimental. On
the text-rich GDP graph, semantic KNN achieves the largest AUC improvement
and Brier score reduction , and simple also lowers the Brier score relative to the
sparse control. These findings position authenticity-constrained resampling as a
data-efficient strategy for sparse bipartite link prediction, with semantic augmen-
tation providing an additional boost when informative node descriptions are avail-
able.

1 INTRODUCTION

Bipartite graphs are two-mode structures; single-relation bipartite graphs (Newman, 2018; Lat-
apy et al., 2008) naturally capture many knowledge-centric applications (e.g., movie–genre, prod-
uct–category), where the task is to decide whether a single relation exists between two node types. In
niche domains, these graphs are often extremely sparse: many nodes have only a handful of incident
edges, supervision becomes scarce, and link prediction must proceed with very limited evidence.

This study tackles edge sparsity by comparing five edge-augmentation strategies (uniform authentic,
inverse-degree-biased authentic, random ER-like, perturbation-based synthetic, and semantic-KNN)
and contributes in three ways:

• We design a stress test for edge-limited bipartite link prediction—applying high-rate
bond percolation, augmenting edges solely within the training split, and evaluating with
threshold-independent metrics (AUC and Brier score)—without claiming causal disentan-
glement of sparsity factors.

• We introduce Authentic Edge Growth in Sparsity (AEGIS), an edge-only augmentation
that replicates observed links in a structure-consistent manner (uniform or inverse-degree
biased) while preserving the original node set.

• We provide an empirical study on two benchmarks (MovieLens, Amazon) and a domain
case study (GDP), showing how authenticity-constrained copies act as a strong sparsity
baseline and deliver calibration gains in text-rich settings, while semantic augmentation
becomes essential when richer node descriptions are available.
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2 RELATED WORK

In this section, we briefly review related work that forms the background for our study. We begin
by describing single-relation bipartite knowledge graphs and link prediction as a core task, with
particular attention to the imbalanced degree distributions that commonly arise in practice and mo-
tivate our augmentation strategies. Next, we survey graph data augmentation methods, especially
those relevant to edge-level augmentation, to contextualize our approach. Finally, we introduce the
concepts of edge sparsity, percolation, and homophily in graph structures, which underpin our work-
flow: edge dropping is applied only to benchmark datasets to induce sparsity, while both benchmark
and case study graphs are subsequently augmented via multiple edge-level policies.

Single-relation Bipartite (two-mode) Knowledge Graphs and Link Prediction. Knowledge
graph completion (KGC) broadly covers inferring missing entities and relations. Usually, a knowl-
edge graph defines a tuple in the form of “(head entity) → (relation) → (tail entity)”. And KGC
aims to predict the relation among a given head and entity, or the entity given the other, and the
relation. A special case of KGC is the binary link prediction - estimate the probability that a link
exists between a head and a tail entity - in the context of single-relation bipartite (two-mode) knowl-
edge graphs. The working definition of single-relation bipartite (two-mode) knowledge graphs in
this study is a graph that only has two kinds of nodes (e.g., A and B), and there is only one directed
relation that exists in this graph (A → B). Bipartite (two-mode) network analysis highlights side-
specific degree patterns and component structure (Latapy et al., 2008; Newman, 2018). In practice,
bipartite graphs often exhibit imbalanced degree distributions across modes (Latapy et al., 2008;
Newman, 2018). These imbalanced degree distributions shape component structure and intensify
cold-start behavior for low-degree nodes, especially under high-rate edge dropping (Schein et al.,
2002; Rong et al., 2019). This motivates inverse-degree authentic resampling: a conservative way
to allocate limited augmentation budget toward sparsity-affected endpoints without inventing new
nodes or altering the two-mode constraint. While we do not claim causal disentanglement, this de-
sign aligns with observed failure modes in edge-sparse, long-tail regimes (Newman, 2018; Steck,
2011).

Graph Data Augmentation. Graph data augmentation creates plausible variants of graph data
without extra labeling to expand training signals (Zhao et al., 2022a). Methods can be organized
along two orthogonal axes: (i) whether the policy is learned vs. rule-based, (ii) the task level
(node/edge/graph), and (iii) the operation modality (structure, features, or labels) (Zhao et al., 2022a;
Zhou et al., 2025; Ding et al., 2022). Rule-based structural regularizers such as DropEdge (Rong
et al., 2019) and DropNode (Feng et al., 2020) randomly remove components during training and
work well as anti-overfitting in dense settings, but can be counterproductive under edge sparsity
where supervision is already limited.

Beyond subtractive policies, additive strategies aim to increase effective connectivity or introduce
informative structure. Interpolation-based methods (e.g., GraphSMOTE (Zhao et al., 2021), FG-
SMOTE (Wang et al., 2025b)) adapt oversampling to graphs by interpolating features or ties, while
generative/counterfactual approaches (e.g., CFLP (Zhao et al., 2022b), CLBR (Zhu et al., 2023),
AGGG (Wang et al., 2025a)) synthesize training instances by modeling causal or distributional struc-
ture. As null baselines, random edge additions resemble two-mode Erdős–R’enyi draws (ERDdS &
R&wi, 1959; Newman, 2018), and synthetic index perturbations play the role of stress tests rather
than realistic augmentation. Our work focuses on a rule-based, edge-only, train-only policy —
authenticity-constrained edge resampling — that replicates observed ties under type constraints to
densify supervision around real patterns, contrasting with attribute-similarity completion and null
additions. In the edge sparsity regime studied here, we observe that such authenticity constraints
offer more reliable improvements in both ROC-AUC and Brier score compared to random or syn-
thetic additions; semantic-only completion can raise ROC-AUC but does not consistently improve
calibration as measured by the Brier score under class imbalance.

Edge sparsity, Percolation and Homophily. Random high-rate edge dropping corresponds to
bond percolation on networks, which linearly scales mean degree and induces component fragmen-
tation (Newman, 2002; 2018). Attribute-similarity (homophily) is a common mechanism for tie
formation (McPherson et al., 2001), informing semantic-KNN completions. However, precision–
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recall behavior under imbalance can diverge from ROC improvements (Davis & Goadrich, 2006; Bi
et al., 2024).

3 PROBLEM FORMULATION

Let G = (U, V,E) be a single-relation bipartite graph with U and V disjoint node sets, and E is
a set of edges. We consider binary link prediction on a bipartite graph G = (U, V,E) as estimating,
for each candidate pair (u, v) where u ∈ U and v ∈ V , the probability P

(
u, v) = σ

(
s(u, v)

)
, where

s(u, v) is a learned scoring function (e.g., dot-product s(u, v) = h⊤
u hv , bilinear s(u, v) = h⊤

uWhv ,
or cosine similarity). We train with a class-balanced binary cross-entropy over observed positives
and sampled negatives; evaluation reports threshold-independent metrics (AUC-ROC, Brier score).

Edge sparsity regime (bond percolation). We study a scenario where sparsity is induced by
random edge dropping at a high rate (bond percolation; retain rate q is 0≪ q ≪ 1), which propor-
tionally reduces side-specific mean degrees, lowers global edge density, and fragments component
structure (Newman, 2002; 2018). Our goal is a scenario-driven evaluation of augmentation policies
under edge sparsity, not a causal decomposition of which attribute drives performance. A full causal
decomposition of which specific graph attributes drive performance is out of scope for this paper,
but may be explored in future work; here, our focus is on scenario-driven evaluation of augmentation
policies under edge sparsity.

Evaluation. We report two complementary metrics: (i) AUC-ROC, where higher values indicate
better ranking across thresholds, and (ii) the Brier score, where lower values indicate better proba-
bilistic calibration and overall predictive reliability (Glenn et al., 1950; Bi et al., 2024). This com-
bination lets us assess whether an augmentation both separates positives from negatives and assigns
calibrated link probabilities. Following APA guidelines1, we present each method’s M ± SD along
with two-tailed paired Student t-tests (df = 31) against the sparse baseline. Tables include the t-
statistic, p-value, and Cohen’s d, with significance levels (p < .05, p < .01, p < .001) flagged by
asterisks to show when observed differences are unlikely to arise by chance.

4 METHODOLOGY

4.1 AUTHENTICITY-CONSTRAINED EDGE RESAMPLING

We define authentic edge growth in sparsity (AEGIS) as empirical tie resampling: duplicating ob-
served training edges (with replacement) under type constraints, without introducing new nodes or
synthetic endpoints. AEGIS preserves observed relational patterns and respects the two-mode struc-
ture, contrasting with two-mode ER-like random additions (ERDdS & R&wi, 1959) or interpolation-
based synthesis (Chawla et al., 2002). To avoid leakage, augmentation applies only to the training
graph’s edge index; validation/test graphs and labels remain unchanged. We instantiate AEGIS
with two sampling policies: (i) uniform resampling (“simple”), sampling existing edges uniformly;
and (ii) low-degree-biased resampling (“degree-aware”), sampling with probability inversely pro-
portional to endpoint degrees to prioritize low-degree nodes (cold-start mitigation). The procedures
below cover both authentic policies and the contrastive baselines.

4.2 AUGMENTATION METHODS

All augmentations operate only on the training subgraph’s forward edge index; we do not add nodes,
and we do not modify validation/test graphs or labels, avoiding leakage. In this study, we compare
five distinct edge augmentation policies to address sparsity in bipartite knowledge graphs:

AEGIS-Simple uniformly resamples observed edges from the training set, duplicating existing links
without creating new endpoints.

1https://apastyle.apa.org/style-grammar-guidelines/tables-figures/
sample-tables
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Algorithm 1 AEGIS-Simple: Uniform Authentic Resampling
Require: An edge ei(u, v) ∈ E where i is a unique edge index and augmentation factor ϕ ≥ 1
Ensure: Augmented set of edges Eaug

1: ne ← |E|, n′
e ← ⌊(ϕ− 1)ne⌋

2: Initialize E′ ← ∅
3: while |E′| < n′

e do
4: ex(u, v) ∼ U(E), where U is the uniform distribution.
5: E′ ← E′ ∪ {ex(u, v)}
6: end while
7: Eaug ← E ∪ E′

8: return Eaug

AEGIS-Degree applies an inverse-degree bias to resampling, preferentially augmenting edges for
low-degree nodes to mitigate cold-start issues.

Algorithm 2 AEGIS-Degree: Inverse-Degree-Biased Authentic Resampling
Require: An edge ei(u, v) ∈ E where i is a unique edge index, augmentation factor ϕ ≥ 1,

smoothing constant ε > 0
Ensure: Augmented set of edges Eaug

1: ne ← |E|, n′
e ← ⌊(ϕ− 1)ne⌋

2: Ek ← ei(uk, v) and El ← ei(u, vl) where uk ∈ U and vl ∈ V
3: deg(uk)← |Ek|, deg(vl)← |El|
4: w(ei)← 1

deg(uk)+ε + 1
deg(vl)+ε

5: Normalize PE ← w(ei)/
∑

i w(ei)
6: Initialize E′ ← ∅
7: while |E′| < n′

e do
8: Sample ex(u, v) ∼ PE

9: E′ ← E′ ∪ {ex(u, v)}
10: end while
11: Eaug ← E ∪ E′

12: return Eaug

The Random ER-like policy introduces edges between randomly selected node pairs, simulating
two-mode Erdős–Rényi random graphs (ERDdS & R&wi, 1959)

Algorithm 3 Random ER-Like Augmentation
Require: An edge ei(u, v) ∈ E where i is a unique edge index, nu ← |U | , nv ← |V | , augmenta-

tion factor ϕ ≥ 1
Ensure: Augmented set of edges Eaug

1: ne ← |E|, n′
e ← ⌊(ϕ− 1)ne⌋

2: Initialize E′ ← ∅
3: while |E′| < n′

e do
4: ex(u, v) where u ∼ U(U), v ∼ U(V ), where U is the uniform distribution.
5: E′ ← E′ ∪ {ex(u, v)}
6: end while
7: Eaug ← E ∪ E′

8: return Eaug

Perturbation-based synthetic augmentation generates new edges by perturbing the indices of existing
edges in a SMOTE-style fashion (Chawla et al., 2002)

4
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Algorithm 4 Perturbation-based Synthetic Augmentation
Require: An edge ei(u, v) ∈ E where i is a unique edge index, augmentation factor ϕ ≥ 1,

perturbation radius r, nu ← |U | , nv ← |V |
Ensure: Augmented set of edges Eaug

1: ne ← |E|, n′
e ← ⌊(ϕ− 1)ne⌋

2: Initialize E′ ← ∅
3: while |E′| < n′

e do
4: ex(uj , vk) ∼ U(E), where U is the uniform distribution.
5: δu, δv ∼ U{−r, . . . , r}
6: u′ ← min(max(uj + δu, 0), nu − 1)
7: v′ ← min(max(vk + δv, 0), nv − 1)
8: E′ ← E′ ∪ {ex(u, v)}
9: end while

10: Eaug ← E ∪ E′

11: return Eaug

Semantic-KNN completion introduces edges between nodes with high semantic similarity (e.g., high
cosine similarity between node features), reflecting homophily-driven tie formation (McPherson
et al., 2001).

Algorithm 5 Semantic-KNN Augmentation
Require: An edge ei(u, v) ∈ E where i is a unique edge index, nu ← |U |, nv ← |V |, semantic fea-

ture matrices xU ∈ Rnu×d, xV ∈ Rnv×d (row-normalized), neighbour parameter k, similarity
threshold τ , per-node cap α, augmentation factor ϕ ≥ 1

Ensure: Augmented set of edges Eaug

1: ne ← |E|, n′
e ← ⌊(ϕ− 1)ne⌋

2: TU ← xU · xT
U , TV ← xV · xT

V , where TU and TV are self-similarity tensors based on cosine
distance.

3: SU ← Knn(TU , k), SV ← Knn(TV , k) where Knn(T, k) selects k elements with the highest
self-similarity in T .

4: SU ← SU (i)≫ τ and SV ← SV (i)≫ τ where τ is a threshold parameter.
5: Initialize E′ ← ∅, cU (ui)← 0, cV (vi)← 0
6: n← n′

e
7: for each ei(uj , vk) ∈ E do
8: for each vknn ∈ SV (vk) while n > 0 do
9: if (uj , vknn) /∈ E ∪ E′ and cU (uj) < α and cV (vknn) < α then

10: E′ ← E′ ∪ {(uj , vknn)}
11: cU (uj)← cU (uj) + 1, cV (vknn)← cV (vknn) + 1
12: n← n− 1
13: end if
14: end for
15: for each uknn ∈ SU (uj) while n > 0 do
16: if (uknn, vk) /∈ E ∪ E′ and cU (uknn) < α and cV (vk) < α then
17: E′ ← E′ ∪ {(uknn, vk)}
18: cU (uknn)← cU (uknn) + 1, cV (vk)← cV (vk) + 1
19: n← n− 1
20: end if
21: end for
22: end for
23: Eaug ← E ∪ E′

24: return Eaug

5
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5 EXPERIMENTS

5.1 DATASET STATISTICS AND EDGE SPARSITY CONSTRUCTION

We evaluate our methods on two widely used benchmark datasets—MovieLens (Harper & Konstan,
2015) (movie–genre) and Amazon (McAuley et al., 2015) (product–category)—as well as a domain-
specific use case, GDP (game design patterns) (Björk & Holopainen, 2005). Details of GDP can be
found in Appendix.

While the benchmark datasets are originally well-connected, we simulate extreme edge sparsity by
applying high-rate random bond percolation (i.e., random edge removal) as described by Newman
(2002). In contrast, the GDP dataset is inherently sparse and does not require additional edge re-
moval.

Table 1 summarizes the key characteristics of each dataset, including the cardinalities of the two
node sets, the number of edges in the original graph, the percolation retain rate q used to generate
sparse training scenarios, and the resulting number of edges after edge dropping.

Table 1: Dataset Statistics and Edge Sparsity Construction
Dataset Mode U |U | Mode V |V | |E| (orig) retain q |E| (after)

Amazon Products 1465 Categories 317 6307 0.01 67
MovieLens Movies 9708 Genres 19 22050 0.01 213
GDP Games 208 Patterns 296 715 N/A 715

5.2 AUGMENTATION BUDGETS

On the training subgraph (benchmarks after edge dropping and GDP), we target 100× augmentation.
Validation/test graphs remain unchanged. Reported significance is always per-dataset versus its own
sparse baseline; original graphs of benchmarks are shown as upper bounds, not budget-matched
baselines.

5.3 PIPELINE

Benchmark Datasets Pipeline. Bond percolation (edge dropping) on benchmarks (e.g., keep
∼1% edges) → split via RandomLinkSplit (80/10/10; disjoint training ratio) with negative sam-
pling (negative sampling ratio; allow adding negative train samples) → augmentation (AEGIS-
Simple; AEGIS-Degree; Random ER-Like Augmentation; Perturbation-based Synthetic Augmen-
tation; Semantic-KNN Augmentation) with the factor of 100 on train graph only → hetero GAT
training with class-balanced binary cross-entropy loss → evaluation

Domain Case Study Pipeline. Naturally sparse two-mode graph (no edge drop) → customized
training/valid set → augmentation (AEGIS-Simple; AEGIS-Degree; Random ER-Like Augmen-
tation; Perturbation-based Synthetic Augmentation; Semantic-KNN Augmentation) with the factor
of 100 on train graph only → hetero GAT training with class-balanced binary cross-entropy loss
→ evaluation

6 RESULTS

6.1 BENCHMARK VALIDATION

Tables 2 and 3 show that the original graphs function as upper bounds and that copy-style AEGIS
variants (simple, degree aware) stay statistically indistinguishable from the sparse baselines.
Only semantic knn achieves meaningful gains (+0.091 on Amazon), while random and synthetic
additions drive AUC down, especially on MovieLens.
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Table 2: Amazon (product–category): AUC (M ± SD) with paired t-tests vs. sparse baseline
(n = 32; ns = not significant; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). A higher AUC is better.

Method AUC M ± SD ∆AUC t(31) p d

baseline 0.630 ± 0.162 +0.000 — — —
degree aware 0.650 ± 0.204 +0.020ns −0.50 0.619 −0.09
simple 0.637 ± 0.199 +0.007ns −0.17 0.864 −0.03
semantic knn 0.722 ± 0.197 +0.091∗ −2.40 0.023 −0.42
synthetic 0.732 ± 0.181 +0.101∗ −2.48 0.019 −0.44
random 0.626 ± 0.252 −0.004ns 0.08 0.936 0.01
original 0.928 ± 0.008 +0.298∗∗∗ −10.42 <0.001 −1.84

Table 3: MovieLens (movie–genre): AUC (M±SD) with paired t-tests vs. sparse baseline (n = 32;
ns = not significant; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). A higher AUC is better.

Method AUC M ± SD ∆AUC t(31) p d

baseline 0.710 ± 0.061 +0.000 — — —
degree aware 0.713 ± 0.064 +0.003ns −0.42 0.681 −0.07
simple 0.717 ± 0.063 +0.007ns −1.33 0.195 −0.23
semantic knn 0.708 ± 0.064 −0.002ns 0.35 0.732 0.06
synthetic 0.679 ± 0.075 −0.031∗ 2.15 0.039 0.38
random 0.652 ± 0.089 −0.059∗∗∗ 3.66 0.001 0.65
original 0.811 ± 0.015 +0.101∗∗∗ −9.95 <0.001 −1.76

Tables 4 and 5 indicate that semantic knn improves or preserves calibration (e.g., −0.015 on
Amazon), the copy-based AEGIS options provide no consistent benefit, and random/synthetic edges
raise the Brier score on every benchmark.

Table 4: Amazon (product–category): Brier score (M ± SD) with paired t-tests vs. sparse baseline
(n = 32; ns = not significant; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). A lower Brier score is better.

Method Brier score M ± SD ∆Brier score t(31) p d

baseline 0.249 ± 0.048 +0.000 — — —
degree aware 0.248 ± 0.054 −0.001ns 0.29 0.772 0.05
simple 0.248 ± 0.049 −0.001ns 0.30 0.765 0.05
semantic knn 0.233 ± 0.044 −0.015∗ 2.19 0.036 0.39
synthetic 0.244 ± 0.029 −0.005ns 0.70 0.488 0.12
random 0.259 ± 0.040 +0.010ns −0.92 0.367 −0.16
original 0.135 ± 0.020 −0.114∗∗∗ 14.03 <0.001 2.48

Table 5: MovieLens (movie–genre): Brier score (M ± SD) with paired t-tests vs. sparse baseline
(n = 32; ns = not significant; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). A lower Brier score is better.

Method Brier score M ± SD ∆Brier score t(31) p d

baseline 0.231 ± 0.016 +0.000 — — —
degree aware 0.233 ± 0.014 +0.001ns −0.72 0.474 −0.13
simple 0.231 ± 0.012 −0.000ns 0.12 0.907 0.02
semantic knn 0.235 ± 0.014 +0.004ns −1.43 0.162 −0.25
synthetic 0.245 ± 0.008 +0.014∗∗∗ −4.82 <0.001 −0.85
random 0.245 ± 0.009 +0.013∗∗∗ −3.89 <0.001 −0.69
original 0.218 ± 0.004 −0.013∗∗∗ 5.22 <0.001 0.92
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6.2 DOMAIN CASE STUDY: GAME DESIGN PATTERN (GDP)

For AUC, Table 6 highlights that the strength of semantic knn reaches even higher (+0.014,
p = 0.008), whereas random and synthetic edges crater ranking quality. For authenticity-constrained
augmentation on a richly described graph: degree aware significantly decreases AUC (-0.028,
t = 5.29, p < 0.001).

Table 6: GDP (game–pattern): AUC (M ± SD) with paired t-tests vs. sparse baseline (n = 32; ns
= not significant; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). A higher AUC is better.

Method AUC M ± SD ∆AUC t(31) p d

baseline 0.800 ± 0.022 +0.000 — — —
degree aware 0.772 ± 0.026 −0.028∗∗∗ 5.29 <0.001 0.93
simple 0.793 ± 0.023 −0.007ns 1.67 0.104 0.30
semantic knn 0.814 ± 0.017 +0.014∗∗ −2.83 0.008 −0.50
synthetic 0.645 ± 0.061 −0.155∗∗∗ 13.42 <0.001 2.37
random 0.613 ± 0.076 −0.187∗∗∗ 13.14 <0.001 2.32

Regarding the Brier score, Table 7 confirms that GDP’s long-form textual descriptions let both
AEGIS degrees and semantic completion improve calibration (Brier: degree aware +0.036,
simple−0.013, semantic knn−0.054), while random/synthetic edges still degrade reliability.

Table 7: GDP (game–pattern): Brier score (M±SD) with paired t-tests vs. sparse baseline (n = 32;
ns = not significant; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). A lower Brier score is better.

Method Brier score M ± SD ∆Brier score t(31) p d

baseline 0.302 ± 0.040 +0.000 — — —
degree aware 0.337 ± 0.079 +0.036∗ −2.59 0.015 −0.46
simple 0.289 ± 0.018 −0.013∗ 2.41 0.022 0.43
semantic knn 0.247 ± 0.017 −0.054∗∗∗ 7.06 <0.001 1.25
synthetic 0.269 ± 0.013 −0.032∗∗∗ 4.76 <0.001 0.84
random 0.266 ± 0.017 −0.036∗∗∗ 4.92 <0.001 0.87

7 DISCUSSION

Authenticity beyond duplication. Across Amazon and MovieLens, the copy-style AEGIS variants
(simple, degree aware) neverout perform the sparse baseline in either AUC or Brier, whereas
the semantic KNN augmenter (semantic knn) is the only method that reliably lifts performance
(e.g., +0.091 AUC and −0.015 Brier on Amazon) and at least prevents collapse on MovieLens.
This suggests that “authentic” augmentation hinges on injecting semantically plausible endpoints
rather than merely duplicating surviving edges; even so, the assumption that higher feature similarity
implies a greater likelihood of a true link should be validated on a domain-by-domain basis.

Text richness matters. GDP’s game–pattern descriptions are long and semantically rich, yielding
the largest gains (+0.014 AUC and −0.054 Brier for semantic knn), while degree aware
also improves calibration. Amazon’s product metadata is shorter yet structured enough to bene-
fit, whereas MovieLens’s brief genre/synopsis features offer little semantic signal—suggesting that
authenticity constraints deliver the most when node descriptions carry meaningful content.

Metric behavior. Amazon’s synthetic augmenter shows that higher AUC can coexist with de-
graded calibration, underscoring the need to pair ROC analysis with Brier. On MovieLens,
semantic knn preserves both AUC and Brier relative to the sparse baseline, whereas random
and synthetic additions worsen both. GDP exhibits the strongest recovery: only in this text-rich
setting do copy-based AEGIS variants gain traction (notably via lower Brier), and the semantic
augmentation provides the largest joint improvements.

Limitations. The extreme sparsity stems from a single 0.99 bond-percolation pass, simultaneously
altering degree, density, and component structure. Results depend on the chosen split and on severe
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imbalance; accuracy is threshold-bound and therefore de-emphasized. Future work should examine
alternative sparsity regimes, adaptive drop ratios, and how textual richness governs augmentation
gains.

8 CONCLUSION AND FUTURE WORK

We presented AEGIS, an authenticity-constrained edge augmentation framework for sparse bipartite
graphs, and evaluated it on Amazon, MovieLens, and the GDP domain case study. Copy-based vari-
ants (uniform or inverse-degree resampling) act as reliable sparsity baselines that avoid fabricating
new endpoints; their efficacy nevertheless hinges on how much semantic information the domain
provides. The semantic KNN augmentation is indispensable for recovering performance on Ama-
zon and MovieLens and delivers the largest gains on GDP, where richer textual descriptions unlock
sizable improvements in AUC and Brier. Future work will explore density-preserving augmenta-
tion, adaptive authenticity constraints that leverage available semantics, cost-aware augmentation
policies, and the expansion of AEGIS to additional sparse domains.

REPRODUCTION STATEMENT

The code repo is available at https://anonymous.4open.science/r/AEGIS-6BA3/

GENERATIVE AI STATEMENT

Large language models are used in writing this manuscript only to aid or polish writing. It’s to make
sure the sentences are clear and professional. An example of the used prompts is “Please polish
these sentences in an academic way: [the actual contents]”
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A APPENDIX

The Game Design Patterns (GDP) dataset serves as a (semi-)ontology for the game design domain,
offering formalized descriptions, properties, and constraints for each concept (Noy et al., 2001).
Central to GDP is the notion of a “pattern”—a recurring interaction that can be instantiated in diverse
games, independent of genre or theme. For example, the “Alignment” pattern refers to “the goal of
forming a linear arrangement of game elements.” 2 This pattern is exemplified in games such as
Tic-Tac-Toe, Candy Crush Saga, and Tetris.

Patterns in GDP not only describe game mechanics but also exhibit structural relationships with
other patterns: they can enable (“instantiate”), modify, or potentially conflict with the deployment

2http://virt10.itu.chalmers.se/index.php/Alignment
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of other patterns. As such, GDP provides a shared vocabulary for game designers to communicate,
analyze, and create games.

However, the identification and verification of game design patterns is a highly specialized and
expert-driven process. Despite the vast number of games, only a limited number of patterns have
been formally proposed, and even fewer game–pattern relationships have been verified by experts.
This results in an inherently sparse bipartite graph, making GDP an ideal testbed for evaluating
augmentation strategies in edge-sparse domains.
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