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ABSTRACT

In reinforcement learning (RL) for environments with state-dependent action con-
straints, conventional methods suffer from conflated representations, as signals
from infeasible actions introduce noise and complicate the learning task. While
post-hoc masking is a common workaround, it fails to prevent this contamination
at a fundamental level, as illegal actions still influence the learned representa-
tions. To address this, we propose Legal-Gated Attention Networks (LGAN), an
architecture that introduces a strong structural inductive bias by embedding action
legality constraints directly into the attention mechanism. LGAN fundamentally
alters self-attention by using a legality mask to gate the query formation process
itself, permitting only legal actions to attend to the state. This architectural de-
sign guarantees that illegal actions are structurally eliminated: they produce no
queries, receive no gradients, and cannot influence policy or value updates. By
using raw state vectors as values, LGAN’s attention weights directly reveal which
state components contribute to each legal action’s value. We demonstrate in board
games that this structurally grounded approach provides an effective framework
for learning transparent policies, positioning LGAN as a principled method for
building robust and interpretable agents in action-constrained environments.

1 INTRODUCTION

Many real-world reinforcement learning (RL) environments impose state-dependent constraints on
available actions—only a subset of the action space is executable in each state. Such legal action
constraints arise in domains ranging from board games and program synthesis to robotics and com-
binatorial optimization. Ignoring these constraints leads to infeasible policies and unstable value
estimation. In this work, we assume access to a per-state legality mask that indicates which actions
are valid in each state. This assumption is realistic in many structured domains (e.g., board games,
program synthesis), where legality can be directly derived from rules or simulators.

The core challenge stems from a structural mismatch: standard deep RL architectures are designed
to approximate a mapping from a state to the entire action space, forcing them to process and rep-
resent all actions regardless of their feasibility. A common workaround is post-hoc masking, where
the legality mask is applied externally during target computation or action selection. However,
this approach is a superficial fix that fails to prevent a fundamental problem: representational con-
tamination. Gradients from invalid actions still flow through and corrupt the shared network pa-
rameters. This contamination is particularly damaging for long-term credit assignment, where the
high-variance noise from the vast space of invalid actions easily obscures faint and infrequent reward
signals. Another example is for DQN. If illegal actions are not eliminated during the bootstrap step,
this can lead to severe Q-explosion problems. The Bellman update’s max operator may bootstrap
from erroneously high Q-values of illegal actions, and even though these actions might be masked
during final action selection, their inflated values have already contaminated the learned represen-
tations, causing systematic Q-value overestimation and learning instability. Furthermore, post-hoc
masking creates a training–inference mismatch: the agent may learn to prefer an illegal action, but
a late correction forces it to execute another, severing the link between the learned value and the
executed action.
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In this paper, we introduce Legal-Gated Attention Networks (LGAN), a Transformer-inspired ar-
chitecture that structurally incorporates action feasibility into value and policy computation. Unlike
standard self-attention, LGAN uses a novel gating mechanism where only legal actions form queries.
This design not only enforces legality end-to-end without masking, but also yields an interpretable
decision-making mechanism; since values are derived from raw state features via sparse attention,
the model exposes attribution maps linking actions to state components. We evaluated LGAN across
multiple domains with large and dynamic legal action sets, including Tic-Tac-Toe, Breakthrough,
and Go, demonstrating that its structural inductive bias improves both learning performance and
model transparency. Our contributions are:

• We propose LGAN, an attention-based architecture that structurally incorporates action
feasibility into value and policy computation;

• We introduce LGAN’s interpretable decision-making mechanism, based on sparse attention
over raw state vectors;

• We evaluate LGAN across multiple domains with large and dynamic legal action sets,
showing competitive performance and consistent attribution quality.

2 RELATED WORK

Early deep reinforcement learning (DRL) research, such as the seminal work in Atari games, pri-
marily dealt with environments where all actions are legal Mnih et al. (2015). However, as DRL was
applied to domains with dynamic action constraints, this issue became critical. The most common
workaround is post-hoc masking, where a legality mask is applied to the network’s final output
(logits or Q-values), which ensures the policy is feasible. In value-based methods like DQN, mask-
ing illegal actions during the bootstrap step Mnih et al. (2015); Lanctot et al. (2019); Raffin et al.
(2021) is a notable improvement over naively considering all actions Sutton & Barto (2018); Raffin
et al. (2021); Liang et al. (2018), as it partially mitigates the Q-value explosion caused by represen-
tational contamination. Nevertheless, this remains a ”superficial fix.” Because the mask is applied at
the end of the forward pass, gradients from illegal actions still flow backward and corrupt the shared
network representations.

Other approaches tackle action constraints from different angles. Some methods attempt to learn
legality from data, such as Action-Elimination DQN Zahavy et al. (2018) and Structured Mask
Prediction Zhong et al. (2024), but illegal actions are still represented internally before elimination.
Constrained MDP formulations Altman (1999); Tessler et al. (2018; 2019); Achiam et al. (2017);
Yang et al. (2020) enforce feasibility via penalties or projections, but they primarily address soft
constraints rather than the hard legality rules common in games or combinatorial tasks. Attention-
based architectures for RL, such as GTrXL Parisotto et al. (2020a), focus on temporal stabilization
and long-term dependencies, not on preventing contamination from illegal actions.

In summary, LGAN handles the legality problem by treating action legality as a structural inductive
bias at the architectural level, structurally isolating contaminated representation, making it distinct
from existing work.

3 METHOD

We consider a Markov Decision Process (MDP) defined by the tuple (S,A, P,R, γ), extended to
include state-dependent hard constraints on the action space. Each state s has a corresponding real-
valued feature vector s ∈ Rd to represent the state information. At each state s ∈ S, a subset
of feasible actions M(s) ⊆ A is available. This feasibility structure is represented by a binary
vector µs ∈ {0, 1}|A|, where µs[a] = 1 if and only if a ∈ M(s). To construct a value function
that inherently respects action constraints, LGAN integrates this feasibility mask directly into the
attention mechanism: each legal action forms a query, a modified state vector serves as the key,
and the raw state vector provides the value. This structure simultaneously enforces constraints and
exposes the basis of each decision, offering both policy correctness and interpretability.
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3.1 QUERY COMPUTATION

To ensure that only legal actions participate in decision-making, we gate the attention queries at the
source. Each action a ∈ A is assigned a trainable embedding ea ∈ R1×dmodel , which is optimized
jointly with the rest of the network. The embedding matrix E ∈ R|A|×dmodel by stacks all action
embeddings row-wise:

E =


e1
e2
...

e|A|


We use the legality mask µs to zero out the embeddings of all illegal actions:

query = diag(µs)E

This gating ensures that only legal actions contribute to downstream computations. The learned ac-
tion embeddings act as positional references in the action space, allowing the model to differentiate
actions based on their semantic identity.

3.2 KEY AND VALUE COMPUTATION

We aim to preserve both spatial structure and interpretability in the way state features are repre-
sented. To incorporate positional information, we augment each scalar state feature si with the
standard sinusoidal positional encoding ϕi ∈ Rdpos as proposed by Vaswani et al. Vaswani et al.
(2017). Rather than using a large, fixed base (e.g., 10,000) which can produce non-discriminative
encodings in compact state spaces, we adopt an adaptive base, base = 2× d. This approach tailors
the positional signal’s frequency range directly to the state dimensionality d, ensuring a meaningful
representation of spatial structure in board game environments. For our upcoming experiment on
the game of Go, we employ a 3D positional encoding variant that concatenates separate embeddings
for the layer, row, and column dimensions.

The augmented key vector is:
k̃i = [si; ϕi] ∈ R1+dpos

By stacking the augmented vectors k̃i row-wise, we obtain the matrix K̃ ∈ Rd×(1+dpos), which is
then linearly projected to form the full key matrix:

key = K̃ W⊤
k , Wk ∈ Rdmodel×(1+dpos)

We use the raw state vector as the value directly, without applying additional nonlinear layers such
as MLPs:

value = s ∈ Rd

While this limits the model’s expressiveness, especially for more complex tasks, it ensures trans-
parency by maintaining a clear relationship between state components and actions. Introducing
MLPs would significantly reduce this interpretability, which is a trade-off we intentionally made.

3.3 ATTENTION COMPUTATION

We compute attention via a scaled dot product followed by a ReLU activation:

Attention = ReLU

(
query key⊤√

dmodel

)
where dmodel is the embedding dimension, this follows Vaswani et al. (2017) but replaces soft-
max with ReLU to enforce sparsity and zero-invariance. Given h attention heads, we use a simple
averaging as the aggregation strategy across the heads:

Ā =
1

h

h∑
i=1

Attentioni

The resulting Ā serves as a sparse, non-negative attribution over the state features.

3
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3.4 INTERPRETABLE PREFERENCE SCORES

The preference score vector z ∈ R|A| is computed by applying the averaged attention map to the
raw state vector:

z = ReLU(Ā value)
Each entry za represents the aggregated influence of state features on action a, with Āa,j indicating
how strongly action a attends to the j-th state component. To ensure a straightforward attribution
where attention weights directly correspond to the positive importance of state features, we make the
assumption that all state features are non-negative (i.e., sj ≥ 0,∀j. This representation is common
in many reinforcement learning environments, including the board games used in our experiments.
This yields the decomposition:

za =
∑
j

Āa,j sj

which serves as a direct attribution: the impact of each state feature on the preference for action a is
made explicit and quantifiable. Because the attention is sparse and the value vector is untransformed,
the interpretation remains transparent—no nonlinear mixing or hidden transformations intervene.

To prevent degenerate cases where legal actions are suppressed entirely (i.e., za = 0), we add a
small constant:

z ← z + ϵµs, ϵ > 0

This ensures that all legal actions receive strictly positive scores, which is critical for downstream
normalization in the actor and for avoiding log(0) in Q-value prediction.

Figure 1: Partial computation flow (3.1-3.4) of LGAN. For clarity, the multi-head attention mecha-
nism is not shown.

3.5 OUTPUT FOR REINFORCEMENT LEARNING

To apply the preference scores z—where za ∈ (0,∞) for legal actions and za = 0 for illegal
ones—to standard reinforcement learning algorithms, we introduce a unified output mapping. This
transforms z into real-valued scores suitable for both value-based and policy-based methods. Specif-
ically, we use a logarithmic function to define the final output, which serves as either a Q-value or a
policy logit:

Output(s, a) = log(za)

This operation projects the positive support of z onto the entire real line (−∞,∞), enabling un-
bounded regression. The logarithmic map is ideal as it is strictly increasing, thus preserving the
relative preference ordering among actions: if za > zb, then Qpred(s, a) > Qpred(s, b). More impor-
tantly, it naturally handles illegal actions. Since an illegal action has za = 0, its Q-value becomes
log(0) = −∞ (aligning with IEEE 754 standards), which automatically excludes it from any max-
based operator without requiring additional masking logic.

Q-value Computation The output is used directly as the predicted Q-value, Qpred(s, a). While
the log transformation introduces a nonlinear scale distortion, we separate explanation from value
prediction: interpretability is derived from z, while learning is performed over log(z).

Actor Computation The output serves as the unnormalized logits for the actor’s policy network.
Although the logarithmic transformation alters the scale of the scores, its effect is canceled out by
the subsequent softmax normalization. The resulting stochastic policy remains proportional to the
original preference scores z, ensuring architectural consistency across different RL paradigms.
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Critic Computation For the critic in actor-critic algorithms, we compute the state value Vcritic
directly from the key matrix, which encodes position-aware state features. Instead of using the raw
state vector, we treat the transformed key as an enriched representation of the state. We apply a
two-stage projection to compute the state value:

Vcritic = w2ReLU(keyw1)

where w1 ∈ Rdmodel×1 compresses each state token into a scalar, and w2 ∈ R1×d aggregates these
scalars across all positions. This design enables flexible value estimation while preserving structural
awareness.

For a detailed analysis of the model’s parameter complexity and total parameter count, please refer
to the Appendix.

4 THEORETICAL ANALYSIS

4.1 ZERO-INVARIANCE AND LEGALITY PRESERVATION

We formalize LGAN’s ability to enforce zero output for illegal actions purely through design, with-
out relying on post-hoc masking.

Theorem 1 (Zero-Invariance). Let s be a state and a /∈ M(s) be an illegal action. Then, for any
parameter setting, LGAN architecture guarantees:

za = 0

Proof. Recall that the query matrix is computed as Query = diag(µs)E, where E contains the
trainable action embeddings and µs ∈ {0, 1}|A| is the binary legality mask. For any a /∈ M(s), we
have µa = 0. This yields:

Querya,: = µa · ea = 0

Attentiona,: = ReLU(Querya,:Key⊤) = ReLU(0) = 0

za = ReLU(Attentiona,: Value) = ReLU(0) = 0

Hence, the attention output za is deterministically zero for any illegal action, independent of model
parameters, which ensures that outputs are supported only on legal actions, enabling interpretability
and architectural correctness.

Incompatibility with Softmax and BatchNorm Any architecture that applies softmax or batch
normalization directly to QK⊤ violates zero-invariance. Softmax transforms zero vectors into
strictly positive outputs. When applied across key dimensions for an illegal action (Qa,:K

⊤ = 0), it
produces a uniform distribution and assigns za > 0. Applied across actions, softmax redistributes
probability mass onto illegal actions, again breaking legality preservation. Batch normalization fur-
ther disrupts zero-invariance by shifting and scaling logits based on global statistics, turning zeroed
entries into nonzero values.

4.2 STRUCTURAL GRADIENT ISOLATION

The Zero-Invariance property not only ensures correctness during forward propagation but also con-
fers a crucial benefit during the backward pass. This advantage, which we term Structural Gradient
Isolation, guarantees that gradients are not propagated through illegal actions:

Theorem 2 (Gradient Isolation). Let a /∈ M(s) be an illegal action. Then for any differentiable
loss L and with respect to the embedding ea, LGAN architecture satisfies:

∂L
∂ea

= 0

5
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Proof. Since za = 0 is structurally guaranteed to be a constant 0, the chain rule yields:

∂L
∂za

∂za
∂ea

=
∂L
∂za
· 0 = 0

This property ensures that the embedding parameters of illegal actions are excluded from updates.
As a result, the model allocates its entire learning capacity to shaping representations of actionable
behaviors. This structural gradient isolation safeguards the integrity of the Bellman update, prevents
noise contamination at its source, and preserves the signal-to-noise ratio of long-term reward signals,
thereby enabling more robust and faithful representation learning.

5 EXPERIMENTS

Our empirical evaluation is designed to answer several key research questions regarding the struc-
tural properties and performance of LGAN:

• Correctness and Interpretability: To verify that LGAN’s architectural gating correctly
confines the model’s focus to the legal action set. And whether its attention mechanism
produces verifiable, human-understandable insights into the decision-making process that
align with known strategies.

• Performance and Scalability: To assess the performance and scalability of LGAN in rel-
atively complex domains with large, dynamic action spaces. And compare its effectiveness
against conventional models that have no structural inductive bias.

To address these questions, we selected three environments, each chosen for its distinct properties
that facilitate one or more of our research goals:

• Tic-Tac-Toe (TTT): A simple, deterministic game with known optimal strategies. Its sim-
plicity provides an ideal testbed for qualitatively verifying the correctness of the model’s
strategic choices and the interpretability of its attention-based attributions.

• Breakthrough (8×8): A challenging combinatorial game with a highly dynamic legal ac-
tion set (10-40 legal moves out of 768). It serves as our primary environment for evaluating
LGAN’s scalability and performance under significant action constraints, and its progres-
sive nature makes it well-suited for standard RL.

• Go (7x7): A canonical benchmark with immense strategic depth and a vast state-action
space. Its long games pose a significant credit assignment challenge, serving as a rigorous
stress test for our architecture’s scalability and effectiveness in a computationally demand-
ing domain.

All models are trained via self-play under a sparse reward structure. Terminal rewards are +1, 0,
and −1 for wins, draws, and losses, respectively. Intermediate rewards are zero. A comprehensive
list of common hyperparameters used across all experiments is provided in the appendix.

5.1 EXPERIMENT 1: CORRECTNESS AND INTERPRETABILITY ON TIC-TAC-TOE

The Tic-Tac-Toe (TTT) environment serves as a testbed to verify the correctness and interpretability
of LGAN’s decision-making process in a simple, deterministic game with known optimal strategies.

Training and Evaluation Protocol We trained separate LGAN agents as first and second players
via self-play. Since both roles admit forced-draw strategies in Tic-Tac-Toe, the win rate against
a random opponent (e.g., 95% as first player) is not informative. Thus, we focus on architectural
interpretability rather than raw performance. We analyze a strategically interesting game state where
the agent may identify two potential winning moves. Figure 2 displays the attention heatmap of a
specified game state.
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Figure 2: Attention heatmaps from a trained LGAN agent in Tic-Tac-Toe. The best action, Action
3 (Q-value=0.97), is primarily driven by strong attention to the opponent’s piece at Position 6 (Op-
ponent holds, contribution: 0.68), Position 1 (Blank, contribution: 0.60) and Position 7 (Self holds,
contribution: 0.60). While the second best action, Action 1 (Q-value=0.59), is primarily driven by
strong attention to Position 0 (Opponent holds, contribution: 0.55), Position 7 (Self holds, contri-
bution: 0.33) and Position 4 (Self holds, contribution: 0.16). The heatmaps visualize the model’s
attention distribution over different state channels (e.g., self, opponent) for each action. High atten-
tion values (cells with deeper red color) indicate state components that contributed most significantly
to the action’s valuation. The attention corresponding to illegal moves is zero. Note that Action 0–8
correspond to board positions indexed from the top-left corner, proceeding row by row from left to
right.

5.2 EXPERIMENT 2: PERFORMANCE ON BREAKTHROUGH

This experiment evaluates LGAN’s generalization and performance in Breakthrough, a complex
combinatorial game characterized by a highly dynamic legal action space. To specifically test the
generalization capabilities of the attention mechanism itself, LGAN model in this experiment utilizes
a simple 1D positional encoding. Consequently, to ensure a fair comparison focused on architectural
advantages rather than complex feature engineering, we chose standard Multi-Layer Perceptrons
(MLPs) as the foundation for our baseline models.

Experiment Setup We compare LGAN-DQN and LGAN-A2C against the following baselines:
MLP-DQN (Naive): A standard DQN agent with an MLP Q-network. It allows illegal actions to
influence bootstrapping. MLP-DQN (Masked): Identical to the naive version, but a legality mask
is applied during bootstrapping to exclude illegal actions from the max operator. MLP-A2C: An
Advantage Actor-Critic agent using separate MLP networks for the actor and critic. For baseline
models, we apply a standard post-hoc legality mask by setting the logits of invalid actions to −∞,
which guarantees executability. In contrast, LGAN models structurally eliminate illegal actions.

Due to the strong player-order asymmetry in Breakthrough, we trained separate agents for the first
and second player roles via self-play. Training proceeds for a number of self-play episodes, with
performance periodically validated against a common reference opponent: an MCTS agent using
1000 simulations per move and uniform random rollouts (MCTS-1000). Training for each agent
was terminated when its win rate against this MCTS opponent decreased. These evaluation matches
against the MCTS agent were strictly used for performance tracking and were not added to the
agents’ training data.

7
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Table 1: Win rates (%) against MCTS-1000 in Breakthrough.

Agent First Player Second Player

LGAN-DQN 97.2 95.5
LGAN-A2C 84.9 84.8
MLP-DQN (Naive) 0.0 0.0
MLP-DQN (Masked) 83.1 69.5
MLP-A2C 66.3 60.4

Results and Analysis The performance of all agents against the MCTS-1000 benchmark is pre-
sented in Table 1. The results clearly demonstrate the effectiveness of LGAN. In both algorithm
categories, LGAN models significantly outperformed their MLP-based counterparts. Notably, the
naive MLP-DQN agent completely failed to learn, exhibiting severe Q-value explosion throughout
training. This highlights the critical importance of explicitly handling action constraints. Addition-
ally, we conducted an ablation study on Breakthrough to validate our architectural choices; further
details are provided in the Appendix.

5.3 EXPERIMENT 3: PERFORMANCE ON GO

The game of Go serves as a particularly challenging testbed for reinforcement learning due to its
vast state-action space and the difficulty of long-term credit assignment caused by sparse terminal
rewards. Acquiring fundamental Go concepts, such as forming ”eyes” to secure living groups,
requires an agent to connect actions taken early in the game to a sparse terminal reward, a task where
standard deep learning models often fail without significant human priors or search algorithms.

Experiment Setup To isolate the effect of architectural inductive bias, we compare LGAN against
strong, pure reinforcement learning baselines using a deep convolutional network with 6 resid-
ual blocks (ResNet), a powerful and standard architecture. Baselines include RESNET-DQN and
RESNET-A2C. Our evaluation employs a cohesive, two-pronged strategy to provide a comprehen-
sive assessment of performance. First, we measure absolute strategic competence by evaluating
agents against a relatively weak MCTS benchmark(MCTS-200). MCTS is an ideal validator, as its
search can ruthlessly exploit fundamental strategic weaknesses, providing a robust test of whether an
agent has acquired core concepts. Second, we establish a definitive relative performance hierarchy
by conducting a round-robin tournament among all trained agents.

Results and Analysis The results of the MCTS evaluation, shown in 2, reveal a stark difference in
capability. The powerful ResNet-based agents completely failed to learn the game’s core strategies,
securing virtually no wins against the MCTS benchmark. This indicates a failure to solve the long-
term credit assignment problem. In stark contrast, agents built on LGAN architecture were able to
achieve meaningful victories, with LGAN-DQN demonstrating particularly strong performance as
the second player (33.4 % win rate). This result suggests that LGAN has crossed a critical threshold
of strategic understanding that the baselines could not reach.

Table 2: Win rates (%) against MCTS-200 in Go 7×7.

Agent First Player Second Player

LGAN-DQN 6.6 8.9
LGAN-A2C 14.6 16.2
RESNET-DQN 0.0 0.2
RESNET-A2C 0.0 0.1

The round-robin tournament, with results detailed in Table 3, confirms and strengthens these findings
by establishing a clear performance hierarchy. LGAN architecture conferred a significant advantage,
with both LGAN-DQN and LGAN-A2C consistently defeating the ResNet agents. LGAN-DQN

8
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emerged as the tournament’s top agent, demonstrating its dominance by holding even the strong
LGAN-A2C to a mere 6.9% win rate when playing as the second player.

Table 3: Inter-agent win rates (%) in Go 7×7 (first vs. second).

First \ Second LGAN-DQN LGAN-A2C RESNET-DQN RESNET-A2C

LGAN-DQN 100.0 62.1 100.0 80.9
LGAN-A2C 17.6 41.3 99.6 59.5
RESNET-DQN 0.0 0.4 100.0 0.0
RESNET-A2C 0.0 0.6 100.0 49.3

In a domain as complex as Go, the noise from gradients associated with the vast number of sub-
optimal or illegal actions can completely overwhelm the faint signal from the terminal reward. A
generic, high-capacity architecture like a ResNet is powerful but directionless, unable to distinguish
this faint signal from the overwhelming noise. LGAN’s Structural Gradient Isolation acts as a pow-
erful filter, dramatically cleaning the learning signal by structurally zeroing out the influence of all
illegal actions. This allows the agent to more effectively assign credit for the sparse terminal reward
to the long sequence of legal actions that led to it. The Go experiment thus demonstrates that in the
most challenging settings, a structural inductive bias like that in LGAN is not merely a helpful opti-
mization; it can be a prerequisite for learning, enabling an agent to solve credit assignment problems
where more powerful but less structured models fail.

6 LIMITATION AND FUTURE WORK

The direct, additive interpretability of LGAN, as presented, relies on the assumption of non-negative
state features (sj ≥ 0). This ensures that a high attention weight corresponds to a positive contri-
bution to an action’s preference score. While this assumption holds for many RL environments,
such as the board games used in our experiments where features represent piece presence, it limits
the direct applicability of our attribution method to domains with signed or zero-centered features.
A promising direction for future work is to extend this interpretability to general real-valued state
spaces. One potential approach is a dual-channel attention architecture. The state vector s could
be decomposed into its positive and negative components, spos = ReLU(s) and sneg = ReLU(−s).
The model could then learn two separate attention maps, Apos and Aneg , to compute a preference
score such as z = ReLU(Aposspos+Anegsneg). This would allow the model to disentangle and ex-
plicitly represent the positive and negative evidence for each action, preserving transparency without
constraining the input domain.

Another exciting avenue is the integration of LGAN with model-based planning: attention-derived
preferences can guide action selection in an MCTS variant, potentially achieving top-tier perfor-
mance. Finally, LGAN’s binary legality mask may be relaxed to continuous values in [0, 1], en-
abling soft gating where prior knowledge modulates attention strength across actions. This connects
naturally to CMDP-style formulations, allowing the integration of graded feasibility signals into
constrained but interpretable reinforcement learning.

7 CONCLUSION

We propose LGAN, an architecture that enforces action legality as a structural prior and enables
transparent decision-making. By eliminating post-hoc masking and removing reliance on future le-
gality signals, LGAN ensures correctness by design. Both theoretical analysis and empirical results
support its robustness, interpretability, and extensibility—laying the foundation for constraint-aware
and explainable reinforcement learning.
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A APPENDIX

A.1 PARAMETER ESTIMATION

The LGAN architecture enforces legality through structural design, requiring only a minimal number
of learned components. Let |A| be the number of actions, d the state dimension, and dmodel the
embedding size. The total number of trainable parameters is given by:

• Action embeddings: |A| × dmodel;
• Linear key projection: (1 + dpos)× dmodel;

The overall parameter count for the core network is:

Total parameters = |A| · dmodel + (1 + dpos) · dmodel + h

In our experiments on an 8×8 Breakthrough task with |A| = 768, d = 192, and dmodel = 512, dpos =
24, the total number of trainable parameters is approximately 0.4 million. Empirical cost 2.75GB
GPU memory (batch size 128, including gradients).

This is significantly smaller than typical transformer-based RL architecturesParisotto et al. (2020b);
Chen et al. (2021), yet sufficient for effective value approximation and policy extraction. The ab-
sence of softmax, batch normalization, and multi-layer value encoders further reduces computational
overhead while preserving structural regularity.

If actor-critic methods are employed, the value function is obtained from the key matrix key. For
the value head, the multi-head aggregation step is replaced by a parameter-free mean aggregation,
thus removing the h aggregation weights. An additional linear projection is then applied to produce
the value estimate, which introduces two parameter vectors:

w1 ∈ Rdmodel , w2 ∈ Rd

Consequently, the net parameter overhead is linear in the state and embedding dimensions, con-
tributing a total of dmodel + d− h parameters.

A.2 COMPUTATIONAL COMPLEXITY ANALYSIS

A.2.1 TIME COMPLEXITY

Let |A| denote the action space size, d the state dimension, dmodel the embedding dimension, h the
number of attention heads, and m(s) = |M(s)| the number of legal actions in state s. Forward Pass
Complexity is given by:

• Query formation: Query = diag(µs) · E requires O(|A| · dmodel)

• Key computation: Positional encoding concatenation and projection via Wk ∈
R(1+dpos)×dmodel requires O(d · dmodel)

• Attention scores: Computing QK⊤/
√
dmodel for all heads requires O(h · |A| · d · dhead)

where dhead = dmodel/h

• Value computation: z = ReLU(Ā · v) requires O(|A| · d)

The overall parameter count for the core network is:

Total complexity = O(h · |A| · d · dhead + |A| · dmodel)

Since dhead = dmodel/h, this simplifies to TLGAN = O(|A| · d · dmodel)

A.3 THE RATIONALE FOR THE INITIAL SELECTION AND EXCLUSION OF HYBRID AGENTS

The core scientific objective of this study is to isolate and evaluate the impact of encoding action
legality as a structural inductive bias within a pure reinforcement learning (RL) framework. To
ensure clarity of attribution, we deliberately restrict our comparisons to strong pure RL baselines

11
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and exclude hybrid search-based agents, such as AlphaZero. Our chosen baselines, Multi-Layer
Perceptrons (MLP) and Residual Networks (ResNets), operate entirely within the RL paradigm but
lack the inductive bias of LGAN. This controlled setup allows us to attribute performance differences
directly to architectural properties rather than external mechanisms.

By contrast, including AlphaZero-style hybrids would undermine the interpretability of our findings
for two reasons:

• Confounding Variable: The performance of AlphaZero arises from the synergy of its
Monte Carlo Tree Search (MCTS) and neural network components. Any performance gap
between LGAN and AlphaZero would be inseparable from the overwhelming advantage
conferred by MCTS, obscuring whether improvements derive from architectural design or
search power.

• Problem Misalignment: LGAN is designed to address representational contamination
within pure RL, where gradients from illegal actions destabilize learning. Hybrid agents
largely sidestep this issue: MCTS restricts exploration to legal actions, effectively filter-
ing the training signal before it reaches the network. Comparing LGAN to such systems
would not meaningfully test its contribution, since the architectural problem it addresses
has already been bypassed by external search.

In summary, our exclusion of hybrid baselines is a principled methodological choice. By focusing
on pure RL architectures, we ensure a rigorous and unambiguous evaluation of LGAN’s structural
inductive bias in action-constrained environments. Moreover, hybrid search-based systems such as
AlphaZero typically require orders of magnitude more computation and are not broadly applicable
beyond a narrow set of domains, further underscoring the relevance of pure RL comparisons.

A.4 HYPERPARAMETER DETAILS

The essential hyperparameters for our experiments are detailed in Table 4. To ensure full repro-
ducibility of our results, we have made the complete configuration files publicly available in the
project’s code repository. All experiments are made on OpenSpiel.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters used in the experiments.

Parameter Value

Optimizer Adam
Discount Factor (γ) 0.99
Value loss function MSE

DQN-Specific

Replay Buffer Size 1× 106

Initial Exploration Rate 1.0
Exploration Decay Duration 1× 106 steps
Final Exploration Rate 0.1
Train Interval 10 steps
Target Network Update Interval 1× 104 steps

Policy Gradient-Specific

GAE Lambda (λ) 0.95
Rollout Length 128

TTT-Specific

Learning Rate 3× 10−4

Batch Size 32
LGAN Model Dimension 512
LGAN Number of Heads 8

Breakthrough-Specific

Learning Rate 1× 10−3

Batch Size 128
LGAN Model Dimension 512
LGAN Number of Heads 4
LGAN Position Embedding dim 24
Baseline Model Dimension 128
A2C Value Loss Coefficient 0.8

Go-Specific

Learning Rate 3× 10−4

Batch Size 128
LGAN Model Dimension 512
LGAN Number of Heads 4
LGAN Position Embedding dim 24
Baseline Model Dimension 128
Baseline Number of Blocks 6
A2C Value Loss Coefficient 0.5

A.5 ABLATION STUDIES

We conduct ablation studies on the Breakthrough 8×8 environment, reporting first and second player
win rates separately. Unless otherwise specified, all models in this section adopt LGAN+DQN
architecture with shared settings: dmodel = 512, 4 attention heads, 1D positional encoding with base
2 · dmodel, and Mean multi-head aggregation. Other training configurations remain consistent with
those used in the main experiments.

13
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A.5.1 NUMBER OF HEADS

We evaluate the impact of varying the number of attention heads.

Table 5: Effect of number of heads in LGAN.
Heads First Player Second Player

2 81.1 84.2
4 92.3 85.1

As shown in Table 5, increasing the number of heads significantly improves performance. Multi-
head attention enables the decomposition of different strategic patterns across heads, leading to more
robust and generalized behavior under constrained capacity. Based on the performance, we choose
4 attention heads and move to the next state.

A.5.2 POSITIONAL ENCODING STRATEGY

To assess the role of positional encoding (PE), we conducted an ablation study comparing learnable
embeddings with fixed sinusoidal encodings.

Table 6: Impact of positional encoding strategy on the primary experimental platform.

Encoding First Player Second Player

Sinusoidal-1D-16 92.3 85.1
Sinusoidal-1D-24 97.2 95.5
Sinusoidal-3D-24 80.5 75.4

We also experimented with a 3D positional encoding variant. For the game of Breakthrough, which
is represented across three data layers, we allocated 4 PE dimensions to encode this layer informa-
tion, with the remaining dimensions encoding the other spatial coordinates. However, this approach
yielded poor performance.

Consequently, we adopted the 1D positional encoding strategy. A key consideration in our design is
that the raw state feature is a boolean value with a vector length of one. Using a high-dimensional PE
risks overwhelming this sparse input signal, which could drown out the original feature information
and introduce training instability. Therefore, we deliberately selected smaller PE dimensions (e.g.,
16 and 24) to ensure that the positional information complements, rather than dominates, the core
state features, striking a balance between spatial awareness and model stability.

A.5.3 USE OF LARGE LANGUAGE MODELS

Throughout the preparation of this manuscript, we utilized a large language model (LLM) as a writ-
ing assistant. The primary purpose of using the LLM was for proofreading and enhancing the clarity
and readability of our text. The model was employed iteratively to help refine sentence structure,
check for grammatical errors, and ensure that our ideas were expressed as clearly as possible. Its
use was particularly significant in the Introduction and Related Work sections. From the Method-
ology section onward, the involvement of the LLM was minimal, as the content is predominantly
based on our original technical contributions and experimental results. We, the authors, take full
responsibility for all content presented in this paper, including any parts assisted by the LLM.

A.5.4 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. This work is self-contained and
does not rely on external datasets. To facilitate replication, we provide a comprehensive table of
all hyperparameters and architectural details in the preceding sections. In addition, we include the
source code used in our experiments. However, the current implementation remains relatively unpol-
ished, as it was primarily developed for rapid prototyping within a broader, ongoing research agenda.
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Our larger investigation targets a central discrepancy in reinforcement learning (RL): why models
with strong generalization capabilities, proven effective in other domains, often underperform com-
pared to simpler architectures such as MLPs. We hypothesize that this underperformance stems
from generalization across the boundary between valid and invalid actions in an environment’s ac-
tion space, a phenomenon we call representational contamination. To better understand this effect,
the broader project is developing diagnostic tools to measure model sensitivity to representational
contamination.

The model presented in this manuscript was originally conceived as a control study in this context,
but its robustness to representational contamination led us to present it as a standalone contribu-
tion. While the released code may lack engineering refinements, it is sufficient to reproduce all
reported experiments, and a more fully integrated version will be released as subsequent phases of
our research are completed.
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