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ABSTRACT
Deep learning-based all-in-one image restoration methods have
garnered significant attention in recent years due to capable of
addressing multiple degradation tasks. These methods focus on ex-
tracting task-oriented information to guide the unified model and
have achieved promising results through elaborate architecture de-
sign. They commonly adopt a simple mix training paradigm, and the
proper optimization strategy for all-in-one tasks has been scarcely
investigated. This oversight neglects the intricate relationships and
potential conflicts among various restoration tasks, consequently
leading to inconsistent optimization rhythms. In this paper, we ex-
tend and redefine the conventional all-in-one image restoration task
as a multi-task learning problem and propose a straightforward yet
effective active-reweighting strategy, dubbedArt, to harmonize the
optimization of multiple degradation tasks. Art is a plug-and-play
optimization strategy designed to mitigate hidden conflicts among
multi-task optimization processes. Through extensive experiments
on a diverse range of all-in-one image restoration settings, Art has
been demonstrated to substantially enhance the performance of
existing methods. When incorporated into the AirNet and Tran-
sWeather models, it achieves average improvements of 1.16 dB and
1.21 dB on PSNR, respectively. We hope this work will provide a
principled framework for collaborating multiple tasks in all-in-one
image restoration and pave the way for more efficient and effective
restoration models, ultimately advancing the state-of-the-art in this
critical research domain. Code and pre-trained models are available
at our project page https://github.com/Aitical/Art.
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1 INTRODUCTION
In real-world scenarios, the observed images inevitably suffer from
various types of degradation, such as noise, blur, rain, and haze [Kar-
avarsamis et al. 2022]. These degradations deteriorate the visual
quality of images and pose significant challenges to downstream
tasks. Consequently, developing effective image restoration tech-
niques [Ali et al. 2023] has become increasingly important for a
wide range of applications, and been a fundamental research topic
in recent decades [Banham and Katsaggelos 1997; Su et al. 2022].

Recently, deep-learning based single-task models have demon-
strated exceptional performance in the respective domains, such as
denoising [Liang et al. 2021; Zamir et al. 2022; Zhang et al. 2023b],
deblurring [Chen et al. 2022a; Pham et al. 2024;Wang et al. 2022], de-
raining [Chen et al. 2023, 2024; Jiang et al. 2020; Zamir et al. 2021],
and dehazing [Cui et al. 2023; Qin et al. 2020]. However, these
task-specific methods face a significant challenge in real-world
scenarios: when they excel in a certain task, they may completely
fail in other tasks. In this paper, we focus on the all-in-one image
restoration, which can integrate knowledge across a collection of
related tasks, and propose to refresh the performance of existing
all-in-one methods by the propose Art, as shown in Figure 1.

Beyond the single-task model illustrated in Figure 2 (a), there
has been growing research interest in developing unified models to
handle multiple degradation tasks within a single model, thereby
providingmore comprehensive and practical solutions to real-world
image restoration challenges [Chen et al. 2021; Li et al. 2022; Liu
et al. 2022; Potlapalli et al. 2023; Valanarasu et al. 2022; Zhang et al.
2023a]. In [Chen et al. 2021], an early attempt to address multiple
tasks within a single training process introduces a multi-head and
multi-output architecture with a shared backbone, as illustrated
in Figure 2 (b). Recent research has shifted attention to unified
models, which is achieved by harnessing task-oriented information
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Figure 1: Comparative analysis of the proposed Art approach
against SOTA all-in-one image restoration methods. When
integrating Art to retrain existing models, it consistently
enhances the performance of the previous ones across diverse
all-in-one image restoration tasks, underscoring its efficacy
and versatility in handling multiple degradation tasks.

to inform and guide the learning process of the unified model [Li
et al. 2022; Liu et al. 2022; Zhang et al. 2023a]. In [Li et al. 2022], the
authors introduce a self-supervised approach [He et al. 2020] to pre-
train a degradation encoder, which is fixed and utilized to extract
the degradation representations of the input for the training of the
all-in-one model. The recent PromptIR [Potlapalli et al. 2023] and
Prompt-In-Prompt [Li et al. 2023] further simplify the task-oriented
guidance by an adaptive prompt learning approach, enabling end-
to-end multi-task training and achieving robust performance. With
the development of ingenious architectures, significant strides have
been made in these methods. Most recently, MioIR [Kong et al.
2024] adopts a novel training scheme to improve the all-in-one
image restoration problem by a sequential and prompt learning
strategy.

However, we observe that these methods typically adopt mixed
training, which involves combining the optimization of individual
tasks together. Less attention is paid to the optimization process
of all-in-one tasks, thereby overlooking the intricate relationships
and potential conflicts among multiple degradations in the mixed
training paradigm. Although MioIR [Kong et al. 2024] has improved
the performance of all-in-one image restoration by elaborately
changing the task settings, it fundamentally does not solve the
conflict between tasks. To better illustrate this insight, we present
the loss curves of a 7-task all-in-one training process in Figure 2
(c). It is evident that large oscillations exist during training, and
inconsistent convergence occurs for different tasks. We argue that
this uncertain dynamics in the training process is due to hidden
conflicts and inconsistent optimization objectives between multiple
degraded tasks. Therefore, failing to account for these drawbacks
through simply mix training can lead to performance discrepancies
of different degradation tasks and hinder the overall convergence
for the all-in-one restoration model. This underscores the need for
a more sophisticated approach to handle the intricate relationships
among different restoration tasks and improve all-in-one image
restoration models through multi-task collaboration.

To address this challenge, we propose an enhanced all-in-one
image restoration approach via multi-task reweighting, denoted as
Art. As illustrated in Figure 1 (d), we extend the loss function of
all-in-one tasks with active-reweighting for each individual task,
and one can observe that retrained all-in-one model with the pro-
posed Art achieves a more stable learning process. Specifically, Art

explicitly formulates the restoration process as a multi-task learn-
ing problem, aiming to harmonize the optimization of multiple
restoration tasks. To achieve this goal, we explore the convergence
status of each individual task from its local and global optimization
process and propose an active-reweighting strategy, which can equi-
librate the optimization among different restoration tasks. In detail,
this reweighting approach comprises two key components: a local
convergence rate (LCR) and a global correction weight (GCW). The
former addresses the challenge of inconsistent convergence within
a single iteration, while the latter dynamically adjusts the optimiza-
tion objective when a task deviates from its best performance. The
proposed Art is straightforward yet effective in mitigating the detri-
mental effects of hidden conflicts and ensures a delicate balance
among individual tasks. Notably, Art is a generalized optimization
strategy that can be applied as a plug-and-play method to existing
all-in-one approaches.

The current landscape of all-in-one image restoration research is
characterized by a diverse range of task settings and model architec-
tures. To validate the efficacy of our approach, we have summarized
several prevalent all-in-one experimental settings. For each exper-
imental setting, we retrained the previous models with our Art
approach. When our approach is incorporated into the AirNet and
TransWeather methods, it achieves average improvements of 1.16
dB and 1.24 dB on PSNR, respectively. As depicted in Figure 1,
the results consistently demonstrate that our proposed Art yields
significant improvements in various task settings and model archi-
tectures, highlighting its robustness and generalizability.

The main contributions of our work can be summarized as fol-
lows:

• We revisit all-in-one image restoration from the perspective
of multi-task learning and propose a novel active approach,
Art, that explicitly addresses the challenges of inconsistency
and potential conflicts among multiple restoration tasks.

• We propose a straightforward yet effective loss function with
task-specific reweighting, comprising a local convergence
rate and a global correction weight. These components work
together to prevent the inhibition of multi-task learning and
dynamically adjust the optimization objective, ensuring a
delicate balance between individual task progress and overall
model performance.

• We demonstrate the effectiveness of Art by validating its effi-
cacy across diverse all-in-one tasks with varying numbers of
degradation types. The consistent improvements observed
in different task settings and architectures highlight the po-
tential of Art to become a promising optimization strategy
in all-in-one image restoration.

2 THE PROPOSED METHOD
2.1 All-in-one Image Restoration
All-in-one image restoration aims to recover clean images from cor-
rupted observations that suffer from multiple degradations simulta-
neously. Given a set of degraded images x and their corresponding
high-quality ground truths y, the goal is to learn a restoration model
𝑓𝜃 parameterized by 𝜃 that can effectively map the degraded in-
puts to the desired clean outputs. Mathematically, the optimization
process of all-in-one image restoration can be formulated as:
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Figure 2: Evolution of image restoration methods and convergence comparison between mixed training and our approach. (a)
End-to-end training of single-task image restoration models. (b) Multi-task image restoration model with a shared backbone
[Chen et al. 2021]. The model is trained separately for each task using a shared backbone and task-specific input and output
heads, limiting its applicability. (c) Top: Architecture of current all-in-one methods, aiming to obtain a unified model through
mixed training [Li et al. 2022; Potlapalli et al. 2023; Valanarasu et al. 2022]. Bottom: Loss curves during the training process,
where collisions are observed in multi-task optimization. (d) Top: Our proposed Art, explicitly addressing all-in-one image
restoration as a multi-task problem. Bottom: Loss curves of our approach, achieving a more robust learning process.

𝜃∗ = min
𝜃
𝐿(𝑓𝜃 (𝑥), 𝑦), (1)

where 𝐿 is a reconstruction loss, such as the Mean Absolute Error
(MAE), which measures the difference between the restored im-
ages 𝑓𝜃 (𝑥) and the ground truths y. The model parameters 𝜃 are
optimized through an end-to-end training process to minimize the
reconstruction loss.

2.2 Multi-Task Collaboration
To address the challenges of hidden conflict in multiple degradation
types, we extend the loss function of all-in-one image restoration
tasks with explicit active-reweighting. In detail, we assume that the
degradation type of each training sample is known, and we denote
the input as 𝑥𝑡

𝑖
, where 𝑖 ∈ 1, . . . , 𝑁 represents the sample index,

𝑡 ∈ 1, . . . , 𝐾 indicates the degradation type, 𝑁 is the total number
of samples, and 𝐾 is the number of degradation types.

We introduce a simple but effective modification of conventional
loss function, which brings significant improvements to the opti-
mization process. Specifically, we reformulate the objective function
as:

𝐿 =
∑︁
𝑡

𝛼𝑡𝐿𝑡 , (2)

where 𝛼𝑡 is an adaptive rebalancing coefficient for each degradation
type, and 𝐿𝑡 = 𝐿(X𝑡 ,Y𝑡 ) represents the loss of individual task 𝑡 .X𝑡
andY𝑡 are the subsets of degraded images and their corresponding
ground truths with degradation type 𝑡 , respectively.

When the parameter weights 𝜃 are updated by the chain rule of
backpropagation, we obtain:

𝜕𝐿

𝜕𝜃
=
∑︁
𝑡

𝛼𝑡
𝜕𝐿𝑡

𝜕𝜃
, (3)

The adaptive reweighting coefficient 𝛼𝑡 offers a straightforward
approach to control the optimization of each task within the ex-
plicitly formulated multi-task loss function. As observed in Section
1, when a biased task is identified, increasing its corresponding
task weight 𝛼𝑡 can compel the parameter weights 𝜃 to rectify the
solution. The primary challenge lies in determining the appropriate
task weight 𝛼𝑡 to adaptively balance the tasks. To address this, we
propose a novel approach that examines the loss value of each indi-
vidual task from two perspectives: its current convergence status
and its global optimization direction.

The local convergence rate provides valuable insights into the
optimization progress of each task within a single iteration. By ana-
lyzing the rate of change in the loss value, we can identify tasks that
are converging slower than others and adjust their corresponding
task weights accordingly. This local perspective ensures that all
tasks progress at a more consistent pace, preventing any single task
from dominating the optimization process.

Furthermore, we introduce a global optimization direction com-
ponent that considers the overall trajectory of each task’s loss value
across historical iterations. This global perspective allows us to de-
tect tasks that deviate significantly from their optimal path and
dynamically adjust their task weights to steer them back towards
their desired objectives. By incorporating this global correction
mechanism, we can effectively mitigate the detrimental effects of
conflicting gradients and promote a more harmonious optimization
process.
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The final task weight 𝛼𝑡 is obtained by combining the insights
gained from both the current convergence status and the global
optimization direction. This adaptive reweighting scheme enables
our proposed method to dynamically adjust the influence of each
task on the overall optimization process, ensuring a delicate balance
between individual task progress and the collective performance of
the multi-task learning model.

In the following subsections, we delve into the details of comput-
ing the current convergence rate and the global optimization direc-
tion, and how they are seamlessly integrated to derive the adaptive
rebalancing coefficient 𝛼𝑡 . Through this meticulous approach, our
method effectively addresses the challenges of multi-task learning
in all-in-one image restoration, paving the way for more efficient
and balanced optimization processes.

local convergence rate. The local convergence rate factor 𝑠𝑡 is
introduced to balance the convergence rates of different restoration
tasks. It is computed as the ratio between the current iteration loss
𝐿𝑖𝑡𝑒𝑟𝑡 and the previous iteration loss 𝐿𝑖𝑡𝑒𝑟−1𝑡 for each degradation
type 𝑡 :

𝑠𝑡 = 𝐿𝑖𝑡𝑒𝑟𝑡 /𝐿𝑖𝑡𝑒𝑟−1𝑡 . (4)

The convergence rate factor 𝑠𝑡 is instrumental in addressing bi-
ased tasks by dynamically adjusting the optimization speed of each
task based on its convergence behavior. When a task’s loss begins
to increase, signaling a deviation from the desired convergence
trajectory, 𝑠𝑡 assumes a value greater than 1. This elevated value
effectively amplifies the gradient weight of the corresponding task,
compelling the optimization process to prioritize the correction of
the suboptimal convergence. Moreover, there is potential influence
of sample quality in mini-batch training, which can give rise to
unreliable coefficients, and we propose a more robust convergence
rate estimate with an exponential moving average (EMA) strat-
egy. This approach involves smoothing the historical loss values
to attenuate the impact of local fluctuations and anomalies. The
smoothed convergence rate, denoted as 𝑠𝑡 , is formulated as follows:

𝑠𝑡 = 𝐿𝑖𝑡𝑒𝑟𝑡 /�̃�𝑡 , (5)

where 𝐿𝑖𝑡𝑒𝑟𝑡 and �̃�𝑡 are loss values for the current and the smoothed
one, respectively. The smoothed loss values are obtained using the
EMA:

�̃�𝑡 = 𝛽�̃�𝑡 + (1 − 𝛽)𝐿𝑖𝑡𝑒𝑟𝑡 , (6)

where 𝛽 ∈ [0, 1] is a hyperparameter that controls the degree of
smoothing. A larger 𝛽 value gives more weight to the historical
losses, resulting in a smoother convergence rate factor.

The smoothed loss value reflects the overall convergence state
of the target task, allowing the local convergence rate to steadily
capture the current convergence status.

global correction weight. The global correction factor 𝑟𝑡 is
introduced to mitigate inter-task conflicts and prevent the perfor-
mance degradation of individual tasks. It is computed as the ratio
between the historical minimum loss 𝐿𝑚𝑖𝑛𝑡 and the current iteration
loss 𝐿𝑖𝑡𝑒𝑟𝑡 for each degradation type 𝑡 :

𝑟𝑡 = 𝐿𝑖𝑡𝑒𝑟𝑡 /𝐿𝑚𝑖𝑛𝑡 , (7)

Table 1: Effectiveness of the proposed local convergence rate
and global correction weight.

𝑠 𝑟 PSNR
𝑤/𝑜 𝑤 𝑤/𝑜 𝑤

29.52
✓ 29.66

✓ 29.81
✓ 14.77

✓ 29.71
✓ ✓ 30.05

The effectiveness of the global correction factor lies in its ability
to dynamically adjust the task weights based on their relative perfor-
mance. When a task’s current loss is much higher than its historical
minimum, 𝑟𝑡 becomes greater than 1, indicating the necessity for
increased attention to that task. By allocating more weight to the
biased task, the global correction factor facilitates the steering of
the optimization process towards a more robust solution.

Moreover, it is crucial to recognize that directly utilizing the
global correction factor can potentially introduce instability issues,
akin to the local oscillations observed in the loss values. To address
this concern, we propose the application of a logarithmic trans-
formation to the current and minimal loss values, yielding a more
stable result denoted as 𝑟𝑡 .

Active Reweighting. To effectively manage the optimization
of multiple degradation types within our multi-task framework,
we have developed a novel strategy for adaptive task weighting
𝛼𝑡 . This approach strategically integrates two key components:
the local convergence rate, 𝑠𝑡 , and the global correction weight,
𝑟𝑡 . The combination of these factors enables a balanced and stable
optimization process across various tasks.

The adaptive task weight 𝛼𝑡 is mathematically formulated as
follows:

𝛼𝑡 =
exp(𝑠𝑡 · 𝑟𝑡/𝜏)∑𝐾
𝑗=1 exp(𝑠 𝑗 · 𝑟 𝑗/𝜏)

, (8)

where 𝜏 represents the temperature coefficient. By leveraging these
adaptive weights, our framework can more effectively prioritize
tasks that require attention, thereby enhancing the overall efficacy
of the multi-task learning process.

2.3 Remark
Our proposed active-reweighting strategy addresses a critical chal-
lenge in all-in-one image restoration: the hidden conflicts in multi-
task learning. The core of our approach is the adaptive coefficient
𝛼 , composed of two key elements: the local convergence rate (LCR),
𝑠 , and the global correction weight (GCW), 𝑟 . These components
work in tandem to dynamically balance the optimization process
across multiple tasks.

Table 1 presents our ablation study, demonstrating the effective-
ness of each component. The baseline mixed training achieves a
PSNR of 29.52 dB. Introducing LCR without smoothing improves
PSNR to 29.66 dB, while smoothed LCR further enhances perfor-
mance to 29.81 dB. This improvement underscores the importance
of stabilizing convergence rates across tasks. The GCW proves
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Table 2: Comprehensive evaluation of the proposed Art framework across diverse experimental settings in existing all-in-one
image restoration research. As a general optimization strategy, Art is assessed on various all-in-one image restoration tasks
and models.

Experiment Settings Count of Tasks Detail Degradation

multiple degradation [Kong et al. 2024] 7 SR, Blur, Noise, JPEG, Rain, Haze, Low-Light
rain-haze-noise [Li et al. 2022] 5 Rain, Haze, Noise-𝜎15, Noise-𝜎25, Noise-𝜎50
rain-haze-snow [Valanarasu et al. 2022] 3 Rain, Haze, Snow
rain-haze-noise-blur-dark [Zhang et al. 2023a] 5 Rain, Haze, Noise, Blur, Low-Light

Table 3: Ablation study on weight of EMA 𝛽

𝛽 . 0 0.001 0.01 0.1

PSNR 29.67 29.81 29.81 29.79
Table 4: Ablation study on weight of EMA 𝛽

Table 5: Ablation study on temperature 𝜏 .

𝜏 0.1 1 3 7 10

PSNR 29.59 29.87 30.05 29.99 29.93

crucial as well. Collapse of the GCW leads to severe degradation
(14.77 dB PSNR), while the log-transformed GCW significantly im-
proves PSNR to 29.71 dB. The synergistic combination of smoothed
LCR and log-transformed GCW achieves optimal performance at
30.05 dB PSNR, surpassing all other configurations. These results
highlight our method’s ability to stabilize convergence rates across
tasks, prevent learning collapse, address task bias, and dynamically
adjust task weights based on both local and global optimization
behaviors.

3 EXPERIMENT
3.1 Experiment Setting
In this paper, we conduct extensive experiments to evaluate the
effectiveness and generalization of our proposed Art framework.
Considering core contribution of our Art is the rebalanced loss
function, which is a plug-and-play component to existing models,
we take four different experimental settings, covering a wide range
of image restoration tasks and datasets, as presented in Table 2.
Detailed experimental settings are as follows:

i. ‘multiple degradation’ setting: Following [Kong et al. 2024],
there are 7 different image restoration tasks. The multi-
degradation dataset is synthesized based on DF2K dataset,
which provides the unbiased analysis of influence between
tasks.

ii. ‘rain-haze-noise’ setting: Following [Li et al. 2022; Potla-
palli et al. 2023], the experiments span a range of datasets and
contain 5 different degradation types. Specifically, BSD400
and WED datasets are combined for training image denois-
ing, with testing on BSD68. Noisy images are artificially
created using white Gaussian noise at 15, 25, and 50 lev-
els. Rain100L is utilized for deraining, and RESIDE, which
comprises the outdoor training set (OTS) and the synthetic
outdoor test dataset (SOTS), is used for image dehazing.

iii. ‘rain-haze-snow’ setting: Following [Valanarasu et al. 2022],
the training dataset, termed “AllWeather”, includes images

from Snow100K [Liu et al. 2018], Raindrop [Qian et al. 2018],
and Outdoor-Rain [Li et al. 2019a], encompassing a variety
of weather-related degradations. The testing is carried out
on synthetic and real-world datasets, including Test1 [Li et al.
2019a], RainDrop [Qian et al. 2018], and Snow100k-L test
datasets.

iv. ‘rain-haze-noise-blur-dark’ setting: Following [Zhang
et al. 2023a], there are 5 different tasks. Specifically, we em-
ploy Rain100L [Yang et al. 2017] for deraining, the Indoor
Training Set (ITS) from the RESIDE [Li et al. 2019b] dataset
for dehazing, a combination of BSD400 [Arbeláez et al. 2011]
and WED [Ma et al. 2017] for denoising, GoPro [Nah et al.
2017] for deblurring, and LOL [Wei et al. 2018] for low-light
enhancement.

For all experimental settings described above, we take the cor-
responding state-of-the-art methods as our baselines. We strictly
follow their original training configurations to ensure a fair com-
parison. Additionally, we retrain these baseline models using their
official code to adapt to our experimental settings and provide a
through evaluation of the effectiveness of our proposed Art.

3.2 Ablation Studies
Center of the our Art framework is the proposed rebalanced loss
function, which is straightforward yet effective. There are only an
adaptive rebalancing weight is involved beyond existing methods.
Here we want to discuss some other components and provide more
detailed insights of our Art. Detailed ablation studies are provides
as follows.

Impact of EMA weight. To evaluate the impact of the weight 𝛽
in our proposed method, we conduct an ablation study with differ-
ent values of 𝛽 ranging from 0 to 0.1. The results are presented in
Table 4. Notably, to better understand the influence of 𝛽 , this study
is conducted with only 𝑠 instead of 𝛼 , because the 𝛽 only works
with 𝑠 . When 𝛽 is set to 0, representing no EMA component, the
PSNR reaches 29.67 dB. This serves as a baseline for evaluating the
contribution of the EMA in our method. Setting 𝛽 to 0.01 and 0.001
yields a PSNR of 29.81 dB in both cases. This suggests that EMA
strategy works effectively to capture the historical information and
stabilize the training process, highlighting the contribution of our
proposed local convergence rate. Finally, as we increase 𝛽 to 0.1,
the PSNR induces to 29.79 dB.

Impact of Temperature coefficient. To investigate the influ-
ence of the temperature parameter 𝜏 on our proposed method’s
performance, we conduct an ablation study by varying the values
of 𝜏 from 0.1 to 10. The results are presented in Table 5. When 𝜏
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Table 6: Comparison on 7 distinct degradation tasks introduced in [Kong et al. 2024].
Methods SR Blur Noise JPEG Rain Haze Low-Light Avg.

SRResNet-M 25.52 30.01 30.49 32.46 32.38 25.57 30.20 29.52
SRResNet-S [Kong et al. 2024] 25.72 30.49 30.67 32.73 32.81 25.78 30.45 29.84
SRResNet-M + Art (Ours) 25.59 30.31 30.59 32.61 33.24 26.30 31.71 30.05
SRResNet-S + Art (Ours) 25.78 30.78 30.76 32.85 33.69 26.51 32.04 30.34

Uformer-M 25.80 30.53 30.84 33.13 33.39 27.93 33.27 30.70
Uformer-S [Kong et al. 2024] 26.07 31.11 30.96 33.27 35.96 28.29 32.80 31.21
Uformer-M + Art (Ours) 25.90 30.84 30.97 33.24 34.26 28.97 35.18 31.34
Uformer-S + Art (Ours) 26.16 31.50 31.16 33.40 36.54 29.48 34.40 31.81

Input Uformer-M Uformer-M (Ours) Uformer-S Uformer-S (Ours) GT

Figure 3: Visual results of image deraining task. Compared
to baseline all-in-one Uformer model introduced in [Kong
et al. 2024], our proposed Art can consistently enhance the
existing models even with the sequential training approach.

is set to a small value of 0.1, the PSNR reaches 29.59 dB. However,
we observe that this value is too small to obtain a robust 𝛼 , lead-
ing to oscillations during the training process. As we increase 𝜏
to 1, the PSNR improves to 29.87 dB, indicating that a higher tem-
perature facilitates better optimization and convergence. The best
performance is achieved when 𝜏 is set to 3, with a PSNR of 30.05
dB. This suggests that an appropriate balance is struck among the
multiple tasks at this temperature value, enabling the model to ef-
fectively learn and adapt to the different task requirements. Further
increasing 𝜏 beyond 3 leads to a slight decline in performance. This
behavior can be attributed to the fact that higher values of 𝜏 provide
a more uniform weight distribution among the multiple tasks, po-
tentially impeding the flexibility of our adaptive rebalancing weight.
Consequently, the model’s ability to dynamically adjust the task
weights based on their individual performance is hindered. It is
worth noting that even with suboptimal hyper-parameter settings,
our proposed method still outperforms the baseline models pre-
sented in [Kong et al. 2024], which achieve a PSNR of 29.51 dB. This
demonstrates the robustness and effectiveness of our approach in
handling multi-task learning scenarios, even when the temperature
parameter is not optimally tuned.

3.3 Main Results
‘multiple degradation’ setting. Table 6 demonstrates the su-

perior performance of our proposed multi-task balanced learning
approach, Art, compared to the vanilla mixed Training and the
state-of-the-art sequential training strategy introduced by MiOIR

[Kong et al. 2024]. The sequential training strategy, denoted as -S in
the table, aims to mitigate the interference between different tasks
by gradually increasing the number of tasks in the training set.
While this approach has been shown to improve upon the mixed
training paradigm in all-in-one image restoration, it has limitations
in terms of scalability to multiple tasks due to its sensitivity to
the training order. In contrast, our Art method achieves signifi-
cant improvements over the sequential training strategy using the
most straightforward mixed training approach. By incorporating
task-specific rebalancing coefficients, Art effectively equilibrates
dynamics optimization and mitigates inter-task conflicts and sur-
passes the performance of the carefully designed sequential training
strategy without the need for controlling the task order.

Furthermore, we observe that the sequential training strategy
introduced in MiOIR ultimately reduces to mixed training when
all tasks are included in the final stage. Building upon this insight,
we apply our multi-task reweighting strategy to the mixed training
portion of the sequential training pipeline. The results demonstrate
that our approach can further enhance the performance of sequen-
tial training, achieving notable improvements.

Figure 3 presents a subjective comparison of the restored images,
showcasing the superior image quality achieved by our retrained
SRResNet model. The visual improvements are evident not only
when compared to the baseline models but also when contrasted
with the sequential training approach. This further highlights the
effectiveness of our multi-task balanced learning method in enhanc-
ing the perceptual quality of the restored images.

“dhaze-derain-denoise" setting. Table 7 presents the experi-
mental results for three distinct degradation tasks: rain, haze, and
noise, which are widely investigated in the current research land-
scape of all-in-one image restoration. By employing our proposed
method, Art, to retrain the AirNet and PromptIRmodels, we observe
significant improvements across all tasks, highlighting the effec-
tiveness of our approach in addressing the challenges of multi-task
imbalance.

Notably, the retrained AirNet model using Art achieves signifi-
cant improvement of performance that are comparable to, or even
surpass, results of the original PromptIR model. This finding di-
rectly corroborates the severe impact of multi-task imbalance on
the current state of all-in-one image restoration. The original Air-
Net model struggles to attain optimal results due to the inherent
difficulties in balancing multiple tasks during training. However, by
applying our Art approach, we effectively mitigate these issues and
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Table 7: Comparative results with rain-haze-noise all-in-one restoration tasks. One can find that our retrained AirNet and
PromptIR outperforms original ones on all test datasets.

Methods
Dehazing Deraining Denoising on BSD68 dataset Average
SOTS Rain100L 𝜎 = 15 𝜎 = 25 𝜎 = 50

FDGAN [Dong et al. 2020] 24.71/0.924 29.89/0.933 30.25/0.910 28.81/0.868 26.43/0.776 28.02/0.883
MPRNet [Zamir et al. 2021] 25.28/0.954 33.57/0.954 33.54/0.927 30.89/0.880 27.56/0.779 30.17/0.899

AirNet [Li et al. 2022] 27.94/0.962 34.90/0.967 33.92/0.933 31.26/0.888 28.00/0.797 31.20/0.910
AirNet + Art (Ours) 30.56/0.977 37.74/0.981 34.02/0.934 31.37/0.890 28.12/0.802 32.36/0.917

PromptIR [Potlapalli et al. 2023] 30.58/0.974 36.37/0.972 33.98/0.933 31.31/0.888 28.06/0.799 32.06/0.913
PromptIR + Art (Ours) 30.83/0.979 37.94/0.982 34.06/0.934 31.42/0.891 28.14/0.801 32.49/0.917

Input AirNet AirNet (Ours) PromptIR PromptIR (Ours) GT

Figure 4: Visual results of AirNet, PromptIR and retrained ones by the propsoed Art.

Table 8: Performance evaluation of deweathering all-in-one
tasks. Consistent improvement is achievedwith the proposed
approach.

Datasets Method PSNR ↑ SSIM ↑

Outdoor-Rain

MPRNet [Zamir et al. 2021] 28.03 0.9192
All-in-One [Li et al. 2020] 24.71 0.8980

WeatherDiff128[Özdenizci and Legenstein 2023] 29.72 0.9216
TransWeather [Valanarasu et al. 2022] 28.83 0.9000

TransWeather + Art (Ours) 29.81 0.9088

Snow100K

DDMSNet [Zhang et al. 2021] 28.85 0.8772
All-in-One [Li et al. 2020] 28.33 0.8820

WeatherDiff128[Özdenizci and Legenstein 2023] 29.58 0.8941
TransWeather[Valanarasu et al. 2022] 29.31 0.8879

TransWeather + Art (Ours) 30.61 0.9083

RainDrop

IDT [Xiao et al. 2023] 31.87 0.9313
All-in-One [Li et al. 2020] 31.12 0.9268

WeatherDiff128[Özdenizci and Legenstein 2023] 29.66 0.9225
TransWeather [Valanarasu et al. 2022] 30.17 0.9157

TransWeather + Art (Ours) 31.54 0.9338

Average TransWeather [Valanarasu et al. 2022] 29.44 0.9012
TransWeather + Art (Ours) 30.65 0.9170

unlock the true potential of the AirNet architecture, demonstrating
its capacity to achieve state-of-the-art performance when properly
optimized.

Conversely, the PromptIR model, with its large model capacity
(near 36M parameters) and adaptive prompt mechanism, exhibits
strong generalization capabilities across multiple tasks. The adap-
tive prompt enables the model to dynamically adjust its behavior
based on the specific characteristics of each task, leading to im-
proved performance. However, despite its advanced architecture,
the PromptIR model is not impervious to the inherent conflicts and
imbalances that arise inmulti-task learning when employing vanilla

mixed training approaches. By retraining the PromptIR with our
Art method, we observe substantial enhancements in restoration
quality across all three degradation tasks as well. The application
of the proposed task-specific rebalancing coefficients effectively
equilibrates the dynamics optimization and mitigates inter-task
conflicts. This enables the retrained PromptIR model to surpass its
original counterpart and provides a new benchmark in all-in-one
image restoration.

"dhaze-derain-desnow" setting. Table 8 showcases the perfor-
mance of our Art method applied to the TransWeather. Compared
to the original model, the retrained version exhibits average PSNR
gains of 1.21 dB. These improvements highlight the enhanced ability
of the retrained model to restore weather-degraded images. Figure 5
provides visual comparisons, corroborating the quantitative results.

Moreover, Table 9 presents results on real-world deweathering
tasks. Notably, the proposed Art method significantly improves the
TransWeather model’s performance, elevating it to a level compara-
ble with state-of-the-art methods in terms of average performance
across various real-world scenarios.

The alignment between quantitative PSNR improvements and
qualitative visual enhancements offers compelling evidence of our
approach’s efficacy in addressing various weather-related image
degradations.

“rain-haze-snow-blur-dark" setting. Table 10 presents a com-
prehensive comparison of our proposed Art method applied to the
AirNet and Transweather models for all-in-one image restoration
across five distinct tasks. We evaluate the performance of the re-
trained models against their original counterparts and the results
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Table 9: Comparison on real-world deweathering datasets proposed in [Zhu et al. 2023].

Methods
Rain Snow Haze Average

on SPA+ on RealSnow on REVIDE
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Chen et al. [Chen et al. 2022b] 37.32 0.97 29.37 0.88 20.10 0.85 28.93 0.90
WGWS [Zhu et al. 2023] 38.94 0.98 33.64 0.93 29.46 0.85 34.01 0.92
TransWeather [Valanarasu et al. 2022] 33.64 0.93 29.16 0.82 17.33 0.82 26.71 0.86
TransWeather + Art (Ours) 38.58 0.98 30.06 0.91 20.07 0.88 29.57 0.92

Table 10: Comparative results with 5 distinct tasks of all-in-one restoration.

Methods SOTS Rain100L BSD68 GoPro LOL Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TAPE [Liu et al. 2022] 29.67 0.904 22.16 0.861 30.18 0.855 24.47 0.763 18.97 0.621 25.09 0.801

AirNet [Li et al. 2022] 32.98 0.951 21.04 0.884 30.91 0.882 24.35 0.781 18.18 0.735 25.49 0.846
AirNet + Art (Ours) 33.67 0.959 21.91 0.889 31.01 0.885 25.07 0.789 20.33 0.745 26.40 0.853

Transweather [Valanarasu et al. 2022] 29.43 0.905 21.32 0.885 29.00 0.841 25.12 0.757 21.21 0.792 25.22 0.836
Transweather + Art (Ours) 29.93 0.908 22.09 0.891 29.43 0.843 25.61 0.776 21.99 0.811 25.81 0.846

Input Transweather Transweather (Ours) GT
Figure 5: Visual results of Transweather and ours. More ac-
curate and better quality images are obtained from the re-
trained Transweather.

demonstrate the effectiveness of our Art method in enhancing the
performance of both AirNet and Transweather models across all
five tasks. It is worth noting that while the retrained AirNet model
outperforms the retrained Transweather model on average, the per-
formance gap between the two models is reduced compared to their
original versions. This suggests that our Art method is effective in
improving the performance of different architectures, making them
more competitive in all-in-one image restoration tasks.

Discussion. Our experiments demonstrate the effectiveness of
the proposed Art optimizing strategy for all-in-one image restora-
tion across various degradation scenarios. Art consistently en-
hances the performance of state-of-the-art models, including Air-
Net, PromptIR, TransWeather, andMioIR, outperforming both vanilla
mixed training and sequential training strategies. Notably, the re-
trained AirNet’s ability to match or surpass the original PromptIR

(Table 7) highlights a critical insight: current limitations in all-
in-one image restoration are not solely due to model capacity or
architecture, but also stem from suboptimal training strategies. This
finding emphasizes the importance of addressing the implicit effects
of multiple tasks in the field.

4 LIMITATIONS
While our proposed Art approach marks a significant advancement
in all-in-one image restoration, it is not without limitations. Our
findings reveal uneven performance improvements across different
tasks, as evidenced in Tables 6 and 7. Although Art substantially
enhances the performance of models like Uformer and AirNet, the
degree of improvement varies among tasks. This variability likely
stems from the inherent complexities and diverse characteristics of
the tasks involved, highlighting the need for further research.

5 CONCLUSION
This paper introduces a novel Multi-Task Balanced Learning (Art)
approach for all-in-one image restoration, addressing the challenges
of imbalanced learning status, and potential conflicts among mul-
tiple restoration tasks. Art explicitly formulates the restoration
process as a multi-task learning problem, introducing task-specific
rebalancing coefficients, a local convergence rate, and a novel global
correctionweight to equilibrate dynamics optimization andmitigate
inter-task conflicts. Extensive experiments demonstrate the versa-
tility and generalizability of Art across various task settings and
model architectures, highlighting its potential to become a standard
optimization strategy in the field of all-in-one image restoration.
The insights and techniques introduced in this work lay the founda-
tion for future research inmulti-task learning and have the potential
to revolutionize the approach to all-in-one image restoration and
related problems in computer vision.
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