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Abstract

Recent prompt optimisation approaches use
the generative nature of language models to
produce prompts – even rivalling the perfor-
mance of human-curated prompts. In this pa-
per, we demonstrate that randomly sampling
tokens from the model vocabulary as “separa-
tors” can be as effective as language models
for prompt-style text classification. Our experi-
ments show that random separators are compet-
itive baselines, having less than a 1% difference
compared to previous self-optimisation meth-
ods and showing a 12% average relative im-
provement over strong human baselines across
nine text classification tasks and eight language
models. We further analyse this phenomenon
in detail using three different random genera-
tion strategies, establishing that the language
space is rich with potentially good separators,
with a greater than 40% average chance that a
randomly drawn separator performs better than
human-curated separators. These observations
challenge the common assumption that an ef-
fective prompt should be human readable or
task relevant and establishes a strong baseline
for prompt optimisation research.1

1 Introduction

Pre-trained large language models (PLMs, Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Radford et al., 2019; Touvron et al., 2023a,b; Jiang
et al., 2023) have demonstrated remarkable per-
formance when conditioned with appropriate con-
text (Petroni et al., 2019, 2020; Jiang et al., 2020;
Shin et al., 2020; Davison et al., 2019). For in-
stance, when given a query along with the phrase
“Let’s think step by step,” such models are capa-
ble of solving reasoning tasks (Kojima et al., 2022;
Wei et al., 2022). These special tokens, often called
“separators”, are usually placed at the end of the in-
put data or at the beginning of the output (Table 1).

1Our implementation is publicly available at https://
github.com/yaolu/random-prompt
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Figure 1: Illustration of our approach when searching
for good separators for a sentiment classification task.
Unlike relying on human knowledge or using external
large language models to suggest alternatives, we find
that randomly selected separators from the vocabulary
can also yield good performance.

Recent work found that including thinking-style
separators such as "take a deep breath" can signifi-
cantly enhance reasoning performance (Yang et al.,
2023). Similarly, another study discovered that
simply using “SOLUTION:” is even more effec-
tive (Fernando et al., 2023). These findings suggest
that the language space for separators might still
be under-explored, with many effective options
yet to be identified. A common framework em-
ployed in this line of research involves starting with
thinking-style separators, using a language model
to generate alternatives, and then selecting effec-
tive separators based on certain criteria (Zhou et al.,
2022; Yang et al., 2023; Fernando et al., 2023; Guo
et al., 2023). This optimisation-style framework
has shown promise in automating the exploration
of the language space, which addresses the chal-
lenge of relying on human expertise to develop
task-specific separators.

Most existing methods, particularly those ap-
plied to reasoning tasks, assume that effective sep-
arators should be closely related to the task or con-

https://github.com/yaolu/random-prompt
https://github.com/yaolu/random-prompt


text (Fernando et al., 2023; Guo et al., 2023; Shi
et al., 2022). However, perhaps counter-intuitively,
we find that a performant separator does not nec-
essarily have to be task-relevant or even coherent.
Sometimes, even tokens chosen at random from
the vocabulary can improve performance as much
as semantically meaningful phrases.

PROMPT EXAMPLES

HUMAN This is a good movie. Answer: positive

RANDOM This is a good movie. !@#?& positive

Table 1: Examples of prompts used in our evaluation,
where the highlighted text are the separators.

As shown in Figure 1 and Table 1, we can
achieve similar performance to that of human-
optimised prompts by randomly selecting separa-
tors from the vocabulary. This suggests that ran-
dom separators can serve as a competitive base-
line, sometimes even matching the performance
of previous methods (Zhou et al., 2022; Kojima
et al., 2022; Yang et al., 2023; Guo et al., 2023) for
prompt-style text classification tasks. Our explo-
ration across seven different models further shows
that this behaviour is universal across both pre-
trained and instruction-tuned language models (Ta-
ble 6), and seems to be a fundamental characteristic
of in-context learning (Brown et al., 2020).

We further analyse this phenomenon with three
random separator generation strategies, revealing
that there are many performant separators in the
language space, suggesting that previous research
underestimated the effectiveness of randomised
prompts outside of reasoning tasks. This obser-
vation breaks common assumptions such as that
good separators need to be task relevant, coherent,
and context dependent (Shin et al., 2020; Shi et al.,
2022). Experimental results show that using ran-
dom separators attains a 12% average relative im-
provement across nine classification tasks on eight
language models, compared to human-curated sep-
arators. To summarise, our contributions are as
follows:

1. We show that random separators can be as ef-
fective as human-curated prompts for prompt-
style text classification.

2. We analyse three randomised separator gen-
eration strategies, which do not require an
instruction-following language model, and

show on-average a 12% relative improvement
over human baselines.

3. We find that random separators are as compet-
itive as previously proposed language model
approaches to generate alternative prompts,
suggesting that their effectiveness appear
greater than what it would have appeared
given this strong random baseline.

2 Random Separator Optimisation

We propose a random separator optimisation frame-
work (Figure 2) to find effective separators based
on random sampling. The framework consists of
three components: 1) random separator generation,
2) separator evaluation, and 3) separator selection.

2.1 Definition of Separator

The term “separators” is inspired by the well-
known BERT [SEP] token in order to differentiate
from general wordings such as “suffix” or “prefix”.
We use this term to provide readers with better
semantics and also to avoid ambiguity.

2.2 Random Separator Generation

In this work, we seek to answer the following ques-
tions which relate to common assumptions adopted
in prompt optimisation research:

• Should effective separators be task-relevant,
or should they be closely tied to the existing
context information?

• To what degree are language models needed
for prompt optimisation?

To answer these questions, we propose three strate-
gies for generating random separators from lan-
guage model free and context-free, to language
model dependent and context relevant. The core
difference between these three random strategies
are summarised in Table 2, with a more detailed
illustration provided in Table 3.

Language Model Task Relevant

Random Vocabulary ✗ ✗

Random w/o Context ✓ ✗

Random with Context ✓ ✓

Table 2: Random generation methods
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Figure 2: Our random separator optimisation procedure.

Sampling randomly across the vocabulary. Au-
toPrompt (Shin et al., 2020) suggests that effective
separators may appear to be random strings, show-
ing the potential of identifying a good separator
within the random space. To investigate this, we
design an approach to generate random separators
that are context-free, task-agnostic, and do not rely
on any language model for their generation. Essen-
tially, we select random tokens from the vocabulary
until a predetermined string length limit is reached.

Sampling from a language model without con-
text. This method involves drawing samples from
the language model’s prior distribution, a process
that is both context-free and task-agnostic. We
employ this random generation method to evalu-
ate whether separator coherence contributes to per-
formance, especially when compared to random
samples at the vocabulary level.

Sampling from a language model with con-
text. The creation of task-relevant separators may
enhance performance. For instance, incorporat-
ing thinking-style phrases in a reasoning task has
proven highly effective. In OPRO (Yang et al.,
2023), the authors highlight that including samples
from the training data in the meta-prompt leads to
consistent improvements. Thus, to assess the im-
pact of task relevance on separator generation, we
integrate a few training samples from the training
corpus into the meta-prompt to refine the semantic
space of the separator.

2.3 Separator Evaluation
We demonstrate the evaluation process in Figure 2.
In line with prior work (Fernando et al., 2023; Yang

et al., 2023), a small set of labelled data, denoted
as the training corpus T = {(xi, yi)}, i = 1, ..., n,
is available. Here, xi and yi represent the sen-
tence and label of the ith sample, respectively. We
also define a transformation T , which maps label
yi to text. In contrast to supervised learning set-
tings that require a large volume of data for train-
ing, we only need a limited set of examples.2 To
evaluate a given separator s, we perform string
concatenation (⊕) of the each input sentence from
the training corpus T with the separator. As part
of in-context learning settings, where demonstra-
tions may be necessary for some tasks, we also
take into account a context c, which has identi-
cal structure to the linearised sequence. For each
data point (xi, yi) in T , we prompt the pretrained
language model to generate the predicted label
ŷi = argmaxv∈V P (v|c⊕ xi ⊕ s; θ), where θ rep-
resents the parameters of the pretrained language
model and V denotes the vocabulary space. For a
classification task, we compute the classification
accuracy as the corresponding separator score, de-
noted by m. It is worth noting that the metric does
not necessarily need to be differentiable, allowing
for the direct optimisation of discrete metrics such
as word overlap ratio, etc.

2.4 Separator Selection

Despite the random separator generation steps be-
ing independent, we retain the term “iteration” in
our methodology. This allows for a consistent com-
parison with other methods that use an iteration-

2For all experiments, the training set size is n = 64, unless
explicitly mentioned otherwise.



sensitive meta-prompt. During the iteration pro-
cess, we evaluate the generated prompt and keep
track of the most effective separators at each step.
The sampling continues until we reach a predefined
sampling budget limit, denoted as k. By the end of
the training process, we accumulate a set of separa-
tors3 and their corresponding scores, represented
as S = {(si,mi)}, i = 1, ..., k. The separator that
yields the highest score in this set is then selected
for evaluation on the test set.

3 Experimental Setup

3.1 Datasets and Models

In line with previous studies (Gao et al., 2020; Zhao
et al., 2021; Lu et al., 2022), we use nine text clas-
sification datasets (Table 4). For training we use 64
samples per dataset and for evaluation we use the
sub-sampled test set from Lu et al. (2022).

In contrast to previous work, our random sep-
arator optimisation methods do not require an
instruction-tuned language model. This allows us
to test our methods using both standard pre-trained
language models and instruction-tuned language
models. As detailed in Table 5, our experiment
uses four pre-trained language models and four
instruction-tuned language models, in total eight
models with varying structure and training data.

3.2 Optimisation Settings

Separator generation methods. As detailed in
Section 2, we have proposed three different random
separator generation approaches. For comparative
analysis, we include the OPRO (Yang et al., 2023)
method in our study. We also adapt OPRO’s meta-
prompt by omitting the instructional text, creating
an in-context learning variant (OPRO-ICL). This
allows fair comparison between random generation
and other methods on non-instructionally tuned
models. We also compare our methods against
two human-level prompt optimisation methods,
MI (Zhang et al., 2023) and NI (Mishra et al., 2021),
as well as two automatic prompt optimisation meth-
ods, APE (Zhou et al., 2022) and EvoPrompt (Guo
et al., 2023), under our experimental settings4 de-
scribed in Guo et al. (2023). In total, we employ
nine distinct separator generation methods as base-
lines in our main experiment (Tables 6 and 7).

3We generate up to 160 separators in all experiments.
4Due to the difficulty of accurately reproducing these meth-

ods, we adapt our settings to fit the EvoPrompt setup instead.

Baseline separators. To better understand how
much improvement separator optimisation can
achieve, we use the human curated separator “An-
swer:” and random strings such as “Foo Bar”5

and zero-shot chain-of-thoughts (ZS-CoT) (Kojima
et al., 2022), “Let’s think step by step”, as baseline
separators.

Initialisation. The choice of a starting point does
not affect random methods. In cases where a meta-
prompt requires a starting point, such as in OPRO,
we use “Answer:” as the starting point.

Prompting settings. We use one-shot examples
as context to prompt language models during both
training and test stages. When context is neces-
sary for separator generation, we provide three
randomly chosen training examples. We set the
generation temperature to 1.0 and use a tempera-
ture of 0.0 for prompt-based text classification. For
training of OPRO and OPRO-ICL, we set a max-
imum of 40 optimisation steps and generate four
candidate separators each step. For our random
methods, we generate 160 candidate separators and
select the best one for evaluation.

4 Results and Discussion

We report our results in Table 6 and demonstrate
the effectiveness of randomly sampled separators
across all tasks. In addition, we compare four addi-
tional baseline methods in Table 7 using the experi-
mental settings described by Guo et al. (2023).

4.1 Random Separators are Strong Baselines

Unnatural separators are effective. To our sur-
prise, we find that even separators chosen at ran-
dom from the vocabulary can substantially improve
performance. Table 6 shows that the Random Vo-
cabulary method yields, on average, a 10% rela-
tive improvement across nine benchmark datasets
compared to human-curated separators. Random
Vocabulary shows only marginal differences (less
than 1% difference) compared to self-optimisation
style methods (Yang et al., 2023; Zhou et al., 2022).
For evolutionary methods (Guo et al., 2023), Ran-
dom Vocabulary shows a 3.4% difference from the
best EvoPrompt result (Table 7), with the most sig-
nificant drop (2.1%) occurring on the SubJ dataset.

Since our goal is not to produce a state-of-the-art
method, but rather to establish a strong baseline,

5Here, “Foo Bar” represents a random string sampled from
the vocabulary and not the literal usage of this exact string.



Description Prompt for Generating New Separators

Random Baseline Random string without optimisation steps -
Human Baseline (Lu et al., 2022) Use “Answer:” as it is widely used -
ZS-CoT (Kojima et al., 2022) Think-style phrase -

OPRO (Yang et al., 2023)

The meta-prompt in OPRO consists of a
natural language problem description and
instructions to generate new solutions based
on previously found solutions.

[Instructions] I have some texts along with their ...
[Historical Solutions] text: think stepwise score: 55 ...
[Instructions] The following exemplars show ...
[Context] should not be missed <INS>positive ...
[Instructions] Write your new text that is different ...
text: [to be prompted]

OPRO-ICL
We remove all instructions from OPRO
to create an in-context learning variant.

[Historical Solutions] text: think stepwise score: 55 ...
[Context] should not be missed <INS>positive ...
text: [to be prompted]

Random Vocabulary
Randomly sample tokens across vocabulary
to generate separators.

[to be sampled] [such as “!@#$%^&*”]

Random w/o Context Draw samples from LLM’s prior distribution. [to be prompted]

Random with Context

Prompting language model with few examples
as context. Similar to OPRO (Yang et al., 2023),
we use three randomly sampled examples from
training data as context.

[Context]
should not be missed <INS>positive
curiously depressing <INS>negative
text: [to be prompted]

Table 3: Separator generation methods used for our main experiment. Text wrapped with square brackets are not
included in prompt.

Dataset # of Classes Avg. Len. Balanced

SST-2 (Socher et al., 2013) 2 12.4 ✓

SST-5 (Socher et al., 2013) 5 23.1 ✗

MR (Pang and Lee, 2005) 2 25.7 ✓

CR (Hu and Liu, 2004) 2 22.1 ✓

MPQA (Wiebe et al., 2005) 2 3.9 ✓

Subj (Pang and Lee, 2004) 2 28.9 ✓

TREC (Voorhees and Tice, 2000) 6 11.6 ✗

AGNews (Zhang et al., 2015) 4 53.8 ✓

DBPedia (Zhang et al., 2015) 14 65.5 ✓

Table 4: Statistics of evaluation datasets, average length
is calculated based on GPT-2 sentence-piece length.

Model # of Parameters
Instruction

Tuned

GPT2 Large (Radford et al., 2019) 0.8B ✗

GPT2 XL (Radford et al., 2019) 1.5B ✗

Mistral 7B (Jiang et al., 2023) 7B ✗

Mistral 7B Instruct (Jiang et al., 2023) 7B ✓

Llama-Alpaca 7B (Taori et al., 2023) 6.7B ✓

Llama2 7B (Touvron et al., 2023b) 6.7B ✗

Llama2 7B Chat (Touvron et al., 2023b) 6.7B ✓

ChatGPT (GPT-3.5 Turbo, 0613 version) – ✓

Table 5: Language models used in experiments.

the performance of Random Vocabulary suggests
that previous progress and the weight of contri-
butions in prompt optimisation might be overesti-
mated. Notably, our method does not depend on
a language model for generation (Table 2). This
result challenges the common practice in prompt
optimisation where large language models are used
for creating alternative prompts.

Natural language separators are effective, but
may not be essential. Human creation of sep-
arators often takes coherence into account. For

instance, in sentiment classification, a model might
struggle to predict “positive” or “negative” due to
high sequence perplexity, but introducing a sep-
arator like “It is positive” can align predictions
with the model’s pre-training objective. Given the
surprisingly competitive quality of Random Vocab-
ulary, we further explore the potential benefits of
coherence towards prompt optimisation. We de-
sign another simple strategy, Random w/o Context,
which samples from the language model’s prior
to generate natural language phrases as separators.
The key difference between Random w/o Context
and Random Vocabulary is that the former consists
of natural language phrases, whereas the latter may
not. Both methods generate separators that are
statistically unlikely to be relevant to the task and
context.

Experimental results show that the Random w/o
Context is significantly better than human base-
lines (12% relative improvement) and nearly on
par with previous state-of-the-art prompt optimi-
sation methods (less than a 1% difference). This
suggests that Random w/o Context is also a simple
but strong baseline for prompt optimisation. When
comparing the natural and unnatural separators, our
analysis shows a mere 0.5% relative difference be-
tween Random Vocabulary and Random w/o Con-
text. Such a small margin suggests that, while the
Random w/o Context approach is competitive, co-
herence does not appear to be a critical factor.

Task information in separator generation pro-
vides slight improvements. Random with Con-



SST-2 SST-5 DBPedia MR CR MPQA Subj TREC AGNews Avg.
(Rel. ∆%)

Finetuning (Full) 95.0 58.7 99.3 90.8 89.4 87.8 97.0 97.4 94.7 90.0

GPT2-LARGE 0.8B
Answer: 74.8 27.0 37.5 54.5 69.8 63.0 65.9 9.5 52.9 50.5 (0.0)

Foo Bar 57.0 36.8 34.5 53.3 63.5 51.6 53.4 21.0 51.2 46.9 (−7.1)

ZS-CoT 61.5 26.6 37.3 59.1 52.8 32.8 51.3 15.6 63.7 44.5 (−11.9)

OPRO 77.1 43.1 44.4 81.0 75.5 64.8 73.1 36.5 62.7 62.0 (22.8)

OPRO-ICL 81.6 44.1 43.8 68.8 74.5 65.9 73.0 36.6 70.8 62.1 (23.0)

Random Vocabulary 80.6 43.4 40.2 77.0 76.8 62.7 73.0 34.5 72.2 62.3 (23.4)

Random w/o Context 77.2 41.9 45.7 75.5 78.6 67.2 72.4 39.5 66.8 62.8 (24.4)

Random with Context 82.0 43.9 42.9 81.6 73.9 69.5 71.4 35.8 71.2 63.6 (25.9)

GPT2-XL 1.5B
Answer: 72.3 37.7 38.3 69.5 60.8 59.2 61.2 7.2 46.5 50.3 (0.0)

Foo Bar 40.3 40.5 40.4 49.5 56.4 47.7 56.6 17.1 57.0 45.1 (−10.3)

ZS-CoT 39.8 27.7 41.5 42.6 43.7 49.4 55.2 16.6 56.3 41.4 (−17.7)

OPRO 80.0 44.6 47.0 79.3 78.0 68.6 75.6 29.8 72.0 63.9 (27.0)

OPRO-ICL 82.9 45.2 47.4 81.0 78.0 69.9 78.8 26.1 69.6 64.3 (27.8)

Random Vocabulary 73.1 45.9 47.6 71.4 78.4 65.5 77.1 25.5 69.3 61.5 (22.3)

Random w/o Context 72.0 40.5 44.6 75.0 79.3 70.8 72.8 35.6 68.1 62.1 (23.5)

Random with Context 82.1 41.7 44.2 81.8 78.5 64.3 73.4 32.9 74.5 63.7 (26.6)

MISTRAL 7B
Answer: 85.5 46.6 63.7 89.0 92.2 61.6 69.7 34.3 82.1 69.4 (0.0)

Foo Bar 61.0 44.0 63.7 72.7 87.1 48.2 55.9 34.8 79.5 60.8 (−12.4)

ZS-CoT 52.6 44.5 66.7 56.9 80.3 48.5 54.5 36.3 76.3 57.4 (−17.3)

OPRO 86.3 46.8 71.9 92.7 87.4 79.5 82.7 60.8 83.1 76.8 (10.7)

OPRO-ICL 91.0 48.2 72.7 93.5 90.6 76.2 86.3 59.9 82.9 77.9 (12.2)

Random Vocabulary 87.3 49.4 70.1 93.1 85.8 76.2 80.7 55.7 81.6 75.5 (8.8)

Random w/o Context 91.4 48.7 73.8 91.6 86.3 74.4 79.8 60.5 80.9 76.4 (10.1)

Random with Context 92.7 47.9 74.1 92.9 87.8 67.0 84.4 59.9 82.9 76.6 (10.4)

MISTRAL 7B INSTRUCT

Answer: 86.5 38.8 83.9 86.0 86.4 75.1 66.6 63.0 79.8 74.0 (0.0)

Foo Bar 85.1 39.7 82.3 85.3 85.7 75.5 63.8 63.8 78.8 73.3 (−0.1)

ZS-CoT 83.8 39.8 79.4 83.9 87.3 75.5 66.6 67.2 79.3 73.6 (0.0)

OPRO 89.0 40.2 82.8 88.0 84.3 81.3 68.3 67.3 81.6 75.9 (2.6)

OPRO-ICL 89.1 41.7 83.7 90.2 87.7 79.6 72.7 66.3 82.3 77.0 (4.1)

Random Vocabulary 87.0 40.6 84.0 87.2 87.6 78.8 66.6 66.5 79.1 75.3 (1.8)

Random w/o Context 89.5 40.9 82.4 88.2 88.5 80.7 65.8 65.0 80.3 75.7 (2.3)

Random with Context 89.6 41.6 83.1 88.8 89.6 81.2 71.6 66.5 80.7 77.0 (4.1)

LLAMA2 7B
Answer: 83.0 43.0 68.1 89.0 89.1 67.6 63.6 35.5 80.2 68.8 (0.0)

Foo Bar 76.2 46.1 65.3 75.7 76.0 51.0 51.4 26.6 77.8 60.7 (−11.8)

ZS-CoT 64.5 45.9 64.8 73.8 88.8 66.3 51.6 47.2 81.6 64.9 (−5.7)

OPRO 89.1 46.0 72.0 93.1 83.9 78.5 81.1 55.8 81.0 75.6 (9.9)

OPRO-ICL 92.0 48.8 72.3 92.5 85.6 79.9 79.1 57.3 80.7 76.5 (11.2)

Random Vocabulary 91.5 47.5 68.8 93.0 88.4 79.2 77.1 49.4 80.7 75.1 (9.2)

Random w/o Context 92.2 48.5 71.9 92.6 88.0 77.7 75.6 47.7 81.0 75.0 (9.0)

Random with Context 90.5 49.5 71.6 93.1 82.9 77.6 77.7 52.8 82.2 75.3 (9.4)

LLAMA2-CHAT 7B
Answer: 85.3 38.3 34.8 87.4 82.3 79.5 58.8 48.0 70.5 65.0 (0.0)

Foo Bar 85.9 29.8 36.6 80.3 83.9 78.3 53.3 38.9 61.8 61.0 (−6.2)

ZS-CoT 82.3 26.1 34.3 77.2 79.8 75.9 52.0 34.9 58.4 57.9 (−10.9)

OPRO 84.2 43.0 36.5 83.8 80.6 82.6 62.3 45.9 65.8 65.0 (0.0)

OPRO-ICL 85.5 45.2 39.2 89.4 83.8 83.5 65.6 49.3 71.2 68.1 (4.8)

Random Vocabulary 88.1 38.8 39.5 88.8 84.9 83.6 58.0 50.3 68.5 66.7 (2.6)

Random w/o Context 90.2 42.3 38.4 89.3 83.7 82.2 60.3 48.8 72.3 67.5 (3.8)

Random with Context 89.6 47.5 37.6 89.7 83.7 82.0 63.8 48.8 66.9 67.7 (4.2)

CHATGPT (GPT-3.5)
Answer: 93.2 44.1 90.2 91.8 90.2 68.0 78.9 75.0 81.6 79.2 (0.0)

Foo Bar 91.0 37.1 90.0 88.1 89.1 71.5 66.0 72.3 81.2 76.3 (−3.7)

ZS-CoT 93.9 35.0 87.9 91.2 89.8 76.0 80.1 76.4 82.6 79.2 (0.0)

OPRO 93.6 43.8 89.5 91.4 87.9 80.7 80.5 72.1 83.4 80.3 (1.4)

OPRO-ICL 94.3 36.3 90.8 90.8 90.2 82.4 78.9 75.0 83.0 80.2 (1.3)

Random Vocabulary 94.7 47.7 89.5 91.8 91.6 81.8 78.9 77.7 83.0 81.9 (3.4)

Random w/o Context 93.4 42.4 91.6 91.2 90.8 82.6 79.5 74.6 82.4 80.9 (2.1)

Random with Context 94.3 48.4 89.3 92.6 87.3 84.4 84.0 75.2 83.6 82.1 (3.7)

Table 6: Our main results on the evaluation set. We use one-shot context for all experiments, and use the same
model for separator generation and evaluation. The relative improvement scores are computed using the “Answer:”
as baseline. All the results except ChatGPT are calculated based on five different random seeds. For ChatGPT, we
use two different random seeds. Results are colored blue when our random separators achieve the best performance.
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Random
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Random

w/Context

SST-2 93.7 92.9 94.0 94.8 94.8 93.7 94.2 94.4
CR 91.4 90.9 90.5 91.4 91.2 91.1 90.2 91.0
MR 88.8 89.6 90.9 90.2 90.4 89.4 89.6 90.3
SST-5 42.9 48.6 47.0 48.2 49.4 41.0 37.1 45.5
AGNews 70.6 48.9 71.2 73.3 73.4 76.5 80.6 79.5
TREC 50.6 55.0 59.6 64.4 63.8 61.4 57.6 66.8
SubJ 49.8 52.6 63.3 77.6 67.9 62.6 69.0 64.7

AVG. 71.1 68.2 73.8 77.1 75.9 73.7 74.0 76.0

Table 7: Prompt performance on the Alpaca-tuned
LLaMA model. We compare with two human-level
prompt optimisation methods, MI (Zhang et al., 2023)
and NI (Mishra et al., 2021), and two automatic prompt
optimisation methods, APE (Zhou et al., 2022) and Evo-
Prompt (Guo et al., 2023).

text imposes task-relevance constraints by sampling
from a language model conditioned on training
samples. We observe, though marginal, consistent
improvements of including context information for
prompt optimisation. Specifically, the Random with
Context method achieves a relative improvement
of 0.3% over Random w/o Context and 0.9% over
Random Vocabulary. Nevertheless, given the sig-
nificant gains that Random Vocabulary achieves
over human baseline (10%), the incremental gains
from adding task information are relatively minor.

4.2 Random Sampling is a Strong Prompt
Optimiser

Random separator generation methods are
comparable to instruction-based approaches.
OPRO and its in-context learning variant achieve
the top average performance for four out of seven
models. However, the advantage is minimal, with a
0.1% average performance difference compared to
random methods. It appears that instruction-based
methods might be randomly encountering good
separators throughout the optimisation process.

Instruction-tuned models are not essential for
proposing separators. Previous prompt optimi-
sation work heavily rely on a language model to
suggest alternatives, and they make a strong as-
sumption that only instruction-tuned models are
able to differentiate good and bad prompts. How-
ever, our observation indicates that instruction-
tuned models are not essential for proposing the
separators. As shown in Table 6, OPRO is able
to achieve reasonable performance, even for the
smaller GPT2 family models. It is worth noting
that, given the linguistic complexity of the OPRO-
style meta prompt, a GPT2 model is unlikely to

“understand” it (Ouyang et al., 2022). Furthermore,
we do not observe a significant increase when using
instruction-based model for proposing separators.

Strategy Separator Score

OPRO The new text is the following: 92.2
OPRO-ICL 00:57 92.2
Random Vocabulary obliged\u0442\u0438\u0435Circ song 92.2
Random w/o Context Home Business New \u2018 92.2
Random with Context **GW - The Wall Street 92.2

Table 8: Performant separators discovered in the train-
ing process on AGNews using LLAMA2 7B, we report
the accuracy score over the training set.

Random
Vocabulary

Random
w/o Context

Random
with Context

GPT2-LARGE 37.1% 20.4% 51.2%
GPT2-XL 70.6% 42.6% 48.3%
LLAMA2 7B 66.1% 47.2% 49.6%
LLAMA2 CHAT 21.4% 14.6% 13.9%

Table 9: Chance of random separators outperforming
the human baseline “Answer:” on the AGNews dataset.

5 Analyses

5.1 Language Space is Rich with Potentially
Good Separators.

We find that different approaches can discover dis-
tinct separators while yielding similar performance,
as shown in Table 8. This prompts a natural ques-
tion: how many effective separators exist? For
simplicity, we deem any separator effective if it
outperforms a human-curated separator such as
“Answer:”. To investigate this question, we calcu-
late the percentage of effective random separators
based on all data points6 from the main experiment.
Table 9 shows that our random baseline has on
average a 40% chance to draw a separator that is
better than the human baseline. This suggests that
in the language space, there are more performant
separators than we previously expected.

5.2 Are Performant Random Separators
Transferable?

In this section, we study whether performant sepa-
rators discovered by random approaches are trans-
ferable across different tasks and contexts.

6Approximately 10,000 separators.



↙ SST-2 SST-5 DBPedia MR CR MPQA Subj TREC AGNews Avg.

BEST HUMAN-LEVEL PROMPT

Answer: 81.2 40.6 40.6 82.8 81.2 76.6 79.7 4.7 43.8 59.0

BEST SEPARATOR, RANDOM VOCABULARY

SST2 85.9 39.1 42.2 43.8 81.2 84.4 65.6 26.6 65.6 59.4
SST5 57.8 45.3 31.2 73.4 81.2 48.4 51.6 7.8 56.2 50.3
DBPedia 50.0 39.1 56.2 64.1 81.2 79.7 42.2 29.7 56.2 55.4
MR 75.0 34.4 39.1 82.8 82.8 60.9 42.2 21.9 48.4 54.2
CR 48.4 29.7 37.5 43.8 93.8 62.5 42.2 28.1 57.8 49.3
MPQA 85.9 39.1 42.2 43.8 81.2 84.4 65.6 26.6 65.6 59.4
SubJ 57.8 25.0 46.9 76.6 87.5 73.4 76.6 28.1 48.4 57.8
TREC 57.8 23.4 39.1 76.6 81.2 76.6 42.2 43.8 60.9 55.7
AGNews 50.0 32.8 31.2 79.7 79.7 76.6 42.2 25.0 79.7 55.2

BEST SEPARATOR, RANDOM W/O CONTEXT

SST2 76.6 18.8 40.6 57.8 93.8 59.4 56.2 34.4 59.4 55.2
SST5 51.6 43.8 31.2 62.5 85.9 75.0 67.2 37.5 29.7 53.8
DBPedia 51.6 29.7 54.7 54.7 70.3 60.9 60.9 43.8 71.9 55.4
MR 60.9 35.9 43.8 84.4 81.2 76.6 48.4 31.2 45.3 56.4
CR 76.6 18.8 40.6 57.8 93.8 59.4 56.2 34.4 59.4 55.2
MPQA 56.2 23.4 50.0 43.8 79.7 81.2 42.2 37.5 46.9 51.2
SubJ 50.0 18.8 48.4 59.4 89.1 68.8 81.2 17.2 23.4 50.7
TREC 50.0 20.3 48.4 57.8 79.7 73.4 42.2 45.3 54.7 52.4
AGNews 48.4 25.0 42.2 60.9 79.7 68.8 42.2 28.1 79.7 52.8

Table 10: Random separator transferability test on
GPT2-XL. We transfer the best random separator from
each task (the columns) to the others (the rows), then
colour the results according to their relative accuracy on
the training set. Brightness denotes high transferability,
with thresholds at 80% and 90%.

Cross-task transferability. We use separators
with the highest accuracy from each task (Table 11)
and apply them to different tasks. According to
Table 10, we do not observe high transferability
across tasks; for example, a performant prompt for
SST2 has almost random-guessing performance
on SST5, and vice versa. This is within our ex-
pectations, as these random prompts are optimised
and selected for a particular task. Notably, even
widely used human-curated separators exhibit sim-
ilar transferability scores (59.0% versus 59.4% in
average score) across tasks to random methods.

Task Random Vocabulary Random w/o Context

SST2 “cancell BlakesteamappsGr” “In December, I”
SST5 “biblical namely” “(”
DBPedia “download pitch Par” “To view this”
MR “GAME paced” “"”
CR “learnt” “In December, I”
MPQA “cancell BlakesteamappsGr” “LONDON”
SubJ “pubfile Favor” “A small”
TREC “wasSIZE Armageddon” “Image”
AGNews “Alc messenger SYSTEM precipitation” “Weird Al”

Table 11: Best-discovered random separators used in
the transferability test.

Cross-context transferability. Given the limited
cross-task transferability of separators, we further
study whether performant random separators are
transferable when the context changes7 within a
fixed task. We discover that random separators

7The term “context” here is also referred to as “demon-
strations” in in-context learning. In our experiments, we use
one-shot examples as context to guide the output label space
for classification tasks.

#1 #2 #3 #4 #5 Avg.

BEST HUMAN-LEVEL PROMPT

Answer: 43.8 54.7 57.8 43.8 53.1 50.6

AVERAGE SEPARATORS, RANDOM VOCABULARY

AVG. Foo Bar 55.7 55.6 63.2 61.9 53.3 57.9

BEST SEPARATOR, RANDOM VOCABULARY

#1 Best Sep. 79.7 81.3 81.3 68.8 53.2 72.9
#2 Best Sep. 71.9 78.1 79.7 64.1 73.4 73.4
#3 Best Sep. 71.9 60.9 82.8 70.3 76.6 72.5
#4 Best Sep. 76.6 73.4 67.2 82.8 57.8 71.6
#5 Best Sep. 71.9 67.2 71.9 70.3 79.7 72.2

Table 12: Random separator context transferability test
on GPT2-XL. We choose the best separator from differ-
ent contexts of the AGNews dataset; then compute its
accuracy across other contexts for the same AGNews
training set. AVG. Foo Bar represents the average
performance of 160 randomly sampled separators.

exhibit a degree of transferability and are signifi-
cantly better than human-curated ones (73.4% ver-
sus 50.6%). Surprisingly, for this task, human-
curated prompts perform even worse than the aver-
age random prompt, which matches with our obser-
vations in Section 5.1. Overall, our random strate-
gies offer considerable flexibility in discovering
task-wide performant separators.

5.3 Beyond Text Classification Tasks
In previous sections, we have mainly showed that
random sampling is a strong baseline for classi-
fication tasks across nine classification datasets
over eight different models, revealing that the over-
sensitivity of LLMs is still a notable issue, and it is
a fundamental characteristic of in-context learning.

To verify whether such random methods have
similar patterns, and are strong baselines for gener-
ative reasoning tasks, we apply our “random sam-
pling over vocabulary” method to GSM8K (Cobbe
et al., 2021), a mathematical reasoning dataset.

SEED HUMAN COT

AVG.

RANDOM VOCABULARY

BEST

RANDOM VOCABULARY

(REL. ∆%)

#1 35.9 36.3 46.9 (30.6)

#2 42.2 39.3 50.0 (18.5)

#3 35.9 37.7 46.9 (30.6)

#4 39.1 38.0 45.3 (15.9)

AVG. 38.3 37.8 47.3

Table 13: Comparing best random separators perfor-
mance with Chain-of-Thoughts prompting on GSM8K.

Similar to the previous experimental setup, we
sample up to 160 different random separators, and



then perform selection and evaluate their perfor-
mance over the subset of test data. For this task-
specific setup, we use 5-shot and majority vot-
ing@1 on the Mistral 7B model (Jiang et al., 2023),
and report results on four different random seeds8,
as shown in Table 13.

CoT is only slightly better than average random
separators. Surprisingly, for the few-shot math-
ematical reasoning task, thinking-style phrases
could only be slightly better than random sepa-
rators. On average, CoT attains an accuracy of 38.3
and the average of random separators is 37.8. This
suggests that the gains of manual prompt optimisa-
tion are sub-optimal.

CoT shows high variance in quality across differ-
ent examples. As shown in Table 13, we observe
that the language model is sensitive to different
sets of demonstrations across all methods. The
most widely used human-derived chain-of-thought
prompt (“let’s think step by step”) results in the
highest variance, with over a 17% relative per-
formance gap between the best and worst set of
demonstrations. On the other hand, our random
sampling approach yields a 9% relative difference,
suggesting better robustness.

Random separators are still a strong baseline for
generative reasoning tasks. Our best random
separators reach an average accuracy of 47.3, a 23%
relative increase in accuracy over the CoT baseline.
This aligns with our main findings derived from the
classification tasks (Table 6). It is conceivable that
for complex generative tasks, the language space is
abundant with potentially good separators.

6 Related Work

Automatically discovering effective prompts re-
mains a challenging research problem because of
the complexity of the search space. One direction
is continuous prompt tuning (Qin and Eisner, 2021;
Lester et al., 2021; Liu et al., 2023), which involves
adding a set of smaller tunable parameters to pre-
trained language models. An alternative approach
is to optimise discrete token spaces. Shin et al.
(2020) showed that gradient information at the em-
bedding layer can guide the discovery of more ef-
fective prompts. According to their research, unnat-
ural prompts can also result in good performance,
which matches our observations. In spite of the

8We change the demonstration examples for each seed.

efficiency of using gradient information, such a
method, which heavily relies on the availability
of language models, imposes some restrictions on
certain types of models. An alternative direction
is black box search. To simplify language space
optimisation, Prasad et al. (2023) introduced a set
of operations, such as add/delete/replace tokens.
APE (Zhou et al., 2022) showed that generating
some alternatives and then selecting and rephrasing
them could also provide effective solutions. Simi-
larly, Xu et al. (2022) used evolutionary methods to
optimise the search process. Recently, Yang et al.
(2023) demonstrated that we can teach language
models to learn the pattern of good prompts using
human-written meta prompts. EvoPrompt (Guo
et al., 2023) showed how we can formulate the evo-
lutionary process in meta-prompt. Fernando et al.
(2023) further demonstrated how we can improve
the meta-prompt using language models, making
the whole framework completely automatic with-
out relying on the internal state of language models.

7 Conclusion

We find that random separators, even those se-
lected at random from vocabulary, could be as
effective as previously discovered state-of-the-art
prompts. In addition, we conduct research on three
different types of random separators, which demon-
strated that these random separators do not require
instruction-tuned models, could provide a 12% rela-
tive improvement as compared to human baselines,
and are on par with a self-optimising approach in-
volving complex meta-prompt engineering.

Limitations

While we have done our utmost to explore ran-
domly generated prompts, a limitation of this work
is that we mainly evaluate our approaches on text
classification tasks. However, based on our ex-
perimental results in the mathematical generative
task (Section 5.3), our findings are still empirically
sound. We will leave a more comprehensive evalu-
ation of generative tasks as future work.
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