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Figure 1: Left: CUT3R [89] encodes observations into a state (memory) St−1, then interacts with new
observation Xt and retrieves 3D information by reading out the output token Yt. However, it suffers from
the forgetting problem and degrades significantly as the number of input views increases. Right: We treat
the state St as a fast weight updated via gradient descent, where the learning rate βt and the gradient ∇t

are predicted by the frozen slow weights. These slow weights are learned from training datasets and act as a
meta-learner, enabling the fast weight to serve as an associative memory. In addition, TTT3R makes online state
updates by balancing the retention of historical information St−1 with a confidence-aware learning rate βt. This
visualization also incorporates a state reset process, please see Appendix B for details.

ABSTRACT

Modern Recurrent Neural Networks have become a competitive architecture for
3D reconstruction due to their linear-time complexity. However, their performance
degrades significantly when applied beyond the training context length, revealing
limited length generalization. In this work, we revisit the 3D reconstruction
foundation models from a Test-Time Training perspective, framing their designs as
an online learning problem. Building on this perspective, we leverage the alignment
confidence between the memory state and incoming observations to derive a closed-
form learning rate for memory updates, to balance between retaining historical
information and adapting to new observations. This training-free intervention,
termed TTT3R, substantially improves length generalization, achieving a 2×
improvement in global pose estimation over baselines, while operating at 20 FPS
with just 6 GB of GPU memory to process thousands of images. Code is available
in rover-xingyu.github.io/TTT3R.

1 INTRODUCTION

3D reconstruction foundation models aim to predict camera poses and scene representations from a
set of input RGB images. Building on the sequence modeling [76], recent advances [87, 91, 101]
successfully map sequences of images into pixel-aligned pointmaps [11, 12]. Among these methods,
the Transformer [82] has emerged as the dominant architecture, owing to its training efficiency
and ability to capture long-range dependencies. However, a fundamental limitation lies in the
quadratic growth of computational and memory costs with respect to sequence length. Despite
various engineering optimizations, such as KV-cache compression [44] and flash attention [22], the
softmax attention remains unchanged and continues to face limited scalability for long contexts [45].
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Figure 2: GPU memory cost for inference.

Real-world applications often require handling
an arbitrary number of images. As Fig-
ure 2 shows, recent feed-forward methods
(e.g., VGGT [87], Point3R [95]) suffer from
high memory consumption. Notably, only
CUT3R [89] achieves constant memory usage
with RNN-based design. However, as illustrated
in Figure 1, CUT3R fails to generalize to long
sequences due to training on most 64-frame se-
quences. Motivated by these observations, we
ask ourselves if there are lessons from modern
RNNs that can be used as design principles for
3D reconstruction.

Recent advances in Recurrent Neural Networks (RNNs) demonstrate performance on par with
Transformers on language tasks [34, 37]. Recurrent architectures compress the history context into a
fix-length memory state, with each output depending solely on the current state and the incoming
observation. This recurrent mechanism offers two benefits: efficient processing of long sequences
with linear computational complexity, and the ability to scale to longer sequences by simply rolling out
the state. Nevertheless, these benefits often come at the cost of substantial performance degradation,
particularly when the sequence length exceeds the training context [62, 84].

This naturally raises two questions: (1) why do these models fail to provide robust length gener-
alization? and (2) how can length generalization be achieved? To answer these questions, several
studies [8, 62, 99] have investigated the length generalization of RNNs, identifying correlations with
state overfitting [90], state forgetting [17, 36], and unexplored state distributions [62]. Solutions
such as training on longer sequences and employing Truncated Backpropagation Through Time
(TBTT) [62, 75, 94] have been proposed to improve length generalization. While these techniques
have been incorporated into recent 3D reconstruction foundation models, such as CUT3R [89], they
still struggle to generalize to sequences comprising hundreds of images.

In this work, we revisit the state update rule of recurrent 3D reconstruction models through the lens
of Test-Time Training (TTT) [7, 73, 88], and systematically investigate the factors that hinder their
ability to generalize across varying sequence lengths. Specifically, inspired by recent findings that
recurrent models struggle with length generalization due to state overfitting [62], we reformulate
state updating as a TTT-style online learning process [7, 45, 88]. In our framework, the historical
information is compressed into a state online. We interpret the state as a fast weight [64, 65] learned
at test time from the input in-context tokens, rather than from the training dataset. This perspective
provides a principled understanding of state overfitting, suggesting that associative recall [9, 60]
over long contexts, combined with gradient-based updates using adaptive learning rates to balance
forgetting and learning [5, 6, 34, 45, 64, 74, 97], can substantially enhance length generalization.

Furthermore, we find that CUT3R [89] can be interpreted as a test-time training mechanism, whereas
simply extending the sequence length during training leads to extremely low FLOPs utilization.
Therefore, we propose a simple yet effective inference-time state update rule, termed TTT3R,
derived as a closed-form state transition for online associative recall in CUT3R. This transition
function explicitly defines the learning rate required to update the state at test time, thereby enabling
length generalization. Our approach exploits internal confidence signals to selectively suppress low-
quality state updates. This yields a stable, training-free gating mechanism that mitigates catastrophic
forgetting [38] without requiring fine-tuning or additional parameters.

We evaluate TTT3R on standard 3D reconstruction benchmarks, which are typically configured with
short-sequence inputs. In this setting, TTT3R performs competitively with state-of-the-art online
reconstruction models [89, 95, 106] and demonstrates significant improvements with long-sequence
inputs. More importantly, these gains in length generalization come at NO additional computational
cost over the baseline, thanks to the proposed state update rule.

Overall, we introduce a new TTT-based framework to analyze the behavior of stateful 3D reconstruc-
tion models. Based on this, we propose a simple, empirical state update rule to enhance sequence
length generalization for CUT3R.
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2 RELATED WORK

SfM and SLAM. Structure-from-Motion (SfM) [2, 39, 57, 58, 66, 69, 70] and Simultaneous Lo-
calization and Mapping (SLAM) [23, 29, 43, 50, 52, 104] have long been the foundation for 3D
structure reconstruction and camera pose estimation. These methods rely on associating 2D corre-
spondences [4, 25, 47, 50, 63] or minimizing reprojected photometric errors [29, 30], followed by
bundle adjustment (BA) [1, 12, 77, 79, 80, 86] for structure and motion refinement. Although highly
effective when assembled into comprehensive systems [50, 66], these approaches often struggle in
conditions of small camera parallax or ill-posed conditions (e.g., dynamic or textureless), leading to
performance degradation. Recent work, such as MegaSaM [43] and VIPE [35], has demonstrated
progress in adapting traditional SLAM paradigms to dynamic scenes by integrating semantic seg-
mentation [35, 39], optical flows [35, 43, 104, 105], and geometric constraints [35, 39, 43, 48, 104].
Concurrently, methods like VGGT-SLAM [49] and VGGT-Long [24] seek improved robustness by
integrating learned front-ends [51, 87, 91]. However, these methods require iterative optimization
based on off-the-shelf estimation, where synchronization barriers often lead to cumulative errors
and high computational overhead. This reliance hinders real-time online inference and learning
scalability (e.g., the ’tabula rasa’ blank slate limitation [89]). In this work, we investigate data-driven
feed-forward models with generalizable priors to enable dense 3D reconstruction even from dynamic
and textureless video sequences.

Offline Reconstruction Foundation Model. The pioneering feedforward 3D reconstruction
method DUSt3R [91] introduced an end-to-end formulation that directly predicts two pixel-aligned
pointmaps [11, 12, 68] from an image pair. By leveraging a Transformer-based architecture [28] and
direct point supervision on large-scale 3D datasets, DUSt3R inherently accounts for image match-
ing [3, 16] and pose estimation [27, 46], resulting in a reconstruction foundation model. Although
some follow-up methods [16, 102] extend DUSt3R for robust dynamic scene reconstruction, they
inherit the limitation of DUSt3R, requiring costly global alignment when the number of input views
exceeds two. To address this issue, Fast3R [96] and VGGT [87] propose to use a large feedforward
transformer with global attention that handles multiview inputs and predicts per-view pointmaps
simultaneously, without the need for post-processing, leading to state-of-the-art 3D point and camera
pose reconstruction. However, relying on the full attention [82] causes a quadratic increase in compu-
tational and memory cost, and results in an offline process that requires re-running inference over all
images whenever a new frame arrives. Instead, we aim for compute-efficient, on-the-fly streaming
inference that supports long-sequence, real-time interactive, and compute-efficient applications.

Online Reconstruction Foundation Model. To improve the reconstruction efficiency, several works
introduce memory mechanisms to maintain information from past frames, enabling incremental
reasoning and add pointmaps to a canonical 3D space. StreamVGGT [106] concurrently caches
historical keys and values as memory in a causal transformer framework, allowing incremental
processing. However, similar to full attention in VGGT [87], the computation and GPU memory usage
in StreamVGGT grow redundantly. A promising alternative is the use of recurrent neural network
architectures [14, 19, 85], such as CUT3R [89], which maintain a constant-sized memory state, while
incrementally integrating new observations by simultaneously updating the state with the newly
added view and retrieving historical information from the state. Although the recurrent formulation
effectively reduces computational complexity and keeps inference memory usage consistently low, the
memory-based methods suffer from the forgetting problem from earlier frames, leading to significant
performance degradation as the number of input views increases. To mitigate the forgetting issue,
Point3R [95] proposes an explicit point-based memory, where the history tokens are anchored in the
reconstructed 3D point positions. While the explicit memory cache mitigates the forgetting, it causes
memory cost that grows linearly as the number of views increases because the reconstructed points
accumulate. In this work, we take an opposite path, exploring a closed-form state update rule that
enhances the length generalization of implicit state memory to reasoning over thousands of views,
while keeping memory and computation costs consistently low and unchanged as input view growth.

Modern RNN. Recent developments in RNN layers, serve as more efficient alternatives to quadratic
complex full-attention layers [82], have demonstrated competitive performance in language modeling
tasks. One line of research originates from a recurrent variant of attention [37, 64], known as linear
attention [37], which uses the standard inner product between the query and key rather than the
exponential softmax, allowing the output to be recurrently computed in linear time. However, linear
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(a) Full Attention (b) Vanilla RNN (c) Test-Time Training

Figure 3: Sequence Modeling Layers. Full attention appends states, which incurs a quadratic cost. In contrast,
vanilla RNNs use a fixed-size state with linear complexity, but they suffer from the forgetting problem. Our
approach adopts Test-Time Training (TTT), treating the state as fast weights learned during test time via gradient
descent with adaptive learning rates, which improves length generalization.

attention equally compresses all key value pairs into its finite-sized state, resulting in performance
degradation as the sequence length increases. To address this limitation, various works [5, 54, 74, 97],
such as Mamba [21, 34], have proposed adding forgetting gates, in which previous values are
attenuated by a factor before the new memory is stored, to prevent the state from diverging over time.
Recently, many of these models have been cast into a framework of test-time training/regression [7, 73,
88], which views the recurrent update of state as online learning [45] from context [26, 83], balancing
between retaining historical memory and adapting to new information, as shown in Figure 3. The
iterate states are also known as fast weights [64, 65], as they change in-context with each timestep,
rapidly adapting to the input tokens. In contrast to the slow weights in neural networks—which act
as meta-learners [31] and are only adjusted during training—fast weights are learned to function as
associative memory [9, 60]. Recent examples of such layers include DeltaNet [64, 98], TTT [73, 103],
and Titans [6], each of these layers was derived from a specific choice of retention and adaptation.
The idea of learning at test time [10, 72] has also been explored in 3D reconstruction, where methods
such as CVD [48] and Test3R [100] fine-tune a pre-trained model on the test sequence to minimize
a self-supervised geometric consistency loss, thereby adapting the model to that particular scene.
Inspired by their success, we propose to introduce a general test-time training framework that enables
3D reconstruction models to achieve both view scalability and memory retention.

3 METHOD

Our method processes a continuous stream of images received online. For each incoming image
It ∈ RW×H×3, we aim to estimate, in real time and on the fly: the camera pose Tt ∈ R3×4, the
camera intrinsic Ct ∈ R3×3, and the canonical point cloud Pt ∈ RW×H×3. We begin in Section 3.1
by introducing sequence modeling to understand and compare different prominent classes of methods
that address the pointmap regression problem. Section 3.2 then reformulates recent incremental 3D
reconstruction methods from a Test-Time Training perspective. Finally, in Section 3.3, we propose
TTT3R, showing how the cross-attention between memory and observation can be leveraged as a
confidence-guided state update rule for online associative recall.

3.1 SEQUENCE MODELING FOR POINTMAP REGRESSION

To transform a sequence of images to pixel-aligned pointmaps that lie in a unified global coordinate
space, a generic formulation can be written as:

Xt = Tokenize(It)

St = Update(St−1,Xt)

Yt = Read(St,Xt)

Pt = De-tokenize(Yt)

(1)

where the input image It is patchified into a set of image tokens Xt ∈ R(h×w)×c through an image
tokenizer [28], such as DINO [15, 53] and CroCo [92, 93]. The image tokens Xt update the previous
state St−1 into the current state St using new information. The model then retrieves information
stored in the updated state St by reading out the output token Yt ∈ R(h×w)×c. Following the
readout operation, the corresponding pixel-aligned 3D pointmaps are extracted via dense prediction
de-tokenizers, such as linear layers with pixel shuffle [67] and a DPT head [61]. The camera pose
Tt and the camera intrinsic Ct, can either be solved from pixel-aligned 3D pointmaps using the
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PnP [41] and Weiszfeld [56] algorithms, or regressed from image tokens Xt through the MLP or
trunk attention layers [86, 87].

This sequence formulation offers a unified perspective for interpreting pointmap-oriented 3D recon-
struction foundation models, where the update and read operations serves as the core distinction
among different methods. They fall into two categories: full attention-based and RNN-based, each
introducing specialized designs to the update rules of sequence modeling layers.

For full attention–based methods, such as Fast3R [96] and VGGT [87], all frames interact through
global all-to-all self-attention, which can be interpreted as progressive state concatenation with
growing state length:

Update(St−1,Xt) = St−1.append(KXt ,VXt)

Read(St,Xt) = Xt + softmax(QXtK
⊤
St
)VSt

(2)

where state St−1 = [(KX1 ,VX1), . . . , (KXt−1 ,VXt−1)] is a list of key-value pairs. Each key-value
pair (KXt

,VXt
) and query QXt

are transformed from the input token Xt via linear layers, and
KSt

= concat[KX1
, . . . ,KXt

], VSt
= concat[VX1

, . . . ,VXt
]. This modeling requires O(t2)

computing complexity, since all output tokens Y1, . . . ,Yt must be updated upon receiving Xt. To
efficiently process streaming input, StreamVGGT [106] uses a causal attention architecture to model
the causal nature of streaming data, which restricts each frame to attend only to itself and preceding
tokens, allowing only Yt to be updated given Xt. Causal attention enables incremental processing
and reduces the computational cost to O(t). However, it shares a similar limitation with full attention:
the state is represented as a key–value list that grows redundantly at O(t), leading to increasing
memory consumption as the number of views increases.

For RNN-based methods [14, 19, 85, 89, 95], each incoming frame interacts with the state via
one-to-one cross-attention, allowing for fixed-length state:

Update(St−1,Xt) = St−1 + softmax(QSt−1
K⊤

Xt
)VXt

(3)

where the state St−1 ∈ Rn×c, consisting of n tokens with channel dimension c, encodes the scene with
a constant length. QSt−1 denotes the query projection obtained by applying a linear transformation to
the state St−1. Although this recurrent formulation effectively reduces the computational complexity
to O(1) and inference memory usage constant at O(1), it suffers from forgetting and exhibits
significant performance degradation as the number of input views increases.

3.2 REVISIT RNN-BASED RECONSTRUCTION THROUGH TTT

Test-Time Training (TTT) [73] introduces fast weights [65] as rapidly adaptable states that are
updated during both training and inference to dynamically capture context. In contrast, slow weights
(i.e., model parameters) remain frozen during inference. Formally, TTT represents the state as a
fixed-length fast weight St−1 ∈ Rn×c and updates it via gradient descent:

Update(St−1,Xt) = St−1 − βt∇(St−1,Xt) (4)

where ∇(St−1,Xt) is a learned gradient function of the previous state St−1 and the current observa-
tion Xt, aiming to encourage the network to associate the current observation with the state, and βt

is the learning rate. Intuitively, this online learning process encodes the KV-cache from the current
observation into a fixed length of memory (i.e., state) as accurately as possible [88].

For example, linear TTT (or DeltaNet [64, 98]) minimizes the reconstruction error ||(St−1KXt −
VXt)||2 by optimizing the state S to accurately reconstruct the observation value VXt . This objective
yields an analytical gradient:

Update(St−1,Xt) = St−1 − β∇(St−1,Xt) (5)

(St−1KXt −VXt)K
⊤
Xt

Here, the key KXt
serves as an index into previous state St−1, identifying the entries to be updated

with the value VXt
. Conceptually, this mechanism treats the state as a dynamic associative memory,

the key specifies where to write, the value specifies what to write, and the learning rate acts as a
gating mechanism that controls the memory plasticity by weighting the intensity of the state update.
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Figure 4: TTT3R Illustration. We present a training-free solution for scalable online 3D reconstruction that
mitigates forgetting issue in CUT3R. (a) Vanilla CUT3R [89] pipeline. (b) Our reformulation from a test-time
training perspective introduces a confidence-guided state update, where alignment confidence between memory
and observations serves as per-token learning rates. See Eq. 8 for more details.

Next, we analyze the learning rate term β, which serves as the most critical hyperparameter and
has been extensively studied in recent advances. It is typically represented as: 1) a learnable scalar
parameter β ∈ R1 in RetNet [74]; 2) an input-dependent scalar function βt = σ (ℓβ (Xt)) ∈ R1 in
DeltaNet [64, 98], TTT [73], and Mamba-2 [21]; and 3) a per-token function βt = σ (ℓβ (Xt)) ∈
Rn×1 in Gated Linear Attention [97], which enables token-wise adaptive learning rates across all n
state tokens. Up to this point, we reformulate the Eq. 3 using the above TTT formulation:

St−1 + softmax(QSt−1K
⊤
Xt

)VXt = St−1 − βt∇(St−1,Xt) (6)

1.0 −softmax(QSt−1K
⊤
Xt

)VXt

The gradient is defined as a linear combination of the observation values VXt
∈ R(h×w)×c, weighted

by the softmax alignment scores softmax(QSt−1
K⊤

Xt
) ∈ Rn×(h×w) between the state query

QSt−1 ∈ Rn×c and the observation key KXt ∈ R(h×w)×c. Conceptually, the gradient function
leverages cross-attention alignment between state query and observation key to determine where
to write, assigning the corresponding observation value as what to write to each state token. This
formulation has been demonstrated to be effective [91] for learning emergent functional 3D/4D
alignment by implicitly matching cross-view context [16].

However, the softmax operation limits CUT3R’s ability to balance retaining historical information
with incorporating new inputs, as it forces the model to fully adapt to the latest observations.
Specifically, because softmax weights are normalized to sum to 1.0 along the observation-token
dimension, the model always prioritizes new information Xt over the historical state St−1, leading to
catastrophic forgetting. This forgetting also reflects the structural discrepancy relative to standard
TTT: the lack of a flexible learning rate (effectively, a constant βt = 1.0). Consequently, we are
motivated to introduce a state update weight that serves as a gating mechanism to explicitly control
memory plasticity.

3.3 CONFIDENCE-GUIDED STATE UPDATE RULE

Our core idea is to utilize alignment confidence between memory and observation to guide state
updates. Figure 4 provides an overview of TTT3R. This confidence constitutes an adaptive per-token
state update weight, serving as the per-token learning rate function in the TTT formulation [97].

Recall that the cross-attention (i.e., QSt−1K
⊤
Xt

) aggregates information along the spatial dimension
m = {1, . . . , h} × {1, . . . , w} of the image into n state tokens. This process yields normalized
attention weights for each state token, which are then used to compute a weighted sum over the
value tokens VXt

. To address the forgetting issue, we retain the original attention formulation but
introduce a per-token learning rate βt ∈ Rn×1, derived from the alignment confidence between the
state queries QSt−1

and the observation keys KXt
:

βt = σ(
∑

mQSt−1K
⊤
Xt

) (7)

To simplify notation, we define the summation
∑

m to be normalized, thus representing a mean:∑
m ≡ 1

m

∑m
i=1. This learning rate can act as a soft gate in gated attention, incorporating it into the
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attention output allows for better long-context extrapolation [59]. Consequently, the full closed-form
state update rule is given by:

Update(St−1,Xt) = St−1 − βt∇(St−1,Xt) (8)

σ(
∑

m QSt−1K
⊤
Xt

) −softmax(QSt−1K
⊤
Xt

)VXt

1.0

1.0

1.0

TTT3R  𝛽𝛽𝑡𝑡CUT3R  𝛽𝛽𝑡𝑡Inputs TTT3R rec.
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TTT3R  𝛽𝛽𝑡𝑡Image attentionInputs

Figure 5: By incorporating image attention (i.e.,
QSt−1K

⊤
Xt

∈ Rn×(h×w)) as per-token learning rates
βt ∈ Rn×1, TTT3R mitigates catastrophic forgetting
and facilitates online loop closure.

Note that, rather than ignoring quality variations
and updating all state uniformly - which we find
leads to suboptimal performance due to low-
quality state updates (e.g., textureless regions,
see Figure 5) - we leverage cross-attention statis-
tics to estimate the alignment confidence of state
updates and accordingly assign per-token learn-
ing rates βt. That is, a higher alignment con-
fidence in state updates generally indicates a
stronger match between the state and observa-
tion with lower uncertainty, leading to a larger
update step in our formulation. By aggregating
token-level statistics, we suppress low-quality
state updates to enhance performance. A similar
principle - leveraging internal confidence signals to selectively filter updates - has been explored in
concurrent work [32] to improve test-time reasoning for large language models.

This formulation enables a training-free, plug-and-play intervention for CUT3R, which can be directly
applied to downstream tasks without additional fine-tuning.

4 EXPERIMENTS

We evaluate our method on a variety of tasks, including camera pose estimation (Section 4.1), video
depth estimation (Section 4.2), and 3D reconstruction (Section 4.3).

Baselines. We first compare TTT3R with the state-of-the-art online 3D reconstruction method
CUT3R [89], which performs on-the-fly reconstruction with an RNN-based architecture over stream-
ing images. We also evaluate against Point3R [95] and StreamVGGT [106], which extend CUT3R
and VGGT [87], respectively, to longer sequences by fine-tuning with explicit pointmap memory
or KV-cache–based state representations. In contrast, our approach introduces a general sequence
modeling framework and an adaptive state learning rate, enabling a training-free solution. In the
following experiments, we compare these methods in terms of reconstruction accuracy, GPU memory
usage, and inference speed. See Appendix C.1 and Appendix C.2 of Sup.Mat. for more details.

4.1 CAMERA POSE ESTIMATION

Following prior works [89, 102], we evaluate camera pose accuracy on TUM dynamics [71] and
ScanNet [20] datasets. We adopt the standard metric, Absolute Translation Error (ATE), computed
after applying Sim(3) alignment [81] between the estimated and ground-truth camera trajectories.
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Figure 6: Runtime comparison on ScanNet [20]. OOM
denotes the method out-of-memory beyond this point.

The results of the long-sequence evaluation are
shown in Figure 7. For reference, we also in-
clude VGGT, an offline method that can be con-
sidered as an upper bound for online methods,
since its full attention mechanism preserves the
entire history context without forgetting. We
further evaluate inference efficiency in Figure 6
and Figure 2, reporting two metrics: frames
per second (FPS) and peak GPU memory us-
age (GB). All models are evaluated on a single
48GB NVIDIA GPU, with the number of input
views varied from 50 to 1000 and early termina-
tion if out-of-memory occurs.
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Figure 7: Comparison of Camera Pose Estimation on ScanNet [20] (left) and TUM-D [71] (right). OOM
denotes out-of-memory. VGGT serves as an offline upper bound by preserving full history, yet full-attention
methods (including StreamVGGT) suffer from high latency and memory exhaustion. Conversely, CUT3R is
efficient but drifts on long sequences, while Point3R improves accuracy but hits OOM beyond 700 frames.
Our method achieves a 2× accuracy improvement over CUT3R while retaining its real-time efficiency. See
Appendix C.3 in Sup.Mat. for qualitative results.
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(a) Scale-invariant relative depth evaluation on Bonn [55] dataset.
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(b) Metric depth evaluation on KITTI [33], excluding VGGT-based methods that don’t support metric depth.

Figure 8: Comparison of Video Depth Estimation. OOM denotes out-of-memory. Full-attention methods
(VGGT, StreamVGGT) serve as upper bounds for relative depth but hit OOM at > 150 frames. For metric depth,
we compare the only online metric predictors: CUT3R, Point3R, and TTT3R. While Point3R achieves strong
scale-invariant accuracy on short sequences (≤ 300 frames), it suffers from degradation on longer sequences
and inaccurate metric prediction. In contrast, our approach consistently achieves the best overall performance
without the need of fine-tuning.

As expected, VGGT and StreamVGGT, both based on full attention, are relatively slow and prone
to memory exhaustion. CUT3R, in contrast, maintains consistently low GPU usage and real-time
inference but struggles to retain information over long sequences, leading to inaccurate pose estima-
tion. Point3R achieves improved accuracy over CUT3R by trading off GPU usage and runtime, but
inference is slow and memory runs out beyond 700 frames. By reformulating CUT3R, our method
achieves accurate pose estimation (with a 2× improvement) while preserving the same inference
speed and memory efficiency as CUT3R.
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Figure 9: Comparison of 3D Reconstruction on 7-scene [68]. We evaluate geometric accuracy (Chamfer
Distance ↓) and surface quality (Normal Consistency ↑) as the number of input views increases. Full-attention
methods (VGGT, StreamVGGT) quickly exhaust memory (OOM). While CUT3R suffers from severe perfor-
mance degradation due to forgetting, TTT3R maintains robust and consistent performance over long sequences,
outperforming CUT3R significantly and achieving lower Chamfer Distance than Point3R. Figure 10 and Ap-
pendix C.5 in Sup.Mat. presents more qualitative results of 3D reconstruction.

Please refer to Appendix C.3 in Sup.Mat. for qualitative comparisons of camera trajectory estimation.

4.2 VIDEO DEPTH ESTIMATION

Following common practice [89, 102], we evaluate video depth estimation on the KITTI [33] and
Bonn [55] datasets, which cover dynamic/static as well as indoor/outdoor scenes. We adopt standard
metrics: absolute relative error (Abs Rel) and δ < 1.25 (percentage of predicted depths within a
1.25-factor of true depth) . Video depth estimation measures both per-frame quality and inter-frame
consistency, by aligning predicted depth maps to ground truth with a per-sequence scale, thereby
evaluating relative depth accuracy. For methods that predict metric pointmaps (i.e., outputs in meters
with absolute scale), we also report results without scale alignment, evaluating predictions directly in
metric units to assess absolute-scale accuracy.

Figure 8 shows quantitative comparison against online baselines. VGGT and StreamVGGT run out of
memory after about 150 frames due to their reliance on full attention. Nonetheless, they serve as an
upper bound in per-sequence relative depth evaluation. For metric depth estimation, we report only
CUT3R, Point3R, and TTT3R, as these are the only online methods predicting metric pointmaps.

Point3R achieves strong scale-invariant accuracy on short sequences (≤ 300 frames) due to its
explicit pointmap memory, but suffers from forgetting and degraded metric-scale accuracy on longer
sequences. In contrast, our approach consistently improves over baselines and achieves the best
overall performance, without the need of fine-tuning. See Appendix C.4 of Sup.Mat. for more results.

4.3 3D RECONSTRUCTION

We follow previous work [85, 89] to evaluate 3D reconstruction on the 7-scene [68] dateset by
measuring the distances between estimated pointmaps and ground-truth point clouds. As in prior
work [18, 85, 89], we use chamfer distance and normal consistency as evaluation metrics. Chamfer
distance is computed as the average of accuracy (nearest Euclidean distance from a reconstructed
point to ground truth) and completeness (the reverse). Unlike prior approaches [85, 89], which
sparsely sample 3–5 frames per scene, we evaluate performance on long image sequences to assess
the memorization capability of different models.

Figure 9 shows that our method significantly outperforms other online approaches such as CUT3R [89]
and StreamVGGT [106], and achieves results comparable to the top offline, full-attention method
VGGT, while operating online in real-time with only 6GB GPU memory. This highlights the
effectiveness of our method for 3D reconstruction. Figure 10 presents a qualitative comparison with
CUT3R. TTT3R achieves more accurate reconstructions, whereas CUT3R suffers from catastrophic
forgetting, leading to drifted camera poses, broken geometry, severe distortions, and ghosting artifacts.
For more 3D reconstruction results, please refer to Appendix C.5 in Sup.Mat.

9



Published as a conference paper at ICLR 2026

C
U
T3
R

TT
T3
R

C
U
T3
R

TT
T3
R

Figure 10: Qualitative Results for 3D Reconstruction. Compared to CUT3R, TTT3R improves sequence
length generalization, mitigates forgetting, and enables online loop closure. Other baselines (e.g., VGGT,
Point3R) are omitted due to OOM on long sequences. � Check our website to see more video comparisons.

5 DISCUSSION

This paper presents TTT3R, providing a Test-Time Training perspective for recent 3D reconstruction
foundation models, and proposes a simple yet efficient modification to CUT3R that enhances its
length generalization. Our experiments demonstrate that TTT3R achieves robust long-sequence 3D
reconstruction and outperforms state-of-the-art methods in most cases. The update is performed
during the forward pass without model fine-tuning, making it a lightweight, plug-and-play solution.

Limitations. TTT3R mitigates but does not resolve state forgetting, and it has not yet matched
strong offline methods (e.g., VGGT) in reconstruction accuracy, where full attention — despite being
slower and more memory-demanding — preserves the entire history context. This behavior aligns
with the unexplored states hypothesis [62], which posits that models trained on short contexts fail
to generalize to longer sequences because their recurrence drives the state into out-of-distribution
regions not encountered during training. To address this, we explore an optional TTT3R + State Reset
variant (detailed in Appendix B in Sup.Mat.): by resetting the state to its initial value periodically,
we effectively prevent state overfitting. These chunks are then aligned using global metric poses
without additional optimization, offering a plug-and-play solution that retains the inference speed
and memory efficiency of CUT3R.

Future Work. While TTT3R shows a clear boost of test-time regression for associative recall, its
design space remains largely unexplored. Recent work [6, 7, 88, 103] highlights a vast opportunity to
develop more effective, stable, and parallelizable recurrent architectures. We hope our findings will
motivate future research to revisit the foundations of 3D reconstruction models and further improve
the reconstruction accuracy and length generalization.
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A MORE EXPERIMENTAL ANALYSIS

This section provides a detailed experimental analysis to validate the design choices of TTT3R.
Specifically, we conduct three primary studies: first, we perform a Comparison with Learnable
Gating Mechanisms to contrast TTT3R against existing test-time training baselines that employ
different learnable gating mechanisms for modeling the state update learning rate; second, through
the TTT3R Finetuning Analysis, we investigate whether applying our derived update rule and
confidence-guided learning rate during the training process leads to further performance gains; and
finally, we present a Comparison with Non-TTT Baselines to evaluate the core effectiveness of our
Test-Time Training (TTT) reformulation by comparing it against a set of strong non-TTT methods.

A.1 COMPARISON WITH STANDARD LEARNABLE GATING MECHANISMS

Conceptual Relation to Common Gating Mechanisms. To further analyze the relationship between
our proposed confidence-guided learning rate and existing standard gating mechanisms, we compare
how the learning rate β is modeled in recent advances:

1. ScalarLR: In RetNet [74], the learning rate is represented as a single learnable scalar
parameter, β ∈ R1. However, the constraint that all observations share the same learning
rate inherently limits its representational flexibility.

2. ConditionLR: In models such as DeltaNet [64, 98], TTT [73], and Mamba-2 [21], the
learning rate is modeled as an input-dependent scalar function: βt = σ (ℓβ (Xt)) ∈ R1.
This provides the capability to condition the learning rate on the current observation Xt.

3. TokenLR: Gated Linear Attention [97] further proposed a βt that is both input-conditioned
and per-token: βt = σ (ℓβ (Xt)) ∈ Rn×1. This enables adaptive assignment of individual
learning rates for the n state tokens, conditioned on the current observation.

Our core idea also models a conditioned per-token learning rate βt ∈ Rn×1, following the TokenLR
paradigm. However, in contrast to previous gating mechanisms that rely on additional learnable
parameters to model the learning rate (e.g., a scalar in ScalarLR, or a hyper-network ℓβ(·) in
ConditionLR and TokenLR), we derive a training-free, closed-form learning rate. This is motivated by
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the explainable cross-attention mechanism [16] and is derived directly from the alignment confidence
between the state queries QSt−1

and the observation keys KXt
: βt = σ

(∑
m QSt−1

K⊤
Xt

)
. This

formulation achieves per-token adaptivity without introducing any additional parameters, training
overhead, or computational cost.

Camera Pose Video Depth
Method ATE ↓ RPE rot ↓ Abs Rel ↓ δ <1.25 ↑
CUT3R 0.173 0.494 0.152 80.2
CUT3R + ScalarLR 0.165 0.502 0.151 80.6
CUT3R + ConditionLR 0.166 0.509 0.149 81.0
CUT3R + TokenLR 0.154 0.497 0.148 81.5
TTT3R 0.106 0.431 0.131 86.9
TTT3R + Finetune 0.091 0.434 0.133 86.3

Table 1: Evaluation of camera pose estimation (1000
frames on TUM-dynamic [71]) and video depth esti-
mation (500 frames on KITTI [33]). TTT3R achieves
state-of-the-art performance across all compared learn-
able gating mechanisms. Finetuning TTT3R provides
marginal benefits in pose estimation.

Practical Differences between Common Gat-
ing Mechanisms. To further analyze the ef-
fectiveness of our proposed TTT-derived update
rule and confidence-guided learning rate, we dis-
cuss the practical differences between TTT3R
and simply incorporating a standard learnable
gating module into the CUT3R state update.
As detailed in Table 1 and Figure 11, we in-
troduce ScalarLR, ConditionLR, and TokenLR
into the state update of CUT3R. In this abla-
tion study, we freeze the encoder, decoder, and
output heads, and train only the newly added
learnable gating module. The training is con-
ducted using the same dataset as CUT3R, with
sequences ranging from 4 to 64 views. The results clearly demonstrate that CUT3R + TokenLR is the
most effective among the learnable gating mechanisms. However, it still significantly underperforms
TTT3R in both camera pose estimation and video depth estimation. In our observation, the perfor-
mance of the learnable gating mechanisms is primarily limited by the training sequence length (i.e.
64 frames). We find that the longer the training sequence, the better the learnable gating mechanism
performs. Unfortunately, training on sequences longer than 64 frames is prohibitively costly and
becomes infeasible given our hardware constraints (48GB NVIDIA GPU). In contrast, our approach
derives the learning rate directly from context without requiring expensive long-sequence training.
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(a) Camera pose evaluation on TUM-D [71].
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(b) Metric depth evaluation on KITTI [33].

Figure 11: Quantitative Comparison of Camera Pose and Video Depth Estimation. TTT3R achieves
state-of-the-art performance compared to all baseline methods incorporating learnable gating mechanisms.
Finetuning TTT3R yields marginal benefits in pose estimation.

A.2 FINETUNING TTT3R

We then experiment with finetuning TTT3R by applying our derived update rule and confidence-
guided learning rate during the training process. The training is conducted using the same dataset as
CUT3R, with sequences ranging from 4 to 64 views.

As shown in Table 1 and Figure 11, finetuning leads to better performance in camera pose estimation,
but concurrently degrades the video depth estimation results. One possible reason for this outcome,
as illustrated in the CUT3R work, is that once the model is finetuned on 4-64 views, the model tends
to prioritize global alignment over per-view prediction accuracy, which introduces forgetting and
overall performance degradation of video depth estimation.

While incorporating the TTT3R update rule during training helps pose estimation, it does not provide
significant benefits if the training sequences are short (e.g., 64 frames). As we can see from Figure
7, TTT3R shows only minimal performance gains compared to CUT3R on short sequences. We
therefore hypothesize that scaling up the training sequence length could lead to better performance.
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A.3 TTT-DERIVED UPDATE RULE VS. NON-TTT BASELINES

To evaluate the effectiveness of our Test-Time Training (TTT) reformulation, we compare TTT3R
against strong non-TTT baselines, including periodic state reset, Exponential Moving Average (EMA)
shrinkage to the initial state, and burn-in mechanism with keyframes. We first establish the optimal
hyperparameters for these baselines:

Baselines ATE ↓ RPE trans ↓ RPE rot ↓
Reset 50 0.129 0.007 0.406
Reset 100 0.126 0.007 0.403
Reset 150 0.145 0.008 0.416

Table 2: Ablation on the periodicity of the
State Reset baseline.

1) CUT3R + Reset. This mechanism performs a periodic
state reset, where the state is reset to its initial value every
n frames. The resulting state chunks are then globally
aligned using metric camera poses. We first ablate the
choice of the reset period n ∈ {50, 100, 150}. As shown
in Table 2, n = 100 yields the best results, which we adopt
for subsequent experiments.

Baselines ATE ↓ RPE trans ↓ RPE rot ↓
EMA 0.0001 0.169 0.007 0.574
EMA 0.001 0.164 0.007 0.525
EMA 0.01 0.191 0.009 0.673

Table 3: Ablation on the shrinkage rate of
the EMA baseline.

2) CUT3R + EMA. This method introduces shrinkage
towards the initial state S0 using an Exponential Mov-
ing Average (EMA) during inference. The state update
is formulated as: St = (1 − α)St−1 + αS0, where
α is the shrinkage rate. We ablate the choice of α ∈
{0.0001, 0.001, 0.01}. As shown in Table 3, α = 0.001
provides the optimal performance.

Baselines ATE ↓ RPE trans ↓ RPE rot ↓
BurnIn 50 0.150 0.0384 3.784
BurnIn 100 0.144 0.0309 3.093
BurnIn 150 0.156 0.0360 3.693

Table 4: Ablation on the keyframe interval
for the Burn-In baseline.

3) CUT3R + BurnIn. The burn-in mechanism updates
the state exclusively using keyframes, leaving the state un-
changed for intermediate frames. We ablate the keyframe
interval n ∈ {50, 100, 150} frames. As shown in Table 4,
an interval of n = 100 yields the best results, which we
utilize for CUT3R + BurnIn.

Camera Pose Video Depth
Method ATE ↓ RPE rot ↓ Abs Rel ↓ δ <1.25 ↑
CUT3R 0.173 0.494 0.152 80.2
CUT3R + Reset 0.126 0.403 0.128 84.9
CUT3R + EMA 0.164 0.525 0.150 80.7
CUT3R + BurnIn 0.144 3.093 0.151 80.2
TTT3R 0.106 0.431 0.131 86.9
TTT3R + Reset 0.093 0.375 0.115 88.5

Table 5: Evaluation of camera pose estimation (1000
frames on TUM-dynamic [71]) and video depth estima-
tion (500 frames on KITTI [33]). TTT3R achieves better
performance across all compared non-TTT baselines.
Furthermore, the integrated variant, TTT3R + Reset,
achieves the best performance.

As shown in Table 5 and Figure 12, TTT3R
significantly outperforms all non-TTT baselines
(Reset, EMA, and BurnIn) in both camera pose
estimation and video depth estimation, thereby
validating the effectiveness of our TTT-derived
update rule. We note that these non-TTT mecha-
nisms can also be integrated into TTT3R. Specif-
ically, we observe that the Reset mechanism is
highly effective for preventing state overfitting.
Thus, we integrate Reset into TTT3R with the
same optimal hyperparameter (n = 100), lead-
ing to the variant TTT3R + Reset. This combi-
nation further boosts TTT3R to achieve better
performance. We provide a detailed analysis of this phenomenon in Section B.
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(a) Camera pose evaluation on TUM-D [71].

100 200 300 400 500
Number of Input Views

0.80

0.82

0.84

0.86

0.88

0.90

 <
 1

.2
5 

TTT3R
TTT3R + Reset
CUT3R
CUT3R + Reset
CUT3R + EMA
CUT3R + BurnIn

(b) Metric depth evaluation on KITTI [33].

Figure 12: Quantitative Comparison of Camera Pose and Video Depth Estimation. TTT3R achieves
state-of-the-art performance compared to all non-TTT baselines. Furthermore, the integrated variant, TTT3R +
Reset, achieves superior performance in both camera pose and video depth estimation.
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(a) Camera pose evaluation on ScanNet [20].
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(c) Metric depth evaluation on Bonn [55], excluding VGGT-based methods that don’t support metric depth.
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(d) Metric depth evaluation on KITTI [33], excluding VGGT-based methods that don’t support metric depth.

Figure 13: Comparison of Camera Pose and Video Depth Estimation. For the sake of simplicity, with the
exception of Fig. 1, we do not use State Reset in any experiments or analyses reported in the main paper. For
readers interested in the improvements achievable with State Reset, we provide comprehensive results here.

B STATE RESET

As discussed in the limitation subsection (Sec. 5), TTT3R only mitigates but does not fully resolve
state forgetting, resulting in failure beyond 1000 frames (as shown in Fig. 14, middle). This ob-
servation is consistent with the unexplored states hypothesis [62], which posits that models fail to
generalize to longer sequences when their recurrence, applied to extended sequences, produces state
distributions not encountered during training—suggesting that these models overfit to states produced
early in the sequence when trained on short contexts. Based on this hypothesis, we incorporate a
State Reset mechanism: the state is reset to its initial value every 100 frames, thereby preventing state
overfitting (as shown in Fig. 14, right). The resulting chunks are then aligned using the global metric
camera poses without any optimization, making TTT3R + State Reset a plug-and-play solution that
preserves CUT3R’s inference speed and memory footprint.

Note that, for the sake of simplicity, with the exception of Fig. 1, we do not employ State Reset in
any experiments or analyzes reported in the main paper. The State Reset is only used for visualization
demonstrations that exceed 1000 frames. Specifically, we only apply the State Reset in Fig. 1 and
Fig. 15—where we visualize the final result and also augment CUT3R with the State Reset—to allow
for a fair and intuitive comparison. For readers interested in the improvements achievable with State
Reset, we provide quantitative results in Figure 13.
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CUT3R TTT3R TTT3R + State Reset

Figure 14: State Reset for sequences beyond 1000 frames. As discussed in the limitation subsection,
TTT3R only mitigates but does not fully resolve state forgetting, resulting in failure beyond 1000 frames. For
visualization demonstrations exceeding 1000 frames (Fig. 1 and Fig. 15), we further augment TTT3R with a
State Reset mechanism: the state is reset every 100 frames, and the global metric camera pose is used as a
cue to align the resulting chunks. Note that, for simplicity, we do not employ State Reset in any quantitative
experiments and analyses in the main paper. State Reset is applied only in Fig. 1 and Fig. 15 (where we visualize
the final outcome, and also augment CUT3R with State Reset to enable a fair and intuitive comparison), and
Fig. 13 (to report quantitative improvements achievable with State Reset).

CUT3R TTT3R+ State ResetCUT3R+ State Reset

Figure 15: In-the-wild Video Reconstruction - Sequences beyond 1000 frames. While CUT3R + State
Reset still suffers from drifting, TTT3R + State Reset enables robust long-sequence 3D reconstruction beyond
1000 frames. The TTT3R + State Reset is performed in the forward pass without any optimization, making it a
plug-and-play solution that preserves CUT3R’s inference speed and memory footprint.

C MORE RESULTS

C.1 EXPERIMENTAL SETTINGS

We present two experimental settings: (1) long sequence evaluation, to compare TTT3R with online
methods that could handle hundreds of images, which is a challenging setting by measuring the
state capability to memorize entire sequences, rather than short video clips; and (2) short sequence
evaluation, to compare the performance of our method to a wide range of baselines (since these
baselines, hindered by out-of-memory, are infeasible to handle long sequences). Please refer to the
main paper for the long-sequence results. We report the short-sequence evaluation in the following
section of the supplement.
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Sintel (50 frames) TUM-dynamics (90 frames) ScanNet (90 frames)

Method Online ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓
Robust-CVD [39] ✗ 0.360 0.154 3.443 0.153 0.026 3.528 0.227 0.064 7.374
CasualSAM [104] ✗ 0.141 0.035 0.615 0.071 0.010 1.712 0.158 0.034 1.618
DUSt3R [91] ✗ 0.417 0.250 5.796 0.083 0.017 3.567 0.081 0.028 0.784
MASt3R [42] ✗ 0.185 0.060 1.496 0.038 0.012 0.448 0.078 0.020 0.475
MonST3R [102] ✗ 0.111 0.044 0.869 0.098 0.019 0.935 0.077 0.018 0.529
Easi3R [16] ✗ 0.110 0.042 0.758 0.105 0.022 1.064 0.061 0.017 0.525
AETHER[78] ✗ 0.189 0.054 0.694 0.092 0.012 1.106 0.176 0.028 1.204
VGGT [87] ✗ 0.172 0.062 0.471 0.012 0.010 0.310 0.035 0.015 0.377

Spann3R [85] ✓ 0.329 0.110 4.471 0.056 0.021 0.591 0.096 0.023 0.661
CUT3R [89] ✓ 0.213 0.066 0.621 0.046 0.015 0.473 0.099 0.022 0.600
Point3R [95] ✓ 0.351 0.128 1.822 0.075 0.029 0.642 0.106 0.035 1.946
StreamVGGT [106] ✓ 0.251 0.149 1.894 0.061 0.033 3.209 0.161 0.057 3.647
STream3R [40] ✓ 0.213 0.076 0.868 0.026 0.013 0.330 0.052 0.021 0.850
TTT3R ✓ 0.201 0.063 0.617 0.028 0.012 0.379 0.064 0.021 0.592

Table 6: Evaluation on Camera Pose Estimation- Short Sequence on Sintel [13], TUM-dynamics [71], and
ScanNet [20] datasets. TTT3R achieves the best overall performance among online methods, while its accuracy
has not yet matched strong offline methods (e.g., VGGT), where full attention — despite being slower and more
memory-demanding — preserves the entire history context.

C.2 BASELINES

We first compare TTT3R with pairwise 3D reconstruction foundation models, including DUSt3R [91],
MASt3R [42], MonST3R [102], and Easi3R [16], which takes a pair of views as input and requires
an extra global alignment stage to consolidate the pairwise predictions. We also compare with
AETHER [78] and VGGT [87], which could predict all pointmaps simultaneously, without the need
for post-processing, leading to state-of-the-art 3D point and camera pose reconstruction. However,
relying on global alignment or full attention limits all the aforementioned methods to handling only
short image sequences, in an offline reconstruction manner, where it needs to rerun inference of all
images whenever a new frame arrives. For online methods, we compare TTT3R with Spann3R [85]
and CUT3R [89], which operates online with RNN-based architectures and could handle streaming
images on the fly. For concurrent works that are most similar to our method, we compare TTT3R
with Point3R [95], StreamVGGT [106] and STream3R [40], which aim to extend CUT3R and VGGT
to handle long image sequences, but take a different approach by fine-tuning CUT3R and VGGT
with explicit pointmap memory and KV cache as state representation, respectively. Unlike these
works, our method introduce sequence modeling as a general framework and reformulate CUT3R
from the Test-Time Training (TTT) perspective. As a result, TTT3R achieves online associative
recall by deriving a closed-form update rule, without requiring fine-tuning CUT3R or training extra
parameterized components.

C.3 CAMERA POSE ESTIMATION

Following prior works [89, 102], we evaluate camera pose estimation accuracy on Sintel [13], TUM
dynamics [71], and ScanNet [20] datasets. We use standard error metrics: Absolute Translation
Error (ATE), Relative Translation Error (RTE), and Relative Rotation Error (RRE), after applying
the Sim(3) alignment [81] on the estimated camera trajectory to the ground truth. We compare with
both 3D reconstruction foundation models and prior per-sequence optimize approaches, such as
RobustCVD [39] and CasualSAM [104], which jointly optimize camera parameters and dense depth
maps to fit each sequence.

The results of the long-sequence evaluation are presented in Figure 7. Since many baselines can
only process short sequences due to out-of-memory, we also show the short sequence evaluation
in Table 6, and separately highlight the leading approaches for methods that operate offline (i.e.,
require additional optimization or global attention) and those that do not (i.e., online). Although a
gap persists between offline and online methods, our approach achieves the best overall performance
among online methods, particularly in TUM-dynamics and ScanNet datasets.

We show qualitative comparisons of the estimation of the camera trajectory in Figure 16. TTT3R
demonstrates a more accurate and robust camera pose estimation over CUT3R, effectively leveraging
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Figure 16: Visualization of Estimated Camera Trajectories – Long Sequence. The trajectories are plotted
along the two axes with the highest variance to capture the most significant motion. Our estimated camera
trajectory • TTT3R deviates less from the ground truth • GT compared to the baseline • CUT3R.

the inherent knowledge of the 3D reconstruction foundation model with just a few lines of plug-and-
play code by proposing a general sequence modeling formulation and deriving novel state transition
rule of CUT3R from a TTT pespective.

C.4 VIDEO DEPTH ESTIMATION

Following common practice [89, 102], we evaluate video depth estimation on KITTI [33], Sintel [13],
and Bonn [55] datasets covering dynamic and static, indoor and outdoor scenes. We use absolute
relative error (Abs Rel) and δ < 1.25 (percentage of predicted depths within a 1.25-factor of true
depth) as metrics. Video depth estimation evaluates per-frame depth quality and inter-frame depth
consistency by aligning predicted depth maps to ground truth using a per-sequence scale, which
measures the relative depth accuracy. For methods that predict metric pointmaps (i.e., outputs in
meters with absolute scale), we also report results without scale alignment, evaluating predictions
directly in metric units to assess absolute-scale accuracy.

Figure 8 presents the quantitative comparison between our method and the online baselines. Our
approach delivers the best overall performance without ANY fine-tuning. The results in Table 7 show
that even for short sequences, our method still achieves state-of-the-art or competitive performance in
online methods, leading in KITTI dataset for both metric and scale-invariant evaluations and ranking
one or two in Sintel and Bonn datasets.
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Figure 17: Qualitative Results of 3D Reconstruction. TTT3R improves length generalization over CUT3R
while preserving its speed and memory efficiency. Offline methods (e.g., VGGT) achieve accurate reconstruction
on short sequences (150 frames) but fail on longer sequences (400 frames) due to memory constraints.

Sintel (50 frames) BONN (110 frames) KITTI (110 frames)
Alignment Method Online Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑

Per-sequence Scale

DUSt3R [91] ✗ 0.656 45.2 0.155 83.3 0.144 81.3
MASt3R [42] ✗ 0.641 43.9 0.252 70.1 0.183 74.5
MonST3R [102] ✗ 0.378 55.8 0.067 96.3 0.168 74.4
Easi3R [16] ✗ 0.377 55.9 0.059 97.0 0.102 91.2
AETHER [78] ✗ 0.324 50.2 0.273 59.4 0.056 97.8
VGGT [87] ✗ 0.287 66.1 0.055 97.1 0.070 96.5

Spann3R [85] ✓ 0.622 42.6 0.144 81.3 0.198 73.7
CUT3R [89] ✓ 0.421 47.9 0.078 93.7 0.118 88.1
Point3R [95] ✓ 0.452 48.9 0.060 96.0 0.136 84.2
StreamVGGT [106] ✓ 0.323 65.7 0.059 97.2 0.173 72.1
STream3R [40] ✓ 0.478 51.1 0.075 94.1 0.116 89.6
TTT3R ✓ 0.404 50.0 0.068 95.4 0.113 90.4

Metric Scale

MASt3R [42] ✗ 1.022 14.3 0.272 70.6 0.467 15.2
CUT3R [89] ✓ 1.029 23.8 0.103 88.5 0.122 85.5
Point3R [95] ✓ 0.777 17.1 0.137 94.7 0.191 73.8
STream3R [40] ✓ 1.041 21.0 0.084 94.4 0.234 57.6
TTT3R ✓ 0.977 24.5 0.090 94.2 0.110 89.1

Table 7: Evaluation of Video Depth Estimation - Short Sequence. We report scale-invariant relative depth
(aligned by a per-sequence scale) and metric scale absolute depth accuracy on Sintel [13], Bonn [55], and
KITTI [33] datasets. TTT3R achieves state-of-the-art or competitive performance among online methods,
leading in KITTI for both metric and scale-invariant evaluations and ranking first or second in Sintel and Bonn.

C.5 3D RECONSTRUCTION

The results are presented in Figure 18, Figure 15 and Figure 17. TTT3R supports both video sequences
and sparse photo collections, across static and dynamic scenes, and performs online 3D reconstruction
by estimating camera parameters and dense geometry for each incoming frame. TTT3R is a simple
modification to CUT3R that improves length generalization via a closed-form state update, enabling
robust long-sequence 3D reconstruction. The update is performed in the forward pass without any
model fine-tuning, making it a plug-and-play solution, while preserving CUT3R’s inference speed
and memory footprint and operating online at realtime and only cost 6GB GPU memory.

24



Published as a conference paper at ICLR 2026

Figure 18: In-the-Wild Video Reconstruction - Short Sequence. TTT3R performs online 3D reconstruction
by estimating camera parameters and dense geometry for each incoming image. It supports varying-length image
inputs, either video streams or sparse photo collections, across both static and dynamic scenes.

D USE OF LARGE LANGUAGE MODELS

We used a large language model to assist with copy editing—grammar checking, wording suggestions,
and minor style and clarity improvements—after the scientific content, methodology, analyses, and
conclusions had been written by the authors.
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