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Abstract

Most work on causality in machine learning assumes that causal relationships are
driven by a constant underlying process. However, the flexibility of agents’ actions
or tipping points in the environmental process can change the qualitative dynamics
of the system. As a result, new causal relationships may emerge, while existing
ones change or disappear, resulting in an altered causal graph. To analyze these
qualitative changes on the causal graph, we propose the concept of meta-causal
states, which groups classical causal models into clusters based on equivalent
qualitative behavior and consolidates specific mechanism parameterizations. We
demonstrate how meta-causal states can be inferred from observed agent behavior,
and discuss potential methods for disentangling these states from unlabeled data.
Finally, we direct our analysis towards the application of a dynamical system,
showing that meta-causal states can also emerge from inherent system dynamics,
and thus constitute more than a context-dependent framework in which mechanisms
emerge only as a result of external factors.

1 Introduction

Causal graphs can be subject to change whenever novel mechanisms emerge or vanish within a
system. Prominently, agents can ‘break’ the natural unfolding of systems dynamics by forecasting
system behavior and preemptively intervening in the course of events. As inherent parts of the
environment, agents commonly establish or suppress the emergence of causal connections (Zhang &
Bareinboim| [2017; Lee & Bareinboim| 2018} Dasgupta et al., 2019)).

Consider the scenario shown in Figure [1] (left), where an agent A (with position Ax) follows an
agent B (with position Bx) according to its internal policy A,. We are interested in answering the
question ‘What is the cause of the current position of agent A?’. In general, the observed system
can be formalized as follows: Ax := fa(Bx,Ux) and Bx := fp(Up). Note that, from a classical
causal perspective, we observe B — A, since A self-conditions itself to follow B, by instantiating
the equation f4 via its policy and thus becomes dependent on B. Classical causal considerations,
which only consider how relations between variables are constructed, cannot give the correct answer.
Only when we take a meta-causal stance and think about how the equation f4 came to be in the first
place, can we give a sufficient answer to this question.

Contributions. To the best of our knowledge, we are the first to formally introduce typing mecha-
nisms that generalize edges in causal graphs, and the first to provide a formalization of meta-causal
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Figure 1: Meta-Causality Identifies the Policy as a Meta Root Cause. Agent A intends to maintain
its distance from agent B by conditioning its position Ax on the position By, which establishes
a control mechanism, Ay := f(Bx). In standard causal inference, we would infer Bx — Ax
and, therefore, B to be the root cause. Taking a meta-causal perspective reveals however, that A
establishes the edge Bx — Ax in the first place (A, — (Bx — Ax)) such that A is considered
the root cause on the meta-level. (Best Viewed in Color)

models (MCM) that are capable of capturing the switching type dynamics of causal mechanisms.
Furthermore, we present an approach to discover the number of meta-causal states in the bivariate
case. Finally, demonstrate that meta-causal models can be more powerful than classical SCM when it
comes to expressing qualitative differences within certain system dynamics.

2 Background

Providing a higher-level perspective on meta-causality touches on a number of existing works that
leverage meta-causal ideas, even if not explicitly stated. We will highlight relations of these works in
the ‘Related Work” of section[5] Here, we continue to provide the necessary concepts on causality,
mediation processes and typing, needed for the definitions in our paper:

Causal Models. A common formalization of causality is provided via Structural Causal Models
(SCM; (Spirtes et al.,[2000; Pearl,[2009)). An SCM is defined as a tuple M := (U, V, F, Py), where
U is the set of exogenous variables, V is the set of endogenous variables, F is the set of structural
equations determining endogenous variables, and Py is the distribution over exogenous variables
U. Every endogenous variable V; € V is determined via a structural equation v; := f;(pa(v;)) that
takes in a set of parent values pa(v;), consisting of endogenous and exogenous variables, and outputs
the value of v;. The set of all variables is denoted by X = U UV with values x € X and N = | X |.
Every SCM M entails a directed graph G™ that can be constructed by adding edges (i,7) € X x X
for all variables X; € X and its parents X; € Pa(X;). This can be expressed as an adjacency matrix
A € BN*N where A;; := 1if (i,7) € G and A;; := 0 otherwise.

Mediation Processes. Causal effects are embedded in an environment that governs the dynamics and
mediates between different causes and effects. We define a mediation process £ = (S, o), adapted
from Markov Decision Processes (MDP; [Bellman| (1957)) for our setting. Here, S is the state space
of the environment and ¢ : § — § is the (possibly non-deterministic) transition function that takes
the current state and outputs the next one. If we also have an initial state sy € S, we call (£,sp) an
initialized mediation process.

Typing. In the following section, we will make use of an identification function Z to determine the
presence or absence of edges between any two variables and in particular identify different fypes of
edges. Previous work on typing causality exists (Brouillard et al.,|2022)), but it primarily concerned
with types of variables. Furthermore, several other works in the field of cognitive science consider
the perception of different types of mechanistic relations (e.g., ‘causing’, ‘preventing’, ...) (Chockler
& Halpern, [2004; Wolff], 2007} [Sloman et al.,|2009; Walsh & Sloman, 2011} |Gerstenberg] [2022).

3 Meta-Causality

Meta-Causality is concerned with the general mechanisms that lead to the emergence of causal
relations. Usually, the mediating process may be too fine-grained to yield interpretable models.
Therefore, we consider a set of variables of interest X derived via ¢ : S — X. Here, ¢ could be
defined as a summarization or abstraction operation over the state space (Rubenstein et al., 2017}
Beckers & Halpern, 2019 |/Anand et al., |2022; |Wahl et al., |2023; |Keki€ et al., 2023} Willig et al.,



2023)). In order to identify the type of causal relations from a mediating process, we need to be able
to decide on what constitutes such a type.

Definition 1 (Meta-Causal Frame) For a given mediation process £ = (S, o) a meta-causal frame
is a tuple F = (€,X,1,T) with:

* atype-encoder 7 : X; x X f — T that determines the relationship between the value of a

causal variable X ; and the change of another causal variable X}g ={¢Y:8 = X,;} with
respect to a environmental state space S which we call atype t € T,

* an identification function T : S x X x X — T withZ(s, X;, X;) — t := 7((s)i, p; 0 0)
that takes a state of the environment and assigns a type for every pair of causal variables
XZ', Xj e X.

Types generalize the role of edges in causal graphs. In most classical scenarios, the co-domain 7~ of
the type encoder 7 is chosen to be Boolean, representing the existence or absence of edges. In other
cases, different values ¢ € 7 can be understood as particular types of edges, like positive, negative, or
the absence of influence. This will help us to distinguish meta-causal states that share the same graph
adjacency. The only requirement for 7 is that it must contain a special value 0, which indicates the
total absence of an edge. Meta-causal states now generalize the idea of binary adjacency matrices.

Definition 2 (Meta-Causal State) In a meta-causal frame F = (£,X,7,T), a meta-causal state is

amatrixT € TV*N. Fora given environment state s € S, the actual meta-causal state Ts has the
entries T ;; := T(s, X;, X;) = 7(¢(8):, pj 0 0).

A meta-causal state 7 € TV <V represents a graph containing edges e;; of a particular type t € 7.
In particular T';; indicates the presence (15; # 0) or absence (13; = 0) of individual edges. Our goal
for meta-causal models (MCM) is to capture the dynamics of the underlying model. In particular, we
are interested in modeling how different meta-causal states transition into each other. This behavior
allows us to model them in a finite-state machine (Moore et al., [1956):

Definition 3 (Meta-Causal Model) For a meta-causal frame F = (£,X,0,T), a meta-causal
model is a finite-state machine defined as a tuple A = (TN NS, 0), where the set of meta-causal

states TV >N is the set of machine states, the set of environment states S is the input alphabet, and
6 TNN %« 8§ — TN*N is a transition function.

Usually, we have the objective to learn the transition function 0 for an unknown state transition
function o. The state transition function ¢ can be approximated as 6(T', s) := Z(o'(T, s), X;, X;) =
T(p(8)i, ;0 0’'(T, s)). As standard causal relations emerge from the underlying mediation process,
the meta-causal states emerge from different types of causal effects. The transition conditions
of the finite-state machine are the configurations of the environment where the quality of some
environmental dynamics represented by a type t € 7 changes.

Relation to Contextual Independencies. Changes in the causal graph are often times attributed to
changes in the environment, as for example prominently leveraged in invariant causal prediction of
Peters et al.| (2016); [Heinze-Deml et al.| (2018)). In general, the effects of a changing causal graph can
be attributed to the change in some external factor acting on the system. Under certain circumstances,
we can indeed represent meta-causal models via standard SCM conditioned on some external factor
Z € Z. Suppose there is a surjective function ¢ : Z — T *¥ that can map from the Z to every
meta causal state T. As a result, one can define a new set of structural equations f! := Oie1.. N fl-’j

and
folz = 115 02 2 0
(< %) otherwise.
where f;’éf(z) are the structural equations of the edge e;; that are active under the MCS T = v(z) and

(in a slight imprecision in the actual definition) (< *) is the function that carries on the previous
function of the concatenation and discards X;. While the ‘no-edge’ type 0 could be handled like
any other type, we have listed it for clarity such that individual variables X; become contextually
independent whenever 9)(Z),; = 0. This mapping can be used under certain circumstances to infer
the meta-causal state of a system. We give a brief example in Appendix [A]



d=0.0 d=0.1 d=10.2
- 1 2 3 - 1 2 3

4 4
2 /8 3 7 3 1 /8 3 8 5
43 1 (48 8 049 1 47 3 O
68 0 4 22 63 0 2 30 5177 2 0 13 8
4 92 0 0 1 &% o0 0 2 9|8 0 1 5 7
Table 1: Confusion Matrices for Identifying Meta-Causal Mechanisms. The table shows iden-
tification results for predicting the number of mechanisms for the bivariate case for 100 randomly
sampled meta-causal mechanisms. d is the maximum sample deviation from the average mechanism
probability. Rows indicate the true number of mechanisms, while columns indicate the algorithms’
predictions. ‘-’ indicates setups where the algorithm did not make a decision. In general, the algorithm
is rather conservative in its predictions. In all cases where a decision is made, the number of correct
predictions along the diagonals dominate. The first and second most frequent predictions are marked
in green and orange, respectively. (Best Viewed in Color)
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4 Applications

In this section, we discuss several applications of the meta-causal formalism. The code used in the
experiments is available at https://anonymous .4open.science/r/metaCausal-CRL/|

4.1 Attributing Responsibility

Consider again the motivational example of Figure[I] where an agent A with position Ax follows an
agent B with position By as dictated by its policy A,. Imagine a counterfactual scenario in which
we replace the ‘following’ policy of agent A with, e.g., a ‘standing still’ policy and find that the
Bx — Ax edge vanishes. As a result, we infer the meta-causal mechanism w4 — (Bx — Ax) for
the system and thus 7 4 as the root cause of for values of Ax. In conclusion, we find that, while
A is conditioned on B on a low level, the meta-causal reason for the existence of the edge B — A
is caused by the 7 4. Both attributions, either tracing back causes through the structural equations
Ax = f(Bx) or our meta-causal approach, are valid conclusions in their own regard. This scenario

. . . =standing still =followi . .
can also considered via classical a counterfactual, ATA ™ NNE ST _ AT ATIONOWINE 'which would infer
X X
7 4 on Ax from a purely value-based perspective, missing to explain the change in the underlyin
Ax f ly value-based t t lain the ch the underl
mechanistic relation.

4.2 Discovering Meta-Causal States in the Bivariate Case

Our goal in this experiment is to recover the number of meta-causal states K € [1..4] from data
that exists between two variables X, Y that are directly connected by a linear equation with added
noise. We assume that each meta-causal state gives rise to a different linear equation f; := a; X +
Br + N,k € N, where ay, 3, are the slope and intercept of the respective mechanism and A is a
zero-centered, symmetric, and quasiconvex noise distributio Without loss of generality, we assume
Laplacian noise, for which an L1-regression can estimate the true parameters of the linear equations
(Hoyer et al.| [2008)). The causal direction of the mechanism is randomly chosen between different
meta-causal states. The exact sampling parameters and plots of the resulting distributions are given in
Sec. [E]and Fig. [3] respectively. Our goal is to recover the number and parameterizations of the causal
mechanisms.

Determining the Number of Mechanisms. Given the correct number of parameters kx*, we apply a
LO-RANSAC (Fischler & Bolles, |1981}|Chum et al., 2003) algorithm with a local EM (Dempster
et al.l [1977) optimization to regress the parameters of the mechanisms. The exact approach is
presented in the Appendix[C] The approach is able to regress the true parameterization of mechanisms
when the real number of parameters £* is given. However, it is still unclear how to determine the
correct k*. Computing the parameters for all k¥ € K and comparing for the best goodness of fit is
generally a bad indicator for choosing the right &, since fitting more mechanisms usually captures

"Implying unimodality and monotonic decreasing from zero allows us to distinguish the noise mean and
intercept and to recover the parameters from a simple linear regression
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Figure 2: Mechanistic Decomposition as Meta-Causal States. (left) Effect of the stress level on
itself (orange) plotted against the identity (blue). Once a threshold of 0.5 is reached, the function
switches behavior from self-suppressing self-reinforcing. (center) Contribution of the stress level
mechanism for varying external stressors. Red arrows indicate a self-reinforcing effect, while green
arrows indicate suppression. The gray area indicates the system without external stressors. (right)
The standard SCM gets decomposed into different meta-causal states. While the graph adjacency
remains the same, the identification function detect the different modes of the causal mechanism.

additional noise and thus reduces the error. We take advantage of the fact that we assumed the noise
to be Laplacian distributed. Thus, the residuals of the samples assigned to a particular mechanism
can be tested to belong to a Laplacian distribution. Since the assignment of mechanisms to a data
point may be ambiguous due to the overlap in the estimated PDFs, we normalize the density values
of all mechanisms per data point and consider only those points for which the probability of the
dominant mechanism being 0.4 above the second class. Finally, we compute residuals and, make use
of the Anderson-Darling test (Anderson & Darling} [1952)) to test the residuals against the Laplacian
distribution with an o = 0.95 (Chen, [2002). If all residual distributions pass the Anderson-Darling
test, we choose that number as our predicted number of mechanisms. If the algorithm finds no
k € [1..4] to pass the test, we refrain from making a decision. We provide the pseudo code for our
method in Algorithm.[I]in the Appendix.

Evaluation and Results. We evaluate our approach over all k& € [1..4] by generating 100 different
datasets for every particular number of mechanisms. For every data set we sample 500 data points
from each mechanism (z¥, y¥) = fi.(arzk + B1. +1;) where [; ~ L£(0, by), using the same sampling
method described in Appendix[E} Finally, we let the algorithm recover the number of mechanisms that
generated the data. Table[T|shows the confusion matrices between the actual number of mechanism
and the predicted number for different values of maximum class imbalances. In general, we find that
our approach is rather conservative when in assigning a number of mechanisms. However, when only
considering the cases where the number of mechanisms is assigned, the correct predictions along the
main diagonal dominate with over 60% accuracy for k = 4 and d € {0.0,0.1} and rising above 80%
for k # 4 for. In the case of d = 0.2, the results indicate higher confusion rates with 41.6% accuracy
for the overall worst case of K = 4.

Extension to Meta-Causal State Discovery on Graphs. Our results indicate that identifying meta-
causal mechanisms even in the bivariate case comes with an increasing number of uncertainty when
it comes to increasing numbers of mechanisms. The meta-causal state of a graph could be identified
as all unique combinations of mechanisms that are jointly active at a certain point in time. To recover
the meta-causal states, one needs to be able to estimate the set of active parents for every mechanism,
the mechanisms parameterizations, and the resulting meta-state assignment of all data points. Since,
all of the three components can vary between each meta-causal state, the extension to a unsupervised
full-fledged meta-causal state discovery is not obvious to us at the time of writing and we leave it to
future work to come up with a feasible algorithm.

4.3 A Meta-State Analysis on Stress-Induced Fatigue

Stress is a major cause of fatigue and can lead to other long-term health problems (Maisel et al.
2021}, [Franklin et al.| 2012; [Dimsdale}, |2008}; [Bremner, [2006). We present an idealized system that is
radically reduced to the only factors of external stress, modeling everyday environmental factors, and
the self-influencing level of internal/perceived stress. We use an identification function to distinguish
between two different modes of operation of a causal mechanism. In particular, we are interested
whether the inherent dynamics of the internal stress level are self-reinforcing or self-suppressing.
For easier analysis of the system we decompose the dynamics of the internal stress variable into



a ‘decayed stress’ d and ‘resulting stress’ s computation. The first term are the previous stress
levels decayed over time with external factors added. The resulting stress is then the output of a
Sigmoidal function (Fig. 2] left) that either reinforces or suppresses the value (Fig. [2]center). The
structural equations are defined as follows and we assume that all values lie in the interval of [0, 1]:
fa = 0.95clipjg ;;(s" +0.5 x externalStress) and f; := 1.01(m —0.5)4+0.5. where s
and d are the resulting and decayed stress levels, and s’ is the previous stress level of s. We define the
identification function to be Z := sign(fs), where f; is the second order derivative of the Sigmoidal
fs, with either positive or negative effect on the stress level. Note how the second-order inflection
point at 0.5 of the Sigmoid acts as a transition point on the behavior of the mechanism. Stress
values below 0.5 get suppressed, while values above 0.5 are amplified, which results in three possible
meta-causal states, as governed by the following transition function:

o:(t,s)— [é 8] with a := sign(f,) = sign(s — 0.5) € {~1,0,1}

Role of Latent Conditioning. A key takeaway of this example is that the current meta-state persists
due to the inherent stress level and dynamics of the system, while the same set of underlying structural
equations are employed. As a result, the stressed state of a person would persist even when the
initiating external stressors disappear. Intervening on the meta-causal state of the system is now
ill-defined, as both positive and negative reinforcing effects are governed by the same equation. Thus,
creating a disparity between the intervened meta-causal state and the systems’ identified functional
behavior.

5 Related Work

Meta-causal models cover cases that reduce to conditionally dependent causal graphs due to changing
environments (Peters et al.,|2016;|Heinze-Deml et al.,[2018)), but also extend beyond that for dynamical
systems. In this sense, the work of |Talon et al.| (2024) takes a meta-causal view by transporting edges
of different causal effects between environments. In general, the transportability of causal relations
(Zhang & Bareinboim), 2017} Lee & Bareinboiml [2018; |Correa et al., [2022)) can be thought of as
learning identification functions that have identified the general conditions of the underlying processes
to transfer certain types of causal effects between environments Sonar et al.| (2021); |Yu et al.| (2024);
Brouillard et al.|(2022). This has been studied to some extent under the name of meta-reinforcement
learning, which attempts to predict causal relations from the observations of environments [Sauter|
et al.| (2023); Dasgupta et al.[(2019). Generally, transferability has been considered in reinforcement
learning, where the efficient use of data is omnipresent and causality provides guarantees regarding
the transferability of the observed mechanisms under changing environments (S@mundsson et al.,
2018} |Dasgupta et al., 2019; Zeng et al., 2023). Our MCM framework can also be used to infer and
attribute responsibility, as shown in Sec.4.1] and therefore touches on the topics of fairness, actual
causation (AC) and work on counterfactual reasoning in cognitive science. (Von Kiigelgen et al.|
2022} |[Karimi et al., [2021}; [Halpern} 2000} 20165 (Chockler & Halpern| [2004; |Gerstenberg et al., [2014;
Gerstenberg, [2024). In this sense, MCM allow for the direct characterization of actual causes of
system dynamics types, but a rigorous formalization is open for future work.

6 Conclusion

We formally introduced meta-causal models that are able to capture the dynamics of switching causal
types of causal graphs and, in many cases, can better express the qualitative behavior of a causal
system under consideration. Within MCM typing mechanisms generalize the notion of specific
structural equations and abstract away unnecessary details. We presented a first, motivating example
of how a classical causal analysis and a meta-causal perspective can attribute different root causes
to the same situation. We extended these claims by considering that MCM are still able to capture
and attribute changes in the mechanistic behavior of the system, even though no actual change is
apparent. As an application, we presented a first approach to recover metacausal states in the bivariate
case. Although our experimental results represent only a first preliminary approach, we find that
meta-causal models are a powerful tool for modeling, reasoning, and inferring system dynamics.
Finally, we have shown how MCM are able to express more information about a dynamical system
than a simple conditioning variable in a standard SCM can do.



Limitations. We have been able to provide examples that illustrate the differences between standard
causal, and meta-causal attribution. In particular, the joint of actual and mechanistic view of standard
and meta-causal attributions should be explored further. Our approach to recovering MCS from
unlabeled data is open to extension. Discovery on the full causal graphs is a desirable goal that,
however needs further work to reliably control for the changing sets of parents under changing MCS.
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Appendix for “Systems with Switching Causal Relations: A Meta-Causal
Perspective”

A Inferring Meta-Causal States.

Even if the state transition function is known, it may be unclear from a single observation which
exact meta-causal state led to the generation of a particular observation S. This is especially the case
when two different meta-causal states can fit similar environmental dynamics. Even in the presence
of latent factors (e.g., an agent’s internal policy), the current dynamics of a system (e.g., induced
by the agent’s current policy) can sometimes be inferred from a series of observed environment
states. This requires knowledge of the meta-causal dynamics, and is subject to the condition that
sequences of observed states uniquely characterize the meta-causal state. Since MCM are defined
as finite state machines, the exact condition for identifying the meta-causal state is that observed
sequences are homing sequences (Moore et al.,|1956). Note that the following example of a game of
tag presented below exactly satisfies this condition, where the meta-causal states produce disjunct sets
of environment states (‘agent A faces agent B’, or ‘agent B faces agent A’), and thus can be inferred
from either a single observation, when movement directions are observed, or two observations, when
they need to be inferred from the change in position of two successive observations.

Inferring the Meta-Causal State: ‘Game of Tag’ Example. Even if the state transition function
is known, it may be unclear from a single observation which exact meta-causal state led to the
generation of a particular observation .S. Since MCM are defined as finite state machines, the exact
condition for identifying the meta-causal state is that observed sequences are homing sequences
(Moore et al.,[1956). Consider an idealized game of tag between two agents, with a simple causal
graph and two different meta-states. In general, we expect agent B to make arbitrary moves that
increase its distance to A, while A tries to catch up to B, or vice versa. In essence, this is a cyclic
causal relationship between the agents, where both states have the same binary adjacency matrix.
Note, however, that the two states differ in the fype of relationship that goes from A to B (and B to
A). We can use an identification function that analyzes the current behavior of the agents to identify
each edge. Since A can tag B, the behavior of the system changes when the directions of the typed
arrows are reversed, so that the type of the edges is either ‘escaping’ or ‘chasing’.

While the underlying policy of an agent may not be apparent from observation as an endogenous
variable, it can be inferred by observing the agents’ actions over time. Knowing the rules of the game,
one can assume that the encircling agent faces the other agent and thus moves towards it, while the
fleeing agents show the opposite behavior:

(ta—p = chasing) < (Apos - (Bpos — Apos) > 0)

where Apos is the velocity vector of agent A (possibly computed from the position of two consecutive
time steps); Apos and By, are the agent positions, and - is the dot product. Once the edge types are
known, the policy can be identified immediately.

Causal and Anti-Causal Meta-Causal States. Assigning meta-causal states to particular system
observations can be understood as labeling the individual observations. However, it is generally
unclear whether the meta-causal state has an observational or a controlling character on the system
under consideration. One could ask the question whether the system dynamics cause the meta-causal
state, whether the meta-causal state causes the system dynamics, (or whether they are actually
the same concept), similar to the well-known discussion “On Causal and Anticausal Learning” by
Scholkopf et al.| (2012), but from a meta-causal perspective.

At this point in time, we cannot give definitive conditions on how to answer this question, but we
present two examples that support either one of two opposing views. First, in Sec. .3| we present
a scenario of a dynamical system where the structural equations of both meta-causal states are the
same, since the system dynamics are governed by its self-referential system dynamics. Intervening
on the meta-causal state will therefore have no effect on the underlying structural equations, and
thus can have no effect on the actual system dynamics. In such scenarios, the meta-causal is rather
a descriptive label and cannot be considered an external conditioning factor. In the following, we
discuss the opposite example, where a meta-causal state can be modeled as an external variable
conditioning the structural equations.
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B Probabilities for Sample Computation and Upper Bounds

Consider a dataset D € R™*2 of m samples over two variables where we want to separate n different
functions. We assume that the data distribution contains a uniform number of samples from each
function, where each class could be under- or overrepresented by an offset of d. Specifically, we
assume that each function is represented by (1 +d) X |D| samples, i.e., the probability of encountering
a particular class X is =9 < P(X) < 14 and E[P(X)] = L. To identify all functions between
these two variables, we assume linearity and apply EM with RANSAC on random pairs of samples
(see Section[d.2). By selecting n pairs, there is a chance that one pair is chosen from each function
(we will refer to such a set of pairs as a “correct” set of samples). In this section, we derive the
probability of a correct pair being chosen at random, so that we can estimate how many times pairs
need to be sampled to reliably encounter a correct set of samples.

We denote S as the event of “correctly” sampling all n pairs from all n different functions. If all
classes have the same number of samples the chance of randomly selecting a pair from a new class is

o 1 for the first pair of samples, 2— - = for the second, . .., and % . % for the last; in short:
n! \" n!
EP,S))=— (-] =—. 1
msl- 5 (3) -4 0

If the data distribution is not perfectly uniform, i.e., d # 0, we can also calculate a lower bound for
the same probability. Consider two probabilities per sample: the probability of selecting a new class

P, (5"") and the probability of selecting a second sample of the same class P,, (5%™) afterwards.
Across all samples, these correspond to 2= and (1)™ in E[P, ()], respectively.

Let us first consider the probability of selectlng a new class. When the first sample is taken, only
one new class can be selected (probability of 1). If this sample was taken from the largest class first,
the probability that subsequent samples will be taken from new classes decreases, since the space
of “unsampled” classes is smaller. For this lower bound, we therefore assume that maximally large
classes are sampled from as much and as early as possible. According to our assumptions, the largest
classes each take up a fraction of ﬂ of the data. Therefore, the probability of selecting a new class
—(14d) n— (1+d)2

for successive samples has the followmg probablhtles . First, consider the

case where n is even. Here, after all the 5 largest classes have been selected only the small classes

remain. For the last, second to last, . .. classes, this probability is represented by (=d) d) , (1" d) e

Overall, we get the probability

n

pas) > [ T e H@

S n .
=% =1

If n is uneven, an average size class between the largest and smallest classes must be included:

& j - n_ _ %—1~5Z. _
NGO B | LU (n (1+d)(3-05) 1) T =

. n n
i=45+0.5

i=1

The probability of selecting a second sample of the same class is easier to calculate. Instead of
constant probabilities as in the expectation with %, we now have two different probabilities in the
even case and three in the odd case. In the even case, we have % large batches and the same number
of small batches, so the probability of choosing the right batch each time is

same 1+d g 1-d %
(Seven) = <) <) .
n n

In the uneven case, we also have to also consider the batch that has an average size

. 1+d\?1 /1-d\?
P bide)Z(n> n( - )

Note that for both P, (Shew) and Py, (Ssame ) the distribution of the data into the largest and smallest
possible batches (according to our assumptions) results in the smallest possible probabilities; hence,
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the computed probability is a lower bound. If the batches were more evenly sized, the probability
would be larger. We can also see that a deviation of up to 1 results in a probability of 0, since it is
impossible to sample from a class that is not represented in the data.

In total, the probability of selecting of a correct sample set is the product of the two probabilities
above, i.e,

P, (SEW)P, (S50} if n is even

Pn S — even even . . 2

(5) {Pn(Sgggv)Pn(Sggfge) if n is odd. &
P, (9) is the (lower bound on the) probability of selecting a correct set of samples. We can calculate
the number of trials k& needed to find such a set of samples with at least 95% probability. The opposite
probability, of never finding it with less than 5% probability, is easier to calculate:

(1—P(S)* <1-0.95=0.05
EIn(1 — P(S)) < In(0.05)
In(0.05)
P - )

This allows us to determine how many attempts might be necessary. Note that while this would
leave a 5% chance of not picking the right samples, there are various practical reasons why the
actual probability of finding a working set of samples will be higher, e.g., if the number of samples
from each class is not as uneven as assumed, or if some samples are distributed in such a way that
even picking a sample from the “wrong” class might still lead to the identification of the correct
mechanisms.

For example, if n = 2 and d = 0.2, we have an expected probability of E[P(S)] = 5%, = 0.125 and
alower bound of P (S) = P(SeV)P(Ssame) > 0.8.2.1.2. 08 _ ) 096, Larger deviations decrease

even even/ — 2 2 2 2
the probability while a deviation of d = 0 results in the same probability as with E[P(.S)]. For the
lower bound, this results in k¥ = 30 samples for a confidence of 95% using the above calculation

steps. All resulting sample counts can be found in Table 2]

C LO-RANSAC Bivariate Discovery

The problem we are trying to solve is twofold : first, we are initially unaware of the underlying
meta-causal state ¢ that generated a particular data point (z;, y; ), which prevents us from estimating
the parameterization (ay, 8y) of the mechanism. Conversely, our lack of knowledge about the
mechanism parameterizations (o, Bk )ke1..x) prevents us from assigning class probabilities to the
individual data points. Since neither the state assignment nor the mechanism parameterizations are
initially known, we perform an Expectation-Maximization (EM; Dempster et al.|(1977))) procedure to
iteratively estimate and assign the observed data points to the discovered MCS parameterizations.
Due to the local convergence properties of the EM algorithm, we further embed it into a locally
optimized local random sample consensus approach (LO-RANSAC; [Fischler & Bolles|(1981)); Chum
et al.[(2003)). RANSAC approaches repeatedly sample initial parameter configurations to avoid local
minima, and successively perform several steps of local optimization - here the EM algorithm - to
regress the true parameters of the mechanism.

Assuming for the moment that the correct number of mechanisms k* has been chosen, we assume that
the EM algorithm is able to regress the parameters of the mechanisms, o, 3}, whenever there exists a
pair of points for each of the mechanisms, where both points of the pair are samples generated by that
particular mechanism. The chances of sampling such an initial configuration decrease rapidly with an
increasing number of mechanisms (e.g. 0.036% probability for k = 4 and equal class probabilities).
Furthermore, we assume that the sampling probabilities of the individual mechanisms in the data
can deviate from the mean by up to a certain factor d. In our experiments, we consider setups
with d € {0.0,0.1,0.2}. Given the number of classes and the maximum sample deviation of the
mechanisms, one can compute an upper bound on the number of resamples required to have a 95%
chance of drawing at least one valid initialization. The bound is maximized by assigning the first half
of the classes the maximum deviation probability Pxmax = (14 d)/k and the other half the minimum
deviation probability P min = (1 — d)/k. We provide the formulas for the upper bound estimation
and in Sec. [B]in the Appendix and provide the calculated required resample counts in Table 2] In the
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K=1

K=2

K=3

K=4

Figure 3: Sampled Mechanisms. The figure shows a selection of different randomly sampled
mechanism distributions, ranging from one to up to four simultaneously present mechanisms. The
gray dotted lines represent the generating ground truth mechanisms. (Best Viewed In Color)

worst case, for a scenario with £ = 4 mechanisms and d = 0.2 maximum class probability deviation,
nearly 14, 900 restarts of the EM algorithm are required, drastically increasing the potential runtime.

In our experiments, we find that our assumptions about EM convergence are rather conservative. Our
evaluations show that the EM algorithm is still likely to be able to regress the true parameters, given
that some of the initial points are sampled from incorrect mechanisms. We measure the empirical
convergence rate by measuring the convergence rate of the EM algorithm over 5,000 different setups
(500 randomly generated setups with 10 parameter resamples each). We perform 5 EM steps for
setups with k£ = 1 and k£ = 2 mechanisms, and increase to 10 EM iterations for 3 and 4 mechanisms.
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\ 1 Mechanism 2 Mechanisms 3 Mechanisms 4 Mechanisms
Max. Class Deviation = 0.0

Theoretical 1 23 363 8,179

Empirical 2 8 24 173
Max. Class Deviation = 0.1

Theoretical 1 26 429 10,659

Empirical 2 8 25 177
Max. Class Deviation = 0.2

Theoretical 1 30 526 14,859

Empirical 2 8 26 177

Table 2: Estimated Number of Required Resamples for Obtaining a 95% Convergence Rate
with the LO-RANSAC Algorithm per Number of Mechanisms and Maximum Class Deviation.
The empirical observed convergence rates of the EM algorithm drastically reduce the required number
of samples of the theoretical derived bound. This reveals that our made assumptions where chosen
to be quite conservative, and attests a good fit of the EM algorithm for regressing the mechanisms’
parameters.

Class Deviation \ 1 Mechanism 2 Mechanisms 3 Mechanisms 4 Mechanisms

0.0 4219 (84.38%) 1740 (34.80%) 592 (11.84%) 86 (1.72%)
0.1 " 1702 (34.04%) 577 (11.54%) 84 (1.68%)
0.2 " 1567 (31.34%) 555 (11.10%) 84 (1.68%)

Table 3: Empirical estimated convergence percentage of the EM algorithm for different class
imbalances and number of mechanisms. The table shows the number of samples converged
and the convergence rates (in parentheses) for a single random initialization and for estimating the
parameterization of the underlying system for a given number of mechanisms. All results are reported
per 5000 samples.

For each initialization, we count the EM algorithm as converged if the slope and intercept of the true
and predicted values do not differ by more than an absolute value of 0.2.

We compare theoretically computed and empirical in convergence results in Table[2] In practice, we
observe that the convergence of the EM algorithm is more favorable than estimated, reducing from
23 to 8 required examples for the simple case of k = 2,d = 0.0, and requiring up to 83-times fewer
samples for the most challenging setup of £ = 4, d = 0.2, reducing from a theoretical of 14,859 to an
empirical estimate of 177 samples. The actual convergence probabilities and the formula for deriving
to sample counts are given in Table[3]and the next Appendix Sec. D}

D EM Convergence Results

The required number of resamples for a 95% success rate of the RANSAC algorithm is calculated by
log(0.05) /log(1 — C1), where S1 are the convergence rates for the individual samples computed in
Sec.

Empirical convergence probabilities and resulting resampling counts for the LO-RANSAC algorithm
are shown in Tables [2]and[3] Table 4 lists the goodness of fit for all converged samples. In general,
we find that in cases where the approach is able to converge, it undercuts the required parameter
convergence boundary of 0.2 by factors of 4.8 and 3.5 for the slope and intercept, respectively.

E Mechanism Sampling

For our experiments in Sec. 4.2| we uniformly sample the number of mechanisms to be in K € {1..4}.

The slopes of the linear equations are uniformly sampled between o € £[0.2..5] and the intercepts

are in the range 8 € [—5, 5]. We add Laplacian noise £(|u, b) = 5 * exp(—lw;b“‘) with ¢ = 0 and
b € [0.1,4.0]. X values are uniformly sampled in the range [—5, 5l] and y; = ax; + B+ L(x]0,b).
The average number of samples per class is set to 500. Throughout the experiments, we vary the class

probabilities by a class deviation factor D € {0.0,0.1,0.2}. Specifically, we maximize the class
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Class Deviation \ 1 Mechanism 2 Mechanisms 3 Mechanisms 4 Mechanisms

0.0 0.0349]0.0590  0.0370[0.0543  0.0380]0.0592  0.0389]0.0516
0.1 " 0.0381]0.0555  0.0381|0.0566  0.0346|0.0528
0.2 " 0.0414(0.0548  0.0412|0.0567  0.0402|0.0570

Table 4: Mean average error for the slope and intercept of the correctly predicted mechanism
for different class imbalances and number of mechanisms. Mechanisms are accepted if their
parameters do not differ by more than 0.2 from the ground truth parameterization. The results show
that converged samples are typically estimated with an error well below the threshold.

deviation by assigning K/2 classes the maximum probability 1/K * (1 + D) and K /2 classes the
minimum probability 1/K (1 — D). If K is odd, a class is assigned the average probability 1/ K.
We show a selection of the resulting sample distributions in Fig.
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Algorithm 1 Recovering Mechanisms for the Bivariate Case

1: procedure RECOVERMECHANISMS(X, Y, maxClassDev K\,.x, EMSteps)
2: for all & € [1..K ) do

3: bestModelLogL <— —o0
4: N < requiredSamples(k, maxClassDev, 0.95) > Compute # of samples (c.f. Sec.
5: for alln € [1.N] do > RANSAC iteration.
6: px, py < sample(z;,y;, 2 * k) > Initialize parameters with 2 x k points.
7: for all £’ € [0..k) do
8: ag < (PY2r+1 — PY2r)/ (PT2kt1 — DT2k)
9: B < PY2r, — O * Ty
10: b + 1.0 > Assume initial avg. deviation of the Laplacion to be 1.
11: dp +— ‘XY’ > Assume X — Y direction first.
12: ¢k < Prapracian(X, ¥; @, 5,0, d) > Initial class probabilities for all samples.
13: end for
14: for all [ € [1..EMSteps| do > EM Iteration.
15: a,3,b,d + regressLines(x,y;c) > (Weighted) median regression.
16: C < PLaplacian(X7 Yy, o, ,6, b, d)
17: end for
18: modelLogL < >, LogP; ,o1acian (X, Y5 @, B, b, d); > Obtain the joint log probs.
19: if modelLogL. > bestModelLogL then
20: bestModelLogL <— modelLogL
21: bestParameters < (a, 3,b,d)
22: end if
23: end for
24: allLaplacian < true > Check if residuals are Laplacian distributed.
25: forall ! € [1..k] do
26: (e, B,b,d) + bestParameters
27: xl,y!, ¢! < selectClass(x,y,c,!) > Select points where argmax, = [.
28: xl,yl « filter(x!,y!,c!,0.4) > Keep points s.t. max*2¢! < 0.4(1 — max#!(c!).
29: r = LinEq(x', ¥ oy, Br, dy) — ¥
30: if not AndersonDarling(r, 0.95) then
31: allLaplacian - false
32: break
33: end if
34: end for
35: if allLaplacian then
36: return k
37: end if
38: end for
39: return 0

40: end procedure
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