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ABSTRACT

Deep neural networks are highly susceptible to backdoor attacks, yet most defense
methods to date rely on balanced data, overlooking the pervasive class imbalance
in real-world scenarios that can amplify backdoor threats. This paper presents
the first in-depth investigation of how the dataset imbalance amplifies backdoor
vulnerability, showing that (i) the imbalance induces a majority-class bias that
increases susceptibility and (ii) conventional defenses degrade significantly as the
imbalance grows. To address this, we propose Randomized Probability Pertur-
bation (RPP), a certified poisoned-sample detection framework that operates in a
black-box setting using only model output probabilities. For any inspected sample,
RPP determines whether the input has been backdoor-manipulated, while offering
provable within-domain detectability guarantees and a probabilistic upper bound
on the false positive rate. Extensive experiments on five benchmarks (MNIST,
SVHN, CIFAR-10, TinyImageNet and ImageNet10) covering 10 backdoor attacks
and 11 baseline defenses show that RPP achieves significantly higher detection
accuracy than state-of-the-art defenses, particularly under dataset imbalance. RPP
establishes a theoretical and practical foundation for defending against backdoor
attacks in real-world environments with imbalanced data.

1 INTRODUCTION
Deep neural networks (DNNs) are increasingly embedded in safety-critical applications ranging from
autonomous driving (Kong et al., 2020; Wen & Jo, 2022) to facial recognition systems (Yang et al.,
2021; Anusudha et al., 2024). However, they are known to be vulnerable to backdoor attacks (Gu
et al., 2019; Goldblum et al., 2022; Zeng et al., 2023; Le Roux et al., 2024). The core concept of a
neural backdoor involves embedding a unique pattern, known as a trigger, into the training data. The
resulting model behaves normally on clean inputs but, when the trigger appears, reliably redirects
predictions to an attacker-chosen target class. For example, a small sticker on a stop sign can induce
a traffic system to read “go” (Liu et al., 2018b).

One major way of defending against backdoor attack, called prior-training defense, is to detect and
remove poisoned samples from the dataset before the training process, evidenced by a number of
defenses (Tran et al., 2018; Chen et al., 2021; Qi et al., 2023b; Pan et al., 2023; Guo et al., 2023;
Pal et al., 2024). However, existing methods typically assume an idealized scenario where defenses
operate on balanced training sets (or their derived models)—a condition rarely found in real-world
domains. In practice, data are often highly imbalanced, with some classes far more prevalent than
others (He & Garcia, 2009; Fernández et al., 2018; Johnson & Khoshgoftaar, 2019; Aguiar et al.,
2024). For example, in medical diagnosis datasets, healthy samples might outnumber cancer cases by
more than 1000:1. Likewise, in autonomous driving, minority classes (e.g., rare traffic signs or road
anomalies) are inherently underrepresented. In Sec. 3, we conducted a comprehensive investigation
that reveals two key phenomena in this imbalance context: (1) We identify a significant correlation
between the efficacy of backdoor attacks and the degree of dataset imbalance, demonstrating that
imbalanced datasets are inherently more susceptible to backdoor attacks. (2) We further observe that
the performance of existing backdoor defense mechanisms degrades significantly as data imbalance
intensifies. On the other hand, existing approaches lack formal theoretical guarantees and remain
susceptible to adaptive adversaries (Athalye et al., 2018; Liu et al., 2022; Zhong et al., 2025), thereby
perpetuating a cat-and-mouse dynamic between attackers and defenders, which is not affordable for
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safety-critical applications. Therefore, there is an urgent need for a certified prior-training defense
that is resilient to imbalanced data.

To this end, we propose Randomized Probability Perturbation (RPP), a certified prior-training
poisoned sample detection that maintains its robustness across both balanced and imbalanced
data. Unlike existing defenses that rely on distribution-level signals (such as clustering or class-
level metrics to separate benign and poisoned samples) which often fail with imbalanced data,
RPP examines individual sample behaviors under noise, making it resilient to distribution shifts.
Specifically, we observe that poisoned inputs exhibit distinctive, consistent patterns in their prediction
probabilities as random perturbations are applied—patterns that are noticeably different from those
of benign samples. By quantifying the per-input stability of the predictive probability vector and
calibrating detection thresholds via a conformal prediction framework, RPP identifies suspicious
samples even when they are rare in imbalanced datasets. This sample-level perspective thus bypasses
the heavy reliance on uniform or abundant class representations, making RPP naturally suited to
both balanced and imbalanced scenarios. Moreover, Sec. 5 derives a certified condition under which
backdoored samples are guaranteed to be detectable, yielding provable performance guarantees and
enabling practical deployment—especially under severe class imbalance.

Our contributions are summarized as follows: (1) We investigate and report a strong correlation
between the degree of data imbalance and the success rate of backdoor attacks, demonstrating that
highly imbalanced datasets are intrinsically more vulnerable to such threats. (2) We show that
conventional backdoor defense mechanisms degrade significantly in performance as data imbalance
intensifies, highlighting the need for new defensive approaches tailored to skewed class distributions.
(3) Guided by these observations, we introduce RPP, a prior-training poisoned sample detection
technique that adapts effectively to severe class imbalance. We further provide certified detection
guarantees and a rigorous theoretical foundation, offering a robust framework for future backdoor
defense strategies.

2 RELATED WORK

Backdoor attacks can be categorized into two primary types based on their threat models.

(1) Model-Manipulation Backdoor. The first type, model manipulation attacks, operates under
a strong but less practical assumption where attackers can control the training process, such as
Input-aware Nguyen & Tran (2020), and LIRA Doan et al. (2021). A range of empirical works have
been proposed to detect or repair trained models to mitigate backdoor threats. Currently, common
approaches include Neural Cleanse (Wang et al., 2019) and Artificial Brain Stimulation (Liu et al.,
2019), which recover potential triggers to erase the backdoor, as well as fine-tuning on clean auxiliary
data (Liu et al., 2017) or directly pruning backdoor-related neurons (Liu et al., 2018a). Some certified
defense methods also be proposed (Wang et al., 2020a; Xie et al., 2021; Xiang et al., 2024). In this
work, we do not consider such model manipulation backdoor.

(2) Data-Poisoning Backdoor. In our work, we focus on the second type with a more practical
assumption—data poisoning attacks—which presents a reasonable scenario where attackers have no
access to the training process, but can only poison a small portion of the training data by acting as
malicious data providers. This category ranges from simple pixel or blend triggers (e.g., BadNets (Gu
et al., 2019), Blend (Chen et al., 2017)) to more stealthy or geometric triggers (e.g., ISSBA (Li et al.,
2021b), WaNet (Nguyen & Tran, 2021)) and clean-label strategies (e.g., CL (Turner et al., 2019),
Sleeper Agent (Souri et al., 2022), SIG (Barni et al., 2019), Narcissus (Zeng et al., 2023)).

Empirical Defenses. The research community has reported a number of empirical defenses aimed at
detecting and removing poisoned samples during the training process. These defenses span feature-
outlier pruning (Spectral Signature (Tran et al., 2018)), unlearning to break trigger–label ties (ABL (Li
et al., 2021a)), simulator-discrepancy filtering with a clean proxy (De-Pois (Chen et al., 2021)),
correlation decoupling via random labels (CT (Qi et al., 2023b)), test-time entropy/perturbation
screening (STRIP, BBCaL (Gao et al., 2019; Hu et al., 2024)), and topology/margin heuristics
(MM-BD, TED, IBD-PSC (Wang et al., 2024; Mo et al., 2024; Hou et al., 2024)).

Certified Defenses. However, these empirical approaches lack formal guarantees and are vulnerable
to adaptive attacks (Athalye et al., 2018; Liu et al., 2022; Zhong et al., 2025), fueling a cat-and-mouse
dynamic that is unacceptable in safety-critical settings. Inspired by certified defenses for adversarial
examples (Rosenfeld et al., 2020; Levine & Feizi, 2020; Jia et al., 2022; Weber et al., 2023) that

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

provide guarantee robustness to small input perturbations rather than backdoors, CBD (Xiang et al.,
2024) is the first certified detector of backdoored models. In specific, CBD targets post-training
model inspection to determine whether a trained model is compromised, rather than detecting and
removing poisoned training samples before training. A detailed comparison between CBD and our
method, RPP, is provided in App. D. To the best of our knowledge, no prior work provides certified
identification and removing of mailicous training samples in data-poisoning backdoor attacks.

Moreover, existing countermeasures implicitly assume an idealized scenario where defenses operate
on balanced training sets—an assumption rarely met in real-world domains. In practice, datasets are
often highly imbalanced, with some classes far more than others (He & Garcia, 2009; Fernández
et al., 2018; Johnson & Khoshgoftaar, 2019; Aguiar et al., 2024). Our threat investigation (Sec. 3)
demonstrates that imbalanced datasets not only significantly increase attack risks (i.e., high attack
success rates with low attack budgets) but also drastically reduce the defense performance of existing
countermeasures (i.e., low detection accuracy and high false positive rates). In sharp contrast, our
proposed method, RPP, is a certified poisoned sample detector that maintains its performance across
both balanced and imbalanced data (Sec. 4).

3 THREAT INVESTIGATION

Threat Model. We focus on backdoor attacks in classification settings under a representative
data-poisoning threat model, where the adversary can inject poisoned training samples but cannot
manipulate the training procedure or final model (Oprea et al., 2022; Cinà et al., 2024). We further
consider a practical yet challenging aspect of real-world settings: dataset imbalance. We assume that
the attacker is aware of the general distribution of the victim’s dataset and how the majority bias in
imbalanced datasets affects the success rate of backdoor attacks. As such, the attacker strategically
poisons data in minority classes by altering their labels to those of majority classes, which has
proven to enhance the attack effectiveness and reduce the attack budget (Sec. 3). In this paper, we do
not consider multi-trigger or multi-target backdoors (Xue et al., 2020), as even empirical detection
remains challenging (Xiang et al., 2024).

Formal Backdoor Attack Setting. We consider K-class classification with inputsX ⊂ Rd and labels
Y = {1, . . . ,K}. A classifier f(·|w) maps x ∈ X to a predictive distribution p(x | w) ∈ [0, 1]K .
The y-th entry, py(x|w), is defined as py(x|w) = P(f(x|w) = y),∀y ∈ Y .

Let D = {(xi, yi)}Ni=1 be the training set. In a backdoor attack, an adversary chooses a trigger δ
and target class yt, producing a poisoned set D(x+ δ) by stamping δ and assigning label yt, so that
f(·|w) = y for benign inputs while f(x + δ;w) = yt for triggered ones. We also assume a clean
calibration set V = {(xi, yi)}ni=1 drawn i.i.d. from the same distribution as D.

Investigation. Previous studies (Wang et al., 2020b; Pang et al., 2024) have shown that minority
classes in long-tail distribution are particularly susceptible to data poisoning attacks. Building on
these insights, we investigate whether the inherent classification bias toward majority classes further
amplifies this vulnerability in different distributions: specifically, if an attacker deliberately targets
underrepresented classes to be misclassified as a majority class, does the existing bias increase the
likelihood of the attack’s success?

To simulate imbalanced scenarios, we modify the training set in two ways: long-tailed (Cui et al.,
2019) and step imbalance (Buda et al., 2018). The imbalance ratio ρ quantifies the degree of
imbalance, defined as the ratio between the largest and smallest class sizes:ρ = maxi{ni}

mini{ni} . Unless
otherwise specified, we consider ρ = 2, 10, 100, 200 (see Fig. 6). In the long-tailed setting, the sizes
of the classes decay exponentially from head to tail, leading to a progressive decline across different
classes. In the step imbalance setting, we assign a uniform, reduced sample size to all minority classes.
We define µ as the proportion of minority classes, typically set at 0.9 (i.e., 9 out of 10 classes are
designated as minority) across all experiments to balance the distribution and guarantee a thorough
evaluation. More details are provided in App. B.1. In both cases, we apply Badnets (Gu et al., 2019)
attacks by randomly selecting an equal number of samples from the minority classes (classes 1–9)
in each imbalanced training set (or preserving the same poisoning ratio), then relabel them as the
majority class (class 0).

Observation 1: Imbalanced datasets are more susceptible to backdoor attacks. Fig. 1 shows
that increasing the imbalance ratio ρ consistently raises ASR. Even with a fixed poisoning rate p,
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Figure 1: AUC/ASR of Badnets on MNIST with bal-
anced (ρ = 1) and imbalanced (ρ = 2, 10, 100, 200)
training sets; long-tailed (r = 45, p = 0.4%) and
step-imbalanced (r = 18, p = 0.3%).

AC ASSET SCALE-UP

TPR FPR TPR FPR TPR FPR

ρ=2 61.8 10.4 88.1 38.0 98.9 17.5
ρ=10 57.2 8.9 97.5 53.1 100.0 56.8
ρ=100 31.5 0.8 33.3 52.7 100.0 84.3
ρ=200 0.1 0.1 0.0 0.0 0.1 0.2

Table 1: Comparison with AC, ASSET, and
SCALE-UP on imbalanced MNIST (µ = 0.9,
ρ = 2, 10, 100, 200) against BadNets.

imbalanced datasets are more vulnerable than balanced ones (App. C.1), corroborating the hypothesis
that majority-class bias amplifies backdoor susceptibility.

Observation 2: Existing defenses deteriorate under imbalance due to distribution-level sig-
nals. Both empirical and certified defenses, e.g., AC (Chen et al., 2018), ASSET (Pan et al., 2023),
and SCALE-UP (Guo et al., 2023), exhibit declining performance as ρ grows (Tab. 1; App. C.12;
App. C.13). A key reason is that many defenses rely on distribution-level signals, such as classwise
statistics, clustering structure, or global thresholds. They become biased and unstable under class
imbalance as majority classes dominate these estimates while minority classes yield noisy, underpow-
ered signals, leading to missed triggers. Overrepresentation of majority classes thus steers models
and defenses toward majority patterns, under-detecting subtle triggers in minority classes (Tab. 2).

In practical settings, datasets often exhibit significant imbalance (He & Garcia, 2009; Fernández
et al., 2018; Johnson & Khoshgoftaar, 2019; Aguiar et al., 2024). Hence, there is a pressing need
for backdoor defenses that remain robust to such imbalance. Our proposed RPP method addresses
this challenge by providing a certified poisoned samples detection using sample-level signal and
calibrating detection thresholds via a conformal prediction framework, whose performance holds in
both balanced and imbalanced settings.

4 RPP DETECTION USING SAMPLE-LEVEL SIGNAL

4.1 OVERVIEW OF RPP DETECTION

Key Intuition of Sample-Level Detection under Imbalance. Backdoor triggers are engineered
to be robust: once present, they reliably drive a poisoned image to the target class and are largely
insensitive to simple input transformations (e.g., random noise or blurring) (Chen et al., 2017; Liu
et al., 2018b), keeping its predicted probability vector relatively stable. In contrast, clean images
rely on naturally occurring correlations without artificially reinforced features; mild perturbations
therefore induce noticeably larger changes in their probability vectors.

(a) 𝜌=2 (b) 𝜌=100

Figure 2: Relative frequency distribution of RPP
(∆̃P ) for clean and poisoned samples on the
SVHN dataset with µ = 0.9 under imbalance
ratios: (a) ρ = 2 and (b) ρ = 100.

Motivated by the stability gap above and the lim-
itations under imbalance, we introduce RPP—a
sample-level robustness metric that measures the
expected change in an image’s probability vec-
tor under injected random noise (formalized in
Sec. 4.2). Because RPP evaluates robustness per
instance rather than from global distributional
cues, it remains effective even with severe class
imbalance. We further integrate RPP with a con-
formal prediction framework to calibrate detection
thresholds in a distribution-adaptive manner, en-
suring principled performance even under severe
class imbalance. Empirically, poisoned samples yield consistently lower RPP than clean ones across
diverse imbalance ratios; see Fig. 2 and additional results in App. C.3.

Goal of RPP Detection. Our objective is to determine whether a sample is backdoor-poisoned using
RPP, which quantifies the expected perturbation of its predicted probability vector under random noise.
Empirically (Fig. 2; App. C.3), RPP exhibits a clear separation between clean and poisoned samples
across a range of imbalance ratios, enabling effective identification. Beyond empirical detection,
we seek a certified condition guaranteeing correct identification of poisoned samples. Crucially,
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certification must be coupled with control of the false positive rate (FPR); thus, we explicitly target a
balance between detection power and a pre-specified FPR for practical deployment.

(1) Preliminary Model Training 

Pre-Train

𝑓( ∙ |𝜔)Preliminary modelPoisoned dataset 𝐷(𝑥 + 𝛿)

      

        

         

        

Perturbated 𝐷′(𝑥 + 𝛿 + 𝜀)

      

        

         

        

𝜀
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(3) Poisoned Sample Detection
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dataset 𝒱(𝑥)
𝜀

𝑓( ∙ |𝜔)

Perturbated  
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(2) Threshold Calculation
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𝒑𝟏
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Figure 3: Overview of RPP method.

Outline of RPP Detection. RPP
takes as input a candidate (potentially
poisoned) dataset D(x + δ) and a
clean calibration set V . The detec-
tion pipeline is shown in Fig. 3. (1)
Preliminary Model Training. First,
we perform a brief training phase on
the dataset to be inspected to obtain
a preliminary model with acceptable
performance. If the dataset contains
poisoned samples, we assume that the
model will have already learned the
backdoor trigger (indicated by a rel-
atively high attack success rate). (2)
Threshold Calculation. For each x in
the clean calibration set V , we inject
noise J times, feed the perturbed inputs to the preliminary model f(· | w), and compute the empirical
∆̃P (Sec. 4.2) from the resulting probability vectors. The threshold is specified by the quantile
linked to a significance level α over the calibration set of size n. (3) Poisoned Sample Detection.
Next, we compare the empirical ∆̃P value computed for each sample in D(x+ δ) to the threshold.
If ∆̃P is at or below this threshold, x is labeled as poisoned; otherwise, it is classified as clean.
The detection threshold is obtained via split conformal prediction (Aljanabi et al., 2023), providing
distribution-free calibration that remains valid under class imbalance (Sec. 4.3). The step-by-step
procedure is summarized as pseudocode in App. C.11.

4.2 DEFINITION OF RPP
We define the RPP and its empirical version in Def. 4.1 with the goal of quantifying the perturbation
of probability vectors caused by the injection of random noise. Note that the concept of RPP is based
on the probability vector after noise injection, p(x+ε|w), which is also referred to as the Samplewise
Local Probability Vector (SLPV), a concept introduced by (Xiang et al., 2024).
Definition 4.1 (Randomized Probability Perturbation (RPP) and empirical RPP). Let f(·|w) be a pre-
trained preliminary model with parameter w and ε be isotropic Gaussian noise, where ε ∼ N (0, σ2I)
with σ > 0. Given the input x, the RPP is defined as follows:

∆P (x | w, σ) = Eε∼N (0,σ2I)∥p(x|w)− p(x+ ε|w)∥∞. (1)

Moreover, if εj ∈ Rd, j ∈ [J ] are J samples independently drawn from the Gaussian distribution
N (0, σ2I), the empirical RPP (eRPP) is defined as

∆̃P (x | w, σ) = 1

J

J∑
j=1

∥p(x|w)− p(x+ εj | w)∥∞ . (2)

Remarks: The RPP quantifies the bias of the probability vector by adding the randomization on the
input. It is trivial that ∆P (x | w, σ) → 0 as σ → 0 for any x and w. In practice, we estimate the
RPP by it empirical version.

4.3 THRESHOLD DETERMINATION OF RPP
Although the ∆̃P distributions for benign and poisoned samples are distinct (Fig. 2 and App. C.3) ,
determining an appropriate threshold under data imbalance setting for identifying a malicious example
remains challenging. To address this challenge, we adapt conformal prediction techniques (Vovk
et al., 2005; Angelopoulos et al., 2023), which are particularly well-suited for backdoor detection
in imbalanced settings because they require only a single model fit and a small calibration dataset
that shares a similar distribution with the test points—a requirement that aligns well with our threat
model settings. The specific implementation details of our approach are described below.

Conformal prediction is traditionally used to construct prediction sets for any model (Angelopoulos
et al., 2023). Given an i.i.d. calibration set {(xi, yi)}ni=1, it computes a score function s(xi, yi) for
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each point, then selects a threshold q̂ as the ⌈(n+1)(1−α)⌉
n quantile of these scores. For a new test

example (xtest, ytest), the corresponding prediction set T (xtest) satisfies P(ytest ∈ T (xtest)) ≥ 1− α,
where α ∈ [0, 1] is the user-specified error rate. In our approach, instead of producing prediction sets,
we focus on the distribution of ∆P (x | w, σ), enabling us to directly apply conformal methodology
without building class-conditioned sets. We further preserve the i.i.d. assumption by storing a small,
balanced, and clean calibration dataset offline, which can be readily satisfied during the initial model
deployment phase, where the calibration data is pre-loaded alongside the model; we then re-sample
from this dataset—adjusting to the local data distribution—to form a calibration subset that remains
contamination-free.

Under this framework, if xtest is benign, the usual conformal properties hold; we prove in Sec. 5.2
that P(∆P (xtest | w, σ) ≥ q̂) ≥ min

(
1, 1 + 1

n+1 − α
)

, where q̂ is the ⌈α(n+1)⌉
n quantile of the

calibration scores. Equivalently, if ∆P (xtest | w, σ) ≤ q̂, then with high probability xtest has been
poisoned. This makes conformal prediction well-suited for threshold selection under data imbalance,
offering a principled basis for backdoor trigger detection in skewed datasets.

RPP for Imbalanced Dataset. Unlike traditional methods reliant on distribution-level characteristics,
RPP evaluates each sample individually based on its stability under noise perturbations. This sample-
centric evaluation inherently mitigates the adverse effects of dataset imbalance. The conformal
prediction framework further enhances this approach in imbalanced settings by calibrating the
detection threshold using empirical RPP distributions from clean validation data. When model
bias arises due to imbalance, both RPP values and the corresponding threshold adjust accordingly,
preserving detection validity. This self-normalizing property enables RPP to adapt automatically to
varying class distributions without requiring explicit adjustment. As shown in Fig. 2 and App. C.3,
the threshold q̂ of RPP distributions of clean and poisoned samples are clearly distinguishable with
approximately 0.001 for imbalanced datasets with ρ = 200, while around 0.5 for balanced datasets.

5 THEORETICAL DISCUSSION

5.1 RPP CERTIFICATION

Beyond detection, we provide a certification that guarantees detectability of poisoned samples under
specific conditions, with detailed proofs in App. A.
Theorem 5.1. Let f(·|w) : X → Y be the classifier with the parameter w. Let yt be the target class
of the attacker. Define

p(x) = pyt
(x+ δ | w) (3)

Suppose that for any specific x ∈ X and classes yt ∈ Y , there exist pt ∈ (0, 1) such that

P(f(x+ ε | w) = yt) ≤ pt, (4)

where ε ∼ N (0, σ2I) is an injected Gaussian noise. Let ζ(x, δ) represent the upper bound of
∆P (x+ δ | w, σ) and suppose Assumption (A.1) is satisfied.

A sample attacked by a backdoor with trigger δ and the target class yt is guaranteed to be detected if

∥δ∥2 ≥ σ
(
Φ−1(p(x)− ζ(x, δ))− Φ−1(pt)

)
(5)

where Φ−1 is the inverse of the standard normal cumulative distribution function.

Assumption (A.1) Let yt be the target class of the attack. We assume the following inequality holds:

pyt(x+ δ + ε | w) < pyt(x+ δ | w) (6)

We note that Assumption (A.1) is a reasonable and common assumption that aligns with standard
practices in the field, as evidenced by its adoption in numerous defense mechanisms (Cohen et al.,
2019; Xiang et al., 2024). Experiments also used to support the assumption, shown in App. C.4.

Thm. 5.1 establishes a lower bound on the trigger size necessary to detect the poisoned sample.
Specifically, a sample attacked by a backdoor is guaranteed to be detected with trigger size ∥δ∥2 ≥
Rσ,t = σ

(
Φ−1(p(x)− ζ(x, δ))− Φ−1(pt)

)
. Notably, the lower bound Rσ,t in Thm. 5.1 is relatively

small and ensures that most poisoned samples can be detected. In practice, if the trigger size is too
small (∥δ∥2 ≤ Rσ,t), the attack success rate remains low under normal settings and attack budgets
(see App. C.2).
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We provide an upper bound of the trigger size in Cor. 5.2. As long as the backdoor is successfully
injected, it implies that p(x)→ 1 and pt → 0 (note that pt is the upper bound of P(f(x+ε | w) = yt)
in equation 4), leading to

(
Φ−1(p(x))− Φ−1 (pt)

)
→ ∞ for any given x and w. This means that

the upper bound of ∥δ∥2 is an approximately infinite number.
Corollary 5.2. Suppose all conditions in Thm. 5.1 are satisfied and Assumption (A.1) is satisfied.
The trigger δ of a backdoor attack satisfies that

∥δ∥2 ≤ σ
(
Φ−1(p(x))− Φ−1(pt)

)
(7)

According to Thm. 5.1 and Cor. 5.2, we can establish the range of trigger sizes that guarantee
detection. This requires estimating p(x), ζ(x, δ), and pt. Here, p(x) denotes the probability that
the sample x + δ is classified into the target class. Since the upper bound ζ(x, δ) is not directly
accessible, we estimate it using the ⌈α(n+1)⌉

n -quantile of the calibration set S . The term pt represents
the upper bound of P(f(x+ εj | w) = yt). We let yt denote the class that appears most frequently
among J noise-injected copies of x, where ϵ1, . . . , ϵJ ∼ N (0, σ2I). Specifically, we process each
x+ ϵj through the pre-trained classifier f(·|w) and count the frequency of each class across the J
predictions. The class with the highest frequency is selected as yt and the count of its occurrences is
denoted by nt. For a given α, we compute pt using one-sided (1− α) upper confidence intervals of
the binomial distribution B(nt, J), as implemented in the function UPPERCONFBOUND(nt, J, 1−α).
The complete algorithm procedure is outlined in App. C.11.

5.2 THEORETICAL GUARANTEES

Conformal Calibration Guarantee: We formally present the calibration guarantee, ensuring that a
benign example exceeds the threshold with high probability.
Theorem 5.3. Let V = {(xi, yi)}ni=1 be a calibration data set that xi is benign and i.i.d. drawn from
from D. If the test data xtest is clean and q̂ be the ⌈α(n+1)⌉

n quantile as

q̂ = inf

{
q :
|{i : si ≤ q}|

n
≥ ⌈α(n+ 1)⌉

n

}
. (8)

Then we have that

P
(
∆P (xtest | w, σ) ≥ q̂

)
≥ 1 +

1

n+ 1
− α. (9)

Performance Guarantee: The theorem establishes a performance guarantee for our proposed robust
poisoned sample detection method. Specifically, Thm. 5.4 derives an upper bound for the FPR and
outlines its asymptotic behavior. A numerical validation of Thm. 5.4 is provided in App. C.17.
Theorem 5.4. Let S = {s1, . . . , sn} be the calibration set where si = ∆P (xi | w, σ) for i =
1, . . . , n and α be a pre-selected confidence level. Then, the FPR can be bounded as the following:

P
(
∆P (xtest | w, σ) ≤ q̂ | S

)
≤ α+

1

n+ 1
(10)

Moreover, if we denote Zn = P
(
∆P (xtest | w, σ) ≤ q̂|S

)
, then for any ξ > 0 the following

probability holds limn→∞ P(Zn ≤ α+ ξ) = 1.

6 EXPERIMENT

6.1 EXPERIMENT SETTING

Imbalanced Datasets. We convert the originally balanced MNIST, SVHN, CIFAR-10, TinyImageNet
and ImageNet10 training sets into long-tailed and step-imbalanced versions based on the imbalance
ratio ρ and the fraction of minority classes µ, while keeping the test sets unchanged (see Fig.6). A
balanced calibration set of 100 i.i.d. samples is drawn from the same distribution. More details about
these datasets are deferred to App. B.1. The results for MNIST are presented in the App. C.8.
Backdoor Attacks. For certification performance, we consider two well-known backdoor attacks:
Badnets (Gu et al., 2019) and the Blend attack (Chen et al., 2017). In both cases, a trigger δ is added
to the original image x such that ∥δ∥2 ≥ 0.8 (i.e., x 7→ x+ δ). Although other patterns could be used,
our certified robustness depends primarily on the magnitude of the backdoor perturbation and the
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fraction of poisoned training data, so these patterns suffice to illustrate our approach. Meanwhile, to
empirically validate the RPP method’s detection efficacy, we evaluate ten additional types of triggers,
detailed in App. B.2.
Evaluation Metric. Detection performance is measured by TPR (correctly detected poisoned
samples) and FPR (benign samples incorrectly flagged as poisoned).
Training. We use PreActResNet18 (He et al., 2016) for SVHN and CIFAR10, ResNet34 (He et al.,
2016) for TinyImageNet and ViT-B/16 (Dosovitskiy et al., 2021) for ImageNet10 as classification
models. The results for different architectures (VGG16, DenseNet161 and EfficientNetB0) are shown
in App. C.6. We ensured that the ASR in the pre-trained models remained above a certain threshold,
e.g., 50% (App. C.16) and 90% (Tab. 2), confirming the effectiveness of the backdoor. All reported
results are averaged over multiple independent runs to ensure statistical robustness.

6.2 CERTIFICATION PERFORMANCE

In Fig. 4, we present the TPR and FPR across dataset SVHN, CIFAR-10, TinyImageNet and
ImageNet10 under balanced (ρ = 1) and various imbalance ratios (ρ = 2, 10, 100, 200). To ensure
robustness, we apply isotropic Gaussian noise with dataset-specific standard deviations σ: 0.6 for
SVHN, 1.0 for CIFAR-10, TinyImageNet and ImageNet10. The certification process employs two
different values for the user-defined error rate parameter α: 0.05 and 0.1. For each input sample, we
generate independent Gaussian noise samples (J = 3) to effectively measure classification probability
variations while maintaining computational efficiency, more results using different J are shown in
App. C.5.

Our certification method demonstrates strong effectiveness across all three datasets under various
class balance conditions. When α = 0.05, for SVHN, RPP achieves certification coverage ranges from
98.8% to 100.0% across all balance scenarios, with FPRs between 1.2% and 23.9%. The CIFAR-10
dataset shows similarly robust results, with certification rates ranging from 90.4% to 99.9% and
FPRs between 5.9% and 29.6%. For TinyImageNet, RPP certifies up from 99.3% to 100.0% and
FPRs between 2.0% and 31.2%. Even in ImageNet10, the method achieves certification from 84.5%
to 96.7%. The corresponding FPR remains relatively low, ranging from 11.6% to 24.6% across
different balance ratios. All these optimal results were achieved with α = 0.05. When increasing
α to 0.1, we observed that, while the TPR remains largely stable, the FPR increases. Based on this
trade-off analysis, we selected α = 0.05 as the optimal parameter for our subsequent experiments.
Additionally, we demonstrate the performance of the RPP across varying trigger sizes, see App. C.16.

(a) SVHN (b) CIFAR10 (c) TinyImageNet

T
P

R
/F

P
R

(d) ImageNet10

Figure 4: Performance of RPP against BadNets attacks with perturbation magnitude ∥δ∥2 ≥ 0.8,
measured by TPR and FPR across balanced (ρ = 1) and imbalanced (ρ = 2, 10, 100, 200) settings,
with n = 100 and varying α on SVHN, CIFAR-10, TinyImageNet and ImageNet10.

6.3 EMPIRICAL PERFORMANCE

Here, we present the detection performance of the RPP method against 10 types of backdoor attacks
with α = 0.05, n=100 and σ = 1.0. For all experiments, we ensure the dataset contains sufficient
poisoned samples to allow ASR exceeding 90%. We also compare our approach with 11 empirical
backdoor defense methods, as shown in Tab. 2 and Tab. 10. We found that RPP achieves comparable
or even higher TPRs than the SOTA detection methods for all trigger types. However, in several
instances, methods like SCALE-UP and MSPC demonstrated higher TPR, as highlighted in red in
Tab. 2 and Tab. 10, albeit at the cost of significantly increased FPR. A detailed explanation on why
existing methods underperform is presented in App. C.12

6.4 ADDITIONAL EXPERIMENT

Impact of Noise Level. To assess the impact of isotropic Gaussian noise standard deviation (σ)
on RPP, experiments were conducted with fixed α = 0.05 and n = 100. Fig. 5 illustrates the TPR
and FPR across four datasets. Optimal performance requires dataset-specific σ ranges: 0.2 to 1.2 for
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Badnets Blend Trojan SIG ISSBA WaNet Sleeper Agent AdaPatch AdaBlend Narci.

Defenses TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

ρ = 2

SS 55.6 1.2 57.9 9.6 54.7 2.0 62.1 25.2 39.5 1.9 60.0 8.2 60.0 2.3 11.7 2.8 16.1 3.9 8.3 7.7
AC 56.1 16.1 42.7 13.5 24.0 49.6 66.7 16.3 44.1 9.6 58.3 6.7 32.1 20.2 20.7 17.3 21.3 12.6 3.6 21.6
ABL 23.6 2.6 36.2 8.0 15.2 0.3 10.9 3.2 33.7 0.6 60.3 11.5 4.9 1.3 12.1 0.6 10.3 4.7 0.0 0.5
CT 75.1 12.6 84.3 10.2 82.1 3.2 90.1 37.6 91.6 18.3 92.5 15.7 75.3 10.4 68.7 0.6 77.2 8.5 10.6 16.3
ASSET 53.3 31.4 55.1 27.6 71.9 37.1 62.2 36.4 80.4 15.6 81.1 16.4 30.5 29.4 32.9 36.9 65.9 22.8 89.0 6.2
SCALE-UP 95.8 44.0 75.7 28.4 55.7 38.9 99.0 40.1 90.6 29.8 85.4 21.1 32.6 4.6 76.7 69.2 72.4 39.7 60.5 17.2
MSPC 88.2 45.1 90.7 20.4 59.8 25.9 80.1 38.9 78.3 18.8 89.8 9.6 67.6 33.8 64.3 34.8 70.3 27.8 77.5 27.1
BBCaL 95.7 18.4 94.2 19.3 72.8 13.0 89.4 19.6 93.1 17.7 81.8 20.3 80.4 17.1 70.1 24.4 67.3 20.5 84.0 16.1
STRIP 90.2 18.9 77.8 26.3 20.7 10.5 88.6 30.7 40.2 22.8 10.5 33.2 17.6 10.3 85.4 24.0 80.9 26.3 0.0 0.8
TED 96.2 4.8 90.9 8.2 76.5 12.1 88.0 12.9 90.3 18.4 88.4 11.9 89.9 13.3 86.0 13.6 83.9 14.0 90.3 14.0
IBD-PSC 95.3 6.8 93.6 9.5 90.3 10.0 85.2 12.6 90.3 13.6 88.5 12.1 64.3 14.4 85.3 9.7 85.6 14.9 90.5 22.9
Ours 96.7 3.2 89.5 9.3 89.9 12.9 93.0 4.7 89.0 10.9 90.6 8.8 93.8 24.7 87.4 4.9 86.7 11.2 95.6 16.9

ρ = 100

SS 29.7 5.3 29.5 6.7 58.3 4.2 10.0 5.0 20.8 18.7 30.6 5.5 33.6 20.5 6.7 3.2 20.3 5.2 0.0 1.2
AC 39.2 0.4 21.2 2.9 0.0 0.1 0.0 0.2 30.0 7.9 32.5 6.8 10.3 0.3 4.6 0.1 10.5 4.6 0.0 0.0
ABL 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 2.1 10.2 1.6 0.0 2.6 0.0 1.5 0.0 1.8 0.0 1.6
CT 0.0 14.0 0.0 4.4 0.0 2.4 0.0 0.1 6.1 7.3 21.6 5.2 0.0 12.5 0.0 0.0 9.3 9.3 0.0 9.3
ASSET 0.0 0.0 12.1 4.7 0.0 0.0 0.0 8.7 10.1 6.4 13.3 5.8 0.0 4.2 21.9 22.8 17.6 6.4 5.2 2.2
SCALE-UP 90.7 45.3 52.0 41.8 52.1 20.2 48.9 10.8 63.7 32.9 50.1 24.6 76.3 42.1 47.1 22.6 33.3 30.5 19.8 17.4
MSPC 23.4 10.6 36.1 9.5 31.4 11.3 40.8 9.4 21.6 3.3 50.2 16.7 21.5 0.8 19.8 0.9 22.7 6.4 41.1 28.6
BBCaL 67.6 29.9 68.1 30.6 50.7 19.9 52.0 30.7 58.4 28.9 46.8 31.3 60.3 22.0 39.8 30.1 37.2 28.4 55.7 21.3
STRIP 49.5 22.4 37.6 29.1 12.0 17.4 42.2 31.1 18.2 20.6 7.9 16.2 8.2 10.4 39.9 32.2 27.6 29.9 0.0 0.5
TED 76.9 9.3 71.4 16.3 38.7 22.6 70.3 20.4 60.7 20.1 54.3 17.7 61.2 16.9 50.5 20.0 49.4 22.3 65.5 19.5
IBD-PSC 85.4 12.0 74.7 17.5 47.1 22.9 69.5 16.7 58.8 19.5 63.4 20.3 44.7 15.8 58.9 16.6 63.1 21.4 61.4 29.7
Ours 100.0 9.2 79.9 16.3 75.0 3.4 73.9 12.9 52.2 11.1 70.3 24.9 59.2 3.8 66.1 15.9 69.2 15.4 67.4 18.7

Table 2: Comparison with SoTA defenses on imbalanced CIFAR-10 datasets (µ = 0.9, ρ = 2, 100).
Additional results for ρ = 1, 10, 200 are reported in Tab. 10.

SVHN, 0.1 to 3.0 for CIFAR10, 0.1 to 2.0 for TinyImageNet and ImageNet10, with variability under
20%, demonstrating RPP’s robustness to noise variations.

(a) SVHN (b) CIFAR10 (c) TinyImageNet

T
P

R
/F

P
R

(d) ImageNet10

Figure 5: Performance of RPP against BadNets attacks with ∥δ∥2 ≥ 0.8, measured by TPR and
FPR on SVHN, CIFAR-10, TinyImageNet and ImageNet10 under balanced (ρ = 1) and imbalanced
(ρ = 2, 10, 100, 200) settings for varying σ, with α = 0.05 and n = 100.

Resistance to Potential Adaptive Attacks. Consistent with prevailing threat models (Souri et al.,
2022; Zeng et al., 2023), we employ low poisoning rates to preserve stealth while sustaining a high
ASR. Within the theoretical regime ∥δ∥2 ≥ 0.8, RPP satisfies its certified detectability conditions. We
further examine a worst-case adaptive scenario in which the adversary is defense-aware and reduces
trigger strength to ∥δ∥2 < 0.8; to maintain ASR, the poisoning rate is increased to p = 10% (ASR
>90%). Even under this setting, RPP frequently detects poisoned samples empirically (App. C.10).
Moreover, exceedingly small triggers typically necessitate impractically high poisoning budgets,
limiting their relevance in realistic deployments.

More Experiments. In subsequent ablation studies, we systematically investigate several key
factors that may affect the performance of RPP. Specifically, we vary the size of the calibration set
(App. C.7) and examine the impact of using imbalanced calibration sets (App. C.9). We further
explore RPP’s robustness when the backdoor target label belongs to a minority or intermediate class
(App. C.14), and assess its effectiveness using class-imbalance mitigation techniques such as logits
adjustment (App. C.15).

7 CONCLUSION

In this paper, we show that imbalanced datasets are more vulnerable to backdoor attacks than balanced
ones, and existing defenses—designed for balanced data—perform poorly under imbalance. To
address this, we propose RPP, the first certified poisoned samples detector that quantifies changes in
prediction probabilities caused by random noise. RPP not only enables accurate detection but also
provides a certified condition under which backdoors are guaranteed to be detectable. Our analysis
shows that if the backdoor perturbation exceeds a threshold—ensuring high ASR with minimal
poisoning—RPP can reliably distinguish poisoned from clean samples. Extensive experiments on five
benchmarks confirm its strong detection and certification performance, even in imbalanced scenarios.
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A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 5.1

We restate theorem 5.1 as theorem A.1 to enhance clarity and convenience. The proof is motivated by
the approach in (Cohen et al., 2019), which leverages Lemma 4. For completeness, we restate this
lemma as lemma A.2 and introduce assumption A.3 (Assumption A.1) below.
Theorem A.1 (theorem 5.1). Let f(·|w) : X → Y be the classifier with the parameter w. Let yt be
the target class of the attacker. Define

p(x) = pyt(x+ δ | w) (11)

Suppose that for any specific x ∈ X and classes yt ∈ Y , there exist

P(f(x+ ε | w) = yt) ≤ pt (12)

Let ζ(x, δ) represent the upper bound of ∆P (x+ δ | w, σ) and suppose assumption A.3 is satisfied.
A sample attacked by a backdoor with a trigger δ and the target class yt is guaranteed to be detected
if

∥δ∥2 ≥ σ
(
Φ−1(p(x)− ζ(x, δ)

)
−Φ−1(pt)) (13)

where Φ−1 is the inverse of the standard normal cumulative distribution function.
Lemma A.2 (Lemma 4, (Cohen et al., 2019)). Let X ∼ N (x, σ2I) and Y ∼ N (x+ δ, σ2I). Let
h : Rd → {0, 1} be any deterministic or random function. Then:

1. If S = {z ∈ Rd : δ⊤z ≤ β} for some β and P(h(X) = 1) ≥ P(X ∈ S), then
P(h(Y ) = 1) ≥ P(Y ∈ S).

2. If S = {z ∈ Rd : δ⊤z ≥ β} for some β and P(h(X) = 1) ≤ P(X ∈ S), then
P(h(Y ) = 1) ≤ P(Y ∈ S).

Assumption A.3. Let yt be the target class of the attack. We assume the following inequality holds:

pyt
(x+ δ + ε | w) < pyt

(x+ δ | w) (14)

Proof of theorem A.1. We define the following half-spaces:

A := {z : δ⊤(z − x) ≥ σ∥δ∥2Φ−1(1− pt)} (15)

The following lemma will be used in the proof, with its proof provided at the end.

Lemma A.4. Let pt ∈ (0, 1) is a number defined in equation 12 and A are defined by equation 15.
The following equality holds:

P(x+ ε ∈ A) = pt (16)

According to lemma A.4 and the definitions of pt, we have that

P(f(x+ ε | w) = yt) ≤ P(x+ ε ∈ A) (17)

which implies the following:

pyt
(x+ δ + ε | w) = P(f(x+ δ + ε | w) = yt) ≤ P(x+ δ + ε ∈ A) (18)

by applying lemma A.2 with h(z) := 1[f(z) = yt].

Now,

P(x+ δ + ε ∈ A) = P(δ⊤(x+ δ + ε− x) ≥ σ∥δ∥2Φ−1(1− pt))

= P(δ⊤N (0, σ2I) + ∥δ∥22 ≥ σ∥δ∥2Φ−1(1− pt))

= P(σ∥δ∥2Z ≥ σ∥δ∥2Φ−1(1− pt)− ∥δ∥22)

= P
(
Z ≥ Φ−1(1− pt)−

∥δ∥2
σ

)
= Φ(Φ−1(pt) +

∥δ∥2
σ

) (19)
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where Z ∼ N (0, 1) is the standard Gaussian distribution.

For any x+ δ ∈ Y , we have that
∥p(x+ δ | w)− p(x+ δ + ε | w)∥∞ = max

1≤k≤K
|pk(x+ δ | w)− pk(x+ δ + ε | w)|

≥ |pyt
(x+ δ | w)− pyt

(x+ δ + ε | w)|
(I)
= pyt

(x+ δ | w)− pyt
(x+ δ + ε | w)

(II)
≥ p(x)− P(x+ δ + ε ∈ A)

(III)
≥ p(x)− Φ(Φ−1(pt) +

∥δ∥2
σ

) (20)

where (I) holds because of assumption A.3, (II) follows from equation 18 and (III) follows from
equation 19. Taking the expectation over ε ∼ N (0, σ2I), we obtain that

p(x)− Φ(Φ−1(pt) +
∥δ∥2
σ

) ≤ Eε∼N (0,σ2I)∥p(x+ δ | w)− p(x+ δ + ε | w)∥∞ (21)

Let ζ = ζ(x, δ) be the upper bound of ∆P (x+ δ | w, σ). From equation 20, we have that

0 < p(x)− Φ(Φ−1(pt) +
∥δ∥2
σ

) ≤ ζ(x, δ) (22)

which implies that
∥δ∥2 ≥ σ

(
Φ−1(p(x)− ζ(x, δ)

)
−Φ−1(pt)) (23)

Proof of lemma A.4. The proof of lemma A.4 is similar to the proofs of two claims in (Cohen et al.,
2019, Theorem 2). We provide them here for completeness.

Recall that ε ∼ N (0, σ2I) and A = {z : δ⊤(z − x) ≥ σ∥δ∥2Φ−1(1− pt)}. Then,

P(x+ ε ∈ A) = P(δ⊤(x+ ε− x) ≥ σ∥δ∥2Φ−1(1− pt))

= P(δ⊤N (0, σ2I) ≥ σ∥δ∥2Φ−1(1− pt))

= P(σ∥δ∥2Z ≥ σ∥δ∥2Φ−1(1− pt))

= P(Z ≥ Φ−1(1− pt))

= 1− Φ(Φ−1(1− pt)) = pt.

A.2 PROOF OF COROLLARY 5.2

From the inequality of equation 22, we have that

Φ(Φ−1(pt) +
∥δ∥2
σ

) ≤ p(x) (24)

which implies that
∥δ∥2 ≤ σ

(
Φ−1(p(x))− Φ−1(pt)

)
A.3 PROOF OF THEOREM 5.3

Let si = ∆P (xi | w, σ) for i = 1, . . . , n and s0 = ∆P (xtest | w, σ). By the exchange ability of xi

and xtest (they are i.i.d.), we have that

P(s0 ≥ sk) =
n+ 2− k

n+ 1
, ∀k ∈ [n],

which is because s0 is equally likely to fall in anywhere between s1, . . . , sn. Hence, we can conclude
that

P(s0 ≥ s⌈α(k+1)⌉) =
n+ 2− ⌈α(n+ 1)⌉

n+ 1

≥ 1 +
1

n+ 1
− α.
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A.4 PROOF OF THEOREM 5.4

Let S = {s1, . . . , sn} be the calibration set where si = ∆P (xi | w, σ) for i = 1, . . . , n. Moreover,
we denote s0 = ∆P (xtest | w, σ). Similar to the proof of theorem 5.3, by the exchangeability of xi

and xtest (assume xtest is benign), we have that

P
(
∆P (xtest | w, σ) ≤ q̂ | S

)
= P(s0 ≤ s⌈α(n+1)⌉ | S) =

⌈α(n+ 1)⌉
n+ 1

≤ α+
1

n+ 1
,

which proves the upper bound. Next, we discuss the asymptotic property of FPR. In the classic
conformal prediction, the distribution of coverage, P(ytest ∈ T (xtest)), has an analytic form and it
was first introduced by Vladimir Vovk in (Vovk, 2012), i.e.,

P(ytest ∈ T (xtest) | S) ∼ Beta(n+ 1− ⌊α(n+ 1)⌋, ⌊α(n+ 1)⌋).
The details of the proof of this fact see (Vovk, 2012). We note that the probability of coverage is
actually equal to P(s0 ≤ s⌈α(k+1)⌉). Indeed, during the proof of theorem 5.3, we just skip to show
the probability of coverage and choose the ⌊α(n+1)⌋

n quantile as the threshold while the ⌊(1−α)(n+1)⌋
n

quantile is used in the classic conformal prediction. Therefore, we have that P
(
∆P (xtest;w, σ) ≤ q̂ |

S
)
∼ Beta(n+1−⌊(1−α)(n+1)⌋, ⌊(1−α)(n+1)⌋). If we denote Zn = P(s0 ≤ s⌈α(k+1)⌉|S),

the mean and variance of Zn are given by

E[Zn] =
n+ 1− ⌊(1− α)(n+ 1)⌋

n+ 1
=
⌈α(n+ 1)⌉

n+ 1

Var[Zn] =
(n+ 1− ⌊(1− α)(n+ 1)⌋)(⌊(1− α)(n+ 1)⌋)

(n+ 1)2(n+ 2)

From the Chebyshev’s inequality, we have that for any ξ > 0,

P(Zn ≥
⌈α(n+ 1)⌉

n+ 1
+ ξ) < P(|Zn −

⌈α(n+ 1)⌉
n+ 1

| ≥ ξ) ≤ 1

ξ2
⌈α(n+ 1)⌉)(⌊(1− α)(n+ 1)⌋)

(n+ 1)2(n+ 2)
,

which implies that

lim
n→∞

P(Zn ≤ α+ ξ) = lim
n→∞

P(Zn ≤
⌈α(n+ 1)⌉

n+ 1
+ ξ) = 1− lim

n→∞
P(Zn ≥

⌈α(n+ 1)⌉
n+ 1

+ ξ) = 1.

B DETAILS FOR THE EXPERIMENTAL SETTING

B.1 DETAILS FOR THE IMBALANCED DATASETS

The original MNIST, SVHN, and CIFAR-10 datasets consist of 60,000 training images and 10,000
test images (MNIST), 73,257 training images and 26,032 test images (SVHN), and 50,000 training
images and 10,000 test images (CIFAR-10), with both datasets having 10 classes. For TinyImageNet,
we selected 50 classes from TinyImageNet200 as a subset for our experiments, with each class
containing 500 training images. For ImageNet-10, we constructed a 10-class subset of ILSVRC-2012
(ImageNet-1K) by selecting ten semantically diverse categories. We use the original per-class splits
(approximately 1,300 training images and 50 validation images per class).To create imbalanced
versions, we reduce the number of training samples per class while keeping the test sets unchanged.

We use two types of imbalance: long-tailed (Cui et al., 2019) and step imbalance(Buda et al., 2018).
The imbalance ratio ρ measures the degree of imbalance, defined as the ratio between the largest and
smallest class sizes:ρ = maxi{ni}

mini{ni} .

In our studies, we designated imbalance ratios of ρ = 2, 10, 100, 200, as depicted in Fig. 6. For
TinyImageNet, the ratios were set at ρ = 2, 10, 100. In scenarios with long-tailed distributions, the
sizes of the classes decrease exponentially, leading to a progressive decline across different classes.
Conversely, the step imbalance method assigns a uniform, reduced sample size to all minority classes,
while maintaining larger sample sizes for more frequent classes, thus establishing a distinct separation
between the two groups. We define µ as the proportion of minority classes, typically set at 0.9
across all experiments to balance the distribution and guarantee a thorough evaluation, except for
TinyImageNet where µ = 0.98.
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(a) Long-Tailed Imbalance (b) Step Imbalance

Figure 6: Class proportion types on the MNIST, SVHN, CIFAR10, TinyImageNet and ImageNet
datasets. (a) Long-Tailed Imbalance (µ = 1/(ρ+ 1), ρ = 2, 10, 100, 200). (b) Step Imbalance (µ =
0.9, ρ = 2, 10, 100, 200).

B.2 EXAMPLES OF POISONED SAMPLES

For certification performance, we consider two well-known backdoor attacks: Badnets (Gu et al.,
2019) and the Blend attack (Chen et al., 2017). In both cases, a trigger δ is added to the original
image x such that ∥δ∥2 ≥ 0.8 (i.e., x 7→ x+ δ). For Badnets, we use a chessboard pattern (Xiang
et al., 2020) as the trigger; for the Blend attack, we adopt a “hello-kitty” image with a blending rate
of 0.2. Although other patterns could be used, our certified robustness depends primarily on the
magnitude of the backdoor perturbation and the fraction of poisoned training data, so these patterns
suffice to illustrate our approach.

Meanwhile, to empirically validate the RPP method’s detection efficacy, we evaluate 10 types of
triggers. These include Chessboard (Xiang et al., 2020), Blend (Chen et al., 2017), Trojan (Liu
et al., 2018b), Sleeper Agent (Souri et al., 2022), SIG (Barni et al., 2019),ISSBA(Li et al., 2021b)),
WaNet(Nguyen & Tran, 2021), AdaPatch (Qi et al., 2023a), AdaBlend Patterns (Qi et al., 2023a) and
Narcissus (Narci.) (Zeng et al., 2023), detailed in 6.3. Here, we showcase original clean samples
alongside their corresponding poisoned counterparts, each embedded with one of these nine distinct
triggers, as shown in Fig. 7.

Car Airplane Horse Airplane Horse Airplane

Clean Poisoned

Chessboard Blend Trojan

Car Airplane

Sleeper Agent

Horse Airplane

SIG

Car Airplane

Adaptive

 Blend

Adaptive Patch

Horse Airplane

Clean Poisoned Clean Poisoned

WaNet

Cat Airplane Dog Airplane

ISSBA

Figure 7: Examples of nine types of backdoor attacks on CIFAR10.

B.3 DETAILS FOR THE MODEL TRAINING

We employ a standard two-layer convolutional neural network (Tab. 3) for MNIST, trained for 50
epochs with a batch size of 128 and a learning rate of 10−3 using the Adam optimizer (Kingma,
2014).

For SVHN and CIFAR-10, we train PreActResNet18 (He et al., 2016) for 100 epochs at a batch size
of 128 and a learning rate of 5× 10−4 using Adam. The training images are augmented by random
cropping and horizontal flipping.
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For TinyImageNet, we train ResNet34 (He et al., 2016) for 100 epochs at a batch size of 128 and a
learning rate of 5× 10−4 using Adam. Data augmentation includes random horizontal flipping and
random cropping.

For ImageNet10, we train ViT-B/16 (Dosovitskiy et al., 2021) for 100 epochs at a batch size of 128
and a learning rate of 5× 10−4 using Adam. Data augmentation includes random horizontal flipping
and random cropping.

Layer # of Channels Filter Size Stride Activation

Conv 32 3× 3 1 ReLU
MaxPool 32 2× 2 2 -

Conv 64 3× 3 1 ReLU
MaxPool 64 2× 2 2 -

FC 128 - - ReLU
FC 10 - - Softmax

Table 3: Model Architecture for MNIST.

C MORE EXPERIMENTS

C.1 ATTACK SUCCESS RATE WITH SAME POISONING RATIO

In Fig. 1, we observe that when an equal number of minority class samples (classes 1-9) are randomly
selected and subjected to Badnets backdoor attacks (Gu et al., 2019) with their labels changed to the
majority class (class 0), the ASR in imbalanced datasets is higher than in balanced datasets. In Fig.
8, we preserved the same poisoning ratio (p) across balanced (ρ = 1) and imbalanced training set
(ρ = 200), and implemented the same backdoor attacks. Our findings also suggest that imbalanced
datasets are more vulnerable to backdoor attacks compared to their balanced counterparts.

Figure 8: The AUC and ASR of the Badnets backdoor attacks on balanced (ρ = 1) and imbalanced
(µ = 0.9, ρ = 200) MNIST training datasets with the same poisoned ratios (p = 0.3%) or same
number (r = 18) of backdoor samples.

C.2 ATTACK SUCCESS RATE WITH SMALLER TRIGGER SIZE

Typically, to ensure stealth, attackers aim to minimize the amount of poisoning while maintaining
a high success rate for the attack. Our preliminary findings indicate that in datasets with extreme
imbalance, a poisoning rate of 0.3% in step imbalance can achieve an ASR of more than 95%, as
shown in Fig. 1.

As demonstrated in Thm. 5.1, a sample attacked by a backdoor is guaranteed to be detected with
trigger size ∥δ∥2 ≥ Rσ,t = σ

(
Φ−1(p(x)− ζ(x, δ))− Φ−1(pt)

)
. In this section, we examine

scenarios where the trigger size is smaller than Rσ,t, while keeping the poisoning rate constant. As
shown in Tab. 4, all evaluated attacks struggle to maintain high ASR under such stealthy constraints,
confirming the general difficulty of successful backdoor injection when both poisoning budget and
perturbation size are limited. In practice, defensive measures are not required when the ASR drops
below 50%.
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Attack ρ = 1 ρ = 10 ρ = 200

AUC ASR AUC ASR AUC ASR

Badnets 100.0 13.8 100.0 14.5 98.9 21.8
Blend 100.0 16.3 100.0 18.8 99.0 22.9
Trojan 100.0 29.4 100.0 30.6 99.0 35.6
SIG 100.0 29.0 100.0 33.7 99.0 38.2
ISSBA 99.8 30.2 99.8 47.6 98.8 53.3
WaNet 100.0 35.8 99.7 46.0 98.9 55.1
Sleeper Agent 99.9 28.6 99.5 36.9 99.0 48.6
Adaptive patch 99.8 20.1 99.8 26.9 98.5 33.0
Adaptive Blend 99.9 22.7 99.0 26.1 98.9 30.4

Table 4: The ASR and AUC under ∥δ∥2 < 0.8 on the balanced MNIST dataset (ρ = 1) and two types
of imbalanced MNIST datasets (µ = 0.9, ρ = 10, 200) with same poisoned ratio (p=0.3%).

C.3 RELATIVE FREQUENCY DISTRIBUTIONS OF RPP

In Sec. 4.1, we present the relative frequency distributions of ∆̃P for clean and malicious samples
under datasets with imbalance ratios ρ = 2 and ρ = 100. In Fig. 9, the relative frequency distribution
of ∆̃P for clean and malicious samples in balanced datasets (ρ = 1) as well as those with imbalance
ratios ρ = 10 and ρ = 200 are depicted. It is observed that images subjected to backdoor attacks
typically exhibit a lower ∆̃P compared to clean images. Although there is some overlap in the ∆̃P
between poisoned data and clean samples when ρ = 200, the RPP method still achieves TPR of
90.0% with FPR below 30% (Fig. 4). Moreover, datasets with a step imbalance of ρ = 200 are also
rare in real-world scenarios.

(b) 𝜌=10 (c) 𝜌=200(a) 𝜌=1

Figure 9: Relative frequency distribution of ∆̃P for clean and poisoned samples on SVHN dataset
with imbalance ratios: (a) ρ = 1, (b) µ = 0.9, ρ = 10 and (c) µ = 0.9, ρ = 200.

C.4 EMPIRICAL VALIDATION FOR ASSUMPTION (A.1)

To empirical validate the Assumption (A.1): pyt
(x + δ + ε | w) < pyt

(x + δ | w), we evaluated
the percentage of backdoored test samples satisfying this inequality on CIFAR-10 under varying
imbalance ratios, with Gaussian noise (σ=1.0). Tab. 5 showed the assumption is consistent in all
settings. Further, we tested backdoor-triggered samples with and without Gaussian noise across
various imbalance settings. Tab. 6 clearly demonstrate that as the noise level σ increases, the ASR
decreases across all imbalance ratios. This confirms that noise-perturbed poisoned samples are indeed
less likely to be classified into the target class, providing strong empirical support for our theoretical
assumption.

C.5 PERFORMANCE OF DIFFERENT NOISE SAMPLES

In Fig. 10, we evaluate the performance of RPP across different numbers of Gaussian noise samples
J , which are used to estimate classification probability variations. The results demonstrate that RPP
achieves over 95% detection performance on datasets with imbalance ratios ρ = 1, 2, 10, and 100.
Even under a high imbalance ratio of ρ = 200, RPP maintains a TPR exceeding 85% while keeping
the FPR below 40%. Notably, the results indicate that a small number of noise samples (as few as
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Attack ρ = 1 ρ = 2 ρ = 10 ρ = 100 ρ = 200

Badnets 100.0 100.0 100.0 100.0 99.8
Blend 100.0 100.0 100.0 100.0 99.6
Trojan 100.0 100.0 100.0 100.0 99.7
Narcissus 100.0 100.0 100.0 100.0 100.0

Table 5: Percentage of poisoned samples satisfying Assumption 1 under different imbalance ratios
ρ with σ = 1.0 on CIFAR-10, evaluated on four backdoor attacks: Badnets, Blend, Trojan, and
Narcissus.

σ = 0 σ = 0.5 σ = 1.0 σ = 1.5

ρ = 1 100.0 84.6 77.4 68.3
ρ = 2 99.9 83.7 77.7 70.3
ρ = 10 99.7 94.8 89.3 83.9
ρ = 100 100.0 98.6 94.4 90.9
ρ = 200 100.0 99.1 97.5 93.1

Table 6: The ASR of Badnets backdoor attack was evaluated on the balanced CIFAR10 training
dataset (ρ = 1) and imbalanced CIFAR10 training datasets (ρ = 2, 10, 100, 200) with poisoning
ratio (p = 0.3%) under different standard deviations of isotropic Gaussian noise (σ = 0, 0.5, 1.0, 1.5).

J = 3) is sufficient to achieve strong detection performance. To balance detection effectiveness and
computational efficiency, we set J = 3 in all subsequent experiments.

(a) SVHN (b) CIFAR10 (c) TinyImageNet

T
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/F

P
R

(d) ImageNet10

Figure 10: Performance of RPP against Badnets backdoor attack with perturbation magnitude ∥δ∥2 ≥
0.8 across balanced dataset (ρ = 1) and varying imbalance ratios (µ = 0.9, ρ = 2, 10, 100, 200) under
different J with n = 100, α = 0.05 on SVHN, CIFAR-10, TinyImageNet and ImageNet10 datasets.

C.6 PERFORMANCE ON DIFFERENT MODEL ARCHITECTURES

In Tab. 7, we present the performance of RPP across different model architectures such as VGG16,
DenseNet161, and EfficientNetB0 under varying imbalance ratios (ρ). RPP achieves consistently
high TPR across all settings, where TPRs often reach or approach 100%. Notably, RPP maintains a
strong detection capability even under severe imbalance (ρ = 100 or ρ = 200), demonstrating its
robustness across datasets and architectures. TinyImageNet exhibits a similar trend but tends to yield
lower FPRs under balanced conditions and slightly higher TPRs under extreme imbalance compared
to CIFAR10.

C.7 IMPACT OF CALIBRATION SET SIZE

The selection of the calibration set size (n) significantly impacts the performance of conformal
prediction. Intuitively, a larger n may seem preferable as it generally results in more stable procedures,
a notion supported by (Vovk, 2012). Generally speaking, choosing a calibration set of size n = 1000
is sufficient for most purposes (Angelopoulos et al., 2023). However, in practical scenarios, it
is challenging to obtain an additional and big clean calibration set (n = 1000) that is identically
distributed (i.i.d.) with the original data set. In Fig. 11, we present the TPR and FPR of RPP against
the Badnets attack across three datasets, evaluated with different calibration set sizes (n=100, 200,
400, 600, 800 and 1000) and α = 0.05. Our findings demonstrate that RPP’s computational and
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CIFAR10 TinyImageNet

VGG16 DenseNet161 EfficientNetB0 VGG16 DenseNet161 EfficientNetB0

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

ρ = 1 99.9 10.1 94.4 18.3 90.3 13.7 100.0 4.2 100.0 9.6 92.2 7.8
ρ = 2 99.9 24.3 92.6 24.6 89.8 12.8 99.9 9.9 86.9 16.7 96.6 13.3
ρ = 10 93.5 29.8 87.5 22.0 86.6 25.5 100.0 29.3 91.8 23.7 100.0 31.0
ρ = 100 87.1 22.8 86.7 29.7 81.8 23.3 100.0 36.6 82.2 27.8 88.7 28.2
ρ = 200 90.0 26.9 88.9 30.6 77.8 23.8 – – – – – –

Table 7: Performance of RPP against Badnets backdoor attack with perturbation magnitude ∥δ∥2 ≥
0.8 across balanced dataset (ρ = 1) and varying imbalance ratios (µ = 0.9, ρ = 2, 10, 100, 200) on
CIFAR10 and TinyImageNet datasets under VGG16, DenseNet161, and EfficientNetB0 architectures
with n = 100, α = 0.05, and σ = 1.0 for CIFAR10 and TinyImageNet.

data efficiency can be enhanced by reducing the size of the calibration set, without significantly
compromising its detection or certification performance. Specifically, when the calibration set size is
decreased from 1000 to 100, the TPR remains nearly unchanged across datasets with varying degrees
of imbalance. This robustness of RPP to the calibration set size further validates the clear separation
between benign and backdoored samples, underscoring its effectiveness in practical scenarios.

(a) SVHN (b) CIFAR10 (c) TinyImageNet

T
P

R
/F

P
R

(d) ImageNet10

Figure 11: Performance of RPP against Badnets backdoor attacks with perturbation magnitude
∥δ∥2 ≥ 0.8, measured by TPR and FPR across balanced dataset (ρ = 1), and varying imbalance ratios
(µ = 0.9, ρ = 2, 10, 100, 200) for a range of n with α = 0.05 on SVHN, CIFAR-10, TinyImageNet
and ImageNet10 datasets.

C.8 PERFORMANCE ON MNIST

We use a standard 2-layer convolutional neural network (App. B.3) for MNIST and report TPR/FPR
under a balanced setting (ρ = 1) and multiple imbalance ratios (ρ = 2, 10, 100, 200). As α increases
from 0.05 to 0.10, TPR remains near ceiling across all ρ, while FPR rises slightly yet stays modest.
Sweeping σ from 0.05 to 0.5 yields TPR close to 100% for most ρ, with only mild degradation at the
largest σ under severe imbalance; FPR typically remains below 35%. Increasing n from 100 to 1000
keeps TPR essentially saturated and generally reduces FPR, indicating that larger calibration sets
stabilize false-positive control. Finally, varying the number of Gaussian noise samples J maintains
TPR around 100% across ρ.

C.9 PERFORMANCE UNDER IMBALANCED CALIBRATION SET

In Tab. 8, we present the detection performance of RPP with α = 0.05 when the validation set
consists of imbalanced clean data that are i.i.d. with the training set. For the imbalanced calibration
set, we include 100 samples from the majority class and 1 sample from each minority class, resulting
in n = 109 for MNIST, SVHN, and CIFAR-10, and n = 149 for TinyImageNet. The results
suggest that the detection efficacy of RPP is unaffected by whether the calibration set is balanced or
imbalanced.
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Figure 12: Performance of the RPP detection against Badnets backdoor attacks with perturbation
magnitude ∥δ∥2 ≥ 0.8, measured by TPR and FPR across balanced dataset (ρ = 1) , and varying
imbalance ratios (µ = 0.9, ρ = 2, 10, 100) on MNIST dataset. (a) For different α values with σ = 0.1
and n = 100. (b) For a range of σ values with α = 0.05 and n = 100. (c) For various calibration size
n with α = 0.05 and σ = 0.1.

ρ = 1 ρ = 2 ρ = 10 ρ = 100 ρ = 200

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

MNIST 100.0 5.7 100.0 6.9 82.4 0.5 100.0 1.9 100.0 6.7
SVHN 99.7 11.6 98.8 3.6 100.0 5.9 98.9 2.9 89.7 4.6

CIFAR10 98.0 5.8 93.1 3.0 97.4 7.0 86.1 3.8 87.0 12.4
TinyImageNet 100.0 1.7 100.0 2.9 98.0 2.6 85.7 4.7 – –

Table 8: Performance of the RPP detection against Badnets backdoor attacks with perturbation
magnitude ∥δ∥2 ≥ 0.8, measured by TPR and FPR across balanced dataset (ρ = 1) and varying
imbalance ratios (µ = 0.9, ρ = 2, 10, 100, 200) with α = 0.05 on MNIST, SVHN, CIFAR-10, and
TinyImageNet datasets.

C.10 RESISTANCE TO POTENTIAL ADAPTIVE ATTACKS

In realistic attack scenarios, attackers typically minimize the poisoning rate to preserve stealth while
still achieving a high ASR. This assumption is well grounded in the backdoor literature; for example,
(Souri et al., 2022; Zeng et al., 2023) adopt triggers with a norm ℓ∞ bounded by 16/255 to maintain a
high ASR under a poisoning budget of 0.5% or 1%. Following this common assumption, we adopt
low poisoning rates in all experiments to reflect realistic threat settings. Fig. 1 demonstrates that
with a trigger satisfying ∥δ∥2 ≥ 0.8, a 0.3% poisoning rate under step imbalance can yield an ASR
exceeding 95%. In contrast, using smaller triggers under the same poisoning rate drops the ASR to
20% (App. C.2), highlighting the necessity of slightly larger perturbation norms for maintaining
attack effectiveness in low-poisoning regimes.

We further probe robustness under a worst-case adaptive setting in which the adversary has full
knowledge of our defense and deliberately chooses smaller triggers with ∥δ∥2 < 0.8. To preserve
high ASR in this regime, the attacker must increase the poisoning rate (we set p = 10%), achieving
ASR > 90%. Even under these adversarial conditions, RPP often empirically detects poisoned
samples (Fig. 9). It is worthy mentioning that, when the trigger is extremely small, it is significantly
more difficult to inject backdoor with a reasonable attack buddget, thus not practical in many threat
scenarios.

C.11 ALGORITHM FOR RPP DETECTION AND CERTIFICATION

In this section, we present Algorithm 1, which details the procedure for identifying backdoored
samples using the RPP detection method. The algorithm accepts a test data point, xtest, along with
a clean calibration dataset, V , and a pre-trained classifier f(· | w). By computing the empirical
∆̃P (xtest | w, σ), over J noise-injected samples. Then compared ∆̃P (xtest | w, σ) against a threshold
derived from the calibration set S, which consists of RPP values calculated for each instance in V .
The threshold is determined by finding the quantile specified by the significance level α and the
calibration set size of n. The test sample is classified as poisoned if its RPP is less than or equal to
this quantile threshold, otherwise, it is deemed clean.
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ρ=1 ρ=2 ρ=10 ρ=100 ρ=200

TPR 99.7 92.0 76.4 71.0 46.5
FPR 15.9 12.4 22.6 22.8 23.0

Table 9: Performance of RPP against Badnets across class-imbalance ratios ρ under ∥δ∥2 < 0.8 on
CIFAR-10.

Algorithm 1 Identification of Backdoored Samples

1: Input: xtest: data point to be tested, V : clean calibration data set, f(· | w): pre-trained classifier.
2: Parameters: n: size of V , σ: noise standard deviation, J : number of noise injections, α:

significance level.
3: Step 1: Compute the empirical RPP ∆̃P (xtest | w, σ) over J samples as defined in eq. (2).
4: Step 2: Form the calibration set S = {s1, . . . , sn}, where si = ∆̃P (xi | w, σ) for each xi ∈ V .
5: Step 3: Find the ⌈α(n+1)⌉

n quantile as

q̂ = inf

{
q :
|{i : si ≤ q}|

n
≥ ⌈α(n+ 1)⌉

n

}
6: Output: Classify xtest as poisoned if ∆̃P (xtest | w, σ) ≤ q̂; otherwise, classify xtest as clean.

In Algorithm 2, we outline a method for certifying the detection of poisoned samples using the RPP
approach. Estimating the probability p(x) that the modified data point x+ δ is classified as a target
class yt under the pre-trained classifier f(· | w). We estimate ζ(x, δ) using the ⌈α(n+1)⌉

n -quantile of
the calibration set S and let yt denote the class that appears most frequently among J noise-injected
copies of x, where ϵ1, . . . , ϵJ ∼ N (0, σ2I). Specifically, for each x + ϵj , we process the sample
through the classifier f(· | w), tally the frequency of each class across all J predictions, and identify
yt as the class with the highest occurrence. The count of occurrences for yt within these J samples,
denoted as nt = counts[yt], is used to determine the upper confidence bound for this probability,
taking into account the noise injections and the significance level α. If the calculated bounds on δ
allow for guaranteed detection of the poisoned samples, providing a clear criterion for certifying the
presence of backdoors.

Algorithm 2 RPP Certification

1: Input: x: data point to be tested, V: clean calibration data set, f(· | w): pre-trained classifier, δ:
backdoor trigger, Φ: a standard Gaussian CDF.

2: Parameters: n: size of V , σ: noise standard deviation, J : number of noise injections, α:
significance level.

3: p(x)← P(f(x+ δ | w) = yt)

4: Get ζ(x, δ)← ⌈α(n+1)⌉
n quantile from the calibration set S

5: yt ← top class in f(x+ εj | w)
6: nt ← counts[yt]
7: pt ← UPPERCONFBOUND(nt, J, 1− α)
8: Output: If σ

(
Φ−1(p(x)− ζ(x, δ))− Φ−1(pt)

)
≤ ∥δ∥2 ≤ σ

(
Φ−1(p(x))− Φ−1(pt)

)
, the

poisoned samples are guaranteed to be detected; otherwise, the poisoned samples may be
detected but without guarantee.

C.12 BASELINES FOR BACKDOOR SAMPLE DETECTION

We compare our method against 11 empirical backdoor defenses on both balanced (ρ = 1) and
imbalanced CIFAR-10 datasets (ρ = 10, 200), as summarized in Tab. 10. Detection results for RPP
are reported under α = 0.05, n = 100, and σ = 1.0, across 10 types of backdoor attacks. In all cases,
we ensure ASR exceeds 90%. RPP consistently achieves comparable or superior TPRs relative to
SOTA defenses across all trigger types. We also briefly review these baseline methods and analyze
why they fall short in challenging imbalanced settings.
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Badnets Blend Trojan SIG ISSBA WaNet Sleeper Agent AdaPatch AdaBlend Narci.

Defenses TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

ρ = 1

SS 93.1 5.6 91.8 4.9 60.2 10.7 61.0 20.1 45.5 4.2 59.6 8.8 61.3 5.1 85.9 6.7 83.6 8.2 12.1 8.5
AC 97.8 2.8 96.4 5.7 73.6 16.0 78.9 10.4 51.2 7.0 23.1 10.6 45.6 17.9 91.7 6.6 88.0 9.3 9.3 26.7
ABL 86.4 3.9 90.2 10.3 85.0 4.8 85.1 8.3 52.8 3.5 78.6 8.2 20.3 1.7 55.8 3.6 50.2 3.9 1.8 2.8
CT 93.9 8.7 95.2 6.3 88.9 5.0 92.0 19.6 95.2 11.0 92.6 9.5 82.1 11.2 84.0 4.3 86.7 6.5 22.1 17.5
ASSET 89.9 17.8 83.1 16.0 90.4 18.3 86.7 20.0 91.2 8.8 93.0 11.7 52.9 15.4 55.7 21.3 80.3 10.6 92.1 4.3
SCALE-UP 100.0 19.3 77.1 20.1 67.4 18.8 98.8 32.3 92.5 21.2 84.2 19.9 45.1 8.5 80.7 30.0 79.9 22.4 67.3 19.5
MSPC 92.2 22.7 94.8 12.4 66.7 16.0 91.4 22.3 89.5 15.5 94.9 8.4 79.1 21.2 80.3 29.6 84.4 18.5 82.4 23.6
BBCaL 98.9 10.1 96.8 12.4 80.3 9.5 98.3 13.1 99.7 9.6 90.2 14.2 91.0 16.6 75.1 15.7 72.7 13.6 86.6 9.4
STRIP 98.5 10.3 84.4 15.6 33.1 11.0 94.3 22.1 48.6 19.7 13.3 29.9 22.6 16.1 88.8 19.6 87.6 20.5 0.0 0.8
TED 100.0 2.9 94.3 6.4 80.6 9.3 91.1 13.6 93.6 12.5 92.6 8.8 90.3 11.4 88.4 10.3 86.2 13.5 91.7 10.5
IBD-PSC 99.4 4.5 97.9 5.1 93.0 8.6 87.2 10.4 98.6 8.7 95.6 7.3 69.0 9.5 92.0 10.1 86.7 9.6 93.1 24.7
Ours 98.5 5.9 98.8 6.1 92.3 9.6 98.5 3.2 94.6 7.7 93.7 6.5 95.0 16.2 92.2 6.0 89.0 10.4 96.1 19.6

ρ = 10

SS 35.2 7.3 37.7 8.2 35.3 4.1 60.7 0.2 15.1 10.0 38.7 6.6 40.9 31.2 22.5 3.7 13.3 6.6 0.0 0.6
AC 50.8 3.8 34.1 4.8 17.9 3.0 60.0 36.1 35.5 16.8 50.2 12.4 20.1 16.2 42.5 43.6 20.8 4.9 0.0 0.0
ABL 0.0 0.2 0.0 0.6 0.0 0.1 0.0 0.0 9.2 2.7 47.5 7.3 0.0 2.6 0.6 0.2 0.0 0.3 0.0 0.8
CT 68.9 0.9 60.4 2.9 60.4 8.9 59.8 0.1 75.9 8.9 80.6 13.9 26.1 0.0 0.0 0.0 32.5 22.4 0.0 8.9
ASSET 60.0 6.9 51.2 18.4 39.3 41.5 10.6 19.7 78.6 18.8 69.5 14.1 71.4 15.0 38.3 31.1 40.6 31.3 51.7 13.9
SCALE-UP 95.9 84.3 67.3 35.1 67.2 41.5 71.1 34.0 86.2 22.6 78.0 19.6 47.3 21.5 68.3 32.5 62.9 37.7 39.0 12.0
MSPC 89.6 16.5 89.5 11.3 55.7 21.6 83.9 10.0 80.1 20.3 76.9 9.4 63.7 0.9 51.2 24.3 41.0 9.5 49.6 29.4
BBCaL 83.2 17.9 88.7 22.0 67.3 19.8 79.7 14.5 78.6 21.3 72.2 20.7 69.4 25.3 60.1 22.4 59.9 25.6 66.4 15.0
STRIP 63.4 19.7 50.0 26.8 18.3 17.7 60.6 28.5 28.4 21.6 6.5 28.9 26.8 16.3 64.8 26.8 44.3 28.8 0.0 0.5
TED 90.4 12.2 82.5 14.3 54.3 17.6 72.0 16.9 79.9 21.0 76.5 16.4 70.1 19.4 66.8 21.1 61.2 20.3 76.9 18.6
IBD-PSC 91.2 14.1 87.4 12.7 83.6 17.5 70.3 19.6 85.9 19.4 77.4 20.2 61.4 20.4 74.8 16.6 75.5 18.9 80.3 28.6
Ours 96.7 3.2 85.2 10.4 96.4 9.1 80.0 4.2 88.1 13.6 87.5 11.7 78.7 19.5 82.4 3.3 82.6 12.5 83.7 20.1

ρ = 200

SS 0.1 0.0 4.9 0.7 14.7 4.9 0.0 5.0 4.4 8.1 7.1 6.0 0.0 0.1 7.5 1.4 9.5 3.6 0.0 0.3
AC 0.0 0.0 0.0 0.5 0.0 1.0 0.0 9.4 0.6 2.4 0.0 5.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ABL 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.5 0.0 0.3 0.0 0.3 0.0 0.0 0.0 2.9
CT 0.0 3.2 0.0 3.6 0.0 0.0 0.0 0.0 0.0 1.6 0.0 6.7 0.0 1.6 0.0 0.0 0.0 0.0 0.0 15.7
ASSET 0.0 3.3 7.3 2.8 0.0 0.0 0.0 0.0 9.3 2.2 14.8 5.5 6.7 1.8 3.2 0.4 5.5 3.1 2.0 1.3
SCALE-UP 67.3 54.1 51.4 48.3 0.0 0.0 0.0 0.0 33.8 19.9 48.6 30.1 0.2 42.1 6.3 0.6 29.7 30.1 10.1 21.8
MSPC 10.6 2.8 20.2 6.1 15.3 3.1 19.2 2.9 18.8 5.6 32.6 17.3 10.6 5.8 8.2 1.7 9.4 3.2 21.7 32.8
BBCaL 41.5 33.6 42.2 35.1 30.6 26.7 37.0 35.8 30.1 31.9 29.3 36.2 49.2 27.7 22.8 28.6 23.0 29.1 39.3 18.9
STRIP 18.6 20.1 20.4 31.4 0.0 12.7 22.6 33.8 9.5 21.7 0.3 8.4 1.2 10.5 21.0 30.6 10.3 21.8 0.0 1.2
TED 46.7 12.6 44.9 19.7 12.7 18.3 50.4 22.1 46.8 14.5 29.7 22.7 29.7 22.7 30.2 22.6 27.5 28.9 50.2 20.4
IBD-PSC 51.7 17.8 50.0 24.7 55.8 26.3 50.0 24.7 41.9 23.8 40.5 22.0 30.4 24.1 32.7 22.8 34.0 25.5 44.8 30.0
Ours 83.3 14.3 75.5 19.8 58.2 9.1 50.5 9.1 57.1 10.6 56.8 23.3 69.7 3.8 42.8 6.2 41.5 10.2 56.7 23.2

Table 10: Comparison with SoTA defenses on balanced (ρ = 1) and imbalanced CIFAR-10 datasets
(µ = 0.9, ρ = 10, 200).

SS(Tran et al., 2018) uses singular value decomposition to detect anomalies by selecting a subset
of data comprising 1.5 times the number of samples with the highest anomaly scores. However, the
anomaly detection strategies struggle when the number of poisoned samples is extremely low and the
dataset is imbalanced. AC (Chen et al., 2018) captures activation data from the terminal hidden layer
of a trained neural network and applies clustering algorithms to pinpoint and expunge anomalous
instances from the training dataset. However, the method’s efficacy is limited due to the uniform
clustering effect and the substantial ratio disparity between poisoned and clean samples, which
hinders its performance. ABL(Li et al., 2021a) was initially developed as a robust training defense
and subsequently repurposed as a detection method based on output losses. This approach exhibits
limited efficacy due to the significantly lower isolation rate of poisoned samples compared to the
actual poisoning rate. With only a minimal number of poisoned samples isolated, often as few as two
or three, the effectiveness of this method is substantially compromised. CT (Qi et al., 2023b) utilized
confusion training for detecting backdoored samples. When the dataset exhibits extreme imbalance
and the target label corresponds to the majority class, clean samples are predominantly predicted as
belonging to this majority class, resulting in low training losses for these clean samples. ASSET (Pan
et al., 2023): In the imbalanced datasets and low poison ratio settings, when training with mini-batches,
the number of poisoned samples in each mini-batch is very small, or even nonexistent. In the inner
offset loop, different mini-batches may contain different amounts of poisons and even no poisoned
samples, so it is hard to determine the number of most suspicious samples within each mini-batch;
Additionally, when using the gradient ascent algorithm, the optimization process tends to overlook
the characteristics of these few samples. This means that the model may not adequately learn the
features of these poisoned samples during the learning process. SCALE-UP (Guo et al., 2023): When
the dataset is imbalanced, although the model still exhibits some consistency in classifying backdoor
samples, the bias towards the majority class also results in consistent classification predictions
for clean samples, which leads to a high rate of misdiagnosis. MSPC (Pal et al., 2024) employs
a bi-level optimization technique designed to minimize the cross-entropy loss for clean samples
while simultaneously maximizing it for backdoor samples, facilitating the identification of backdoor
samples. However, when the dataset is highly imbalanced and the poisoning rate is low, the use of
upper-level optimization to increase the loss for backdoor samples yields suboptimal results. STRIP
(Gao et al., 2019) relies on entropy-based thresholds, which become unreliable when minority-class
benign samples naturally exhibit low entropy, leading to higher false positives. TED (Mo et al., 2024)
assumes stable topological evolution for benign samples, but class imbalance distorts layer-wise
activation patterns, making poisoned and minority-class samples harder to distinguish. BBCaL (Hu
et al., 2024) uses random perturbations to probe behavior changes, but its fixed calibration thresholds
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are not robust across imbalanced distributions, reducing detection sensitivity. IBD-PSC (Hou et al.,
2024) detects backdoor presence based on maximum margin statistics, but this method becomes
unstable under severe imbalance due to a similar overfitting phenomenon and biased logit distributions
across classes.

C.13 CERTIFIED DEFENSES UNDER IMBALANCED DATASET

RAB (Weber et al., 2023), the inaugural robust training methodology, certifies its robustness against
backdoor attacks via randomized smoothing. DPA (Levine & Feizi, 2020) offers a certifiable defense
against general and label-flipping poisoning attacks by partitioning the training set into k segments.
These methodologies provide either probabilistic or deterministic assurances that a model will produce
the intended outputs under specific adversarial conditions or when subjected to a certain number
of label flips. As shown in Tab. 11, the efficacy of these certified defenses tends to decline as the
dataset becomes more imbalanced. For RAB, we configure ∥δ∥2 = 0.1 with a smoothing parameter
σ = 1.0 and a 2% poisoning ratio against Badnets attacks. For DPA, we established 50 partitions
with 9 sample labels flipped.

ρ = 1 ρ = 2 ρ = 10 ρ = 100 ρ = 200

RAB 41.5 40.2 38.8 21.0 15.7
DPA 56.2 46.1 26.6 22.7 14.8

Table 11: Certified accuracy (%) of RAB and DPA against Badnets attack on the balanced CIFAR-10
training dataset (ρ = 1) and imbalanced CIFAR-10 training datasets (µ = 0.9, ρ = 2, 10, 100, 200).

C.14 IMPACT OF TARGET LABEL CLASS

We evaluated the performance of our method when the backdoor target label was assigned to either a
minority class (class 9) or an intermediate-frequency class (class 4). In all experiments, we ensured
that the ASR remained above 90% to maintain a consistent attack strength. As shown in Tab. 12,
the proposed RPP method consistently achieved high TPR across various imbalance ratios ρ, while
maintaining low FPR.

Minority class (9) Intermediate class (4)

TPR FPR TPR FPR

ρ = 2 99.4 7.3 93.9 3.1
ρ = 10 93.4 10.1 96.2 3.3
ρ = 100 99.9 2.9 99.3 1.5
ρ = 200 90.0 6.0 79.6 4.6

Table 12: Performance of RPP against the BadNets backdoor attack on imbalanced CIFAR-10 training
datasets (ρ = 2, 10, 100, 200) with a 0.3% poisoning ratio, where the target class is either a minority
class (class 9) or an intermediate-frequency class (class 4).

C.15 PERFORMANCE UNDER LOGITS-ADJUSTED TRAINING

To address the performance degradation caused by class imbalance, we adopted logits adjustment
(LA) (Menon et al., 2020) as a long-tailed training strategy. This technique explicitly calibrates the
logits of each class based on its frequency, thereby mitigating the dominance of majority classes
and enhancing the learning of minority-class features. While it slightly reduces ASR under severe
imbalance, our RPP method still achieves high TPR (83–99%) across all settings, as shown in Tab. 13.
The result demonstrates the robustness of our method under long-tailed training, and its ability to
remain effective even when the backdoor attack becomes slightly weakened by class rebalancing
techniques.
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ASR (Without LA) ASR (With LA) TPR FPR

ρ = 2 100.0 99.9 99.2 22.2
ρ = 10 99.8 99.4 96.2 20.3
ρ = 100 100.0 97.4 97.8 26.1
ρ = 200 99.7 94.3 83.0 10.4

Table 13: Performance of RPP against BadNets attack under logits adjustment on imbalanced CIFAR-
10 datasets (ρ = 2, 10, 100, 200) with a poisoning ratio of 0.3.

C.16 PERFORMANCE AGAINST DIFFERENT TRIGGER SIZES

In Tab. 14, we present the ASR and AUC metrics for various trigger sizes, and we evaluate the
efficacy of RPP when the ASR exceeds 50%. Our findings indicate that for ∥δ∥2 = 3, in imbalanced
datasets with ρ = 100, 200, the ASR surpasses 50%, and our RPP achieves a TPR of 80% with
an FPR of less than 30%. When ∥δ∥2 = 6, for both the balanced dataset (ρ = 1) and imbalanced
datasets (ρ = 2, 10), the ASR is above 50%, and RPP attains TPRs of 70.6%, 89.9%, and 87.4%,
respectively, with an FPR below 15%. These results align well with our certification.

∥δ∥2 = 0.8 ∥δ∥2 = 2 ∥δ∥2 = 3 ∥δ∥2 = 4 ∥δ∥2 = 6 ∥δ∥2 = 8

No Defense No Defense No Defense RPP No Defense RPP No Defense RPP No Defense RPP

ASR AUC ASR AUC ASR AUC TPR FPR ASR AUC TPR FPR ASR AUC TPR FPR ASR AUC TPR FPR

ρ = 1 14.3 100.0 33.7 100.0 35.6 100.0 – – 39.2 100.0 – – 52.3 100.0 73.1 4.1 90.5 100.0 97.2 8.0
ρ = 2 14.8 100.0 37.8 100.0 33.5 100.0 – – 47.9 100.0 – – 69.6 100.0 88.3 6.9 90.3 100.0 96.0 6.1
ρ = 10 15.4 100.0 30.5 100.0 38.3 100.0 – – 49.4 100.0 – – 84.8 100.0 90.1 9.6 99.8 100.0 97.9 7.7
ρ = 100 23.0 99.3 39.6 99.4 52.1 98.6 73.8 10.1 100.0 99.4 87.5 10.7 100.0 99.6 95.2 10.1 100.0 99.5 100.0 10.9
ρ = 200 36.0 92.7 49.2 92.1 68.0 96.2 89.5 14.8 99.5 97.5 96.2 15.3 100.0 97.1 100.0 20.1 100.0 97.8 100.0 16.4

Table 14: Performance of RPP under various trigger sizes with a 0.3% poisoning ratio on the balanced
MNIST (ρ = 1) and imbalanced MNIST datasets (µ = 0.9, ρ = 2, 10, 100, 200) for n = 100 and
α = 0.05.

C.17 VALIDATION OF THE FPR UPPER BOUND GUARANTEE

We validate the probabilistic upper bound for the FPR in Thm. 5.4 by conducting experiments on the
CIFAR-10 dataset. Specifically, we first set aside 1, 000 clean images from CIFAR-10 as a validation
pool. From this pool, we randomly sample n ∈ {100, 200, 400, 600} images as the calibration dataset
and the remaining images are used to evaluate the FPR. We consider two significance level α = 0.05
and α = 0.1. For each (n, α) pair, we repeat the experiments 300 times and report the 0.95-quantile
FPR in Tab. 15. The results show that the FPR in the validation set is bounded by the theoretically
derived upper bound.

α = 0.05 α = 0.1

n = 100 n = 200 n = 400 n = 600 n = 100 n = 200 n = 400 n = 600

ρ = 1 4.0 5.3 5.1 4.4 10.7 9.9 9.1 8.8
ρ = 2 4.9 4.1 4.6 4.0 9.3 9.9 10.1 9.0
ρ = 10 5.5 4.9 4.6 4.2 10.7 9.8 9.5 9.1
ρ = 100 5.5 4.7 4.8 5.0 9.9 9.2 10.2 10.0
ρ = 200 5.1 4.9 4.8 4.7 10.4 10.0 9.8 10.1

Upper bound 6.0 5.5 5.3 5.2 11.0 10.5 10.3 10.2

Table 15: The FPR (%) under varying imbalance ratio (ρ), isotropic Gaussian noise standard deviation
(α), and calibration set size (n) on CIFAR10 dataset.

D DIFFERENCES BETWEEN RPP AND CBD

We delineate the key differences between RPP and CBD (Xiang et al., 2024) from both theoretical
and methodological perspectives.
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Theoretical Perspective. Although both RPP and CBD leverage randomized smoothing and draw
on the Neyman–Pearson lemma as formal justification (as inspired by (Cohen et al., 2019)), the
objects being certified and the proof strategies differ substantially:

• Theorem 4.1 in CBD finds the lower bound of s(w) (i.e. ℓ∞ norm of Local Dominant
Probability), while we bound below the RPP (expectation of the difference probability
vectors). These certified quantities reflect fundamentally different detection criteria.

• CBD applies part (1) of Lemma 4 from (Cohen et al., 2019)) to derive an upper bound
on the response to backdoor triggers. RPP, by contrast, uitilize part (2) of Lemma 4 from
(Cohen et al., 2019)) to construct a lower bound for reliably detecting poisoned samples.
These choices lead to distinct forms of certification, with differing robustness implications.

Methodological Setting (Threat Model). CBD is designed for post-training model inspection: it
aims to determine whether a given model has been compromised by a backdoor, without requiring
access to the training data. In contrast, RPP addresses a more proactive threat model—pre-training
poisoned sample identification. It operates directly on the training data, identifying and filtering
out backdoor instances prior to any model training, enabling safe downstream learning even under
stealthy poisoning attacks.

E COMPUTATIONAL COMPLEXITY

On a single NVIDIA A100-SXM4-80GB device, the detection time per sample varies across different
datasets as follows: 0.006 seconds for MNIST, 0.0154 seconds for SVHN, 0.0162 seconds for
CIFAR10, and 0.0261 seconds for TinyImageNet. And, on an NVIDIA GeForce RTX 4090 device,
the detection times per sample for the same datasets are observed to be 0.021, 0.0272, 0.0281, and
0.0404 seconds, respectively.

F BROADER IMPACT

RPP offers a robust poisoned samples detection against backdoor threats in machine learning pipelines.
It effectively maintain high performance even under challenging adversarial conditions, reducing
the risk of malicious exploits while ensuring safer deployment of AI technologies. Consequently,
this work has the potential to set new benchmarks in content moderation and ethical AI practices,
fostering more secure and socially responsible applications across diverse domains.

G LIMITATIONS & FUTURE WORK

One potential limitation of our study lies the use of synthetically constructed imbalanced datasets.
Although our approach considers both step and long-tailed imbalance types across a range of
imbalance ratios, it may not fully reflect the inherent complexity and distributional characteristics
of real-world imbalanced datasets. Future research could address this limitation by evaluating the
proposed method on naturally imbalanced datasets to better assess its practical applicability and
robustness.

H USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs for editorial assistance (clarity, grammar, wording, and minor reorganizations). LLMs
were not used to generate ideas, design experiments, or manipulate results, or draft related-work
claims. The authors take full responsibility for all content.
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