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Abstract

Large Language Models have achieved sig-001
nificant advancements in various natural lan-002
guage processing tasks. However, they are sus-003
ceptible to generating hallucinations-fabricated004
or inaccurate statements presented as factual005
information-which can undermine their relia-006
bility in high-stakes applications. To address007
this issue, we propose a new inference-stage008
hallucination mitigation method, Regularized009
Contrastive Decoding (RCD), to exploit hard010
negative samples for improving the robustness011
of contrastive decoding. Additionally, we de-012
sign a new adversarial-aware regularization013
term to finetune hallucination models to learn014
more challenging and diverse hallucination pat-015
terns from available data with the guidance of016
adversarial perturbations. This enhances the017
contrastive decoding process, enabling more ef-018
fective identification and filtering of erroneous019
content. We conduct experiments on four pub-020
lic hallucination benchmarks. Experimental021
results show our method achieves better hallu-022
cination mitigation performance consistently,023
proving the effectiveness and superiority of024
RCD for hallucination mitigation.025

1 Introduction026

Large Language Models (LLMs) have demon-027

strated substantial progress in a wide range of nat-028

ural language processing (NLP) tasks, including029

question answering, knowledge-grounded dialogue,030

and reasoning-intensive problem solving (Touvron031

et al., 2023; Achiam et al., 2023). However, despite032

these achievements, LLMs frequently produce hal-033

lucinations—outputs that contain inaccuracies or034

fabrications presented as factual information (Bang035

et al., 2023; Ji et al., 2023). These hallucinations036

pose significant risks, particularly in high-stakes037

domains such as legal consultation, medical advice,038

and specialized technical support, where factual039

reliability is essential.040

(a) Previous methods construct 
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(b) We broaden the constructed 
hallucination space and effectively 
alleviating hallucinations.
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Figure 1: An illustration of the broader hallucination
space expanded by our method.

Various strategies have been pursued to miti- 041

gate hallucinations. Some works leverage external 042

knowledge bases via retrieval-augmented genera- 043

tion (RAG) to guide models toward factual correct- 044

ness (Sun et al., 2023; Shuster et al., 2021). While 045

effective in many settings, these methods typically 046

require additional infrastructure and are sensitive 047

to retrieval errors. Other works rely on the model’s 048

internal signals without external retrieval, offering 049

simplicity and ease of deployment (Chuang et al., 050

2023; Chen et al., 2024; Li et al., 2024). However, 051

such methods often struggle to detect subtle hallu- 052

cinations that are semantically close to the truth. 053

To improve hallucination awareness, some stud- 054

ies leverage existing annotated data to learn im- 055

plicit representations (Zhang et al., 2024, 2025). 056

However, such annotations are typically focused 057

on explicit and easily recognizable errors, leading 058

models to fit the specific patterns and biases of the 059

training datasets. As a result, these methods often 060

struggle to generalize beyond the distribution of the 061

annotated data, especially when encountering sub- 062

tle or out-of-distribution hallucinations, limiting 063

their effectiveness in more complex or open-ended 064
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scenarios.065

In this paper, we propose a novel Regularized066

Contrastive Decoding (RCD), to contrast with hard067

negative samples to improve mitigate hallucina-068

tions in LLMs in the inference stage. First, we069

introduce a new adversarial-aware regularization070

term to generate more challenging and diverse neg-071

ative samples of hallucination during finetuning072

LLMs. Building on evidence that adversarial per-073

turbations readily elicit hallucinated outputs (Yao074

et al., 2023), we craft targeted perturbations that075

push factual examples toward the hallucination de-076

cision boundary. As shown in Figure 1, the result-077

ing hard negatives enlarge the model’s exposure078

beyond curated datasets, producing a richer and079

more diverse spectrum of hallucinations (Good-080

fellow et al., 2014). Then, RCD leverage these081

adversarially generated samples to enhance the082

contrastive decoding process. It receives denser083

and more informative penalty signals, yielding out-084

puts that are both more factual and more reliable.085

The richer negative signals supply stronger regu-086

larization, reduce over-fitting to narrow annotation087

patterns, and ultimately improve the robustness088

and generalization of contrastive decoding. Cru-089

cially, RCD delivers these gains without large-scale090

data collection or retraining of the backbone model,091

making the approach highly scalable and easy to092

integrate into existing systems.093

We conduct experiments on four public hallu-094

cination benchmarks that target truthfulness and095

knowledge seeking. Experimental results show096

that the proposed RCD yields consistent improve-097

ments across all tasks—for example, +4.08 ab-098

solute points on TruthfulQA MC2 and +9.03099

accuracy on FACTOR-Expert—while preserving100

the base model’s performance on MMLU and101

ARC-Challenge. Latency measurements confirm102

that RCD incurs only negligible overhead com-103

pared with standard contrastive decoding. More-104

over, RCD is compatible with diverse adversarial-105

training schemes and scales smoothly across model106

sizes, underscoring its strong generalization. Given107

the same amount of training data, the weakened108

model in RCD also explores a broader hallucina-109

tion space, providing richer negative samples for110

subsequent contrastive decoding.111

Our contributions are threefold: 1) we propose112

a new inference-stage RCD method to improve113

hallucination mitigation. It provide hard negative114

samples to enhance the robustness of contrastive115

decoding during inference. 2) A new adversarial-116

aware finetuning strategy for hallucination models 117

is designed to precisely capture more diverse and 118

hallucination patterns from available hallucination 119

data. 3) Experiments on four hallucination datasets 120

demonstrate the effectiveness and superiority of 121

RCD for hallucination mitigation. 122

2 Related Work 123

2.1 Hallucination in Large Language Models 124

Large Language Models (LLMs) are prone to 125

generating hallucinations-fabricated or inaccurate 126

statements presented as factual (Achiam et al., 127

2023; Ji et al., 2023). These hallucinations can 128

be broadly categorized into factual and faithful- 129

ness hallucinations. Factual hallucinations emerge 130

when the model’s output contradicts established 131

real-world knowledge (Bang et al., 2023; Hu 132

et al., 2023), while faithfulness hallucinations oc- 133

cur when the model’s response deviates from given 134

instructions or the provided source context (Dale 135

et al., 2023; Shi et al., 2023). Eliminating both 136

types of hallucinations is critical for real-world 137

applications, especially in high-stakes domains de- 138

manding reliable and truthful information. 139

Early efforts to mitigate hallucinations primarily 140

followed either retrieval-based or model-internal 141

strategies. Retrieval-based approaches aim to en- 142

hance factual grounding by incorporating exter- 143

nal knowledge during generation, often through 144

retrieval-augmented generation (RAG) techniques 145

(Sun et al., 2023; Shuster et al., 2021). In con- 146

trast, model-internal methods leverage the model’s 147

own internal states or consistency signals, such as 148

optimizing training objectives via reinforcement 149

learning with human feedback (RLHF), to better 150

align the outputs with human judgments (Wang and 151

Sennrich, 2020; Ouyang et al., 2022). Although ef- 152

fective to some extent, both strategies often require 153

substantial computational resources and retraining 154

pipelines, and tend to struggle with subtle or border- 155

line hallucination cases near the decision boundary. 156

To address these limitations, more recent ap- 157

proaches have explored inference-stage strategies 158

that intervene during generation without modifying 159

the model parameters. For example, contrastive de- 160

coding leverages internal signals during inference 161

to dynamically identify and suppress hallucinations 162

(Chang et al., 2023). However, these methods typi- 163

cally rely on hallucination examples that are either 164

easily triggered or naturally occurring, which fail 165

to cover the broad range of subtle, hard-to-detect 166
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Figure 2: Overview of our RCD framework. In the adversarial finetuning phase, we induce hard hallucinations
through gradient-based perturbations, resulting in a weaker “hallucination” model. During inference, contrastive
decoding combines outputs from the original and hallucination models, filtering out fabricated content and enhancing
factual fidelity.

hallucinations. As a result, they remain less effec-167

tive on out-of-distribution, long-tail, or ambiguous168

inputs—highlighting the need for more precise and169

generalizable inference-time hallucination detec-170

tion mechanisms.171

2.2 Contrastive Decoding172

Contrastive Decoding (CD) (Li et al., 2023b) in-173

troduced a novel perspective for improving genera-174

tion quality by contrasting outputs from a stronger175

model against those from a weaker model. Build-176

ing on this idea, Chuang et al. (2023) proposed177

contrasting outputs from different Transformer lay-178

ers to enhance factual accuracy, while Kai et al.179

(2024) incorporated self-attention mechanisms to180

identify and mitigate uncertain predictions. To fur-181

ther refine factual outputs, Zhang et al. (2025) sug-182

gested inducing hallucinations and then contrasting183

them to filter out inaccuracies. Similarly, Xu et al.184

(2024) decoupled identification and classification185

tasks to reduce hallucinations in medical informa-186

tion extraction, and Gema et al. (2024) introduced187

a method that contrasts outputs from a base model188

and a masked model with retrieval heads to mitigate189

hallucinations.190

However, existing contrastive decoding methods191

rely on effective comparisons between truthful and192

hallucinated outputs to guide generation. A key193

challenge lies in obtaining sufficiently diverse and 194

informative hallucinated examples to approximate 195

the decision boundary between factual and erro- 196

neous content. Existing CD methods often suffer 197

from limited hallucination coverage, as naturally 198

occurring hallucinations are sparse and may not 199

adequately challenge the model’s internal knowl- 200

edge. To address this, we propose to expand the 201

hallucination space through adversarial finetuning, 202

which encourages the model to generate more nu- 203

anced and varied hallucinations. This enhanced 204

contrastive signal allows CD methods to better cap- 205

ture the subtle distinctions between truthful and 206

fabricated content during inference, thereby im- 207

proving hallucination mitigation performance. 208

3 Regularized Contrastive Decoding 209

(RCD) 210

Consider a standard text generation setting where 211

an LLM receives an input sequence x = 212

(x1, x2, . . . , xL) and generates an output sequence 213

y = (y1, y2, . . . , yT ). Without additional con- 214

straints, the LLM may produce hallucinations- 215

tokens or phrases unsupported by factual evidence. 216

These hallucinations degrade the trustworthiness 217

and reliability of the generated text. 218

As shown in Figure 2, our proposed framework, 219

Regularized Contrastive Decoding (RCD), aims 220
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to reduce hallucinations by leveraging contrastive221

decoding between a strong model and a weaker,222

adversarially trained model.223

3.1 Hard Negative Samples Induction224

Prior work generates hallucination samples that are225

often narrow in scope and low in diversity, offering226

limited mitigation benefits (Zhang et al., 2025). To227

overcome this, we propose a regularization-based228

strategy that injects adversarial perturbations dur-229

ing fine-tuning to enlarge the hallucination space230

and induce hard negatives near the decision bound-231

ary. Unlike simple data augmentation, these per-232

turbations serve as an implicit regularization mech-233

anism that guides the model to generalize better234

under subtle distributional shifts.235

Formally, let D = {(si, ui, oi)}mi=1 be the fine-236

tuning dataset, where si is the system prompt, ui237

is the user input, and oi is the target output. We238

introduce an adversarial perturbation ∆θadv into239

the model parameters and optimize the following240

objective:241

argmin
∆θ

m∑
i=1

− log p(oi | si, ui; θ +∆θadv), (1)242

where θ denotes the original model parameters.243

The perturbation ∆θadv is not fixed, but rather244

shaped adversarially to induce subtle and harder245

hallucinations.246

To generate ∆θadv, we use the Fast Gradient247

Sign Method (FGSM) (Goodfellow et al., 2015) to248

perturb the input embeddings x as follows:249

x′ = x+ ϵ · sign (∇xL(x, y)) , (2)250

where ϵ controls the perturbation magnitude and251

L is the standard cross-entropy loss. This per-252

turbation implicitly regularizes the model by in-253

creasing sensitivity to high-curvature regions of the254

loss landscape, effectively pushing the model to be255

more robust.256

We then jointly train on clean and adversarial257

examples, resulting in the following regularized258

objective:259

Ltotal =
1

2

(
L(x, y) + L(x′, y)

)
, (3)260

where the second term acts as a data-dependent261

regularization term. It penalizes parameter updates262

that overfit to clean samples alone, encouraging the263

model to also fit perturbed amples.264

Through this regularized training process, the 265

weaker model becomes capable of generating a di- 266

verse set of hard negative samples, which are later 267

used in contrastive decoding to improve hallucina- 268

tion detection and suppression. 269

3.2 Contrastive Decoding 270

Having obtained the stronger model θ and the ad- 271

versarially fine-tuned weaker model θadv, we apply 272

contrastive decoding (Li et al., 2023b) to their out- 273

puts. Importantly, the weaker model, having been 274

adversarially fine-tuned with regularization, tends 275

to produce hallucinations that are more diverse and 276

representative. These hard negative signals help 277

the contrastive score more effectively penalize mis- 278

leading or factually incorrect candidates that may 279

otherwise be selected. At each timestep t, both 280

models compute the conditional probability of the 281

next token xt. We define the contrastive score as: 282

Ft = log p(xt | x<t; θ)− λ log p(xt | x<t; θadv),
(4) 283

where λ controls the balance between the two mod- 284

els. This score amplifies tokens favored by the 285

stronger model while suppressing those preferred 286

by the weaker LLM. To further refine token selec- 287

tion, we employ the adaptive relative top filtering 288

mechanism (Li et al., 2023b). Specifically, at each 289

timestep t, we define a valid token set Vvalid based 290

on the probabilities predicted by the strong model 291

θ: 292

Vvalid =

{
xt ∈ V

∣∣∣∣ log p(xt | x<t; θ) ≥
max
w

log p(w | x<t; θ) + log γ

}
,

(5) 293

where γ ∈ (0, 1] is a hyperparameter that deter- 294

mines the filtering threshold. 295

After determining Vvalid, we apply a softmax 296

over the contrastive scores Ft(xt) for xt ∈ Vvalid: 297

p(xt | x<t) =
exp(Ft(xt))∑

x∈Vvalid
exp(Ft(x))

, (6) 298

By restricting the candidate tokens to this valid 299

set and then normalizing with respect to the con- 300

trastive scores, the final output distribution is more 301

factual and less susceptible to subtle hallucinations 302

introduced by the factually weaker LLM. 303

4 Experiments 304

4.1 Experimental Setup 305

Datasets Following previous work (Chen et al., 306

2024), we evaluate our method on truthfulness- 307

related datasets (i.e., TruthfulQA, and FACTOR) 308
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Method TruthfulQA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1

Greedy 37.62 54.60 28.12 65.05 56.96 66.10 46.50 46.50 23.49 21.45
ITI (Li et al., 2024) 37.01 54.66 27.82 53.28 43.82 51.69 – – – –
CD (Li et al., 2023b) 28.15 54.87 29.75 64.57 58.47 67.12 47.30 38.58 26.03 19.38
DoLa (Chuang et al., 2023) 32.97 60.84 29.50 64.32 57.63 67.30 47.08 45.94 24.01 22.15
AD (Shi et al., 2024) 33.90 51.62 25.78 61.87 53.84 62.28 48.55 48.24 24.34 22.35
ICD (Zhang et al., 2025) 46.32 69.08 41.25 70.75 58.40 66.94 50.46 50.33 25.59 23.94
RCD (Ours) 47.00 73.16 46.26 71.23 59.17 74.15 50.91 50.67 26.20 24.40
Improve (%) +9.38 +18.56 +18.14 +6.18 +2.21 +8.05 +4.41 +4.17 +2.71 +2.95

Table 1: Overall results of different inference-based methods on four benchmarks. We reimplement all methods
according to their open-source codes under the same environment except for ITI. The Llama2-13B-Chat vs. 7B-Chat
setting is used in experiments of CD. For ICD and our RCD, we follow Zhang et al. (2025) and finetune Llama2-7B-
Base as a weaker model for contrasting with Llama2-7B-Chat. The best performances are bolded. We also conduct
efficiency analysis in Appendix A.1. RCD holds a moderate and acceptable delay among CD-based methods.

Method %truth ↑ %info ↑ %truth*info ↑ %reject ↓
CD 70.21 42.25 19.23 29.98
ICD 62.85 77.65 41.16 23.50
RCD (Ours) 63.71 78.03 42.24 23.13

Table 2: Evaluation results on generative tasks using
GPT-judge for TruthfulQA. Specially, for reject rate,
lower is better.

and knowledge-seeking datasets (i.e., TriviaQA,309

and NQ). TruthfulQA (Lin et al., 2022) is a310

benchmark designed to assess the truthfulness311

of language models, comprising 817 multiple-312

choice questions across 38 categories. FACTOR313

(Muhlgay et al., 2023) evaluates the factual accu-314

racy of large language models in text completion315

tasks, consisting of two subsets: Wiki-FACTOR316

with 2,994 examples from Wikipedia and News-317

FACTOR with 1,036 examples from news articles.318

TriviaQA (Joshi et al., 2017) contains over 650K319

question-answer pairs sourced from trivia web-320

sites, accompanied by evidence documents from321

Wikipedia and web sources. Natural Questions322

(NQ) (Kwiatkowski et al., 2019), developed by323

Google, includes around 300K human-generated324

questions with annotated short and long answers325

derived from Wikipedia.326

Evaluation Metrics We employ multiple-choice327

accuracy metrics to assess model performance on328

the truthfulness-related dataset, i.e., TruthfulQA.329

Specifically, MC1 evaluates whether the model as-330

signs the highest probability to the correct answer,331

while MC2 measures the total normalized proba-332

bility mass the model assigns to correct answers.333

MC3 combines accuracy and consistency across334

multiple questions to gauge the model’s overall335

reliability. For FACTOR, we experiment on its336

three subsets—News, Wiki, and Expert—and uti- 337

lize accuracy as the sole evaluation metric to assess 338

the text completion performance of large language 339

models. Following Joshi et al. (2017), we adopt 340

Exact Match (EM) and F1 score as evaluation 341

metrics to measure the correctness of the model’s 342

responses on knowledge-seeking datasets, i.e., Triv- 343

iaQA and NQ. Following Lin et al. (2022), we eval- 344

uate the generation task of the TruthfulQA dataset. 345

Specifically, two fine-tuned GPT-3.5 models are 346

employed to independently score each response 347

along two dimensions: truth (factual accuracy) 348

and info (informativeness). The truth&info score 349

is then computed as the harmonic mean of these 350

two dimensions. Furthermore, we report the reject 351

rate, which quantifies the proportion of responses 352

where the model abstains from answering. 353

Comparison Methods We compare with six rep- 354

resentative inference-time hallucination-mitigation 355

methods. The naive baseline is Greedy Decod- 356

ing, which deterministically chooses the highest- 357

probability token at each step without any auxil- 358

iary strategy. Two general inference-time methods 359

are considered, i.e., Inference-Time Intervention 360

(ITI; Li et al., 2024), which injects task-specific 361

adjustments during decoding to enhance general- 362

ization, and Activation Decoding (AD; Chen et al., 363

2024), which employs a contrastive output distribu- 364

tion to amplify contextual cues and down-weight 365

the model’s priors, thereby improving faithfulness 366

when external knowledge is required. Additionally, 367

we include three contrastive decoding methods, i.e., 368

Contrastive Decoding (CD; Li et al., 2023b) that 369

contrasts outputs from a strong and a weak model 370

to penalize non-factual content; Decoding by Con- 371

trasting Layers (DoLa; Chuang et al., 2023) that 372
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refines factual accuracy by contrasting internal lay-373

ers of the same model; and Induce-then-Contrast374

Decoding (ICD; Zhang et al., 2025) that induces375

hallucinations in a weakened model and subse-376

quently uses this signal to reinforce factual pre-377

dictions.378

Implementation Details All experiments are379

conducted on a single NVIDIA Tesla A100 80GB380

GPU using the Llama2 series models. We leverage381

Llama2-7B-Chat as the original model to conduct382

the experiments and fine-tune Llama2-7B-Base383

to create a factually weaker model, following a384

similar setup to Zhang et al. (2025). Specifically,385

we use the HaluEval dataset (Li et al., 2023a) to386

fine-tune the weaker model. HaluEval consists387

of 40,000 hallucination-prone samples across four388

task-specific subsets: question answering (QA),389

summarization (Sum), dialogue (Dialog), and gen-390

eral instruction following (General), each contain-391

ing 10,000 instances. In our study, we use the first392

three subsets (QA, Sum, Dialog) for fine-tuning393

and hallucination injection.LoRA (Hu et al., 2022)394

is used for parameter-efficient fine-tuning, and the395

LLaMA-Factory framework (Zheng et al., 2024) is396

employed to implement the fine-tuning pipeline.397

4.2 Main Results398

Discriminative Evaluation Discriminative eval-399

uation results on four datasets for hallucination400

mitigation are shown in Table 1. The proposed401

RCD achieves the best performance on all datasets402

in terms of all evaluation metrics. This demon-403

strate the superiority of our model for hallucination404

mitigation. Specifically, for truthfulness-related405

datasets, compared the the baseline Greedy, RCD406

achieves improvements of +9.4%, +18.6%, and407

18.1% on MC1, MC2, and MC3 scores on Truth-408

fulQA. For knowledge-seeking tasks, RCD out-409

performs the baseline by +4.4% EM and 4.2% F1410

scores.411

Generative Evaluation Table 2 presents the eval-412

uation results on generative tasks for CD, ICD,413

and our proposed RCD approach. Compared to414

ICD, RCD achieves a +0.38% improvement in415

info, a +1.08% improvement in truth&info, and416

a -0.37% reduction in reject, indicating that RCD417

produces more informative and factually consistent418

responses. Additionally, the relatively high truth419

score of the CD method may be artificially inflated.420

This is because abstentions are often interpreted421

by the scoring model as fully correct responses,422

Method TruthfulQA FACTOR
MC1 MC2 MC3 News Wiki Expert

RCD 47.00 73.16 46.26 71.23 59.17 74.15
w/o Adv Perturb. 38.31 65.56 37.23 55.88 38.92 55.50
w/o Perturb. 46.32 69.08 41.25 70.75 58.40 66.94

Table 3: Ablation study results on TruthfulQA and FAC-
TOR.

thereby receiving the maximum truth score. As 423

a result, the overall truth score of CD does not 424

necessarily reflect genuine factual accuracy. 425

4.3 Ablation Study 426

We conduct the ablation study to evaluate the effec- 427

tiveness by removing the key components in RCD. 428

The ablation models are as follows: 1) w/ Adv Per- 429

turb. refers to replacing adversarial perturbations 430

with random perturbations during the fine-tuning of 431

the hallucination-induced models. 2) w/o Perturb. 432

indicates removing the adversarial perturbations 433

entirely during fine-tuning. The ablation results on 434

TruthfulQA and FACTOR are presented in Table 3. 435

The full RCD model achieves the best performance 436

across all metrics on both datasets, showing the 437

effectiveness of each component for building hallu- 438

cination LLMs. Incorporating adversarial perturba- 439

tions enhances the generation of precise and diverse 440

hallucinations. In this way, RCD enables more ef- 441

fective filtering of factual inaccuracies, leading to 442

more reliable and factually consistent outputs. 443

4.4 Hallucination Induction Analysis 444

Evaluation against Different Task Format in 445

Hallucination Induction Following Zhang et al. 446

(2025), we examine how the task format of the 447

reversed training data affect the method’s mitiga- 448

tion performance. The HaluEval dataset consists 449

of four subsets, among which we use three: QA, 450

summarization (Sum), and dialogue (Dialog), each 451

containing exactly 10,000 examples. For the com- 452

bined setting (All), we aggregate all 30,000 ex- 453

amples from these three subsets to fine-tune the 454

hallucination LLMs using our adversarial-aware 455

regularization strategy. Table 4 shows results of 456

ICD and our RCD against different task formats on 457

TruthfulQA. RCD outperforms ICD on most set- 458

tings, which showing the effectiveness against dif- 459

ferent task format in hallucination induction. RCD 460

allows the weaker model to learn diverse and chal- 461

lenging hallucination patterns across different task 462

domains, achiveing better hallucination mitigation. 463
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Task Format TruthfulQA
MC1 MC2 MC3

RCD Sum 46.38 70.59 44.54
Dialog 47.12 71.97 45.83
QA 45.28 70.68 44.42
All 47.00 73.16 46.26

ICD Sum 45.22 63.67 36.33
Dialog 46.20 64.81 37.20
QA 46.32 69.08 41.25
All 41.73 67.74 41.34

Table 4: Comparison between different task formats of
training data for inducing hallucinations on TruthfulQA.

Evaluation against Different Ratios of Training464

Samples in Hallucination Induction We exper-465

iment under different ratios of the hallucination466

training set to evaluate the generalization when467

training with data-constraint settings in hallucina-468

tion induction. Given a predefined ratio (e.g., 20%)469

and a random seed, we randomly sample from the470

original set (i.e., 30,000 examples) of HaluEval471

(Li et al., 2023a) as the training set. As shown in472

Figure 3, our RCD consistently maintains higher473

MC scores in almost all sampling scenarios. With474

a smaller ratio, the comparison ICD struggle to475

learn sufficient hallucination patterns from limited476

data, leading to poor generalization. Our RCD with477

adversarial-aware regularization can learn more di-478

verse patterns from limited data by dynamically479

generating hard negative samples that cover a wider480

decision boundary of hallucinations. With a higher481

ratio, ICD tends to overfit to provide specific hal-482

lucination patterns for contrastive decoding, while483

RCD learns more generalized hallucinations, main-484

taining steadily improved mitigation performance.485

Evaluation against Different Perturbation Meth-486

ods for Hard Negative Samples Generation We487

evaluate the effectiveness of our proposed method488

under various adversarial attack settings. Firstly,489

we perform adversarial fine-tuning on the weaker490

model using two representative attack algorithms,491

i.e., Fast Gradient Sign Method (FGSM) and Pro-492

jected Gradient Descent (PGD). FGSM applies a493

single-step perturbation in the direction of the gra-494

dient sign. PGD generates adversarial examples495

through iterative updates constrained. As shown in496

Table 5, RCD w/ FGSM and w/ PGD consistently497

outperform comparison methods, highlighting the498

benefit of incorporating different adversarial pertur-499

bations in hallucination induction. Additionally, we500

adjust perturbation intensity of FGSM by varying501

Method TruthfulQA
MC1 MC2 MC3

Baseline 37.62 54.60 28.12
ICD 46.32 69.08 46.26

RCD w/ FGSM
ϵ=0.05 45.89 70.93 44.29
ϵ=0.005 47.00 73.16 46.26
ϵ=0.0005 47.24 71.38 44.76

RCD w/ PGD
ϵ=0.005 47.36 70.65 44.63

Table 5: Comparison between different attack methods
for inducing hallucinations on TruthfulQA. The base
LLM is Llama2-7B-Chat.

different perturbation magnitude ϵ , which deter- 502

mines the maximum allowable deviation from the 503

original input for hard negative sample generation. 504

As shown in Table 5, the optimal value of ϵ for 505

RCD w/ FGSM is set to 0.005. This indicates an 506

appropriate perturbation can provide diverse and 507

challenging signals for hallucination induction. 508

4.5 Effectiveness Evaluation Across Different 509

LLM Sizes 510

We evaluate the generalization capability of our 511

proposed RCD method across language models of 512

varying sizes. In particular, we compare the per- 513

formance of the 7B model fine-tuned with 30K 514

hallucination instances to larger LLaMA2 variants, 515

including the 13B and 70B models. As shown in 516

the table, RCD consistently outperforms the base- 517

line across all model sizes, highlighting its scal- 518

ability and strong generalization ability to larger 519

language models. 520

4.6 Impact on LLM’s Overall Performance 521

Following Zhang et al. (2025), we experiment to 522

assess whether our proposed method affects the 523

general reasoning and problem-solving capabili- 524

ties of LLMs. We evaluate on two widely used 525

benchmarks: MMLU (Hendrycks et al., 2020) and 526

ARC-Challenge (Clark et al., 2018). MMLU con- 527

sists of multiple-choice questions covering a broad 528

range of academic and professional subjects, test- 529

ing general knowledge and factual reasoning. ARC- 530

Challenge includes complex science questions that 531

require multi-step reasoning, representing a chal- 532

lenging setting for QA tasks. All experiments are 533

conducted under the 5-shot setting to ensure con- 534

sistency across methods. As shown in Table 7, the 535

performance of RCD on MMLU remains identi- 536

cal to that of the baseline, demonstrating that our 537
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Figure 3: Comparison between different ratio of training data for inducing hallucinations on TruthfulQA. The base
LLM is Llama2-7B-Chat.

Model TruthfulQA
MC1 MC2 MC3

LLaMA2-7B-chat
Baseline 37.62 54.60 28.12
ICD 46.32 69.08 41.25
RCD (Ours) 47.00 73.16 46.26

LLaMA2-13B-chat
Baseline 37.75 55.67 28.16
ICD 48.47 73.47 46.04
RCD (Ours) 51.04 75.90 50.05

LLaMA2-70B-chat
Baseline 37.70 58.99 29.79
ICD 51.04 75.01 46.54
RCD (Ours) 53.61 79.00 52.27

Table 6: Effectiveness of RCD across different model
sizes on TruthfulQA. All baselines use greedy decod-
ing. We contrast LLaMA2-chat of different sizes with
LLaMA2-7B fine-tuned on 30k hallucinated samples.

Method MMLU ARC-Challenge
Baseline 0.472 0.548
ICD 0.467 0.498
RCD 0.472 0.551

Table 7: Performance comparison of different decoding
methods on LLM’s overall performance benchmarks.

method does not compromise the model’s factual538

reasoning or general knowledge capabilities. On539

the ARC-Challenge benchmark, RCD slightly out-540

performs the baseline, suggesting a potential bene-541

fit on complex question-answering tasks.542

4.7 Case Study543

We provide a case study to illustrate the effective-544

ness of our method. Consider the query from NQ:545

“When was the rock and roll hall of fame built in546

Cleveland?” The correct answer is 1995, while547

Figure 4: Token-level probability for the query “When
was the rock and roll hall of fame built in Cleveland?”.

a hallucinated answer is 1986. Both the original 548

model and ICD produce the hallucinated answer, 549

whereas RCD yields the factually correct output. 550

Figure 4 shows token-level probabilities for the 551

key differing token positions (the second “9” in 552

1995 and “8” in 1986). The original model assigns 553

excessively high confidence to incorrect tokens, 554

while the weaker model in ICD fails to sufficiently 555

learn the hallucination distribution from the anno- 556

tated data, ultimately still leading to hallucinated 557

outputs. In contrast, our weaker model broadens 558

the constructed hallucination space, enabling more 559

balanced modeling of both correct and incorrect 560

tokens, and thereby ensuring the accuracy and reli- 561

ability of the final output. 562

5 Conclusion 563

We presented Regularized Contrastive Decoding 564

(RCD), a novel inference-stage method that lever- 565

ages adversarial perturbations to induce more hard 566

negative samples of hallucinations for improved 567

contrastive decoding. RCD significantly enhances 568

factual fidelity and robustness across four multiple 569

benchmarks. More precise and diverse signals are 570

produced by RCD consistently outperform base- 571

lines, offering a scalable and practical approach to 572

mitigating hallucinations in large language models. 573

8



Limitations574

While our proposed RCD method effectively en-575

hances factual fidelity, it introduces additional com-576

putational overhead due to adversarial perturba-577

tions and refined contrastive decoding. This may578

limit its practicality in extremely latency-sensitive579

applications. Furthermore, our approach still re-580

lies on the availability of a reasonably strong base581

model and does not guarantee performance im-582

provements when faced with highly adversarial or583

domain-specific hallucinations.584

Ethical Considerations585

Our method involves training a factually weaker586

language model that is more prone to generating587

hallucinations. While this is effective for improv-588

ing hallucination mitigation in LLMs, it raises po-589

tential ethical concerns. The weaker model could590

be misused to intentionally generate and spread591

misinformation or disinformation. To mitigate this592

risk, it is important to handle the weaker model re-593

sponsibly, restricting access and ensuring it is used594

only for research purposes within controlled envi-595

ronments. Proper safeguards should be in place to596

prevent misuse and protect against the dissemina-597

tion of false information.598
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A Supplementary Experimental Results792

A.1 Efficiency Analysis793

We compare the inference efficiency of different794

inference-stage methods, i.e., a baseline greedy de-795

coding, CD, ICD, and our proposed RCD. The796

baseline employs on a Llama2-7B-Chat model.797

The measured times reflect approximate overhead798

trends rather than a strict one-to-one comparison,799

as CD experiment uses a Llama2-13B-Chat vs.800

7B-Chat configuration, while both ICD and RCD801

rely on a Llama2-7B-Chat model with a finetuned802

Llama2-7B-Base weaker model.803

Method Decoding Latency (s)
Baseline 138.4 (×1.00)
CD 357.6 (×2.58)
ICD 402.4 (×2.91)
RCD 384.7 (×2.78)

Table 8: Inference time comparison across different
decoding strategies.

Table 8 shows inference time across different804

decoding methods. CD-based methods typically805

increase latency. Among them, our method holds806

a moderate acceptable delay for hallucination mit-807

igation. Specifically, the baseline decoding takes808

approximately 138.4s. Under the CD setting, in-809

creasing complexity leads to about a 2.58× slow-810

down. For ICD and RCD, which directly compare811

a 7B-Chat strong model to a finetuned 7B-Base812

weaker model, the overhead is roughly 2.91× and813

2.78× respectively. Although these configurations814

differ, the general pattern holds: more sophisticated815

contrastive strategies incur additional computation.816

Notably, RCD offers improved factual fidelity over817

ICD while slightly reducing the slowdown from818

the baseline, indicating a more balanced trade-off819

between accuracy and efficiency.820

A.2 Parameter Analysis821

To better understand the behavior of RCD, we in-822

vestigate the effect of the scaling factor λ, a critical823

hyperparameter that controls the strength of con-824

trastive learning. The results on the TruthfulQA825

benchmark are illustrated in Figure 5. The scal-826

ing factor λ adjusts the influence of the weaker827

model (i.e., hallucination model) in the contrastive828

decoding process. The optimal value is set to 1.8.829

By increasing λ, we amplify the penalty imposed830

by the weaker model on the strong model’s out-831

puts, thereby enhancing the suppression of hal-832

Figure 5: MC1, MC2, and MC3 scores on the Truth-
fulQA dataset for different scaling factors λ.

lucinations. The fact indicates that increasing λ 833

effectively suppresses hallucinations by strengthen- 834

ing the contrastive signal between the strong and 835

weaker models. Beyond a certain threshold, fur- 836

ther increasing λ may lead to over-penalization, 837

resulting in a slight decline in performance due to 838

excessive suppression of potentially correct tokens. 839
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