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Abstract

Large Language Models have achieved sig-
nificant advancements in various natural lan-
guage processing tasks. However, they are sus-
ceptible to generating hallucinations-fabricated
or inaccurate statements presented as factual
information-which can undermine their relia-
bility in high-stakes applications. To address
this issue, we propose a new inference-stage
hallucination mitigation method, Regularized
Contrastive Decoding (RCD), to exploit hard
negative samples for improving the robustness
of contrastive decoding. Additionally, we de-
sign a new adversarial-aware regularization
term to finetune hallucination models to learn
more challenging and diverse hallucination pat-
terns from available data with the guidance of
adversarial perturbations. This enhances the
contrastive decoding process, enabling more ef-
fective identification and filtering of erroneous
content. We conduct experiments on four pub-
lic hallucination benchmarks. Experimental
results show our method achieves better hallu-
cination mitigation performance consistently,
proving the effectiveness and superiority of
RCD for hallucination mitigation.

1 Introduction

Large Language Models (LLMs) have demon-
strated substantial progress in a wide range of nat-
ural language processing (NLP) tasks, including
question answering, knowledge-grounded dialogue,
and reasoning-intensive problem solving (Touvron
etal., 2023; Achiam et al., 2023). However, despite
these achievements, LLMs frequently produce hal-
lucinations—outputs that contain inaccuracies or
fabrications presented as factual information (Bang
et al., 2023; Ji et al., 2023). These hallucinations
pose significant risks, particularly in high-stakes
domains such as legal consultation, medical advice,
and specialized technical support, where factual
reliability is essential.
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Figure 1: An illustration of the broader hallucination
space expanded by our method.

Various strategies have been pursued to miti-
gate hallucinations. Some works leverage external
knowledge bases via retrieval-augmented genera-
tion (RAG) to guide models toward factual correct-
ness (Sun et al., 2023; Shuster et al., 2021). While
effective in many settings, these methods typically
require additional infrastructure and are sensitive
to retrieval errors. Other works rely on the model’s
internal signals without external retrieval, offering
simplicity and ease of deployment (Chuang et al.,
2023; Chen et al., 2024; Li et al., 2024). However,
such methods often struggle to detect subtle hallu-
cinations that are semantically close to the truth.

To improve hallucination awareness, some stud-
ies leverage existing annotated data to learn im-
plicit representations (Zhang et al., 2024, 2025).
However, such annotations are typically focused
on explicit and easily recognizable errors, leading
models to fit the specific patterns and biases of the
training datasets. As a result, these methods often
struggle to generalize beyond the distribution of the
annotated data, especially when encountering sub-
tle or out-of-distribution hallucinations, limiting
their effectiveness in more complex or open-ended



scenarios.

In this paper, we propose a novel Regularized
Contrastive Decoding (RCD), to contrast with hard
negative samples to improve mitigate hallucina-
tions in LLMs in the inference stage. First, we
introduce a new adversarial-aware regularization
term to generate more challenging and diverse neg-
ative samples of hallucination during finetuning
LLMs. Building on evidence that adversarial per-
turbations readily elicit hallucinated outputs (Yao
et al., 2023), we craft targeted perturbations that
push factual examples toward the hallucination de-
cision boundary. As shown in Figure 1, the result-
ing hard negatives enlarge the model’s exposure
beyond curated datasets, producing a richer and
more diverse spectrum of hallucinations (Good-
fellow et al., 2014). Then, RCD leverage these
adversarially generated samples to enhance the
contrastive decoding process. It receives denser
and more informative penalty signals, yielding out-
puts that are both more factual and more reliable.
The richer negative signals supply stronger regu-
larization, reduce over-fitting to narrow annotation
patterns, and ultimately improve the robustness
and generalization of contrastive decoding. Cru-
cially, RCD delivers these gains without large-scale
data collection or retraining of the backbone model,
making the approach highly scalable and easy to
integrate into existing systems.

We conduct experiments on four public hallu-
cination benchmarks that target truthfulness and
knowledge seeking. Experimental results show
that the proposed RCD yields consistent improve-
ments across all tasks—for example, +4.08 ab-
solute points on TruthfulQA MC2 and +9.03
accuracy on FACTOR-Expert—while preserving
the base model’s performance on MMLU and
ARC-Challenge. Latency measurements confirm
that RCD incurs only negligible overhead com-
pared with standard contrastive decoding. More-
over, RCD is compatible with diverse adversarial-
training schemes and scales smoothly across model
sizes, underscoring its strong generalization. Given
the same amount of training data, the weakened
model in RCD also explores a broader hallucina-
tion space, providing richer negative samples for
subsequent contrastive decoding.

Our contributions are threefold: 1) we propose
a new inference-stage RCD method to improve
hallucination mitigation. It provide hard negative
samples to enhance the robustness of contrastive
decoding during inference. 2) A new adversarial-

aware finetuning strategy for hallucination models
is designed to precisely capture more diverse and
hallucination patterns from available hallucination
data. 3) Experiments on four hallucination datasets
demonstrate the effectiveness and superiority of
RCD for hallucination mitigation.

2 Related Work

2.1 Hallucination in Large Language Models

Large Language Models (LLMs) are prone to
generating hallucinations-fabricated or inaccurate
statements presented as factual (Achiam et al.,
2023; Ji et al., 2023). These hallucinations can
be broadly categorized into factual and faithful-
ness hallucinations. Factual hallucinations emerge
when the model’s output contradicts established
real-world knowledge (Bang et al., 2023; Hu
et al., 2023), while faithfulness hallucinations oc-
cur when the model’s response deviates from given
instructions or the provided source context (Dale
et al., 2023; Shi et al., 2023). Eliminating both
types of hallucinations is critical for real-world
applications, especially in high-stakes domains de-
manding reliable and truthful information.

Early efforts to mitigate hallucinations primarily
followed either retrieval-based or model-internal
strategies. Retrieval-based approaches aim to en-
hance factual grounding by incorporating exter-
nal knowledge during generation, often through
retrieval-augmented generation (RAG) techniques
(Sun et al., 2023; Shuster et al., 2021). In con-
trast, model-internal methods leverage the model’s
own internal states or consistency signals, such as
optimizing training objectives via reinforcement
learning with human feedback (RLHF), to better
align the outputs with human judgments (Wang and
Sennrich, 2020; Ouyang et al., 2022). Although ef-
fective to some extent, both strategies often require
substantial computational resources and retraining
pipelines, and tend to struggle with subtle or border-
line hallucination cases near the decision boundary.

To address these limitations, more recent ap-
proaches have explored inference-stage strategies
that intervene during generation without modifying
the model parameters. For example, contrastive de-
coding leverages internal signals during inference
to dynamically identify and suppress hallucinations
(Chang et al., 2023). However, these methods typi-
cally rely on hallucination examples that are either
easily triggered or naturally occurring, which fail
to cover the broad range of subtle, hard-to-detect
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Figure 2: Overview of our RCD framework. In the adversarial finetuning phase, we induce hard hallucinations
through gradient-based perturbations, resulting in a weaker “hallucination” model. During inference, contrastive
decoding combines outputs from the original and hallucination models, filtering out fabricated content and enhancing

factual fidelity.

hallucinations. As a result, they remain less effec-
tive on out-of-distribution, long-tail, or ambiguous
inputs—highlighting the need for more precise and
generalizable inference-time hallucination detec-
tion mechanisms.

2.2 Contrastive Decoding

Contrastive Decoding (CD) (Li et al., 2023b) in-
troduced a novel perspective for improving genera-
tion quality by contrasting outputs from a stronger
model against those from a weaker model. Build-
ing on this idea, Chuang et al. (2023) proposed
contrasting outputs from different Transformer lay-
ers to enhance factual accuracy, while Kai et al.
(2024) incorporated self-attention mechanisms to
identify and mitigate uncertain predictions. To fur-
ther refine factual outputs, Zhang et al. (2025) sug-
gested inducing hallucinations and then contrasting
them to filter out inaccuracies. Similarly, Xu et al.
(2024) decoupled identification and classification
tasks to reduce hallucinations in medical informa-
tion extraction, and Gema et al. (2024) introduced
a method that contrasts outputs from a base model
and a masked model with retrieval heads to mitigate
hallucinations.

However, existing contrastive decoding methods
rely on effective comparisons between truthful and
hallucinated outputs to guide generation. A key

challenge lies in obtaining sufficiently diverse and
informative hallucinated examples to approximate
the decision boundary between factual and erro-
neous content. Existing CD methods often suffer
from limited hallucination coverage, as naturally
occurring hallucinations are sparse and may not
adequately challenge the model’s internal knowl-
edge. To address this, we propose to expand the
hallucination space through adversarial finetuning,
which encourages the model to generate more nu-
anced and varied hallucinations. This enhanced
contrastive signal allows CD methods to better cap-
ture the subtle distinctions between truthful and
fabricated content during inference, thereby im-
proving hallucination mitigation performance.

3 Regularized Contrastive Decoding
(RCD)

Consider a standard text generation setting where
an LLM receives an input sequence x =
(z1,x2,...,2r) and generates an output sequence
y = (y1,%2,...,yr). Without additional con-
straints, the LLM may produce hallucinations-
tokens or phrases unsupported by factual evidence.
These hallucinations degrade the trustworthiness
and reliability of the generated text.

As shown in Figure 2, our proposed framework,
Regularized Contrastive Decoding (RCD), aims



to reduce hallucinations by leveraging contrastive
decoding between a strong model and a weaker,
adversarially trained model.

3.1 Hard Negative Samples Induction

Prior work generates hallucination samples that are
often narrow in scope and low in diversity, offering
limited mitigation benefits (Zhang et al., 2025). To
overcome this, we propose a regularization-based
strategy that injects adversarial perturbations dur-
ing fine-tuning to enlarge the hallucination space
and induce hard negatives near the decision bound-
ary. Unlike simple data augmentation, these per-
turbations serve as an implicit regularization mech-
anism that guides the model to generalize better
under subtle distributional shifts.

Formally, let D = {(s;,u;,0;)}" be the fine-
tuning dataset, where s; is the system prompt, u;
is the user input, and o; is the target output. We
introduce an adversarial perturbation A#,4y into
the model parameters and optimize the following
objective:

m
argAI;linZ —log p(0; | si,ui; 0 + Abagy), (1)
i=1

where 6 denotes the original model parameters.
The perturbation Af,q, is not fixed, but rather
shaped adversarially to induce subtle and harder
hallucinations.

To generate Af,qy, we use the Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2015) to
perturb the input embeddings x as follows:

x' = x + e sign (VxL(x,9)), ()
where € controls the perturbation magnitude and
L is the standard cross-entropy loss. This per-
turbation implicitly regularizes the model by in-
creasing sensitivity to high-curvature regions of the
loss landscape, effectively pushing the model to be
more robust.

We then jointly train on clean and adversarial
examples, resulting in the following regularized
objective:

(L) + L))

5 3)

£total =
where the second term acts as a data-dependent
regularization term. It penalizes parameter updates
that overfit to clean samples alone, encouraging the
model to also fit perturbed amples.

Through this regularized training process, the
weaker model becomes capable of generating a di-
verse set of hard negative samples, which are later
used in contrastive decoding to improve hallucina-
tion detection and suppression.

3.2 Contrastive Decoding

Having obtained the stronger model 8 and the ad-
versarially fine-tuned weaker model 6,4y, we apply
contrastive decoding (Li et al., 2023b) to their out-
puts. Importantly, the weaker model, having been
adversarially fine-tuned with regularization, tends
to produce hallucinations that are more diverse and
representative. These hard negative signals help
the contrastive score more effectively penalize mis-
leading or factually incorrect candidates that may
otherwise be selected. At each timestep ¢, both
models compute the conditional probability of the
next token x;. We define the contrastive score as:

Fi =logp(wy | £<450) — Mogp(xt | 2<t; Oaav),
“)
where A controls the balance between the two mod-
els. This score amplifies tokens favored by the
stronger model while suppressing those preferred
by the weaker LLM. To further refine token selec-
tion, we employ the adaptive relative top filtering
mechanism (Li et al., 2023b). Specifically, at each
timestep ¢, we define a valid token set V,,1ig based
on the probabilities predicted by the strong model
0:
logp(a | 110) >
max log p(w | z<;6) +logy
)
where v € (0, 1] is a hyperparameter that deter-
mines the filtering threshold.
After determining Vy,id, we apply a softmax
over the contrastive scores F;(x¢) for z; € Wyalig:

exp(Fi(x))
2V EXP(F(2))

By restricting the candidate tokens to this valid
set and then normalizing with respect to the con-
trastive scores, the final output distribution is more
factual and less susceptible to subtle hallucinations
introduced by the factually weaker LLM.

Vyalid = {l‘t eV

p(ey | v<4) = 5 (6)

4 Experiments

4.1 Experimental Setup

Datasets Following previous work (Chen et al.,
2024), we evaluate our method on truthfulness-
related datasets (i.e., TruthfulQA, and FACTOR)

2



Method Truthful QA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1
Greedy 37.62 5460 28.12 65.05 5696 66.10 46.50 46.50 23.49 2145
ITI (Li et al., 2024) 37.01 5466 27.82 5328 43.82 51.69 - - - -
CD (Li et al., 2023b) 28.15 54.87 2975 6457 5847 67.12 4730 3858 26.03 19.38
DoLa (Chuang et al., 2023) 3297 60.84 2950 64.32 57.63 67.30 47.08 4594 24.01 22.15
AD (Shi et al., 2024) 3390 51.62 2578 61.87 53.84 6228 48.55 4824 2434 2235
ICD (Zhang et al., 2025) 46.32 69.08 41.25 70.75 5840 6694 5046 50.33 2559 23.94
RCD (Ours) 47.00 7316 46.26 71.23 59.17 7415 5091 50.67 26.20 24.40
Improve (%) +9.38 +18.56 +18.14 +6.18 +2.21 +8.05 +4.41 +4.17 +2.71 +2.95

Table 1: Overall results of different inference-based methods on four benchmarks. We reimplement all methods
according to their open-source codes under the same environment except for ITL. The Llama2-13B-Chat vs. 7B-Chat
setting is used in experiments of CD. For ICD and our RCD, we follow Zhang et al. (2025) and finetune Llama2-7B-
Base as a weaker model for contrasting with Llama2-7B-Chat. The best performances are bolded. We also conduct
efficiency analysis in Appendix A.1. RCD holds a moderate and acceptable delay among CD-based methods.

Method %truth T %info T %truth*info T Y%reject |
CD 70.21 42.25 19.23 29.98
ICD 62.85 77.65 41.16 23.50
RCD (Ours) 63.71 78.03 42.24 23.13

Table 2: Evaluation results on generative tasks using
GPT-judge for TruthfulQA. Specially, for reject rate,
lower is better.

and knowledge-seeking datasets (i.e., TriviaQA,
and NQ). TruthfulQA (Lin et al., 2022) is a
benchmark designed to assess the truthfulness
of language models, comprising 817 multiple-
choice questions across 38 categories. FACTOR
(Muhlgay et al., 2023) evaluates the factual accu-
racy of large language models in text completion
tasks, consisting of two subsets: Wiki-FACTOR
with 2,994 examples from Wikipedia and News-
FACTOR with 1,036 examples from news articles.
TriviaQA (Joshi et al., 2017) contains over 650K
question-answer pairs sourced from trivia web-
sites, accompanied by evidence documents from
Wikipedia and web sources. Natural Questions
(NQ) (Kwiatkowski et al., 2019), developed by
Google, includes around 300K human-generated
questions with annotated short and long answers
derived from Wikipedia.

Evaluation Metrics We employ multiple-choice
accuracy metrics to assess model performance on
the truthfulness-related dataset, i.e., Truthful QA.
Specifically, MC1 evaluates whether the model as-
signs the highest probability to the correct answer,
while MC2 measures the total normalized proba-
bility mass the model assigns to correct answers.
MC3 combines accuracy and consistency across
multiple questions to gauge the model’s overall
reliability. For FACTOR, we experiment on its

three subsets—News, Wiki, and Expert—and uti-
lize accuracy as the sole evaluation metric to assess
the text completion performance of large language
models. Following Joshi et al. (2017), we adopt
Exact Match (EM) and F1 score as evaluation
metrics to measure the correctness of the model’s
responses on knowledge-seeking datasets, i.e., Triv-
1aQA and NQ. Following Lin et al. (2022), we eval-
uate the generation task of the Truthful QA dataset.
Specifically, two fine-tuned GPT-3.5 models are
employed to independently score each response
along two dimensions: truth (factual accuracy)
and info (informativeness). The truth&info score
is then computed as the harmonic mean of these
two dimensions. Furthermore, we report the reject
rate, which quantifies the proportion of responses
where the model abstains from answering.

Comparison Methods We compare with six rep-
resentative inference-time hallucination-mitigation
methods. The naive baseline is Greedy Decod-
ing, which deterministically chooses the highest-
probability token at each step without any auxil-
iary strategy. Two general inference-time methods
are considered, i.e., Inference-Time Intervention
(ITT; Li et al., 2024), which injects task-specific
adjustments during decoding to enhance general-
ization, and Activation Decoding (AD; Chen et al.,
2024), which employs a contrastive output distribu-
tion to amplify contextual cues and down-weight
the model’s priors, thereby improving faithfulness
when external knowledge is required. Additionally,
we include three contrastive decoding methods, i.e.,
Contrastive Decoding (CD; Li et al., 2023b) that
contrasts outputs from a strong and a weak model
to penalize non-factual content; Decoding by Con-
trasting Layers (DoLa; Chuang et al., 2023) that



refines factual accuracy by contrasting internal lay-
ers of the same model; and Induce-then-Contrast
Decoding (ICD; Zhang et al., 2025) that induces
hallucinations in a weakened model and subse-
quently uses this signal to reinforce factual pre-
dictions.

Implementation Details All experiments are
conducted on a single NVIDIA Tesla A100 80GB
GPU using the Llama2 series models. We leverage
Llama2-7B-Chat as the original model to conduct
the experiments and fine-tune Llama2-7B-Base
to create a factually weaker model, following a
similar setup to Zhang et al. (2025). Specifically,
we use the HaluEval dataset (Li et al., 2023a) to
fine-tune the weaker model. HaluEval consists
of 40,000 hallucination-prone samples across four
task-specific subsets: question answering (QA),
summarization (Sum), dialogue (Dialog), and gen-
eral instruction following (General), each contain-
ing 10,000 instances. In our study, we use the first
three subsets (QA, Sum, Dialog) for fine-tuning
and hallucination injection.LoRA (Hu et al., 2022)
is used for parameter-efficient fine-tuning, and the
LLaMA-Factory framework (Zheng et al., 2024) is
employed to implement the fine-tuning pipeline.

4.2 Main Results

Discriminative Evaluation Discriminative eval-
uation results on four datasets for hallucination
mitigation are shown in Table 1. The proposed
RCD achieves the best performance on all datasets
in terms of all evaluation metrics. This demon-
strate the superiority of our model for hallucination
mitigation. Specifically, for truthfulness-related
datasets, compared the the baseline Greedy, RCD
achieves improvements of +9.4%, +18.6%, and
18.1% on MC1, MC2, and MC3 scores on Truth-
fulQA. For knowledge-seeking tasks, RCD out-
performs the baseline by +4.4% EM and 4.2% F1
scores.

Generative Evaluation Table 2 presents the eval-
uation results on generative tasks for CD, ICD,
and our proposed RCD approach. Compared to
ICD, RCD achieves a +0.38% improvement in
info, a +1.08% improvement in truth&info, and
a-0.37% reduction in reject, indicating that RCD
produces more informative and factually consistent
responses. Additionally, the relatively high fruth
score of the CD method may be artificially inflated.
This is because abstentions are often interpreted
by the scoring model as fully correct responses,

TruthfulQA FACTOR

Method MC1 MC2 MC3 News Wiki Expert
RCD 47.00 7316 4626 7123 59.17 7415
wio Adv Perturb. 3831 65.56 3723 55.88 3892 55.50
wio Perturb, 4632 69.08 4125 7075 5840 66.94

Table 3: Ablation study results on Truthful QA and FAC-
TOR.

thereby receiving the maximum truth score. As
a result, the overall truth score of CD does not
necessarily reflect genuine factual accuracy.

4.3 Ablation Study

We conduct the ablation study to evaluate the effec-
tiveness by removing the key components in RCD.
The ablation models are as follows: 1) w/ Adv Per-
turb. refers to replacing adversarial perturbations
with random perturbations during the fine-tuning of
the hallucination-induced models. 2) w/o Perturb.
indicates removing the adversarial perturbations
entirely during fine-tuning. The ablation results on
Truthful QA and FACTOR are presented in Table 3.
The full RCD model achieves the best performance
across all metrics on both datasets, showing the
effectiveness of each component for building hallu-
cination LLMs. Incorporating adversarial perturba-
tions enhances the generation of precise and diverse
hallucinations. In this way, RCD enables more ef-
fective filtering of factual inaccuracies, leading to
more reliable and factually consistent outputs.

4.4 Hallucination Induction Analysis

Evaluation against Different Task Format in
Hallucination Induction Following Zhang et al.
(2025), we examine how the task format of the
reversed training data affect the method’s mitiga-
tion performance. The HaluEval dataset consists
of four subsets, among which we use three: QA,
summarization (Sum), and dialogue (Dialog), each
containing exactly 10,000 examples. For the com-
bined setting (All), we aggregate all 30,000 ex-
amples from these three subsets to fine-tune the
hallucination LLMs using our adversarial-aware
regularization strategy. Table 4 shows results of
ICD and our RCD against different task formats on
Truthful QA. RCD outperforms ICD on most set-
tings, which showing the effectiveness against dif-
ferent task format in hallucination induction. RCD
allows the weaker model to learn diverse and chal-
lenging hallucination patterns across different task
domains, achiveing better hallucination mitigation.



Task Format Truthful QA

MC1 MC2 MC3

RCD Sum 46.38  70.59 44.54
Dialog 47.12 7197 45.83

QA 4528 70.68 44.42

All 47.00 73.16 46.26

ICD Sum 4522 63.67 36.33
Dialog 4620 64.81 37.20

QA 46.32 69.08 41.25

All 41.73  67.74 41.34

Table 4: Comparison between different task formats of
training data for inducing hallucinations on Truthful QA.

Evaluation against Different Ratios of Training
Samples in Hallucination Induction We exper-
iment under different ratios of the hallucination
training set to evaluate the generalization when
training with data-constraint settings in hallucina-
tion induction. Given a predefined ratio (e.g., 20%)
and a random seed, we randomly sample from the
original set (i.e., 30,000 examples) of HaluEval
(Li et al., 2023a) as the training set. As shown in
Figure 3, our RCD consistently maintains higher
MC scores in almost all sampling scenarios. With
a smaller ratio, the comparison ICD struggle to
learn sufficient hallucination patterns from limited
data, leading to poor generalization. Our RCD with
adversarial-aware regularization can learn more di-
verse patterns from limited data by dynamically
generating hard negative samples that cover a wider
decision boundary of hallucinations. With a higher
ratio, ICD tends to overfit to provide specific hal-
lucination patterns for contrastive decoding, while
RCD learns more generalized hallucinations, main-
taining steadily improved mitigation performance.

Evaluation against Different Perturbation Meth-
ods for Hard Negative Samples Generation We
evaluate the effectiveness of our proposed method
under various adversarial attack settings. Firstly,
we perform adversarial fine-tuning on the weaker
model using two representative attack algorithms,
i.e., Fast Gradient Sign Method (FGSM) and Pro-
jected Gradient Descent (PGD). FGSM applies a
single-step perturbation in the direction of the gra-
dient sign. PGD generates adversarial examples
through iterative updates constrained. As shown in
Table 5, RCD w/ FGSM and w/ PGD consistently
outperform comparison methods, highlighting the
benefit of incorporating different adversarial pertur-
bations in hallucination induction. Additionally, we
adjust perturbation intensity of FGSM by varying

TruthfulQA
Method MCI MC2 MC3
Baseline 3762 5460 28.12
ICD 4632 69.08 4626
RCD w/ FGSM

=005 4589 7093 44.29

€=0.005 47.00 7316  46.26

¢=0.0005 4724 7138 4476
RCD w/ PGD

€=0.005 4736 7065 44.63

Table 5: Comparison between different attack methods
for inducing hallucinations on TruthfulQA. The base
LLM is Llama2-7B-Chat.

different perturbation magnitude e , which deter-
mines the maximum allowable deviation from the
original input for hard negative sample generation.
As shown in Table 5, the optimal value of e for
RCD w/ FGSM is set to 0.005. This indicates an
appropriate perturbation can provide diverse and
challenging signals for hallucination induction.

4.5 Effectiveness Evaluation Across Different
LLM Sizes

We evaluate the generalization capability of our
proposed RCD method across language models of
varying sizes. In particular, we compare the per-
formance of the 7B model fine-tuned with 30K
hallucination instances to larger LLaMA?2 variants,
including the 13B and 70B models. As shown in
the table, RCD consistently outperforms the base-
line across all model sizes, highlighting its scal-
ability and strong generalization ability to larger
language models.

4.6 Impact on LLM’s Overall Performance

Following Zhang et al. (2025), we experiment to
assess whether our proposed method affects the
general reasoning and problem-solving capabili-
ties of LLMs. We evaluate on two widely used
benchmarks: MMLU (Hendrycks et al., 2020) and
ARC-Challenge (Clark et al., 2018). MMLU con-
sists of multiple-choice questions covering a broad
range of academic and professional subjects, test-
ing general knowledge and factual reasoning. ARC-
Challenge includes complex science questions that
require multi-step reasoning, representing a chal-
lenging setting for QA tasks. All experiments are
conducted under the 5-shot setting to ensure con-
sistency across methods. As shown in Table 7, the
performance of RCD on MMLU remains identi-
cal to that of the baseline, demonstrating that our
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Figure 3: Comparison between different ratio of training data for inducing hallucinations on TruthfulQA. The base

LLM is Llama2-7B-Chat.

Model TruthfulQA
MC1 MC2 MC3
LLaMA2-7B-chat
Baseline 37.62 54.60 28.12
ICD 46.32 69.08 41.25
RCD (Ours) 47.00 73.16 46.26
LLaMA2-13B-chat
Baseline 3775 55.67 28.16
ICD 48.47 7347 46.04
RCD (Ours) 51.04 7590 50.05
LLaMA2-70B-chat
Baseline 37.70 5899 29.79
ICD 51.04 75.01 46.54
RCD (Ours) 53.61 79.00 52.27

Table 6: Effectiveness of RCD across different model
sizes on TruthfulQA. All baselines use greedy decod-
ing. We contrast LLaMA2-chat of different sizes with
LLaMAZ2-7B fine-tuned on 30k hallucinated samples.

Method MMLU ARC-Challenge

Baseline 0.472 0.548
ICD 0.467 0.498
RCD 0.472 0.551

Table 7: Performance comparison of different decoding
methods on LLM’s overall performance benchmarks.

method does not compromise the model’s factual
reasoning or general knowledge capabilities. On
the ARC-Challenge benchmark, RCD slightly out-
performs the baseline, suggesting a potential bene-
fit on complex question-answering tasks.

4.7 Case Study

We provide a case study to illustrate the effective-
ness of our method. Consider the query from NQ:
“When was the rock and roll hall of fame built in
Cleveland?” The correct answer is 7995, while

0.5811 Original
RCD (Ours)

0.5
0.4364 €0
0.3906

0.6 0.5603

0.2369
0.2 0.1665

8 9

Figure 4: Token-level probability for the query “When
was the rock and roll hall of fame built in Cleveland?”.

a hallucinated answer is /986. Both the original
model and ICD produce the hallucinated answer,
whereas RCD yields the factually correct output.
Figure 4 shows token-level probabilities for the
key differing token positions (the second “9” in
1995 and “8” in 1986). The original model assigns
excessively high confidence to incorrect tokens,
while the weaker model in ICD fails to sufficiently
learn the hallucination distribution from the anno-
tated data, ultimately still leading to hallucinated
outputs. In contrast, our weaker model broadens
the constructed hallucination space, enabling more
balanced modeling of both correct and incorrect
tokens, and thereby ensuring the accuracy and reli-
ability of the final output.

5 Conclusion

We presented Regularized Contrastive Decoding
(RCD), a novel inference-stage method that lever-
ages adversarial perturbations to induce more hard
negative samples of hallucinations for improved
contrastive decoding. RCD significantly enhances
factual fidelity and robustness across four multiple
benchmarks. More precise and diverse signals are
produced by RCD consistently outperform base-
lines, offering a scalable and practical approach to
mitigating hallucinations in large language models.



Limitations

While our proposed RCD method effectively en-
hances factual fidelity, it introduces additional com-
putational overhead due to adversarial perturba-
tions and refined contrastive decoding. This may
limit its practicality in extremely latency-sensitive
applications. Furthermore, our approach still re-
lies on the availability of a reasonably strong base
model and does not guarantee performance im-
provements when faced with highly adversarial or
domain-specific hallucinations.

Ethical Considerations

Our method involves training a factually weaker
language model that is more prone to generating
hallucinations. While this is effective for improv-
ing hallucination mitigation in LLMs, it raises po-
tential ethical concerns. The weaker model could
be misused to intentionally generate and spread
misinformation or disinformation. To mitigate this
risk, it is important to handle the weaker model re-
sponsibly, restricting access and ensuring it is used
only for research purposes within controlled envi-
ronments. Proper safeguards should be in place to
prevent misuse and protect against the dissemina-
tion of false information.
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A Supplementary Experimental Results

A.1 Efficiency Analysis

We compare the inference efficiency of different
inference-stage methods, i.e., a baseline greedy de-
coding, CD, ICD, and our proposed RCD. The
baseline employs on a Llama2-7B-Chat model.
The measured times reflect approximate overhead
trends rather than a strict one-to-one comparison,
as CD experiment uses a Llama2-13B-Chat vs.
7B-Chat configuration, while both ICD and RCD
rely on a Llama2-7B-Chat model with a finetuned
Llama2-7B-Base weaker model.

Method Decoding Latency (s)

Baseline 138.4 (x1.00)
CD 357.6 (x2.58)
ICD 402.4 (x2.91)
RCD 384.7 (x2.78)

Table 8: Inference time comparison across different
decoding strategies.

Table 8 shows inference time across different
decoding methods. CD-based methods typically
increase latency. Among them, our method holds
a moderate acceptable delay for hallucination mit-
igation. Specifically, the baseline decoding takes
approximately 138.4s. Under the CD setting, in-
creasing complexity leads to about a 2.58% slow-
down. For ICD and RCD, which directly compare
a 7B-Chat strong model to a finetuned 7B-Base
weaker model, the overhead is roughly 2.91x and
2.78x respectively. Although these configurations
differ, the general pattern holds: more sophisticated
contrastive strategies incur additional computation.
Notably, RCD offers improved factual fidelity over
ICD while slightly reducing the slowdown from
the baseline, indicating a more balanced trade-off
between accuracy and efficiency.

A.2 Parameter Analysis

To better understand the behavior of RCD, we in-
vestigate the effect of the scaling factor A, a critical
hyperparameter that controls the strength of con-
trastive learning. The results on the TruthfulQA
benchmark are illustrated in Figure 5. The scal-
ing factor A\ adjusts the influence of the weaker
model (i.e., hallucination model) in the contrastive
decoding process. The optimal value is set to 1.8.
By increasing A, we amplify the penalty imposed
by the weaker model on the strong model’s out-
puts, thereby enhancing the suppression of hal-
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MC1, MC2, MC3 Scores vs. Scaling Factor A (¢ = 0.005)
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Figure 5: MC1, MC2, and MC3 scores on the Truth-
fulQA dataset for different scaling factors A.

lucinations. The fact indicates that increasing A
effectively suppresses hallucinations by strengthen-
ing the contrastive signal between the strong and
weaker models. Beyond a certain threshold, fur-
ther increasing A may lead to over-penalization,
resulting in a slight decline in performance due to
excessive suppression of potentially correct tokens.
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