
Under review as a conference paper at ICLR 2022

DESIGN AND EVALUATION FOR ROBUST CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning is the ability to learn from new experiences without forgetting
previous experiences. Different continual learning methods are each motivated
by their own interpretation of the continual learning scenario, resulting in a wide
variety of experiment protocols, which hinders understanding and comparison of
results. Existing works emphasize differences in accuracy without considering
the effects of experimental settings. However, understanding the effects of experi-
mental assumptions is the most crucial part of any evaluation, as the experimental
protocol may supply implicit information. We propose six rules as a guideline for
experimental design and execution to conduct robust continual learning evaluation
for better understanding of the methods. Using these rules, we demonstrate the
importance of experimental choices regarding the sequence of incoming data and
the sequence of the task oracle. Even when task oracle-based methods are desired,
the rules can guide experimental design to support better evaluation and under-
standing of the continual learning methods. Consistent application of these rules
in evaluating continual learning methods makes explicit the effect and validity of
many assumptions, thereby avoiding misleading conclusions.

1 INTRODUCTION

Continual learning is the ability to learn from new non-stationary data without catastrophic forget-
ting (McCloskey & Cohen, 1989; Goodfellow et al., 2013; Kemker et al., 2018) previously learned
experiences (Thrun & Mitchell, 1995; Hsu et al., 2018; Parisi et al., 2019). Unlike transfer learning
approaches which are focused on one-directional transfer from a source to a target task (Bengio,
2012; Yosinski et al., 2014) and are not concerned with forgetting the source task, continual learning
requires the model to maintain acceptable performance for the source task while learning the new
target task.

Various techniques have been developed to tackle catastrophic forgetting; however, the majority
of the methods require a task oracle (identifier) to identify which task each input example belongs
to (Kirkpatrick et al., 2017; Shin et al., 2017; Sener & Koltun, 2018). Often in experimental
evaluations, a human plays the role of the oracle, with no intrinsic justification for the choice of
tasks. Typical evaluations of continual learning methods generate synthetic tasks by splitting or
permuting the input data and presenting the resulting tasks in sequence (van de Ven & Tolias, 2019;
Aljundi et al., 2019a). For example, in SplitMNIST, a common dataset sequence used in continual
learning, the ten digits are partitioned into chunks composed of two or more digits. Often, the data
is split into five chunks, and each chunk has only two digits to classify. A task oracle (identifier)
may label the chunks of the incoming data sequence as tasks. Specifically, we use chunk to avoid
implicitly assuming these matches with task labels as this may provide unintentional information for
performance boost. We may still choose a task oracle to have the same sequence but will need to be
cognizant of the assumption. In Section 2, we propose six rules to help design experiments to test
and understand these assumptions.

In general, a task oracle is not available, and a clear separation of tasks is unlikely to be defined or
known (Caccia et al., 2020). Real-world applications are unlikely to exhibit strict sequencing of
tasks; instead, they may exhibit mixing and transitioning between input distributions. It is important
to be careful with assuming having a task oracle as the extra information provided will unfairly
bias the evaluation of continual learning methods. Hence, in this work, we consider a variety of

1

Under review as a conference paper at ICLR 2022

input sequences that may occur in a continual learning problem. We demonstrate the more difficult
scenario, which we called unrestricted scenario, where only limited task information is supplied to
the methods during training.

Farquhar & Gal (2018) and van de Ven & Tolias (2019) suggest that continual learning research
should shift away from task oracle-based methods. Although we share this sentiment, we do believe
that a task oracle may still play a role in continual learning research, despite limiting real-world
applications. However, researchers must apply robust experimental design to surface assumptions
about learning scenarios.

In this work, we investigate the effects of task identification and experimental protocols in continual
learning. Firstly, we propose six rules for robust evaluation of continual learning methods. Secondly,
we extend published continual learning methods to support non-sequential tasks and evaluate the
methods with a more extensive range of input arrival sequences and task partitionings to demonstrate
the shortcoming of existing assumptions and protocols. We show a sequential split input sequence is
most prone to catastrophic forgetting and current experimental protocols may not be evaluating the
continual learning methods fairly. Finally, we discuss the application of the six rules on experimental
design and interpretation of new experiments. We suggest the continual learning researchers should
consider three different sequences: data, task identifier and evaluation identifier when designing
experiments.

2 EXPERIMENTAL DESIGN FOR CONTINUAL LEARNING

Experimental and implementation choices have a significant effect on the performance of continual
learning methods. While it is infeasible to consider all choices and their effects, it is still desirable to
be able to fairly compare different methods and interpret the results. We propose six rules to aid in
the design of robust experiments for continual learning.

2.1 RULE 1: TEST EXTREMES

Although it is infeasible to test all possible setups, experiments should cover extreme settings that
can test the continual learning method to give a more expository understanding of the methods.
When we allow different ordering of experimental sequences, there is an exponential number of
possible sequences of data. In particular, the effects of the methods should compare to extreme
settings. Continual learning experiments consider the sequential setting where the data are split into
different sequences where each chunk of the split contains only a subset of classes. For example,
splitting should be randomized rather than following some chosen order. In this case, we consider the
extreme of the composition of the sequence, that is, grouping classes and their order of arrival to be
random rather than alphabetical, numerical, or human categorization (cognitive or artificial). Typical
experimental settings for continual learning consist of data splitting into clearly defined chunks where
each contains only certain classes. The extreme in this case is the separation of tasks. Most continual
learning experiments only consider the case where tasks are perfectly separated into chunks. Other
separations in different extremes should also be considered, such as where the data is random, and
all tasks may be present in every batch (i.e. the normal supervised learning setting). This extreme
provides a baseline and ensures that the method does not rely on certain signals from the sequence’s
setup.

Rule 1: Identify and test extreme settings in experimental setup and parameters.

2.2 RULE 2: USE CLEAR BASELINES

Results derived from experiments with a dependency on the data sequence can vary depending on how
the data sequence is presented. Implementation or experimentation choices that seem arbitrary may,
in fact, have a significant effect that is difficult to predict. Even when an analytical derivation may
be possible, the work may be tedious and ad hoc. Hence, we propose including a clearly identified
baseline equivalent to a ’random guess’ for each experimental scenario.

In experimental protocols for continual learning, extra information may be provided to the methods
such that random guess baseline performance with the same extra information may not match our

2

Under review as a conference paper at ICLR 2022

intuition. This means that providing a random guess classifier conforming to the experimental
protocol is important to demonstrate the performance improvement attributable to the method.

A concrete example of this can be seen in the multi-head task scenario experiment used in many
studies (von Oswald et al., 2020; Lopez-Paz et al., 2017; van de Ven & Tolias, 2019; Mirzadeh et al.,
2020). For example, when splitting CIFAR100 into 10 tasks where each task has 10 classes, a task
label is provided that limits the number of classes available to the classifier. One might naively think
that random guess is 1% (1 out 100 classes), but due to experimental setup, the baseline is 10% (1
out 10 classes). Predicting random guess performance is difficult in more complicated experimental
setups. Hence, providing a random guess classifier helps to identify the baseline of an experimental
setup with ease.

Rule 2: Provide random guess implementations that conform to experimental setup for clear
identification of baselines of the setting.

2.3 RULE 3: TEST SIMPLE METHODS

Due to the extra information that naturally arises from the experimental setup in continual learning
literature, it is important to provide simple methods that utilize this information. Many continual
learning methods inherently uses task information which is usually not obvious. There is an attempt
to move away from this paradigm towards a task-agnostic approach (Lee et al., 2020; Zeno et al.,
2018; Aljundi et al., 2019a). However, regardless of the fairness or applicability of providing task
information, when they are provided, other simple methods which also use this information should
be compared to.

Naive multi-model, where each model is assigned a task, is a possible simple method to consider
when task information is given. Each individual model is independent and there is no sharing between
the models. The experiment supplies a task label for each input example, hence we can pick the
model associated with the right task. This method uses the same information given to the continual
learning methods to which we want to compare.

Naive multi-model may also be used in a task-agnostic setting such as using entropy from prediction
as a proxy of task label or task change. All models will give an output for each example. The
model with the lowest entropy output is used for classification for the example. Some continual
learning researchers consider naive multi-model as the upper bound result that cannot be outperformed
(Mirzadeh et al., 2020; Schwarz et al., 2018; Chaudhry et al., 2019; He et al., 2019; Titsias et al.,
2020). However, we believe that this simply demonstrates that continual learning literature needs
better experimental protocols. Naive multi-model uses the same information as task oracle based
methods but is simpler and cannot make use of sharing to help combat forgetting and improve the
learning of new data von Oswald et al. (2020), hence it should not be considered an upper bound.
Some multi-task learning where tasks are considered as different objective functions (rather than as
splitting data) do exhibit improvement through sharing Kendall et al. (2018). In this case, each input
has multiple different objectives and using a shared model is better than multiple individual models.

Rule 3: Evaluate naive or simple methods for the experimental setting.

2.4 RULE 4: RE-EVALUATE EXISTING BEHAVIOR

Often we assume that once some behavior of a model is established, it will continue to hold in further
training and testing. However, this assumption is far from the empirical results. A clear example
of this is continual learning itself where forgetting happens greatly (Kirkpatrick et al., 2017). The
same data with the same training length and setup but with slightly different ordering can greatly
affect the results of the models. This rule when applied to continual learning considers re-evaluating
whether the previous task is learned. Continual learning experiments rarely test learning behavior
by revisiting the same task. Hence, we propose to consider an experimental setup where task is
recapitulated during training and how this may affect the proposed methods. One consequence of this
rule is to require that methods can correctly identify data that they have previously seen, rather than
considering all new data as a new task. In methods that rely on task labels, this is not an issue since
task labels will be provided for the recapitulating data. However, for task-agnostic methods that must
provide their own means to separate data, this becomes important. This test is useful in detecting

3

Under review as a conference paper at ICLR 2022

whether task-agnostic methods can reuse their previously learned components for new data of the
same task or even previously seen data. Reusing existing components is essential, since the efficiency
of training is better when we use generalized features that are already learned by the model. It also
impacts the evaluation process, as in the task-agnostic setting, methods are greatly affected by the
choice of task. For example, if there is a task-agnostic naive multi-model method then selecting the
right model will significantly improve the prediction accuracy. Model size and memory usage will
continuously grow if the method is unable to detect previously seen tasks. In the extreme, every new
data may be considered a new task and the method may simply remember every example. This is
a problem for many continual learning methods that rely on task boundary changes (Rebuffi et al.,
2017; Kirkpatrick et al., 2017; von Oswald et al., 2020).

Rule 4: Perform experiments with settings that recapitulate incoming data.

2.5 RULE 5: EVALUATE DEPENDENCY ON SEQUENCING

Experimental choices regarding data sequencing are often treated as arbitrary, when it is unknown
whether they are in fact consequential. In online continual learning, one should evaluate experiments
on different compositions of incoming data to ensure the choice of composition is inconsequential.
Usually, the order of chunks will be shuffled and experiments repeat but one should also consider
different possible formations of chunks. For example, one can consider different size chunks and
completely random as pointed out in rule 1. Other possible effects of learning may be considered
such as learning easier examples followed by hard examples. Or always have a proportion of hard
examples mixed.

Other settings such as the scenario where each incoming data chunk consists of multiple different
tasks rather than just one task should be evaluated. This setup will test whether the continual learning
methods have a dependency on only allowing one task per chunk. Performance-wise, it will check
the effect of extra information on the methods such that the methods will need to consider each chunk
and their properties rather than just when they are changing to a new sequence of classes.

Rule 5: Identify and investigate different choices for the experimental sequencing.

2.6 RULE 6: USE PROTOCOL-INDEPENDENT METRICS

Fundamental to continual learning is the ability to retain previously learned knowledge while obtaining
new knowledge under constraints given. Hence, the evaluation of forgetting and sharing is important.
Traditionally, metrics would be defined with the assumption that “tasks” are known beforehand,
and a strict sequence of data is given. However, in many applications, tasks are either not known
or ill-defined (Lee et al., 2020; Zeno et al., 2018; Aljundi et al., 2019a). Hence, only the final
performance evaluation can be used, i.e., the final prediction accuracy for classification problems.

Examples of metrics that should be avoided or modified are forward and backward transfer, as these
metrics assume data is split perfectly into tasks and arrives in a strict order (Lopez-Paz et al., 2017;
Yoon et al., 2018; Schwarz et al., 2018; Chaudhry et al., 2018; Díaz-Rodríguez et al., 2018; Kemker
et al., 2018). These metrics assume that data must come in sequence and one task followed by
the other. Even in the most simple scenario of random data, these metrics break down, as just one
example of a previously seen task will mean the metrics can not measure the difference in transfer.

Currently, the only unbiased method in identifying forgetting would be keeping track of each testing
example (Toneva et al., 2019). Forgetting is defined to be misclassification after correct classification.
It keeps track of examples and checks if they had ever been learnt (correctly classified). If, after more
learning, the example fails to be correctly classified, then this is considered as forgetting. However,
this is troublesome to perform and also difficult to give aggregate summaries. Hence, further work is
required to find useful metrics for measuring continual learning.

Rule 6: Define performance metrics that derive from the data, rather than features of the
experimental setup.

4

Under review as a conference paper at ICLR 2022

A C G G

1st Sequence
Dominant class: G

G B G E G F D G FTask 1
A & B & C

Task 2
D & E
Task 3
F & G

Time

1 1 3 3 13 3 2 3 3 2 3 3

Data

Task
Identifier

Task
Label

2st Sequence
Dominant class: F

...

Figure 1: Example of dominant sequencing and dominant task identifier. The dominant class for the
first sequence is class G (50%) while all other classes are present too. The second sequence have a
different dominant class F. The task identifier has task 1 being larger than other tasks.

3 EXPERIMENTS

We tested different sequences and task identifiers on the MNIST and CIFAR100 datasets. The
experiments focus on the more difficult online setting where data stream cannot be stored (Cui et al.,
2016; Bottou, 1998) and the sequence in which examples are presented may affect learning. It is
important to distinguish between the sequence in which data arrive and the sequence for task identifier,
as a task oracle should not be assumed and the two sequences need not match.

3.1 SEQUENCE OF DATA ARRIVAL

In the online setting, each input example is only presented once. We consider a variety of different
sequences of the input examples where each chunk C = (xi, yi)

N
i=1 contains N examples:

Random: The data arrive in random order (rule 1). Results for random are in the appendix D.1.
Split: The input examples are split into a sequence of multiple chunks, C1, C2, ...Cn, where each
chunk consists of non-overlapping classes. For example, splitting MNIST into five chunks, where
each chunk contains two classes (digits) (Yoon et al., 2018).
Dominant: Each split consists of a majority (55%) of examples from one dominant class, with the
remainder of the split composed of examples from all other classes. This is an example of rule 5.
SplitTwo: The input examples are split into multiple chunks, C1, C2, ...C2n, where, C1, ...Cn have
non-overlapping classes and, Ci and Cn+i have the same classes. This sequence is an application of
rule 4 where grouping of classes is recapitulated. For our experiment, Ci ∩ Cn+i = ∅.

3.2 TASK IDENTIFIER

Current task oracles commonly used in continual literature are unlikely to be given and may not be
the best partitioning. To test this assumption, we evaluate different task separations. With the rules
such as rule 1 and rule 5, we try to cover a range of identifiers. A task sequence is I1, I2, ...It where
I =

⋃
i Ii = N≤c and c is the number of classes. If the additional condition ∀i, j, Ii ∩ Ij = ∅ when

i 6= j holds then it is called a partitioned task sequence. Given a partitioned task sequence, a perfect
task identifier is ∀x, f(xi,n) = j if i ∈ Ij where xi,n is the nth example of class i.

Split task identifier Split task identifier (Sp=N), is a perfect task identifier where I1, I2, ...IN is
a partitioned task sequence of N tasks and ∀i, |Ii| = N/c For example, for the 10-class MNIST
dataset, Sp=5 gives a task identifier which identifies five tasks each with two classes (digits). Note
the task labels may not align with the data sequence, ie, the classes of Ci doesn’t necessary equal Ii.
We only considered non-alignment in 4.4. Others assume the sequence for split identifier aligns with
the data sequence. Further details and concrete example of sequences is given in appendix B.
Dominant tasks identifier (Dom): This is also a perfect task identifier with the task sequence
I1, I2, I3 where |I1| = 0.2c, |I2| = 0.3c and |I3| = 0.5c
Random task identifier (Rand): where examples are randomly allocated to a task label dynamically.

In the above list, only the random task identifiers have the ability to dynamically allocate tasks. All
other identifiers have fixed task allocation, even in the online setting. We also included using entropy
for model selection for multi-model. No restriction on prediction applies (Single head).

5

Under review as a conference paper at ICLR 2022

Figure 1 shows an example testing scenario where the data arrives in a dominant sequence fashion
and is labelled by a dominant task identifier. Although the data sequence and task identifier are both
dominant, their actual sequencing is different. This is different to traditional setting where all of the
first sequences will be considered as one task. Here, it has three tasks with unequal frequency.

3.3 CONTINUAL LEARNING METHODS

We compared different continual learning models and baseline models using the task identifiers
described in Section 3.2. The choice of methods attempts to cover the major types of continual learning
algorithms reported in the literature. Single model (Single) provides a baseline method without
continual learning as suggested in rule 3. Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) and Synaptic Intelligence(SI) (Zenke et al., 2017) are regularization methods. Incremental
Learner (iCaRL) (Rebuffi et al., 2017) to cover incremental (Ristin et al., 2014) and example replay
based methods. In inference, the model can be use for prediction or the best matching class from
the exemplar set. The result shown is for the second case, exemplar set. Also, Generative replay
(GR) (Shin et al., 2017) for another example of replay based methods. Multi-Model (MM), where
we have a model for each task is used as suggested in rule 3. Dirichlet process mixutre model
(NDPM) (Lee et al., 2020) represents task-agnostic methods for CIFAR. Finally, we provide random
(rand) and random Multi-Model (randMM) as suggested in rule 2 to provide random baselines
that may not be obvious. The details of parameters used for the models and methods are in the
supplementary materials.

Modifications are required on most methods as they are designed and optimized for split task
sequences. Extension of the methods for non-sequential tasks is necessary for many scenarios, such
as the combination of a dominant sequence of data with a split task identifier, as the dominant
sequence is likely to include sequences of data which will be identified by the split task identifier
as different tasks in each iteration. Hence, this is a further consideration that needs to be taken into
account as most designs that rely on specific task knowledge will provide optimisation that does
not apply to more general scenarios. For example, the iCaRL method is designed to incrementally
add in examples of new classes as a fixed sequencing is assumed. As this assumption is removed,
modifications are made so that the example set has to be recomputed at each batch for each observed
class, which means the method is much more computationally expensive than assumed. Furthermore,
originally a large number of examples are stored at the end of each task. This is removed in the online
scenario and only examples of the current batch are used to compute which examples are stored. The
tasks are not guaranteed to arrive in a specific order and interleave as seen in Figure 1.

4 RESULTS

In previous work, continual learning systems have been tested on task scenarios in which task labels
perfectly matching the data sequence are given at both the training and testing stages. We also
consider a more difficult setting where the task labels are not used to restrict prediction in this way,
which we called unrestricted scenario. In this setting, task labels are only used to indicate task change
for the continual learning method to activate. Whereas in the task scenario, task labels can be used
to further restrict updates of the model and predictions to only relevant classes in both training and
testing. The unrestricted scenario uses a single head, unlike the task scenario which uses multi-head
for prediction. This means that the learning problem in the unrestricted scenario is more difficult as
less information is assumed. Multi models in unrestricted setting still require selection of model in
test time so we still provide task identifiers for model selection which is different to other methods.
Hence, these results are separated by a line. The prediction for the selected model is still single head.

The results are the average over ten different seeds with the standard deviation indicated in brackets.
More details of the model and parameters used for training can be found in the appendix A.1. The
results for the random sequencing and offline (application of rule 1) are shown in the appendix, as
accuracy for all methods are relatively high suggesting the problem setting may be too simplistic to
meaningfully evaluate continual learning methods.

6

Under review as a conference paper at ICLR 2022

Table 1: Online Dominant MNIST. The result is average over 10 runs with std error in brackets.

Method Sp=1 Sp=2 Sp=5 Dom Rand Entropy
Rand 10.01(0.14) 10.01(0.14) 10.01(0.14) 10.01(0.14) 10.01(0.14) N.A
Single 93.84(0.24) 93.84(0.24) 93.84(0.24) 93.84(0.24) 93.84(0.24) N.A
EWC 93.84(0.24) 93.47(0.35) 93.47(0.35) 94.76(0.24) 93.47(0.35) N.A
SI 93.84(0.24) 93.84(0.24) 93.84(0.24) 94.08(0.44) 93.84(0.24) N.A
GR 93.85(0.31) 91.35(0.24) 91.35(0.24) 91.35(0.24) 91.35(0.24) N.A
iCaRL w.e N.A 93.27(0.11) 93.27(0.11) 93.27(0.11) 93.27(0.11) N.A
MM 91.69(0.29) 95.81(0.23) 98.73(0.13) 96.84(0.40) 87.93(0.39) 91.47(0.34)
RandMM 10.01(0.14) 20.25(0.15) 50.06(0.12) 30.02(0.16) 10.01(0.14) 10.01(0.14)

4.1 MNIST

Sequential partitionings are used in many evaluations of continual learning (Kirkpatrick et al., 2017;
Shin et al., 2017; Rebuffi et al., 2017; Yoon et al., 2018). For example in splitMNIST, the data is
split into five partitions of two different classes each. However, the task partitions are not necessarily
aligned with the data sequencing. For instance, a two task identifier cannot align to a five-way
partitioning of the incoming sequence.

In the unrestricted setting for splitMNIST, most regularisation results are around 20% which is a
similar founding as Farqhuar Farquhar & Gal (2018) as their single head setting. Where as for multi-
head these results are usually over 95%. However, in addition, we also consider various baselines
and settings such as multi-model and random task identifiers to give a better understanding of the
results. Due to the relative simplicity of splitMNIST we have left the full result and other discussions
on individual results for the appendix D.2.

The results for the dominant sequence manage to retain high accuracy for all methods as shown in
Table 1. Despite its reduction in examples for the non-dominant classes for each split, having a small
number of examples for all classes in the dominant sequence avoided forgetting. Whereas in split
sequences forgetting is more obvious as only classes of each split are present. Suggesting that if a
small amount of data for different classes is present will combat forgetting significantly.

4.2 UNRESTRICTED AND TASK SCENARIO FOR SPLITCIFAR

Previous results show that the online split data is necessary to test the continual learning methods as
other sequencing have a minimal reduction in performance. Hence, the split sequencing is also tested
on the CIFAR-100 dataset as shown in Table 2. For this experiment, we consider 100 classes to be
split into 10 chunks of 10 classes each. Similarly as before, the MM method exhibit advantage over
other methods with split task identifier as each sub-model is only trained on a subset of the examples.
Note NDPM do not use task information in unrestricted scenario.

Table 2: Online Split CIFAR-100 in unrestricted scenario

Method Sp=5 Sp=10 Sp=20 Dom Rand Entropy
Rand 0.97(0.01) 0.97(0.01) 0.97(0.01) 0.97(0.01) 0.97(0.01) N.A
Single 4.61(0.22) 4.58(0.16) 4.37(0.13) 4.65(0.17) 4.68(0.18) N.A
EWC 2.61(0.52) 1.66(0.37) 4.71(0.26) 4.41(0.24) 4.64(0.20) N.A
SI 4.27(0.27) 4.65(0.25) 4.43(0.19) 4.48(0.24) 4.39(0.24) N.A
GR 2.14(0.15) 2.06(0.18) 1.96(0.12) 1.95(0.13) 1.89(0.09) N.A
iCaRL w.e 7.76(0.15) 7.68(0.26) 8.05(0.21) 8.07(0.12) 7.93(0.23) N.A
NDPM — 13.88(0.14) — — — —
MM 10.49(0.26) 18.99(0.40) 31.41(0.40) 4.28(0.17) 1.10(0.02) 1.95(0.09)
RandMM 4.97(0.04) 10.00(0.07) 19.98(0.11) 3.07(0.04) 0.97(0.01) 0.97(0.01)

The same experiment of split CIFAR was also run in the task scenario to demonstrate that the task
scenario may not be a useful protocol for evaluation. The single baseline and regularization methods
in the unrestricted scenario will only achieve 1-4% whereas in the task scenario the performance
increased to 5-30% in appendix E. Perfect task identifiers will be able to provide information that
can be used to reduce the complexity of the problem. Split task identifier has better performance
on multi-model as it is able to train only on relevant output nodes matching classes of arriving data
chunk even in the single-head setting. Further analysis of this matching assumption is explored in 4.4.

7

Under review as a conference paper at ICLR 2022

4.3 SPLITTWOCIFAR

We study recapitulating data (rule 4) to test the effect of previously seen classes reappearing. The
results shown in Table 3 are similar to the original splitCIFAR but with slightly lower performance.
This is likely due to the training data been further spread out hence more forgetting will occur. For
sp=5, EWC seems to have improvement likely due to slightly more regularization (from 5 times to
10). This result suggests that methods that claim to only need weaker assumptions for task oracle in
form of task change (activate method when task change detect) is usually making more assumptions
than just task change if recapitulating data is not tested.

Table 3: Online SplitTwo CIFAR-100 in unrestricted scenario

Method Sp=5 Sp=10 Sp=20 Dom Rand Entropy
Rand 1.01(0.02) 1.01(0.02) 1.01(0.02) 1.01(0.02) 1.01(0.02) N.A
Single 4.25(0.27) 4.34(0.21) 4.29(0.22) 4.31(0.22) 4.31(0.16) N.A
EWC 3.21(0.46) 1.28(0.09) 4.43(0.18) 4.45(0.17) 4.29(0.21) N.A
SI 4.31(0.23) 4.28(0.24) 4.34(0.27) 4.31(0.22) 4.15(0.19) N.A
GR 1.87(0.18) 2.34(0.18) 2.08(0.11) 2.19(0.18) 1.98(0.17) N.A
iCaRL w.e 7.74(0.24) 8.15(0.19) 7.88(0.25) 7.83(0.20) 7.87(0.19) N.A
NDPM — 13.85(0.07) — — — —
MM 9.96(0.36) 17.63(0.25) 30.76(0.53) 4.42(0.20) 1.02(0.05) 1.51(0.09)
RandMM 5.02(0.07) 9.89(0.08) 19.89(0.10) 3.00(0.04) 1.01(0.02) 1.01(0.02)

Table 4: Split CIFAR-100 different training and evaluation sequence in task scenario

Method es es-ed ea td td es td es-ed
Random 10.00(0.07) 1.52(0.04) 0.97(0.01) 1.52(0.04) 10.00(0.07) 1.49(0.04)
Single 31.36(1.22) 8.62(0.42) 6.21(0.34) 8.13(0.54) 30.20(1.79) 8.00(0.43)
EWC 27.69(2.99) 6.81(1.12) 4.72(0.90) 8.31(0.49) 30.51(1.46) 8.72(0.37)
SI 30.53(1.08) 8.38(0.28) 6.31(0.41) 8.31(0.56) 30.86(1.16) 8.33(0.43)
GR 11.89(0.16) 2.44(0.22) 1.69(0.06) 2.32(0.13) 11.90(0.12) 2.46(0.09)
iCaRL w.e 32.79(0.51) 10.98(0.35) 7.64(0.22) 10.61(0.20) 33.18(0.48) 10.75(0.18)
MM 18.29(0.32) 16.16(0.44) 15.30(0.24) 11.69(0.33) 71.70(0.99) 18.02(0.86)
RandomMM 10.00(0.07) 10.00(0.07) 10.00(0.07) 9.95(0.11) 66.09(1.11) 15.25(0.36)

4.4 THREE SEQUENCES IN CONTINUAL LEARNING

In this section, we consider split CIFAR-100 in the task scenario using the sp = 10 task identifier with
various experimental settings as suggested by rule 5. We show that there is three different partitioned
sequences to consider in continual learning: 1)Data, sq1 = (Di)

n
i=1 where Di contain the classes

encounter in Ci. 2)Task identifier sequence, sq2 = (Ii)ti=1, sequence of task identifier for supplying
task information to continual learning methods. 3)Evaluation identifier sequence, sq3 = (Ji)

e
i=1 for

restricting prediction. Each term of the sequences is of the same size for their respectively sequence
and n = t = e = 10 unless specified otherwise. The evaluation identifier is used to identify which
tasks are seen in each batch and hence restrict prediction to all the possible classes cover by the tasks.
Table 4 shows the result of different task and evaluation identifiers.

For evaluate all (ea), the data and task identifier have the same sequence and e = 1. However, there
is no restriction for prediction to emulate single head setting sq1 = sq2 6= sq3. We have Di = Ii for
all i and sq3 = J1 = N≤100. This result shows similar performance to sp=10 in Table 2 suggesting
that multi-head (evaluation identifier) provide most of the benefit over task identifier.

For evaluate split(es), the evaluation identifier is a split10 task identifier and default to have the same
sequence as data, sq1 = sq2 = sq3, Di = Ii = Ji for all i. Hence, this setting is equivalent to
sp = 10 in the task scenario. We consider evaluate split different(es-ed), where sq1 = sq2 6= sq3,
Di = Ii 6= Ji for all i. different to ea, the evaluation identifier still provide prefect matching every
10 classes to 1 task. However, as these classes mismatch with data there is less restriction hence poor
performance. Conceptually, this is a partial multi-head setting. This shows despite having two perfect
task oracles there is still more assumption being made for the single task oracle which aligns with
data. Similar behavior can be seen in task identifier differ (td), where sq1 6= sq2 = sq3.

8

Under review as a conference paper at ICLR 2022

Interestingly, for td-es, where sq1 = sq3 6= sq2, performance for multi-model is the overall highest at
71.7%. Despite, sq2, having a mismatch with the data there is a large performance improvement as
evaluation is in sync with the data (Di = Ji 6= Ii for all i). This is because the chosen model will be
trained on other mismatch classes, hence, the restriction will further focus on matched classes which
can be observed from the high randMM result of 66.1%. Note, multi-model in task scenario used the
exact same information as all other methods for this setting. This again demonstrates how evaluation
identifier is what is providing most of the performance gain. As in td es-ed, sq1 6= sq2 6= sq3, we fall
back to similar performance as td. Concrete example of sequences is shown in appendix B.

Our analysis on task oracle and single vs multi-head differs from existing work Farquhar & Gal
(2018); van de Ven & Tolias (2019); Caccia et al. (2020) in two ways. First, we show there is more
assumption on task oracle than a perfect task oracle. We show that most task oracle based methods
not only assume a perfect task identifier which maps examples to task perfectly but there is also an
additional assumption that the group of classes perfectly aligns with the incoming data. We believe
most of the assumption is unrealistic as in most cases where the assumption is made the experiment
could simply randomize the data in training rather than a sequential presentation. Second, we give
a new perspective by considering three different sequences and also provide various baselines for
different settings to provide a more robust and complete understanding of the methods in cases where
the assumptions are desired and considered appropriate.

5 DISCUSSION

Designing robust experimental protocol is difficult due to the wide range of possible variations and
small implementation details that may greatly affect results. In this paper, we proposed six rules
in an attempt to cover many important experiment aspects to consider for continual learning. We
demonstrated that the assumptions and testing protocol used in continual learning are unable to
accurately measure the effectiveness of previously proposed continual learning methods. Many of the
published performance results appear to be artifacts of the experimental protocol.

We consider a wide range of data sequences and task identifiers using rule 1, 4 and 5 to demonstrate
various assumptions existing works made and the results without these assumptions. These experi-
ments also lead to observations such as having a little bit of data from all classes mitigate forgetting as
shown in dominant MNIST. The availability of task labels for testing simplifies the learning problem
significantly in task oracle base methods. This is further shown in our analysis on the effect of
task oracle by considering three different sequences: data, task and evaluation. The flexibility of
implementations improves when reducing assumptions by removing optimization that rarely holds.
With the application of the rules, we show various baselines that are useful to include for a better
understanding of what information the experiments are providing to the methods. For example,
multi-model outperforms all other continual learning methods as it can reduce the original problem
to a simpler problem while using the same amount of information from the task oracle. Hence, the
choice of testing protocol and settings is essential for comparing continual learning methods fairly.

As shown in the results, various random and random multi-model(rule 2) results have different
values to what one might intuitively guess. Hence, providing these baselines helps identifying which
information is assumed and what the baseline results are. Recapitulating tasks (rule 4) are especially
important for task-agnostic methods (Aljundi et al., 2019b; Zeno et al., 2018; Rao et al., 2019), which
to the authors best knowledge has only been considered in OSAKA (Caccia et al., 2020). The work
considers task transition to be model by a Markov chain and uses α parameter to decide how likely
the next data will be drawn from the current task. Hence, recapitulation occurs when it transitions
back to previously visited task. However, OSAKA did not consider an extreme scenario as suggested
by rule 1 by considering very low α values where transitions between tasks are prevalent.

Previously proposed metrics, such as forward transfer, and backward transfer, require a task oracle
and sequential tasks. However, in task-agnostic scenarios, the sequence of data cannot be assumed
and task labels is not be available. A good example of applying rule 6 where new metrics only
depends on data can be seen in the work by Toneva et al. (2019), where forgetting is measured by
tracking if an example is incorrectly identified after it was correctly identified. In future work, new
metrics can be proposed to more efficiently aggregate forgetting than Toneva et al. (2019). We believe
the rules proposed provide schemes to identify useful settings and baselines to consider and perform
which produce a more robust and complete investigation of continual learning methods.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

Our work consider various experimental settings for continual learning. The range of data sequences
is given in Section 3.1 and task identifiers in Section 3.2. Different continual learning methods are
explained in Section 3.3. Their parameters and settings are supplied in the appendix A. We briefly
cover implementation considerations in Section 3.3 for continual learning methods to be applicable
in a more general setting. In Section 4.4, we have cover the three main type of sequences a continual
learning experiment should consider. We have explained settings where the sequence is different and
the case where they are the same. Concrete example of the sequences are also given in appendix B.

REFERENCES

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances
in Neural Information Processing Systems, pp. 11849–11860, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pp. 11816–
11825, 2019b.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Proceed-
ings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36, 2012.

Léon Bottou. Online learning and stochastic approximations. On-line learning in neural networks,
17(9):142, 1998.

Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas Page-
Caccia, Issam Hadj Laradji, Irina Rish, Alexandre Lacoste, David Vázquez, et al. Online fast
adaptation and knowledge accumulation (osaka): a new approach to continual learning. Advances
in Neural Information Processing Systems, 33, 2020.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 532–547, 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=Hkf2_sC5FX.

Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. Continuous online sequence learning with an
unsupervised neural network model. Neural computation, 28(11):2474–2504, 2016.

Natalia Díaz-Rodríguez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t forget, there
is more than forgetting: new metrics for continual learning. In Workshop on Continual Learning at
NeurIPS, 2018.

Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv preprint
arXiv:1805.09733, 2018.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A Rusu, Yee Whye Teh, and Razvan Pascanu.
Task agnostic continual learning via meta learning. In LifeLongML Workshop at ICML, 2019.

Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

10

https://openreview.net/forum?id=Hkf2_sC5FX

Under review as a conference paper at ICLR 2022

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7482–7491, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proc. National Academy of Sciences, pp. 201611835,
2017.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture model
for task-free continual learning. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJxSOJStPr.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pp. 6467–6476, 2017.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understand-
ing the role of training regimes in continual learning. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 7308–7320. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, May 2019. doi:
i.org/10.1016/j.neunet.2019.01.012.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. In Advances in Neural Information Processing
Systems, pp. 7645–7655, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental classifier and representation learning. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Marko Ristin, Matthieu Guillaumin, Juergen Gall, and Luc Van Gool. Incremental learning of NCM
forests for large-scale image classification. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3654–3661, 2014.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual
learning. In International Conference on Machine Learning, pp. 4528–4537. PMLR, 2018.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances in
Neural Information Processing Systems, pp. 527–538, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. In The biology and technology of
intelligent autonomous agents, pp. 165–196. Springer, 1995.

Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning with gaussian processes. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=HkxCzeHFDB.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network learning.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=BJlxm30cKm.

11

https://openreview.net/forum?id=SJxSOJStPr
https://proceedings.neurips.cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/518a38cc9a0173d0b2dc088166981cf8-Paper.pdf
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm

Under review as a conference paper at ICLR 2022

Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJgwNerKvB.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=Sk7KsfW0-.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems, pp. 3320–3328, 2014.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3987–3995.
PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/zenke17a.
html.

Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning using
online variational Bayes. arXiv preprint arXiv:1803.10123, 2018.

12

https://openreview.net/forum?id=SJgwNerKvB
https://openreview.net/forum?id=Sk7KsfW0-
https://proceedings.mlr.press/v70/zenke17a.html
https://proceedings.mlr.press/v70/zenke17a.html

Under review as a conference paper at ICLR 2022

A CONTINUAL LEARNING MODEL PARAMETERS

• Single model (Single): a baseline with 3 layers for MNIST and resnet for CIFAR without
continual learning method applied.

• Elastic Weight Consolidation (EWC): also a regularization method which uses the Fisher
information between tasks to reduce catastrophic forgetting (Kirkpatrick et al., 2017).

• Synaptic Intelligence(SI): a regularization method based on the running sum of the gradient
for different tasks. This additional loss is added to a single model.

• incremental Learner (iCaRL): stores examples for each task and uses them to classify
new data. (Rebuffi et al., 2017).

• Generative replay (GR): trains both a standard single-model classifier and a generator.
For each task, the single model is trained on new data and pseudo-data generated by the
generator from previously encountered data (Shin et al., 2017).

• Multi-Model (MM): a number of smaller, separate models in which the total number of
model parameters is the same as that of a single model.

• Neural Dirichlet Process Mixture Model (NDPM): a task-agnostic continual learning
method which uses Dirichlet process mixture model to combat forgetting (Lee et al., 2020).

A.1 TRAINING PARAMETER

In all experiment, the batch size of 128 is used. Each experiments is run with 10 different seeds so
that average result is reported.

A.1.1 MNIST

The number of iteration used for MNIST in the off-line setting is 2000 which translate to about 4
epoch for MNIST dataset. Learning rate is set at 0.001 and Adam optimizer is used.

In online randomMNIST sequence, the number of iterations used in each split is 470. This will
translate to about 1 epoch.

In domMNIST sequence, the number of iterations used in each split is 47 (6k example). This will
translate to about 1 epoch so that data are only seen once.

In splitMNIST sequence, the number of iterations used in each split is 97(12k example). This will
translate to about 1 epoch as there are 5 splits.

A.1.2 CIFAR

The learning rate is set at 0.01 and SGD optimizer is used for CIFAR experiments. In splitCIFAR
sequence, the number of iterations used in each split is 40 (5k example). This will translate to about
1 epoch as there are 10 splits. In splitTwoCIFAR sequence, the number of iterations used in each split
is 20 (2.5k example). This will translate to about 1 epoch as there are 10 splits.

A.2 SINGLE MODEL

The single model is a 3 FC layer neural network with 400 neurons for MNIST for each of the middle
layers before the output layer. ReLu is used as the activation function. In the CIFAR experiment, the
same resnet architecture with Lee et al. (2020) is used.

A.3 SYNAPTIC INTELLIGENCE

The regularization strength is c=0.1.

A.4 ELASTIC WEIGHT CONSOLIDATION

The regularization strength is λ = 5000 for MNIST and λ = 10 for CIFAR.

13

Under review as a conference paper at ICLR 2022

A.5 ICARL

The budget is 500 which is about 1% of the MNIST and CIFAR100 dataset. Exemplar is added to
training in each batch.

A.6 GENERATIVE REPLAY

The encoder and decoder of the variational autoencoder model share the same parameter with the
single model with the latent dimension being 100. The optimizer for the VAE is ADAM optimizer.

A.7 NAIVE MULTI MODEL

This method has multi small model with the aggregate size is the same as the single model baseline.
In the MNIST experiments, the dynamic task labeller, som and rand are limited to having 15 models
with hidden layer size of 30. Other static task labellers will have the same number of smaller models
as the number of tasks identified. Specifically, the number of models, 5,3,2 correspond to hidden
layer size of 90, 146, 214 respectively. For CIFAR experiments, the random task identifier is limited
10 models. The number of models 10,5,3 correspond to number of filter of 20, 28, 36 respectively.
In the case where there is more task identified than models, the last model will be used for all other
models.

A.8 NEURAL DIRICHLET PROCESS MIXTURE MODEL (NDPM)

We use the setting provided by Lee et al. (2020) in cifar100-cndpm with a modification of short term
memory (STM) to 500 to match the bandwidth with other replay based methods.

B SEQUENCE EXAMPLES

In this section, we give concrete examples of sequence on MNIST. Suppose we have split MNIST
where the data is split into 5 chunks, C1, C2, ...C5. The classes encounter in each chunk are D1 =
{3, 9},D2 = {1, 2},D3 = {4, 0},D3 = {5, 3},D5 = {6, 7} respectively. This is the data sequence,
sq1. Note that the classes encounter is not in numerical order which is a common assumption.

When we assume data and task sequence align the order above will be used for the split identifier.
For example, Sp = 2 split task identifier will have the task identifier sequence, sq2, of I1 =
{3, 9, 1, 2, 4}, I2 = {0, 5, 3, 6, 7}. I1 contain classes of chunk 1,2 and half of 3 (the left over) and
I2 the remaining. Similar, Sp = 5 split task identifier will have Ii = Di for all i. When the data and
task sequence do not align (td case in Section 4.4) then ∃i s.t Ii 6= Di. It is possible to have Sp = N
where N > 5. Lets consider the case when N = 7, we will have 4 classes that is perfectly identified
and the remaining 6 classes splits into 3 sets.

An example of dominant task identifier sequence, can be I1 = {2, 9, 4, 7, 8}, I2 = {0, 1, 6}, I3 =
{3, 5}. This sequence is clearly different to sq1 as the number of term do not match.

When we have the same identifier for task identifier and evaluation identifier then sq2 = sq3 and the
identifier is of the same type. We could consider a case where we use dominant task identifier (as
above sq2 is I1 = {2, 9, 4, 7, 8}, I2 = {0, 1, 6}, I3 = {3, 5}), for training and split task identifier
(sq3 is J1 = {3, 9, 1, 2, 4},J2 = {0, 5, 3, 6, 7}) for evaluation restriction then sq2 6= sq3.

In the case where all three sequences is of split type and equal number of split the sequence can still
not match. This is the same setting as td es-ed in Section 4.4. Suppose data is split into 5 chunks as
above sq1 is D1 = {3, 9},D2 = {1, 2},D3 = {4, 0},D3 = {5, 3},D5 = {6, 7}. The task identifier
is of type sp = 5 with sq2 is I1 = {2, 4}, I2 = {1, 8}, I3 = {3, 0}, I3 = {5, 7}, I5 = {6, 9}. The
eval identifier is also of type sp = 5 but with sq3 is J1 = {2, 9},J2 = {1, 7},J3 = {3, 8},J3 =
{5, 0},J5 = {6, 4}. In this case, sq1 6= sq2 6= sq3

14

Under review as a conference paper at ICLR 2022

C OFFLINE SETTING

In offline setting, all of the past data can be used for training and evaluation. In this setting, the order
of how data arriving is not required as all data are assumed to be available. An application of rule 1
where randomness of data is at its extreme. In the offline setting only random sequence of the data
will be considered as the data are all available at the start of the training procedure. Multiple epoch is
allowed in the offline setting. The result is shown in table 5.

Table 5: Offline Random MNIST
Method Sp=1 Sp=2 Sp=5 Dom Rand
Single — — 97.76(0.08) — —
SI 97.76(0.08) 97.76(0.08) 97.76(0.08) 97.76(0.08) 97.74(0.08)
EWC 97.76(0.08) 97.86(0.05) 97.86(0.05) 97.86(0.05) 97.86(0.05)
iCarL using exe 96.78(0.04) 96.78(0.04) 96.78(0.04) 96.73(0.05) 96.78(0.04)
GR 97.83(0.08) 97.75(0.04) 97.75(0.04) 97.75(0.04) 97.75(0.04)
MM 97.76(0.08) 98.14(0.07) 99.40(0.07) 98.17(0.10) 90.19(0.10)

Random sequence of MNIST with different task identifier and continual learning method all perform
similarly with reasonable accuracy. There is only a single result for the single model as it does
not use task information for learning. When the inputs arrive in random order different tasks are
encountered which trigger continual learning methods. All continual learning methods will activate
regularly with task change detected. Moreover, as inputs order are random, the inputs for different
classes are encounter throughout the training so the effect of forgetting is diminished. The result for
the multi-model method is the best for sp = 2, sp = 5 and dom as a perfect class to task mapping
is provided thus perfectly segregating subset of classes on to different model which reduces the
difficulty. On the other hand rand does not have this advantage since they can have examples from a
single class map to different tasks.

D ONLINE MNIST

D.1 ONLINE RANDOM MNIST

The result for the random sequencing is shown in table 6. There is a slight decrease in the accuracy
likely due to the reduction in the number of iteration used to train the models. Similarly to the offline
case the result, for a particular method, the result does not change even with different task identifier.
The base single model also seems to perform minimally better likely due to less overfitting compare
to other the exemplar and replay methods. Note that in online random setting, iCarL will not construct
exemplar set as there is only one task. Hence, the result is omitted.

D.2 SPLITMNIST IN UNRESTRICTED SCENARIO

The MNIST result is tested on a unrestricted scenario where task information is provided in the
training stage only for the continual learning model and is not used in prediction. The dataset has
60,000 training examples and 10,000 for testing. Different task identifiers all exhibit similar results
for the regularization based continual learning methods.

Table 6: Online Random MNIST
Method Sp=1 Sp=2 Sp=5 Dom Rand
Single 96.40(0.07) 96.40(0.07) 96.40(0.07) 96.40(0.07) 96.40(0.07)
SI 96.40(0.07) 96.40(0.07) 96.40(0.07) 96.40(0.07) 96.40(0.07)
EWC 96.40(0.07) 96.44(0.08) 96.44(0.08) 96.44(0.08) 96.44(0.08)
iCarL using exe — 94.35(0.10) 94.35(0.10) 94.35(0.10) 94.35(0.10)
GR 96.22(0.08) 96.22(0.09) 96.22(0.09) 96.22(0.09) 96.22(0.09)
MM 94.94(0.22) 96.88(0.20) 99.15(0.08) 97.78(0.16) 87.26(0.16)

15

Under review as a conference paper at ICLR 2022

The results drop catastrophically in this scenario as shown in Table 7. The accuracy is similar to
only predicting correctly on one split (20%) and completely inaccurate prediction on other splits.
This suggests the models are over-fitting at the final split and the continual learning methods are
unable to mitigate this. The iCaRL method has better performance than other methods as it exemplars
are replayed during training and so it will include a small number of previous classes to combat
forgetting. The exemplar set has the highest accuracy which indicates that the models are forgetting
drastically. Generative replay achieved 40.6% for sp = 5 task identifier which perfectly align with the
incoming data. This shows assuming task identifier may give extra information that is not attended.
This is an example of rule 1 (testing extreme) and 5 (different choices) where consider various task
identifiers which give us more insights into the methods. The high accuracy for MM is due to the
allocation of data onto the respective model for each task thus for each sub-model only the example
the class is trained on it. Similarly, for sp = 5 task identifier with MM, rule 3, (simple method)
also has the highest performance of 99.13%. According to rule 2 (random baseline), we provided a
random baseline which is also the highest of 50%. Other task identifiers do not have the same random
or MM performance suggesting again that sp = 5 provides extra information. On the other hand,
interestingly having weaker task identifier such as Sp=2 or even random still retain or outperform
sp=5 (perfect match with data sequence) for the case of iCaRL and regularisation. Hence, suggesting
the normally picked task oracle sp=5 may not be the best.

D.3 DOMINATE MNIST

The regularization methods are unaffected by which task identifier as the methods used task change
event to activate regularization. Task change will occur often since each dominant sequence contains
all task. Generative replay method in the dominant sequencing shows varying results. It should be
noted that in the one task setting generative replay is not activated as no tasks change will occur. For
naive multi-model continual learning, SOM task identifier exhibits almost 3% better accuracy than
random task identifier.

E EXPERIMENTS IN TASK SCENARIO

We performed this on in the splitCIFAR experiment where the data is split into 10 splits with 10
classes each. The dataset is split into 50,000 training examples and 10,000 for testing.

Table 7: Online Split MNIST in unrestricted scenario

Method Sp=1 Sp=2 Sp=5 Dom Rand
Rand 10.16(0.11) 10.16(0.11) 10.16(0.11) 10.16(0.11) 10.16(0.11)
Single 19.31(0.29) 19.31(0.29) 19.31(0.29) 19.31(0.29) 19.31(0.29)
EWC 19.31(0.29) 19.51(0.93) 19.68(0.08) 19.01(0.54) 19.54(0.09)
SI 19.31(0.29) 19.31(0.29) 19.31(0.29) 19.33(0.28) 19.31(0.29)
GR 19.53(0.10) 24.28(1.52) 40.59(1.52) 23.71(2.48) 19.99(0.38)
iCaRL w.e 24.28(1.15) 66.87(1.44) 69.17(0.98) 69.78(0.87) 70.75(0.99)
MM 17.85(1.31) 30.63(0.48) 99.13(0.06) 40.14(3.49) 19.98(0.20)
RandMM 10.16(0.11) 20.07(0.08) 49.86(0.12) 30.17(0.13) 10.16(0.11)

Table 8: Online Split CIFAR-100 in task scenario

Method Sp=5 Sp=10 Sp=20 Dom Rand Entropy
Rand 4.97(0.04) 10.00(0.07) 10.00(0.07) 1.00(0.02) 0.97(0.01) N.A
Single 17.49(1.32) 32.47(0.78) 30.33(1.23) 6.82(0.32) 6.46(0.38) N.A
EWC 18.11(2.10) 28.92(2.54) 27.20(2.12) 7.15(0.31) 6.57(0.37) N.A
SI 18.50(1.09) 27.92(2.28) 30.48(1.44) 6.48(0.35) 6.69(0.30) N.A
GR 6.85(0.19) 11.89(0.14) 11.91(0.12) 1.82(0.11) 1.80(0.12) N.A
iCaRL w.e 22.28(0.52) 32.69(0.52) 33.85(0.28) 8.07(0.23) 7.71(0.18) N.A
NDPM 30.87(0.30) 42.05(0.44) 42.33(0.40) 13.80(0.16) 13.81(0.10) N.A
MM 10.56(0.20) 17.94(0.45) 31.75(0.45) 3.93(0.18) 1.10(0.05) 1.69(0.15)
RandMM 4.97(0.04) 10.00(0.07) 19.98(0.11) 3.07(0.04) 0.97(0.01) 0.97(0.01)

16

Under review as a conference paper at ICLR 2022

Table 9: Online domain permMNIST

Method Pdom

Single 63.04(0.98)
SI 63.04(0.98)
EWC 77.41(0.92)
iCaRL using exe 79.84(0.54)
GR 37.4 (2.26)

The results is shown in Table 8. We can observe much higher performance for split task identifiers
for all methods compare to unrestricted scenario. NDPM with the restriction during prediction also
give a large performance boost compare to Table 2 in the unrestricted scenario.

F EXPERIMENT ON DOMAIN

This section contains the result of testing a domain continual learning scenario where every tasks is to
predict the digits of 0 to 9 but each domain is a different permutation. The perfect domain identifier
will always identify the domain of input correctly.

Unrestricted and domain scenario will always have all classes used in training, prediction or evaluation.
The main difference of the domain scenario is that the domain between tasks is changing. Every task
should have the same outputs but in a different domain.

Task scenario will only use classes seen in current tasks. For training prediction, the task scenario will
have a list of active classes which each element of the list contains only the classes seen at each task.
In evaluation, the scenario will have classes of present tasks in the current batch as active classes.

17

	Introduction
	Experimental Design for Continual Learning
	Rule 1: Test Extremes
	Rule 2: Use Clear Baselines
	Rule 3: Test Simple Methods
	Rule 4: Re-evaluate Existing Behavior
	Rule 5: Evaluate Dependency on Sequencing
	Rule 6: Use Protocol-Independent Metrics

	Experiments
	Sequence of data arrival
	Task identifier
	Continual learning methods

	Results
	MNIST
	Unrestricted and task scenario for SplitCIFAR
	SplitTwoCIFAR
	Three sequences in Continual Learning

	Discussion
	Continual Learning Model Parameters
	Training parameter
	MNIST
	CIFAR

	Single Model
	Synaptic Intelligence
	Elastic Weight Consolidation
	iCaRL
	Generative Replay
	Naive multi model
	Neural Dirichlet Process Mixture Model (NDPM)

	Sequence Examples
	Offline Setting
	Online MNIST
	Online Random MNIST
	splitMNIST in Unrestricted scenario
	Dominate MNIST

	Experiments in Task Scenario
	Experiment on Domain

