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Abstract— Sliding a finger or tool along a surface generates

rich haptic and auditory contact signals that encode properties

crucial for manipulation, such as friction and hardness. To

engage in contact-rich manipulation, future robots would ben-

efit from having surface-characterization capabilities similar

to humans, but the optimal sensing configuration is not yet

known. Thus, we developed a test bed for capturing high-quality

measurements as a human touches surfaces with different

tools: it includes optical motion capture, a force/torque sensor

under the surface sample, high-bandwidth accelerometers on

the tool and the fingertip, and a high-fidelity microphone. After

recording data from three tool diameters and nine surfaces, we

describe a surface-classification pipeline that uses the maximum

mean discrepancy (MMD) to compare newly gathered data

to each surface in our known library. The results achieved

under several pipeline variations are compared, and future

investigations are outlined.

I. MOTIVATION

The biological sensing and transduction processes that
occur during finger-surface and tool-surface interactions
are remarkably sophisticated, enabling humans to perform
ubiquitous tasks such as fine material discrimination and
dexterous manipulation. Accurate surface perception is of-
ten a necessary step toward targeted and effective object
manipulation, as motor commands need to be adjusted to
fit the physical interaction taking place. Classifying surfaces
can involve the identification and categorization of different
types of surfaces based on their physical properties, such as
roughness, friction, hardness, and shape.

It is an important challenge for machine perception to try
to capture and process the rich contact signals elicited during
surface exploration with a level of success similar to humans.
Prior research introduced a diverse set of surface-sensing sys-
tems [1], [2], [3], but it is not clear what combination, quality,
resolution, and acuity of sensor data are necessary to reach
the efficiency and accuracy of humans. Contact vibrations in
particular offer high temporal transient resolution for spatial
touch information decoding [4] and for effective multimodal
surface classification [5]. Similarly advantageous is the fact
that accelerometers are compact, low-cost, energy-efficient
sensors with simple mounting, a straightforward electrical
interface, and easy calibration.

To increase our understanding about artificial surface
perception, we have designed a novel haptic-auditory test bed
to capture data while a human explores a variety of surface
samples with either a handheld tool or their fingertip. For the
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goal of effective computational sensing, we leverage ideas
from recognizing surfaces with kernel mean embeddings
[5] to elucidate the configuration of sensor information
that are necessary for highly accurate surface recognition.
We further propose methods for out-of-distribution tasks in
settings with different sensing tools with the goal to gener-
alize beyond training data. By leveraging modern machine-
learning techniques, we believe haptic and auditory time
series can be used more efficiently for surface perception
in the absence of any visual information, thereby enabling
industrial applications in manufacturing, material processing,
and inspection. We anticipate that the eventual findings from
this ongoing research project can help guide the design of
new artificial sensing tools and robotic hands.

II. HAPTIC-AUDITORY SENSING

To investigate the mechanical basis of surface encoding,
we designed a novel high-fidelity measurement apparatus to
capture haptic-auditory data from surface interactions.

A. Test Bed

Our test bed consists of an optical motion-capture sys-
tem (Vicon, Vantage 5), two miniature high-bandwidth
accelerometers (STMicroelectronics, IIS3DWB), a six-
axis force/torque sensor (ATI Industrial Automation Inc.,
Nano43), and a high-fidelity microphone (Brüel and Kjaer,
4955) to capture relevant haptic and auditory data from
contact interactions (Fig. 1(a)). The assembly of the selected
texture, a rigid platform, and the force-torque sensor un-
derneath are mounted through a plate on an optical table
(Thorlabs Inc.). In preparation for our computational analy-
sis, we calculate the tool-tip position, tool-tip speed, and tool
orientation from the motion-tracking system (mot); three-axis
contact forces (for) and torques (tor); 3D tactile accelerations
on the tool (act) and finger (acf); and contact sound from the
microphone (mic); sample data are shown in Fig. 1(a).

B. Data Acquisition

For this study, we selected a set of nine surface textures
(Fig. 1(b)) inspired by prior surface datasets [1], [2], [3].
In addition, we considered three hemispherical steel tools
with thermally hardened tool tips of 4, 6, and 8 mm diameter
(Fig. 1(c)). During data acquisition, an experimenter recorded
rich intra-class surface data between the selected tool and
surface by varying their speed and applied normal force
(Fig. 1(d)). They were asked to choose a free but circular
motion in order to capture rich signals from different contact
conditions and phenomena. From two long data recordings
for each surface c, we extracted ten trials that are each five
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Fig. 1. (a) Test bed and sample recording from each sensor for a steel tool (d = 6 mm) dragging on the wooden surface. (b) Set of nine diverse surfaces.
(c) Three steel tools with different diameters. (d) Recording setup. (e) Coordinate system definitions.

seconds long without any transient artifacts. Thus, in total
we have 270 trials of multimodal surface data (9 surfaces ⇥
3 steel tools ⇥ 10 trials).

III. MACHINE SURFACE PERCEPTION STUDIES

To provide insights into both the hardware and the soft-
ware sides of artificial texture perception, we propose several
studies for haptic-auditory surface data collected with our
text bed (Fig. 2(a)). Our approach leverages ideas from
Khojasteh et al.’s recent work on automatically classifying
multimodal surface data [5].

A. Multi-Axis Signal Representation
We plan to represent multi-directional signals such as the

three-axis accelerations in three different coordinate systems:
sensor, motion, and surface, as defined in Fig. 1(e). The
motion-capture system provides the tool-tip position and
tool orientation needed to transform the tool accelerometer
signals into the motion and surface coordinate systems. For
the motion coordinate system, we therefore can represent the
3D accelerations and forces in the tangential, bitangential,
and normal directions of the tool tip in motion, which are
expected to facilitate physical interpretation.

B. Noise Contamination
We plan to evaluate the robustness of our sensors and

processing pipeline by contaminating the sensor readings
with noise from a normal distribution N (0, ✏2). This noise
contamination may represent a variety of real-world scenar-
ios, such as a sensor’s inherent noise (digital vs. analog) or
environmental noise.

C. Time-Series Subsampling

We aim to quantify differences in the distributions of
contact data recorded from two different surface interactions,
which may come from identical or non-identical surfaces.
We extract data points from the time-series data in the
time or frequency domain [5]. For temporal subsampling,
we equidistantly sample n data points from both time-series
sources (Fig. 2(b)). For spectral subsampling, we randomly
select the n magnitudes from the discrete Fourier transforms
of the signals at the same frequencies (Fig. 2(c)).

D. Out-of-Domain Prediction for Sensing Tools

It is of practical interest to study the generalization ca-
pabilities of surface perception to unseen sensing tools so
that a given pipeline could be deployed on different instru-
ments and different robot body parts (e.g., from smallest
to largest robot finger). Khojasteh et al.’s recent holistic
data-driven approach demonstrated the effective mitigation
of speed-, force-, and session-dependent effects during tool-
surface interaction by manipulating distributions of time-
series data [5]. In that surface similarity engine, a simple
distribution mean alignment was sufficient to remove these
effects and boost recognition performance, presumably be-
cause this shift highlighted the distributions’ higher-order
statistical moments that convey important information about
the surface properties. This method may also be relevant
for generalization to unseen tools, which we term “out-of-
domain prediction”.
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Fig. 2. (a) Proposed pipeline for studying haptic-audio surface encoding. (b) Temporal and (c) spectral subsampling of time-series data from two surfaces.

E. Quantifying Distribution Differences

An efficient way to classify multimodal surface data
(e.g., images, haptic signals, and sounds) is to quantify the
difference between the distributions of the data sources [5].
For quantifying distribution differences, we focus on kernel-
based statistical tests [6], [7], [8] and another notion of
divergence with generalized entropy [9].

Maximum Mean Discrepancy: The maximum mean dis-
crepancy (MMD) is a metric to quantify the distance between
two probability distributions by considering all their statis-
tical moments in a high-dimensional space. The embedding
of probability distributions is called kernel mean embeddings
and can be approximated by kernel-based estimates (the so-
called kernel trick). We use the computationally efficient
MMD estimator by Gretton et al. [7],

MMD2
b [PY ,PZ ] =
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where [y1, ..., yn] and [z1, ..., zm] are i.i.d. random variables.
In our case, these are n and m samples from surface data
streams Y q

s and Zq
s with unknown distributions PY q

s
and PZq

s
.

This MMD estimator is well suited for recognition of surface
classes from multimodal data [5].

Other Kernel-Mean-Embedding Metrics: Jitkrittum et al.
propose the mean embedding (ME) test and the smoothed
characteristic function (SCF) test, which we plan to eval-
uate in the future for higher interpretability [8]. Unlike the
squared-time MMD test, the linear-time ME test evaluates the
squared-exponential-kernel mean embeddings at optimized
test locations chosen to maximize distribution differences,
while also taking variance into account. Similarly, smoothed
characteristic functions are distances based on optimized
frequency locations. Jitkrittum et al. present the theoretical
foundation and implementation details for both tests [8].

H-Divergence Discrepancy Measure: Zhao et al. propose
a generalized class of divergences for two-sample testing that
includes existing measures such as the MMD and H-Jensen
Shannon Divergence [9]. The H-divergence measure directly
takes the loss function into account based on the decision
space. This new measure outperforms several existing test
statistics in terms of test power in multiple real-world exper-
iments, so we plan to check its suitability for our application.

IV. EXPERIMENTS

We adopt the same setting as Khojasteh et al. [5],
who achieved competitive classification results on a public
database of 108 textures [2]. The recognition settings for the
preliminary results (Fig. 3) and future steps are presented in
the following.

A. Recognition Settings
We pursue a random spectral subsampling strategy for

all information sources (for, tor, act, acf, mic), as they all
exhibit salient AC components. Inspired by human sensing
capabilities, we chose the frequency range to be 0–1 kHz for
tactile and 0–20 kHz for auditory vibrations. The frequency
range for subsampling forces and torques is 0–2 kHz, below
all resonant frequencies of the sensor. Our subsample size is
n = m = 500. We repeatedly compute our MMD scores for
each trial-to-trial comparison and each information source
R = 10 times for subsampling random spectral magnitudes
The classification accuracy is reported for the mean and
standard deviation of the R repetitions in various conditions.
We obtain our global distances (“all”) by multiplying the
MMD scores of all five information sources. Classification
decision is made by selecting smallest distance between the
test instance and all training instances (1-nearest-neighbor).

In this work, we conduct classification by testing with five
of the ten trials collected for each surface-tool pair; when
focusing on a single tool diameter, every trial in the testing
set is compared to a library of 45 other trials (analogous to
the training set in other approaches). In our out-of-domain
setting, we test the data from interactions with both the 4 mm
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Fig. 3. Confusion matrices for the five individual information sources
(force, torque, tool accelerometer, finger accelerometer, and microphone)
and their combination (all). Perfect surface recognition would be a solid
black diagonal.

and 8 mm tools by relying on the training data from the other
tool diameter, i.e., 6 mm. Here, we also evaluate whether
aligning the distribution means [5] is a promising approach
for out-of-domain recognition.

B. Preliminary Results
From the five information-specific confusion matrices

(Fig. 3), we find that almost all confusions occur between the
two wooden surfaces, wood and laminate. Human perception
of these surfaces matches the MMD-based inference for their
similarity. The torque readings (tor: 91.3 ± 1.2%) achieve
the best recognition accuracy, followed by the contact forces
(for: 90.8±1.4%). The better performance of torque sensing
in this recognition setting may result from the different
thickness of the two wooden surfaces, as the same tan-
gential contact forces cause different torques through their
respective lever arms. When we tried using temporal instead
of spectral subsampling for force-torque data, we observed
similar performance (for: 91.4 ± 1.2%, tor: 91.3 ± 1.0%),
validating the utility of both the DC and AC components of
these data streams. The tool acceleration data results in a
slightly higher recognition rate (act: 90.4± 1.3%) compared
to the vibrations sensed at the finger (acf: 89.3±1.9%), likely
due to vibration dissipation through the tool and the tissue.
Auditory vibrations also perform slightly less effectively
(mic: 88.7±1.8%) than their tactile counterparts, potentially
due to noise contamination and/or their lack of directionality.

Combining the five information sources (all: 90.9±1.2%)
performs slightly worse than the torque readings alone, sug-
gesting that additional information does not always improve
the current classifier. We also observed no salient change in
performance from varying the number of subsamples taken
(100  n  1000, results not shown). Interestingly, data
from the other two sensing tools yielded similar (4 mm:
90.9±1.7%) or slightly higher (8 mm: 91.2±1.1%) combined
recognition performance (confusion matrices not shown).

However, more investigation is needed to understand how
tool geometry and mass affect performance.

First experiments for the out-of-domain task (comparing
data collected with a tool that is different from that used to
create the surface library) indicate that aligning the mean is
not fruitful (results not shown). This finding suggests that the
influence of the mass and tool diameter are also consider-
ably represented in the higher-order statistical moments [5].
Successful out-of-domain generalization across sensing tools
may be possible through other manipulations of the data
distributions, which we will investigate in the future. We
may also find that the identity of the tool cannot easily be
separated from that of the surface with which it is interacting.

C. Ongoing Analysis
We are currently conducting and evaluating computa-

tional studies to assess the influences of 1) coordinate-
system transformations for the multi-axial data streams, 2)
noise added to all data streams, frequency- versus time-
domain subsampling, 3) alternative ways of compensating
for tool identity, and 4) other kernel-mean-embedding and
discrepancy measures. We envision that the outcome of the
results will be a set of guidelines for the design of sensor
configurations for surface perception through hand-held tools
and diverse robot body parts.
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