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ABSTRACT

Graph neural networks (GNNs) using local message passing were recently shown
to inherit the intrinsic limitations of local algorithms in solving combinatorial
graph optimization problems such as finding shortest distances (Loukas, 2020). To
address this issue, Awasthi et al. (2022) proposed architectures based on Bourgain’s
(1985) seminal work on Hilbert space embeddings. These architectures enhance
local message passing in GNNs with a single global computation, yielding a
local-global algorithm. This paper focuses on the average-case analysis of more
general local-global algorithms for finding shortest distances (of which GNN+
is a particular case). Our primary contribution is a theoretical analysis of these
algorithms on Erd6s-Rényi (ER) random graphs. We prove that, on random graphs,
these algorithms have lower distortion of shortest distances for most pairs of nodes
w.h.p. while requiring a lower embedding dimension. Inspired by Awasthi et al.
(2022), and to automate local computations and improve computational efficiency
in practical scenarios, we further propose a modification to these algorithms that
incorporates GNNs in the local computation phase. Empirical results on ER
graphs and benchmark graph datasets demonstrate the enhanced performance of
the GNN-augmented algorithm over the traditional approach.

1 INTRODUCTION

Finding shortest paths on networks is an important combinatorial optimization problem arising in
many practical applications, such as transportation networks [Fu et al.|(2006)) and integrated circuit
design|Cong et al.|(1998)). Unlike other optimization problems on graphs, exact solutions for shortest
paths can be found using classical algorithms such as Dijkstra’s algorithm in polynomial time.
Moreover, advancements in indexing techniques have made exact shortest-path distance queries
highly efficient, with solutions capable of handling large-scale graphs and providing microsecond-
level query times in certain settings (Akiba et al.,|2013;Hayashi et al.,|2016; |/Ouyang et al., 2018}
Farhan et al.,[2018)).

However, not all scenarios allow for such efficient indexing. For example, dynamic networks
with frequently updated edge weights or applications requiring real-time computation on resource-
constrained devices may not benefit from precomputed indexes. In such cases, approximate methods
are particularly valuable due to their adaptability and lower computational overhead. This has
motivated the exploration of machine learning approaches to shortest path finding, particularly those
employing graph neural networks (GNNs).

Despite their promise in combinatorial optimization (Lemos et al.| 2019} (Cappart et al., [2023} [Li et al.
201812023}, |Velickovi€ et al., 2019} Zhang et al., |2023), GNN-based approaches face significant
challenges in the shortest path problem. Local message-passing algorithms like GNNs are constrained
by impossibility results (Loukas| [2020; [Sarma et al.,[2012), requiring prohibitively large embedding
dimensions or numbers of convolutions to achieve even a constant-factor approximation of distances
in the worst-case. A promising direction to address these limitations is the combination of local
message-passing and global methods, which can provide a better tradeoff between efficiency and
accuracy. For example, Awasthi et al. (2022) propose GNN+, a two-part architecture where GNNs
compute local path distances, and a global fully connected layer combines their outputs (Awasthi
et al.;|2022). Fundamentally, such approaches are inspired by Bourgain’s seminal result on metric
space embeddings into Hilbert spaces (Bourgain, |1985), which quantifies the error incurred when



Under review as a conference paper at ICLR 2025

approximating shortest path distances with sums or differences of local embeddings. Bourgain’s
theorem also prescribes minimum sketch sizes for the class of local-global algorithms that includes
GNN+.

While these algorithms show strong empirical performance, their theoretical underpinnings remain
sparse. Existing results, including those of Bourgain (Bourgain, |1985), MatouSek (Matousekl [1996),
and Das Sarma et al. (Sarma et al., |2012), are worst-case guarantees. Empirical evidence suggests
these worst-case bounds can be overly pessimistic for typical graphs, highlighting the need for
theoretical guarantees tailored to average-case graphs.

Theoretical contributions. This paper focuses on the theoretical analysis of local-global algorithms
inspired by Bourgain’s embedding theorem on Erdos—Rényi (ER) random graphs. ER graphs are a
foundational model in the random graphs literature, offering insights into average-case scenarios for
combinatorial optimization problems. They are also commonly used in benchmarking GNN models,
as in GraphWorld (Palowitch et al., [2022]).

Our main contribution is theoretical: we show that local-global algorithms provide (1 — ¢)-factor
lower bounds and (1 + &)-factor upper bounds for the shortest distances for most pairs of nodes with
high probability. The proof leverages branching process approximations developed in the random
graph literature (van der Hofstad\ 2017} [2024).

Interestingly, Bourgain also showed that random graphs are difficult to embed in Euclidean space
while preserving distances (Bourgain, 1985, Section 3). For networks of size n, random graphs
require an embedding dimension of O(logn) for a O(log n/ log log n)-factor approximation, close
to the worst-case guarantee of O(logn). Studying the performance of local-global algorithms on
random graphs for constant-factor approximations further motivates our work.

In the worst-case setting, (Sarma et al., | 2010), (Matousek| [1996), and (Awasthi et al.}2022)) showed
that local-global algorithms can achieve a (2¢ — 1)-factor upper bound and a 5——-factor lower

2c—1
bound with an embedding dimension of Q(n'/¢logn) for ¢ > 1. In contrast, our results for ER
graphs require an embedding dimension of Q(n3~2¢71°¢2]ogn) for the same upper bound and
Q(nl/ (2¢=1) Jog n) for the lower bound, achieving improved embedding dimension requirements for
most node pairs in random graphs.

Methodological and empirical contributions. Building on GNN+, we enhance the local-global
shortest distance algorithm inspired by Bourgain’s theorem by incorporating a GNN to compute local
embeddings. In the local step, the GNN is trained to compute shortest path distances from a random
subset of nodes S to all other nodes in the graph. The local embedding of each node is calculated as
d(u, S;) = mingeg, d(u, s). In the global step, the distance between nodes u and v is lower bounded
by max; |d(u, S;) — d(v, S;)|.

The use of GNNs in the local step is motivated by their demonstrated alignment with dynamic
programming (DP). DP underlies many reasoning tasks, including shortest paths which can be solved
using the Bellman-Ford algorithm. Recent works have shown that GNNSs align well with DP, meaning
their computation structures naturally reflect the algorithmic processes of tasks like shortest path
computation, which improves learning efficiency and generalization (Xu et al.,[2019b, Theorem 3.6).
In (Dudzik and Velickovic, |2022), this alignment has been theoretically quantified, suggesting that
GNN architectures are particularly well-suited for reasoning tasks where DP plays a central role.

Our empirical results on ER graphs and benchmark datasets demonstrate that the GNN-augmented
algorithm improves over the traditional BFS-based approach. Notably, we show that GNNs trained
on small ER graphs can transfer effectively to downstream shortest path computation on real-world
social networks. This underscores the importance of analyzing graph algorithms in the context of
random graphs to inform their practical applications.

Notation. We consider undirected, unweighted and connected graphs G = (V| E) where V,
|V| = n, is the set of nodes and E C V' x V, |E| = m, is the set of edges. We define the one-hop
neighborhood of node u as N(u) = {v € V | (u,v) € E}. We often use the Bachmann-Landau
asymptotic notation o(1), O(1),w(1), (1), ©(1) etc. For a discrete set X, | X | denotes its cardinality.
Given a sequence of probability measures (IP,,),>1, a sequence of events (&,,),>1 is said to hold
with high probability (w.h.p.) if lim,,_,, P,,(€,,) = 1. For a sequence of random variables (X, ),,>1,

X, 5 ¢ means that X, » converges to ¢ in probability. We write statements such as X, = f (n)"(l)
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w.h.p. to abbreviate that log X, /log f(n) — 0. Also, we write X,, = O(1) w.h.p. to mean that
P(X,, > K) — 0 for a sufficiently large K.

2  SHORTEST PATH PROBLEMS AND LOCAL-GLOBAL ALGORITHMS

Given graph G = (V, E)) and a pair of nodes u, v € V, the shortest path problem consists of finding
the path with the smallest number of edges between v and v, and the number of edges in this path, or
the shortest path distance between u and v, denoted d(u, v). This is one of the most fundamental
combinatorial optimization problems on graphs.

The classical algorithm for finding graph shortest paths is Dijkstra’s algorithm. Starting from a source
node u, Dijkstra’s algorithm returns the exact shortest paths between u and every other node v € V
along with the corresponding distances d(u, v) via breadth-first search (BFS). It proceeds as follows:
(0) Initialize d(u,v) = oo forallv € V. Set s =wand A = 1.
(1) From s, visit s’s neighbors v € N(s) and assign them distance d(u,v) = min(d(u,v), A).
(2) Mark s as visited and update A = A + 1.
(3) Select the unvisited node with smallest distance to u, say ¢, and set s = t.
(4) Repeat (1)—(3) until convergence.
Using naive data structures to store nodes’ visited statuses and current distances, the complexity of

Dijsktra’s algorithm is O(n?). This can be improved to O(m + nlogn) by using more efficient data
structures like heaps (Schrijver, [2012), but is still prohibitive for large graphs.

2.1 LOWER AND UPPER BOUNDS ON SHORTEST PATH DISTANCE

While computing exact shortest path distances is expensive, we can afford to compute local paths.
At a high level, local-global algorithms leverage this idea as follows. First, they sample a number
of seed nodes that are stored in a set S. Then, for each node in V', they compute the shortest path
distance to the nodes in .S. This is the so-called local step, as in practice the shortest paths between
v € V and s € S can be computed via BFS from S.

Local step: Sample seed nodes s € S. Compute exact d(s,v) forall s € S,v € V. )
Using the triangle inequality, the distances between the nodes in S and V' can be used to approximate
d(u,v) for any u,v € V. in two ways.

Lower bound (LB). Let u,v € V, and s € S. By the triangle inequality, we have d(u,s) <
d(u,v) + d(v, s), hence d(u,v) can be lower bounded as

|d(u, s) — d(v,s)| < d(u,v)

since d(u, s) and d(v, s) are known from (I). For arbitrary s, this approximation is however very
coarse. Therefore, in practice we search over all s € S and find the one that maximizes the left-
hand-side. More formally, we can formulate this as follows. Given the exact distances d(u, s;) for all
u€Vands; € Sfori=1,2,...,]5], construct an embedding vector

Xy = [d(u, s1)...d(u,s)g))] 2)

for each u € V. Then, the best lower bound on d(u, v) is given by ||x, — X, ||oo- This is the so-called
global step, as the infinity norm requires taking the maximum over all vector entries.

Global step for LB: Compute d(u,v) = ||X, — Xu||oo forall u,v € V. 3)

Upper bound (UB). To find an upper bound d(u, v), we can once again use the triangle inequality as
d(u,v) < d(u,s) + d(s,v).

Similarly to what we did for the lower bound, we want to pick the seed s for which this upper bound
is the tightest. Using the same embeddings x,, from (2)), the global step is then

Global step for UB: Compute dN(u7 v) = min[x, + x,]; forall u,v € V. )
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2.2 LOWER AND UPPER BOUND DISTORTIONS, AND AN ALGORITHM THAT ACHIEVES THEM

The pseudoalgorithms defined by the local and global steps in (I)),(3), (@) are only useful if we can
derive guarantees on their approximation ability. For the LB, these can be obtained from Bourgain’s
classical embedding theorem, which characterizes the distortion incurred by optimal embeddings of
metric spaces onto RIS equipped with the ., norm. For the UB, similar guarantees were derived in
(Sarma et al., 2010).

Theorem 2.1 (LB distortion, adapted from (Matousek, [1996),(Awasthi et al., [2022))). Let G be a
graph with n > 3 nodes. Letc > 1. If D = Q(nl/C logn), then there exist node embeddings
x* € RP, u € V, for which d(u,v) = ||x* — x*||o satisfies

d(u,v)

2c¢—1
Theorem 2.2 (UB distortion (Sarma et al 2010)). Let G be a graph with n >
c > 1. If D = Q(n'“logn), then there exist node embeddings x* € RP, u ¢
d(u,v) = ming[x* + x*|; satisfies

d(u,v) < d(u,v) < (2¢ — 1)d(u,v). (6)

< d(u,v) < d(u,v). 5)

3 nodes. Let
V., for which

In order for (5) and (6) to hold, we need the embeddings x: to be optimal. Yet, there is no guarantee
that this is the case for the embeddings x,, in ).

One way to ensure good embeddings is to control how we sample the seeds. (Sarma et al., [2010)
proposed a method for doing so that we describe in Algorithm [I| This method consists of first
sampling r + 1 seed sets Sp, S1,...,.S, of various sizes. Instead of recording distances of u to
every node in every set S;, the embeddings only keep track of the minimum distance to the set, i.e.,
[xy]i = minges, d(u, s).

For the LB, smaller seed set sizes are beneficial as, for k1 + ko < 1 with k1 < ko, we must find at
least one seed set with a seed in the ball of radius k1d(u, v) centered at u, and no seeds in the ball of
radius kod(u, v) centered at v. Hence, having a range of seed set sizes helps.

For the UB, this strategy ensures a seed falls at the intersection of the [M} -hop neighborhoods
of nodes v and v w.h.p.. In this case, an auxiliary vector o, is also defined to store the index of the
closest node to u in the set S;, i.e., [0, ]; = argmin, g d(u, s). This method is described in detail in

Algorithm [lﬂ

It can be shown that if r = [log n], the | ;| are exponential in 7, and the local step of AlgorithmI]
is run for R = ©(n'/¢) rounds—yielding a total embedding size of ©(log(n)n'/¢)—, the resulting
shortest path distance approximations satisfy Theorems [2.1] and [2.2] with high probability for any
graph. In the following, we show that the distortion and the embedding dimension can both be
improved for random graphs.

3 LOWER AND UPPER BOUND DISTORTIONS ON SPARSE ERDOS-RENYI
GRAPHS

In this section, we will state and prove our main results concerning performance of Algorithm[I]on
a sparse Erdés-Rényi Graph. An Erd6s-Rényi random graph ER,, (%) generates a random graph

on n nodes, and each edge {4, j} is included in the graph with probability %, independently. Thus,
ER,, (2) is a distribution over the space of all graphs on n nodes. We write G ~ ER,, (2) to

abbreviate that G is distributed as ER,, (%) Let ', be the i-th largest connected component in
an Erd6s-Rényi random graph. A well-known result in the theory of random graphs (cf. (van der|
Hofstad| |[2017, Theorems 4.4, 4.8, and Corollary 4.13)) is the existence of a unique giant component
in an Erd6s-Rényi random graph, which states the following:

Theorem 3.1 ((van der Hofstad, |[2017))). Let G ~ ER,, (A and C’% be as defined above. If A < 1,

n

then <2 = O L) w.h.p.. On the other hand, if X\ > 1, then =2 = ¢ for some ¢ > 0 and
Ciay _"~/logn\ n
=& = O(E2) wh.p..

n n

'1(-) denotes the elementwise Boolean function.
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Algorithm 1: Local-Global Algorithm (adapted from (Sarma et al.,[2010))
Input: Graph G = (V, E), |V| = n. Number of seed sets r + 1. Seed sets sizes |.S;].
Output: Shortest path approximations d(u, v), d(u,v) forall u,v € V.

fori=0,1,...,r; /* Local step x/
do
Si < {s1,...,8]5,] ~ Uniform(V')} ;
foru=1,...,ndo
[Xy)i = mingeg, Dijkstra(s, u)
[0]; = argmin, g Dijkstra(s, u)
end
end
foru=1,...,n; /* Global step =/
do
forv=1,...,ndo
d(u,v) =[x — X |oo 3 /* Lower bound =/
d(u,v) = ming[(xy + %) © 1(oy = 0)]s ; /* Upper bound =*/
end
end

Throughout, we will consider a fixed A > 1, since otherwise P(u1, us lie in the same component) —
0 as n — oo, for any wuq, us.

3.1 LOWER BOUND DISTORTION

On ER graphs, we obtain the following distortion result for the lower bound d(u, v) in Algorithm
Theorem 3.2. Let G ~ ER,, (’\) and let uy, ug be two nodes chosen independently and uniformly

at random with replacement (the choice of u1,us is also independent of G). Fix e € (0,1). Let
(f(ul, ug) be the output of Algorithm or the lower bound on the shortest distance d(u1,us) after
R = w(n'~¢) runs of the local step, with |S;| = 2¢ fori =0,1,...,r and r = |logn| as in (Sarma
et al., 2010), yielding node embedding dimension D = Q(n'=¢logn). Then, with high probability,

d(uy,uz) > (1 — &)d(uy,uz), ice., d(uy, ug) provides a (1 — &)-approximation of d(u1, uz).

Idea of the proof. Let Ny (u) denote the set of nodes that are within graph distance at most & from
w and ONy (u) denote the set of nodes that are within graph distance exactly & from u. The first part
of the proof relies on local neighborhood expansions of Erd6s-Rényi random graphs. In particular,
the boundaries of the k-th neighborhoods of 1, uy grow exponentially as A\¥. This is a consequence
of the following two intermediate results.

Lemma 3.3. Let L = kg log, n with g € (0, %) and € > 0 be sufficiently small. Let Ay, p, be the
event that |ONp(u;)| = b; for i = 1,2, where b; € (n AL n®AL). Fix k € (0,1 — ko), and let
&, be the good event that |ONy, (u;)| € (n=5X\ki nEN\F) for all k; < (k + ko) logynandi = 1,2.
Then, there exists § > 0 such that P(E,, | Ap, 1,) > 1 — n=0 for all sufficiently large n.

Proof. See Appendix [A]

To find the (1 — &) lower bound for (i(ul7 us) when uq, us are in the same connected component, we
consider two disjoint balls centered at u; and uy with radii differing by a factor of 1 — e. If there
exists a seed set that contains at least one point in the ball of smaller radius and is disjoint from the

ball of larger radius, then (f(ul, ug) returned by Algorithm|1|is lower bounded by the larger radius
minus the smaller radius. The complete proof of Theorem [3.2]can be found in Appendix B}

3.2 UPPER BOUND DISTORTION

On ER graphs, we obtain the following distortion result for the upper bound d (u,v) in Algorithm
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Theorem 3.4. Let G, uq, and uy be as in Theorem Fixe € (0,1). Let d(uy,us) be the output of
Algorithm for the upper bound on the shortest distance d(uy, us) after R = w(n'=¢71°82) runs of
the local step, with |S;| and r as in TheOremand (Sarma et al.} 2010), yielding node embedding

dimension D = Q(n'~7182 log n). Then, with high probability, d(uy,us) < (14 €)d(uy,uz), i.e.,

d(uy,us) provides a (1 + €)-approximation of d(uy, us).

Figure 1: Schematics depicting the computation of the upper bound (left) and lower bound (right).
Yellow nodes are the source and target, red nodes are seeds in a seed set S, and gray nodes are
arbitrary nodes. Left: To achieve the upper bound in Theorem [3.4] only one seed can be at the union
of the balls around « and v, and it must lie at the intersection. The need for lying at the intersection
is clear; that gives us our shortest path approximation. Having only one seed come from the union
ensures the algorithm will output at most d(u, v) = d(u, S) +d(v, S) < (14 ¢€)d(u,v) w.h.p. Right:
The balls around u and v are disjoint and we consider k1 > k3 + 1 — . To achieve the lower bound
in Theorem @, at least oneAseed must lie on the ball around v, and no seed can lie on the ball around
u. This guarantees at least d(u, v) = d(u, S) — d(v,S) > (1 — ¢)d(u,v) w.h.p.

Idea of the proof. Let Nj(u) denote the set of nodes that are within graph distance at most k
from u. The fact that the boundaries of the k-th neighborhoods of w1, uy grow exponentially as \*
(Lemma allows us to show that | Ny, (u;) U Ny, (ug)| grow as AF and | Ny, (u) N Ny, (ug)| grow as

/\T%' This is formalized in the following proposition.

Proposition 3.5. For any rologyn < k < (k + ko) logy n with ko € (0, 1) and k € (0,1 — ko)
and sufficiently small € > 0, the following holds with high probability, conditionally on w1, us being
in the same connected component:

2k /\2k:

A
|Nk(U1) N Nk(U2)| € <n€n,n€<n + 1))7 and |Nk(u1) U Nk('U;Q)‘ S (TLiEAk,’HJ&/\k).

Proof. See Appendix [C] O

Lemma 3.6. Let ¢ > 0 be sufficiently small and let L = klogy n with kg € (0, %) Let A,, denote

the event that n=*\* < |ON (u;)| < nfAL fori = 1,2, and B,, denote the event that u, and us are
in the same connected component. Then P(A,, \ B,) — 0 and P(B,, \ A,) — 0asn — oc.

Proof. See Appendix [E]

Given these growth rates, the main idea is to show that, with high probability, there exists a seed set
S; such that it has exactly one seed in Ny (u1) U Ni(u2) that also lies in Ny (u1) N Ng(us), where
k = (1 + £)d(u1,uz). Thus, with high probability, the output d(u,v) of Algorithrnis at most
sum of distances from u; to S; and us to .S;. Due to the choice of &, the output is therefore at most
(1 + €)d(uq, u2). The complete proof of Theorem 3.4 can be found in Appendix [D]
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4 A GNN-BASED ALGORITHM AND EXPERIMENTAL RESULTS

We propose to modify Algorithm [I] by implementing the local step with a GNN. GNNs are deep
convolutional architectures tailored to graph data (Scarselli et al., |2008}; [Kipf and Welling| 2017}
Defferrard et al.l 2016; Ruiz et al|2021). Specifically, we focus on node data that we represent as
matrices X € R"*?. Each row of X corresponds to a node u € V and each column to a different
signal or feature. A GNN layer operates on this type of data via two operations: a graph convolution
and a pointwise nonlinearity. Explicitly, let X,_; € R"*4¢-1 be the input to layer £ (or equivalently
the output of layer £ — 1). The /th layer is given by

K-1
X;=0o <Z A’“Xe_lwe,k> @)

k=0
where A € R"*"™ is the graph adjacency, W, ;, € Ré-1%de are Jearnable parameters and o is a
pointwise nonlinear activation function such as the ReLU or sigmoid. A GNN stacks L such layers,
the first layer input X being the input data X and the last layer output X, the output data Y. To be
concise, we represent the entire GNN as amap Y = ®(X, A; W) where W = {Wy 1}, 1 groups
the learnable parameters across all layers.

n =50, lambda = 4 n =50, lambda =5

— y=x 61— y=x
17.5 91 —— GCN Fitted Line, MSE = 4.8974 —— GCN Fitted Line, MSE = 0.2625
SAGE Fitted Line, MSE = 4.7742 51 SAGE Fitted Line, MSE = 0.2184
1509 GAT Fitted Line, MSE = 4.4547 GAT Fitted Line, MSE = 0.2495
| — GIN Fitted Line, MSE = 4.7585 | — GIN Fitted Line, MSE = 0.2952

Predicted Distance
Predicted Distance
w

T T T T T T T T T T T T T T T
0.0 2.5 5.0 75 10.0 125 150 175 0 1 2 3 4 5 6
Actual Distance Actual Distance

Figure 2: Raw outputs of | \/n]-64-32-16-| /n| GNNs that are trained on ERs ~ ER,,(\/n) with
A € {4,5} to predict shortest path distances end-to-end. Evaluation data are ERs from the same
model.

An important property GNNs inherit from graph convolutions is locality. More specifically, the
operations involved in each GNN layer can be implemented locally at each node via one-hop
information exchanges with their neighbors. To see this, consider a one-dimensional signal x € R™.
The operation z = Ax is local in the sense that

[Z]u = [AX]M - Z[A]uu [X]'U = Z [A]"w [X]U

veV vEN (u)

where N (u) is the neighborhood of node u. Similarly, z;, = A¥x can be implemented locally in R
rounds by unrolling z; = Az _1. The nonlinearity ¢ is pointwise and hence also local.

Leveraging the locality property of GNNs, we replace the local step of Algorithm [TI|by a GNN
forward pass. Instead of calculating the embeddings x,, via BFS, we propose to learn them using a
GNN.

Remark 4.1. The motivation for using GNNs in the local step is threefold. First, once the GNN
is trained, the sketch computations become automated. Second, by using GNNs we can save
computations as, if L < logn, GNN inference is cheaper than BFS on ER graphs. Third, we can
leverage the GNN transferability property (Ruiz et al.l [ 2020; 2023) to transfer the learned model to
graphs of different sizes associated with the same graph model.

4.1 EXPERIMENT 1: LEARNING THE GNN

In order to train the GNN, we proceed as follows. We sample a training set of ER graphs of size n and
generate random input signals X € R"*" satisfying 12 X1, = r and 12X = 17, Le., each column
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corresponds to a seed and one-hot encodes which node is a seed for a given graph. The outputs have
the same dimensions as the inputs, Y € R™*", and correspond to the shortest path distances between
nodes u € V and seeds s € S, i.e., [Y],s = d(u, s).

Before testing our algorithm, we assess the ability of the learned GNNs to compute end-to-end
shortest paths. For this experiment, we consider n = 50, two values of A, and set the GNN depth
to [log, n]. The results of this experiment are shown in Figure 2| where we plot the actual shortest
path distance versus the shortest path distances predicted by four different GNN architectures (GCN
(Kipf and Welling, 2017), GraphSAGE (Hamilton et al., [2017), GAT (Velickovic¢ et al., [2018)), and
GIN (Xu et al.||2019a)). We observe that the GNN predictions saturate in both plots, signaling the
inability of the GNN to predict longer distances even when their depth is higher than the expected
path length of log, n. As expected, GNNs are not suitable for computing end-to-end shortest path
distances, especially on sparser graphs (A = 4), which tend to exhibit longer shortest paths.

4.2  EXPERIMENT 2: COMPARISON WITH ALGORITHM[]]

MSE Error Rate: lambda = 4 MSE Error Rate: lambda = 5 Node-to-Seed Calculations
2711 274
4] 273 = -'.é\’sf BFS,R=1
278 279 =< S, BFS,R =2
gAé: 2 BFS, R =3
w 254 w 2714 ~ = 3 BFS,R =4
a 2. ) 5
b4 ghg’ = 2404 ] GNN,R=1
~31] R 527 GNN,R =2
272 271 a
21 = 14 GNN,R =3
2704 2724 3 =
297 3 ol . ‘g GNN, R =4
2~2 273 - T T T
] .$° '190 & QPQ @QQ 'L°° ) \99 ,190 &£ %Qo @°° 10“ o P & ,\90 & %Qo & '\90
& 4 e R
n n n
(a) (b) (©

Figure 3: (a)-(b) Performance of BFS-based embeddings vs. GNN-based embeddings with GNN’s
trained on ERs ~ ER,,(\/n) for A € {4, 5}. (c) Time required to generate all node-to-seed distances
in ERs with n nodes by NetworkX’s highly optimized BFS in comparison with our widest and deepest
GNNs. All GCN-, GraphSage-, GAT-, and GIN-based algorithms are represented by the same color
and line style for the same R, and the deviations between them are insignificant.

Next, we evaluate the difference between the lower bound achieved using the GNN-based algorithm,
and the lower bound from Algorithm([I] Only lower bounds are compared to ensure a fair comparison,
as the upper bound computation requires storing additional information—-the index of the closest
seed in a seed set to each node.

For this experiment, we consider a range of values of . We limit the GNN depth to L < logyn and
tune L and other parameters via cross-validation; see Appendix [F]for details. We also allow for R
rounds of the local step, i.e., we sample r + 1 seed sets as defined in Algorithm|I]in R rounds, and
save all R(r + 1) distances to use in the global step.

The results of this experiment are shown in Figure[3|for A = 4 and A\ = 5. The GNN lower bound is
worse than the vanilla lower bound on the A = 4 graph, though it leads to a substantial improvement
on the A = 5 graph for all values of R. While both values of A correspond to the supercritical regime
(A > 1), there are a few factors explaining the difference in these two cases. As we could see from
Figure 2| the GNN learns much worse local embeddings in the A = 4 case, even for a small 50-node
graph. Furthermore, for large values of n the graph is almost surely connected when A = 5, but not
when A = 4. This is an important distinction which can also be observed from the worsening of
the GNN-based algorithm performance at n ~ 100 for A = 4 (note that for n < 100, 4 > log, n).
Finally, the GNN-based algorithm is faster than Algorithm [T} especially on large graphs, which is
expected as exact local sketch computations via Dijkstra’s algorithm scale poorly with the graph size.

4.3 EXPERIMENT 3: TRANSFERABILITY

In our last experiment, we examine whether we can transfer GNNs learned on small graphs to compute
local embeddings on larger networks, and use these embeddings for downstream approximation of
shortest paths on these larger networks. This is motivated by theoretical and empirical work (Ruiz
et al., |2020; 2023) showing that GNNs are transferable in the sense that their outputs converge on
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Figure 4: Error rates on test ERs ~ ER,-(A/n’) (a), a GENSEC social network with 14,113 nodes
(b), and a Arxiv collaboration network with 28,281 nodes (c) by BFS-based embeddings vs. GNN-
based embeddings using GNNss trained on ERs ~ E'R,,(A/n) for A = 5. See Appendix for further
details on the real networks and for more real-world examples.

convergent graph sequences, which in turn implies that they can be trained on smaller graphs and
transferred to larger (but similar) graphs.

Here, we focus on the A = 5 case and train a sequence of eight GNNs on graphs ranging from
n = 25 ton = 3200 nodes. Then, we use these GNNs to compute shortest path distances using our
GNN-based algorithm on an ER graph with same A and graph size of n’ = 12800 nodes (additional
experiment details are provided in Appendix [F)). Figure @] (a) shows the MSE achieved in each
instance with respect to the true shortest path distances as a function of the training graph size,
with the flat dashed lines representing the MSE achieved by Algorithm on the n’-node graph. We
observe a steady decrease of the MSE as n increases, and that the GNN-based algorithm matches the
performance of Algorithm [I]when the GNN is trained on graphs of n = 200 nodes—which is 640
times smaller than the target n’-node graph.

We also examine the transferability of the same set of GNNs to two real-world social networks
with sizes 14,113 and 28,281 respectively and average degrees comparable to A = 5 (7.41 and 6.56
respectively). In certain scenarios, random graphs can be used to model social networks (Newman
and Watts, [1999), so we hypothesize that GNNs trained on ER graphs should produce good quality
embeddings on these networks. The results are shown in Figure ] (b-c), where we once again observe
MSE improvement with the training graph size n and that the GNN-based algorithm outperforms
Algorithm T]even when the embeddings are learned on much smaller graphs.

5 CONCLUSION

We introduce an average-case analysis of algorithms combining local and global computations for
solving shortest distance problems on ER graphs, complementing Bourgain’s worst-case result. In
particular, our theoretical analysis demonstrates that on ER graphs these algorithms can achieve
a (1 — e)-factor lower bound and a (1 + €)-factor upper bound of shortest distances with high
probability. Additionally, we propose a modification to Bourgain’s algorithm, which incorporates
GNN s in the local computation phase to further enhance practical performance. Empirical results on
both ER graphs and benchmark datasets demonstrate the superior performance of the GNN-augmented
approach.

Limitations and future work. Our analysis focuses on Erdos—Rényi (ER) random graphs, which
provided a simplified framework to develop theoretical tools and insights for local-global algorithms.
These methods are broadly applicable to graphs with local expansion properties, such as inhomo-
geneous random graphs, and extending our analysis to such models is a key direction for future
work. However, for other important graph classes in shortest path problems, such as planar graphs,
our techniques are unlikely to apply. Addressing these cases will require the development of new
methods, which is an interesting direction for future work.
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A PROOF OF LEMMA [3.3]

The proof is adapted from (van der Hofstad, 2024, Section 2.6.4). Since we need an exponential
bound on the probability and L is growing with n, the proof does not follow from (van der Hofstad,

2024).
We start by proving that there exists ay € (0,1) and §’ > 0 such that for all sufficiently large n,

|Ni(u;)] <n?, forallk < (k+ ko)logynandi=1,2, (8)

with probability at least 1 — n=%. Indeed, for any r > 1 and node u, |ON,(u)] =
D i€ON, 1 (u) 22j¢N, 1 (u) Lij» Where Ijj is the indicator random variable for the edge {i,j} be-
ing present. Therefore, E[|ON,(u)|] < AE[|ON,_1(u)|]. Proceeding inductively, we have that
E[|ON,-(u)|] < A" and consequently, E[|N,.(u)|] < % = O(\"). Since kg + Kk < 1, we can
apply Markov’s inequality to conclude that | Ny (u;)| < n” with probability 1 — n =" for some fixed
4§’ > 0 and for any fixed k < (k + ko) logy n. Moreover, since | Ny (u;)| < |Ng41(u;)| for all k, we
can conclude (8).

Next, fix € > 0 sufficiently small and suppose that §,, = n—"°/%. Define the event
Eky o= {b1N1 = 6,)(1 = n~T"INF AN (ur)] < bi[A(L + 8,)]%}

We will upper bound P(&f | €y Abypy)-  Again, using |ONpix(u1)| =
ZieaNL+k71(ul) Zj¢NL+k—1(u1) I;;, we have that

A
By = E[[ONLyx(ur)| | Nogr—1(u1), Ap, p,] = [ONL 11 (w1)](n — |NL+k71(U1)|); ©)
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’

Using @), it follows that, with probability at least 1 — n=%,

AONLk—1(u1)|(1 = n~ ") < By < NONLjp—1(u1)]- (10)
Conditionally on ﬂf;olé'l and Ay, p,, with probability at least 1 — n=?,
AR —6,) 11 —n~ " < B < b AP (1 +6,)F (11)

Using Standard concentration inequalities for sums of Bernoulli random variables (Janson et al.|
2000, Theorem 2.8 and Corollary 2.3, (2.9)), we conclude that

]P)(g]g,(l) | mfgolgl,(1)7Ab1,b2)
= P(|ONL1k(w1) = En| > 00 Ep | N9 €1 Apy )

52
<2 3K 4= < 02,

Therefore, P(Ni<rxlog, n€k | Abyby) > 1 — n~? for all sufficiently large n, for some § > 0. Finally,
the proof follows by noting that (1 —d,,)* = (1 —n""/4)k — T and (1 —n~(~)* — 1 uniformly
over k < klogn. An identical argument can be repeated for neighborhoods of us. In the latter case,

we need to additionally condition on the L + k neighborhood of ;. With probability at least 1 —n =% ’
this will result in exploration of at most n” many nodes due to (8], and therefore, the asymptotics
above also hold for neighborhoods of us. We skip redoing the proof for the neighborhoods of s
here.

B PROOF OF THEOREM [3.2]

We show that, for any & € (0,1), d(u1,u) > (1 — ¢)log, n w.h.p.. Let S;; be the i-the seed set
having size 2° in the j-th round. Let k; = 1 log,, n, where £1 > 0 is sufficiently small (to be chosen
later). Also, let ky = (1 — ¢)logyn + k1. We choose €1 < &, so that an argument identical to
(T6) would yied that N, (u1) N Ng,(u2) = & w.h.p., conditionally on wy, us being in the same
connected component. Define Z;; to be the event that S;; N Ny, (u1) # @ but S;; N Ni, (ug2) = @.
Note that, if Z;; happens for some ¢ < r,j < R, then d(u1,.5;;) < k1 and d(us, S;j) > ko, and
consequently, d(uh ug) > (1 —9)logy n. Thus, denoting Z = U;<, j<rZ;j, it suffices to prove that
P(Z | G,uy,uz)1{u; <> us} = 1, where u; < us stands for uy, uy being in the same connected
component. Let C;, be the set of nodes in the i-th largest connected component of G and C;, be
the number of nodes in C;,. Note that, P(u; <> ug, butus,us ¢ C, | G) = # >,

% = 0. Therefore, P({u; <+ ug} A {u1,us € Cyy}) — 0, where /A denotes the symmetric

difference between sets. Thus it suffices to show that P(Z | G, uy,up)1{us, us € i1y} — 1.
The fact that P(A° N B) = P(B) — P(A N B) implies, for each 7, j,
P(Sij O Nk, (1) # 3, 5i5 OV Ny, (ug) = 2 | Gy un, uz)
2! 2
(1 e} ) )

n n

Therefore,

P(Z° | G,u1,uz) = <ﬁ (1 - (1 — |N’Cz(“2)|>2i n (1 [Nk, (un)| + INkZ(u2)>2i))R

=0

Sexp( RZ(( LA >>2i_(1_|zvkl<u1>I|Nk2<u2>|)2i>)

= exp ( Z ‘N’“l )| = ( ‘Nk2 )|)2i1j (1 Nk, (ua)] + | Ny, (u2)|)j)

( Rzuvkl |21 1(1_Nk2<u2>|)2i‘1‘j(1_2Nk2<u2>|)f)7

j=0
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where second step uses (1 — x) < e™* for all # > 0 and in the final step, we set ' to be such
that n¢’ < or'+2 < " with ¢’ > 0 sufficiently small (to be chosen later). Note that, for any

— 4)k2—¢’
x1,x9 € [0,1] and M > 1,
M _ M
S —a)M I =) =D (1= (M = j)z)(1 — jaz)
§=0 =0

2

. . M
> (1= (M —j)ry — jwg) > M — 7(1‘1 + z2),

M-

<
I
o

where the first step uses (1 — 2)M > 1 — Mx for any M > 1 and = € [0, 1]. Therefore,
: N (w)] 1 [Nk, (u2)]|
P(z¢| G < ~-R) ! 28 —1)(1 -2 ==
( | ,Ul,’dz) =~ exp ( gt n ( ) n

Applying Lemma we can conclude that, Ny, (u;) € (n=<'AFi ne' Xk) w.h.p., conditionally on
u; € Cy), for i = I,2 and all sufficiently small ¢’ > 0. By the choice of 7/, we have that with high

probability, 1 — 2¢~1 [N (ul)‘le'“Z (wa)l 3. Therefore, with high probability,

’
T

¢ nal—s/ 20— 1 R —14e;—2¢’
P(Z°| G,u1,u2)1{us,us € Cyy} < exp —RZ < exp - 4" ! .

n 2
i=0

Thus, if there exists v > 0 such that R > nl=7 for all sufficiently large n, then we can choose €1 > 0
and &’ > 0 to be sufficiently small such that the final bound tends to zero.

C PROOF OF PROPOSITION

Fix € > 0 (sufficiently small) and recall all the notation from Lemmas g Let Fi, i, be
the minimum sigma-algebra with respect to which the random variables (ON; up) 2 j < ki),
(ONj(uz) : j < ko) and the event A,, are measurable. Let £, be as defined in Lemma|[3.3] Then,
using Lemmas [3.3and 3.6} we have lim,, oo P(€, | By) = limy—,00 P(E, | A,) = 1. First, we
prove the following: Fix any kg log, n < k1, ko < (k + ko) log, n such that k1 + ko > log, n + 3e.
Then, for all sufficiently large n,

N1tk N1tk
,n%(1+6,)

P(|8Nk1 (u1) N ONy, (uz)| € (n*2€(1 —0p) ) ‘An) >1—-n"",

(12)
for some v; = 71(e) > 0, 2 = Y2(¢) > 0, and §,, < n~¢ for some ¢ > 0. The choice of
Oy 71,72 Will become clear below. Let I;; be the indicator random variable for the edge {i, j} being

present. Observe that i € INy, (u1) N ONg,(uz) if and only if i € ONk, (u1), i ¢ Np,—1(u2)
and there exists j € ONy,_1(ug) such that I;; = 1. Therefore, |ONy, (u1) N ONk, (uz)| =

ZieaNkl(ul)\ngfl(uz) ZjeaNk271(u2) IZJ Thus,

E[|ONy, (u1) N ON, (u2)| | Fi, ky—1]

= (10M )] = 3 10V, () 10N 1)) ¥ [0V 1 (1) 2.

j<ka—1

(13)

On the event &,, [Ny, (u1)| € (n~AF1, nfAR1) and [ONg, _1(u2)| € (n~5AF2~1 neAk2—1) and
by Lemma 3.3, P(, | A,) > 1 —n~%. Next, for any j < ko, ([3) yields that E[|ONy, (u1) N
ON;_1(u2)[ [ Fy j—1] < nEATI fp < Aot =72 /(Tky), where o < 1 — K — Ko — € (note that 2
can be chosen to be positive for sufficiently small €). Applying (Janson et al.l 2000, Theorem 2.8 and
Corollary 2.4), we have

P(|ONg, (u1) N ON;(ug)| > N ™2 ) (Thy) | T, jo1) < e X0 2 /k2 < o (14
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for some ¢’ > 0. Since the right hand side is deterministic function of n, the bound in (I4) holds

conditioned on A,, as well. Thus, (T3) yields, for all sufficiently large n, with probability at least
1—n9% 2,

5, M1tk 5n N\r1tke
B{ON (1) 00N ()] | P il € ( (1= 5 )22 (1 )220,

where 6, = o(n™72).

When ky + ko > logy n + 3¢, E[|ONg, (u1) N ONy, (uz)| | Fr,.ky—1] > n/2. In that case, standard
concentration inequalities for sums of independent Bernoulli random variables (Janson et al., 2000,
Theorem 2.8 and Corollary 2.3, (2.9)) shows that |ONy, (u1) N ONy, (u2)| concentrates around its
expectation conditionally on %, 1,1, which proves (12).

Next, let k1, ko be such that k1 +ko < log, n+3e. Then, (T3] shows that, E[|O Ny, (u1)NONk, (us2)] |
Fryka—1]1e, < n® for all sufficiently large n. Again, an application of (Janson et al., [2000]
Theorem 2.8 and Corollary 2.4) yields

P(|ON, (u1) N ONy, (u2)| > n™ | A,) <e ™ +n~%. (15)

Finally, combining (I2) and (I3), we conclude that, for all sufficiently large n, with probability at
least 1 — 3(logy n)2n~ min{r1,0}/3,

|Ni(u1) N Ni(uz)|
= > |ONg, (u1) N ONg, (uz)| + > |ON, (u1) N ONg, (uz)]

k1,k2<k,k1+k2>logy n+3e k1,k2<k,k1+ka<log, n+3e

. >\2k )\2k
Snde +n85 STLSE( +1)7
n n

(16)
and

)\2I~c
[Nk (u1) O Nig(uz)| = > |ONy, (u1) N ON, (u2)| > 0% —,

k17k2Sk7k1+k2210g>\ n+3e n
for all sufficiently large n. This concludes the proof for the asymptotics of Ny (u1) N Ny (uz).

For part 2, note that [Ny (u;)| = > < [0Nk, (u;)], and on the event £, we have that [ONy, (u;)| €

(n*EAki,naAki) forall k; < kand i = 1, 2. Now, )\2k/n < Aepl=r—ro and k + Ky < 1. Therefore,
conditionally on A,,, with high probability,

[ Nio(ur) U Ny (uz)| = [Ni(u)] + [ Nio(uz)] = [Nj(u1) 0 Ni(uz)| € (07225, n20F).
Thus the proof follows.

D PROOF OF THEOREM [3.4]

each fixed 1 < T; < r, let D; be the event that for the seed set S;, there is exactly one seed in
Ni.(u1) U Ni(ug) which also lies in N (u1) N Ni(uz) and let D = Ul_, D;. On the event D, the
described seed will be one of the common seeds for computing the shortest distance according to
Algorithm and in that case, CZ(’U,l, ug) < (14-¢€9) logy n. Applying (van der Hofstad, 2024, Theorem
2.36), conditionally on ug, us to be in the same connected component, d(u1,uz2)/logy n 501,
Therefore, on D, d(ul, uz) provides a (1 + £¢)-approximation of d(u1, us). Thus it suffices to show
that lim,, ., P(D) = 1.

Let G ~ ER A). Letk = %(1 + e9) log, n, where g9 < 1. We will apply Propositionﬁ For

We will show that P(D | G) = 1, and consequently lim,, o, P(D) = 1 by the dominated con-

vergence theorem. Now since the choice of \S;’s are independent conditionally on G, it suffices to
P

show that RP(D; | G) — oco. Indeed, if X := #{i : D; occurs}, then E[X | G] = RP(D; | G)
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and var(X | G) = RP(D; | G)(1 — P(D; | G)). Therefore (E[X | G])2/E[X? | G] = 1 since
R = w(1). This implies

(EX | G]? =
—_— 1
EX? (6]

where the one-but-last step uses the Paley—Zygmund inequality.

P(D|G)=P(X >0|G) >

To show RP(D; | G) = oo, note that

[ Nie(u1) N N (uz)| (1 ~Nk(un) U Nk(u2)>sl|_1

RE(D; | G) = R|S)| -

L(14e0)+0(1) \ 151]-1
= R|S;[neo e (1 - M
| 1|TL n )

1_ %o

with high probability, where we have applied Proposition [3.5in the final step. If |S;| = ©(nz~2)
and R = w(n% *ETU) the above term diverges to infinity. This concludes the proof of Theorem

E PROOF OF LEMMA

If A,, occurs but B,, does not then |%,,| > n"°~¢, which occurs with probability tending to zero,
since |6(2,| = O(logn) w.h.p.. On the other hand, if B,, occurs and A,, does not occur, then there
exists ¢ such that either |ONf, (u;)| > n*€ or 0 < |ONp(u;)| < n"°~¢. To bound the probabilities
of these events, consider a branching process with progeny distribution being Poisson(\), and let &;
be the number of children at generation {. We first claim that, for any xo € (0, %) and L = kg logy n,

lim P(|ONL (u;)| = X) = 1. a7

Indeed, this is a consequence of (Bordenavel 2016, Lemma 3.13). Next, classical theory of branching
processes shows that, on the event of survival, the growth rate of a branching process is exponential.
More precisely, (Tannyl (1977, Theorem 5.5 (iii)) together with (Athreya and Ney, |1972 Theorem 2
on Page 8), it follows that

lim P(L(1 —¢) <logy X, < L(1+¢), X, >0) =1

L—oc0
Therefore, limy o P(n"01=2) < X, < pro+e) x> 0) = 1. Since kg — € < ko(1 — £) and
Ko +€ > ,‘60(1 + 5)7

lim P(n~° < Xy <n™t X, >0) =1 (18)

L—oo

Combining and (T8), it follows that

P(B, \ 4,) < Z P(0 < [ONL (u;)| < n~¢ or |ONL (u;)| > n™*e) — 0.
i=1,2

F EXPERIMENT DETAILS

In our experiments, we train GNNs to learn to compute the shortest path distances from every seed to
every node in sparse, undirected, and unweighted connected random graphs. Using the trained GNNss,
we generate node embeddings as in local step of Algorithm [T} Finally, we evaluate the performance
of the embeddings in shortest path approximations and test the model’s transferability.

To construct the GNNs, we consider four standard GNN architectures (GCN, GraphSage, GAT, and
GIN) with sum aggregation, dropout and ReLU between the convolutions, and ReLU activation
function. For each GNN architecture, we experiment with nine models that differ in widths and
depths of their hidden layers. The first and the last GNN layers both consist of | /n| nodes, which
correspond to | /7| seeds inputted into the GNNs. The widths and depths of the hidden layers are as
follows:

* Depth-6 GNNs: 128-64-32-16, 64-32-16-8, 32-16-8-4
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* Depth-5 GNNs: 128-64-32, 64-32-16, 32-16-8
* Depth-4 GNNs: 128-64, 64-32, 32-16

We train our GNNs on ERs ~ ER,(A/n). To ensure that the graph are sparse and each has a
giant component with high probability, it is necessary to have 1 < A < n. We thus evaluate
A € {3,4,5,6} with n € {25,50, 100,200,400, 800, 1600, 3200}. We treat each graph as a batch
of nodes and have train-validation-test size of 200-50-50 batches. The training occurs in 1000 epochs
with early stopping patience of 100 epochs, mean squared error (MSE) loss, Adam optimizer with a
learning rate of 0.01 and weight decay of 0.0001, and a cyclic-cosine learning rate scheduler with
cyclical learning rate between 0.001 and 0.1 for 10 iterations in the increasing half in combination
with the default cosine annealing learning rate for a maximum of 20 iterations.

All experiments were run using PyTorch Geometric (Fey and Lenssen, [2019) on a Lambda Vector 1
machine with an AMD Ryzen Threadripper PRO 5955WX CPU (16 cores), 128 GB RAM, and two
NVIDIA GeForce RTX 4090 GPUs (without parallel training).

The code can be found athhttps://github.com/ruiz—-lab/shortest-path.

G MORE EXPERIMENT RESULTS

G.1 EXPERIMENT 1

n =50, lambda = 3 n =50, lambda = 6

200 — y=x s
17.5 ] — GCN Fitted Line, MSE = 5.1138

' SAGE Fitted Line, MSE = 4.9243 ol
15.0 1 GAT Fitted Line, MSE = 4.6679
—— GIN Fitted Line, MSE = 4.9378

12.5

10.0q

Predicted Distance
Predicted Distance

— y=x

—— GCN Fitted Line, MSE = 0.2402
SAGE Fitted Line, MSE = 0.2071
GAT Fitted Line, MSE = 0.2443

—— GIN Fitted Line, MSE = 0.2665

T T T T T T T T T T T T T T T
0.0 25 5.0 75 100 125 15.0 175 20.0 [} 1 2 3 4 5
Actual Distance Actual Distance

Figure 5: Raw outputs of |/n]-64-32-16-|/n| GNNs that are trained on ERs ~ ER,, (\/n) with
A € {3,6} to predict shortest path distances end-to-end. Evaluation data are ERs from the same

model.
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G.2 EXPERIMENT 2

MSE Error Rate: lambda = 3 MSE Error Rate: lambda = 6
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Figure 6: Performance of BFS-based embeddings vs. GNN-based embeddings with GNNs trained on
ERs ~ ER,(\/n) for A € {3,6}.

G.3 EXPERIMENT 3

Table 1: Details on the largest connected component of selected real networks.

Name Category # of Nodes | # of Edges
1 GEMSEC-Athletes (Rozemberczki et al.|[2019b Social Network 13,866 86,858
2 GEMSEC-Public Figures (Rozemberczki et al. 9b Social Network 11,565 67,114
3 GENSEC-Politician (Rozemberczki et al.|[2019b Social Network 5,908 41,729
4 GENSEC-Company (Rozemberczki et al.|[2019b Social Network 14,113 52,310
5 GENSEC-TV Shows (Rozemberczki et al.|[2019b Social Network 3,892 17,262
6 Twitch-EN ( Social Network 7,126 35,324
7 | Deezer Europe Social Networ Social Network 28,281 92,752
8 LastFM Asia Social Network Social Network 7,624 27,806
9 Arxiv COND-MAT (Leskovec et al.|[2007] Collaboration Network 21,364 91,315
10 Arxiv GR-QC (Leskovec et al 00 Collaboration Network 4,158 13,425
11 Arxiv HEP-PH (Leskovec et al.|[2007 Collaboration Network 11,204 117,634
12 Arxiv HEP-TH (Leskovec et al.|[2007 Collaboration Network 8,638 24,817
13 Oregon Autonomous System 1 (Leskovec et al.|[2005 Autonomous System 11,174 23,409
14 Oregon Autonomous System 2 (Leskovec et al.|2005) Autonomous System 11,461 32,730
R n' = 12800, lambda = 6 Graph 4: lambda = 6 Graph 12: lambda = 6
275 274 275
- BFS,R =1
24 2734 RSN 274 BFS,R =2
2~3 1 — - RN = ~ BFS, R =3
S — =SSsooosac BFS, R =4
é 3] %2"2— %2"3' GNN,R =1
GNN, R = 2
2m1 ] 2714 2721 GNN,R =3
GNN, R = 4
270 . 20— M
o o® \90 ’159 &£ ‘bgu & "}Qo o o» & ’;QQ & %00 @QQ H;PQ oS & ’&0 & ~b°° ’@Qo ’QQQ
n n n

Figure 7: Error rates on test ERs ~ ER,-(A/n’) (a), a GENSEC social network with 14,113 nodes
(b), and a Arxiv collaboration network with 28,281 nodes (c) by BFS-based embeddings vs. GNN-
based embeddings using GNNs trained on ERs ~ ER,,(A/n) for A = 6.
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Figure 8: Additional transferability results on real networks by BFS-based embeddings vs. GNN-
based embeddings using GNNs trained on ERs ~ ER,,(A/n) for A = 5. Legend is the same as in

Figure[G.3]
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