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ABSTRACT

How do two individuals differ when performing the same action? In this work,
we introduce Video Action Differencing, the novel task of identifying subtle dif-
ferences between videos of the same action, which has numerous applications,
such as coaching and skill acquisition. To enable development on this new task,
we first create VidDiffBench, a benchmark dataset containing 557 video pairs,
with human annotations of 4,719 fine-grained action differences and 2,075 times-
tamps indicating where these differences occur. Our experiments demonstrate that
VidDiffBench poses a significant challenge for state-of-the-art large multimodal
models (LMMs), such as GPT-4o, Gemini 1.5 Pro, and Qwen2-VL. By analyz-
ing the failure cases of LMMs on VidDiffBench, we highlight two key challenges
for this task: frame-by-frame alignment and fine-grained frame comparison. To
overcome these, we propose VidDiff, an agent-based system that breaks the task
into three stages: action difference proposal, keyframe localization, and differ-
ence verification, each stage utilizing specialized foundation models. The VidDiff
method outperforms these baseline LMMs. We release both the dataset1 and code2

to encourage and support future research in this domain.

1 INTRODUCTION

The ability to compare two videos of the same action and discern their detailed differences plays a
critical role in a wide variety of applications. For instance, in fitness coaching, a novice learning
to perform a barbell squat typically watches instructional videos and then compares their actions
in a recorded video to identify discrepancies between their movements and those of an expert. In
medical training, junior surgeons compare videos of themselves performing surgical procedures with
reference videos from experts to identify errors and improve surgical skills.

Despite the significance of comparing actions in videos, effectively analyzing the subtle differences
between them remains underexplored. While image comparison has been extensively studied in
the field of computer vision (Park et al., 2019; Jhamtani & Berg-Kirkpatrick, 2018; Dunlap et al.,
2023; Li et al., 2023; Jiang et al., 2024; Alayrac et al., 2022) and applied to various tasks (Chen
et al., 2024; Hu et al., 2023), video action comparison introduces unique challenges. There are two
critical obstacles: precise temporal alignment and the need for fine-grained understanding of action
dynamics. Temporal alignment of submovements is essential for meaningful comparisons across
video frames, while the identification of subtle differences in action execution requires a nuanced,
detailed level of analysis between video pairs.

Current research on video difference understanding largely emphasizes feature visualization (Bal-
akrishnan et al., 2015) or coarse-grained comparisons between different actions or interacting ob-
jects (Nagarajan & Torresani, 2024). However, many real-world applications demand fine-grained
comparisons between videos of the same action, a challenge that has received comparatively little
attention.

We introduce a new task, Video Action Differencing, to advance both academic research and prac-
tical applications. Given two videos of the same action, (vA, vB), along with a description of the
action, the task is to generate two sets of statements: one that is more true for vA and another for
vB . For example, in a video pair featuring an expert and a novice performing a barbell squat, key
differences might include “knees caving in more in video A” and “the squat is deeper in video B”

1https://huggingface.co/datasets/viddiff/VidDiffBench/
2https://anonymous.4open.science/r/VidDiffBench eval-A0C1/README.md
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Figure 1: The Video Action Differencing task and benchmark (VidDiffBench). Given a pair of
videos and an action, the task is to generate a list of differences as natural language descriptions.
Our VidDiffBench consists of annotated differences across diverse domains, where the differences
are relevant to human skill learning. The first row shows the first key challenge: precise temporal
alignment between segments of the video for comparison. The second row shows the second key
challenge: fine-grained image understanding of actions in order to perform comparison.

(Figure 1). Since generating the initial difference candidates relies heavily on language capabilities,
we also introduce a simpler closed-set setting that focuses on video analysis. In this setting, the
target difference strings are provided, and the task is to predict whether each applies more to video
A or B.

To facilitate research in this new direction, we present VidDiffBench, a comprehensive benchmark
designed for video action differencing. VidDiffBench contains 557 video pairs drawn from domains
that require expert feedback, such as fitness, sports, music, and surgery. Each pair is annotated
with 4,719 fine-grained differences, along with 2,075 timestamp annotations that identify where
these differences occur. Our benchmark is curated with domain expertise, providing a structured
taxonomy of differences critical to skill learning. This makes VidDiffBench the first large-scale
dataset dedicated to video action differencing, setting a new standard for this emerging task.

In addition to introducing a new task and benchmark, we propose VidDiff, the first agentic frame-
work that addresses the complexity of video action differencing. VidDiff incorporates large language
models (LLMs) to propose differences, aligns relevant frames using contrastive language-image
models, and verifies the differences using vision-language models (VLMs). We further benchmark
both open-source (Qwen2-VL) and proprietary (GPT-4o, Gemini-1.5 pro) video-language models
(VLMs) on VidDiffBench. Our results demonstrate that VidDiff outperforms single-stage models,
setting a new benchmark for this task and underscoring the importance of structured approaches in
fine-grained video comparison.

2 RELATED WORK

Skilled Action Understanding in Videos Video comparison has many potential applications, and
our benchmark focuses on the specific goal of natural language feedback in skill learning. Most of
the video action comparison papers from this section’s first paragraph are systems for skill feedback,
showing that skill feedback is well-motivated. Many works give feedback by classifying coarse
motion errors, or by visualizing motions, with applications in yoga (Zhao et al., 2022; Thoutam et al.,
2022; Chen et al., 2018; Dittakavi et al., 2022; Chen & Yang, 2020; Xie et al., 2019), physical therapy
(Velloso et al., 2013), weightlifting (Parmar et al., 2022; Ogata et al., 2019), and general fitness

2
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(Fieraru et al., 2021; Ashwin et al., 2023). The feedback tends to be coarse-grained. In contrast, our
task focuses on open natural language feedback, and identifying fine-grained feedback. Recently,
the Ego-Exo4D dataset (Grauman et al., 2023) provides videos with expert commentary on skilled
actions, which is promising for developing instructional feedback systems. This, along with existing
works that give language feedback (Fieraru et al., 2021; Parmar et al., 2022; Velloso et al., 2013),
support our claim that language is a good medium for providing skill feedback to humans. Zooming
out from skills feedback, skilled action understanding – which includes foundational capabilities
for feedback systems – has attracted enormous interest. For example, in sports, music, dance, and
surgery, prior works have tackled action recognition (Verma et al., 2020; Shahroudy et al., 2016;
Soomro et al., 2012; Zhang et al., 2013; Wang & Zemel, 2016; Chung et al., 2021); spatial and
temporal action localization / segmentation (Shao et al., 2020; Liu et al., 2022; Li et al., 2021b;
Zhang et al., 2023b; Ibrahim et al., 2016; Garrow et al., 2021; Li et al., 2021b); human pose and
motion estimation / reconstruction (Cai et al., 2022; Tang et al., 2023; Wang et al., 2023; Andriluka
et al., 2014; Li et al., 2021a; Fieraru et al., 2021; Zhu et al., 2022; Bera et al., 2023; Liu et al.,
2024; Grauman et al., 2023); and hand and tool pose estimation (Doosti, 2019; Johnson et al., 2020;
2016; Gao et al., 2014; Grauman et al., 2023). There are also higher level reasoning tasks like
question answering (Li et al., 2024), and action quality assessment (Pirsiavash et al., 2014; Parmar
& Tran Morris, 2017).

Visual Difference Understanding Only a few prior works have considered video comparison in
actions. They mostly emphasize skill learning in similar categories to our benchmark, but their
methods tend to tackle single domains. One approach visualizes the user’s motion against a target
expert motion in video or in augmented reality (AR) (Trout, 2013; Motokawa & Saito, 2006; Han
et al., 2016; Kyan et al., 2015; Kurillo et al., 2008). Since interpreting discrepancies between mo-
tions is challenging, especially for novices, other works generate visualizations of differences (Liu
et al., 2023; Liao et al., 2023; Balakrishnan et al., 2015). In contrast, we summarize action differ-
ences in natural language, which enables direct and interpretable feedback. Also, our benchmark
covers many skill categories, encouraging the development of generalizable methods that do not
require domain-specific training data and methods. The most related work by Nagarajan & Torre-
sani (2024) focuses on coarse-grained step differences in instructional videos using question-answer
pairs. In contrast, our approach targets fine-grained action differences, such as a “deeper squat”,
which offers more detailed insights for skill learning. Additionally, our VidDiff method is zero-shot
for a benchmark spanning multiple skilled domains, while their method requires instruction tuning
data and is specialized to cooking and entertainment. Beyond inference-time comparison, a number
of important works in skill assessment leverage video pairs in training – the supervision signal is
commonly a binary of which video shows more skill Doughty et al. (2018; 2019); Pan et al. (2021);
Zhang et al. (2023a). In appendix E, we discuss all related datasets having video pairs, finding that
none have labels for fine-grained comparison while having a large scale.

Describing differences between images in language is an established task called ‘difference caption-
ing’ or ‘change captioning’ (Jhamtani & Berg-Kirkpatrick, 2018; Park et al., 2019; Kim et al., 2021;
Yao et al., 2022; Hu et al., 2023). LMM evaluation and instruct-tuning papers address image differ-
encing for pairs or small sets of images (Alayrac et al., 2022; Li et al., 2023; Achiam et al., 2023;
Jiang et al., 2024). The task of image set differencing with large sets was introduced in (Dunlap
et al., 2023). Our video differencing framework uses image differencing with LMMs as a subrou-
tine, however the task of video action differencing with natural language has not previously been
explored.

3 VIDEO ACTION DIFFERENCING

Video Action Differencing is a novel and challenging task, offering significant potential for ap-
plications in coaching, skill acquisition, and automated performance feedback. To facilitate the
development of models capable of handling such a task, we define two complementary task settings:
a closed setting, evaluated via multiple-choice format, and a more complex open setting, requiring
generation of action differences. Both are essential for advancing video understanding, especially in
contexts where precise feedback on actions is critical.

3
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3.1 TASK DEFINITION

The goal of video action differencing is to identify key differences between two videos where the
same action is performed, in a zero-shot setting. We first introduce the simpler closed-set version,
followed by the more difficult open-set variation.

Closed-Set Video Action Differencing: In the closed-set task, the input consists of an ac-
tion description string s, a video pair (vA, vB), and a list of k candidate difference statements
D = {d0, d1, . . . , dk�1}, such as “the jump is higher.” For each k, the model makes k predic-
tions P = {p0, p1, . . . , pk�1}, where each prediction is either ‘A’ (if the statement applies more to
vA) or ‘B’ (if it applies more to vB). This setup simulates real-world scenarios, such as coaching,
where specific differences of interest are already known. For benchmark purposes, the dataset only
includes instances where there is a clear ground-truth label (‘A’ or ‘B’) for each difference, which
makes evaluation both reliable and automatic.

Open-Set Video Action Differencing: In the open-set task, the input includes the action description
string s, a video pair (vA, vB), and an integer Ndiff. The model must generate at most Ndiff difference
statements D and their associated predictions P, which label the differences as ‘a’ (for video vA) or
‘b’ (for video vB). This setting is more challenging, as the model must not only identify relevant
differences but also generate those differences without any pre-defined options, closely mimicking
real-world conditions.

3.2 EVALUATION METRIC

Closed-Set Evaluation: In the closed-set task, the evaluation is straightforward: prediction accu-
racy is measured as the percentage of correct predictions, where 50% corresponds to random guess-
ing and 100% represents perfect performance. This automatic, unbiased metric provides a reliable
baseline for performance comparison.

Open-Set Evaluation: The open-set task introduces additional complexity due to the potential for
ambiguity—different annotators may disagree on which differences are most important. To ad-
dress this, we use the recall@Ndiff metric. Here, we match each ground-truth difference with a
predicted difference using a large language model (LLM), specifically GPT-4o. Only ‘positive dif-
ferences’—where the ground-truth label is either ‘a’ or ‘b’—are considered. The recall is calculated
as the number of correctly matched and predicted positive differences, divided by the total number
of positive differences. We set Ndiff to be 1.5 times the number of ground-truth differences in the
taxonomy, a reasonable limit given that the taxonomy was carefully designed by experts to cover the
most important skill-relevant differences. Further details on prompts and matching procedures are
provided in appendix F.2.

4 BENCHMARK DATASET AND ANNOTATIONS

The Video Action Differencing task presents a novel challenge in video understanding, requiring
precise and systematic comparison of subtle action differences. As no comprehensive benchmark
to evaluate this task exists, we introduce VidDiffBench – a comprehensive benchmark specifically
designed to test and advance the ability of models to detect fine-grained differences in complex
actions. Our benchmark consists of publicly available videos and our human-generated annotations
are freely available on HuggingFace Hub3. VidDiffBench covers a wide range of actions relevant
to skill learning and performance feedback, and is constructed to challenge models across varying
levels of difficulty, ensuring its relevance for long-term model development. Table 4 summarizes the
key dataset statistics.

4.1 VIDEO DATASETS

The video collection for VidDiffBench was designed to capture a diverse range of actions where
performance feedback is essential, ranging from simple exercises to complex professional tasks.
This diversity ensures that models are challenged not only on temporal alignment but also on the
subtlety and complexity of visual differences. Actions in VidDiffBench span multiple levels of

3https://huggingface.co/datasets/viddiff/VidDiffBench
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Category Source Dataset Activity Video Pair Difference Timestamp

Fitness HuMMan (Cai et al., 2022) 8 193 1,466 310
Ballsports Ego-Exo4d (Grauman et al., 2023) 4 100 1,013 595
Surgery JIGSAWS (Gao et al., 2014) 3 168 1,568 672
Music Ego-Exo4d (Grauman et al., 2023) 2 29 203 320
Diving FineDiving (Xu et al., 2022) 1 67 469 140

Total 18 557 4,719 2,075

Table 1: Summary of VidDiffBench statistics across categories and datasets. We show the number
of unique activities, the number of video pairs, annotations for differences, and timestamps.

difficulty—from the basic “hip rotations” in fitness exercises to the intricate “surgical knot tying.”
This wide coverage tests models across varying degrees of granularity and action complexity.

VidDiffBench features five categories: Fitness, Ballsports, Diving, Music, and Surgery.

• Fitness videos are simple, single-human exercises sourced from HuMMan (Cai et al.,
2022), characterized by clean consistent backgrounds, consistent camera viewing angles,
and consistent movement patterns.

• Ballsports includes basketball and soccer actions from Ego-Exo4D (Grauman et al., 2023),
recorded across various environments with diversity in background and action detail.

• Diving features high-level Olympic performances from the FineDiving dataset (Xu et al.,
2022), capturing subtle and complex movements in professional diving.

• Music contains guitar and piano exercises, sourced from Ego-Exo4D (Grauman et al.,
2023), focusing on detailed finger and hand movements.

• Surgery includes long, intricate procedures such as “knot tying” and “needle passing” from
the JIGSAWS dataset (Gao et al., 2014), testing the models on complex medical tasks.

Within each action, video pairs are randomly sampled to ensure a wide range of comparison diffi-
culty, from simple actions to more advanced tasks requiring fine-grained understanding.

4.2 VIDEO ACTION DIFFERENCE ANNOTATIONS

A critical innovation of VidDiffBench is its detailed human-annotated dataset, designed to address
two major challenges in action differencing: ambiguity in identifying relevant differences and cal-
ibration consistency among annotators. To tackle ambiguity, we introduce a structured difference
taxonomy for each action, ensuring clarity on what aspects are being compared. Then we assign
annotators to label video pairs with differences – to handle the calibration challenge we ensure la-
beling consistency by maintaining a consistent annotator identity within each action. Additionally,
we provide frame-level localization annotations of differences, enabling more detailed analysis. In
the following section, we describe these components in greater detail.

4.2.1 ANNOTATION TAXONOMY

For each action, we define a structured difference taxonomy – a list of key visual differences relevant
to the task. For instance, in the basketball jump shot, one difference might be “the ball is more
in front of the body.” Annotators assign labels to video pairs as follows: ‘A’ if the difference is
more pronounced in video A, ‘B’ if it’s more pronounced in video B, and ‘C’ if the difference is
negligible. By fixing this taxonomy, we address the ambiguity challenge – that different annotators
may not focus on the same differences. This allows for more objective and consistent comparisons.

We consulted domain experts to create the taxonomies for each action category. For Fitness and
Surgery, we worked with a personal trainer and an attending surgeon, respectively, to identify vi-
sually salient differences between novice and expert performers. For Ballsports and Music, we
extracted relevant differences from expert commentary in the Ego-Exo4D dataset using a large lan-
guage model (LLM). For Diving, we leveraged the FINA diving manual, processed by an LLM, to
identify key distinctions. Differences that were difficult to visually assess, such as “wrist snap” in
basketball, were excluded to maintain focus on visually discernible differences.

5
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This method resulted in 147 distinct difference descriptions, which are detailed in Appendix G.2.
This fixed taxonomy allows for precise evaluation of model performance across video pairs and
helps identify failure cases where models struggle with particular types of differences.

4.2.2 ANNOTATING ACTION DIFFERENCES

For each action aj and its corresponding differences, annotators reviewed video pairs (vA, vB) side-
by-side, with the ability to step through frames. Each difference was labeled as ‘A’ if it applied
more to video vA, ‘B’ if it applied more to vB , or ‘C’ if the difference was insignificant. Consis-
tent annotation was achieved by assigning a single annotator to each action, ensuring that models
are evaluated uniformly across all samples. This avoids the calibration challenge, that different
annotators may have different thresholds for significance.

To verify annotation quality, a second annotator reviewed 25% of the samples. We assessed dis-
agreements where one annotator marked ‘A’ and the other marked ‘B’, which occurred in only 2%
of cases, indicating low error rates. Annotators were provided with clear visual guidelines to en-
sure accurate and impartial labeling. On average, annotators spent three minutes per video pair to
evaluate five differences, balancing thoroughness and efficiency.

4.2.3 ANNOTATING DIFFERENCE LOCALIZATIONS

In addition to action differences, VidDiffBench provides localization annotations, pinpointing the
exact frames in each video where key differences occur. Since identifying localizing frames and
aligning them across videos is a key step in performing video action differencing, these annotations
enable analysis of model weaknesses, for example through ablation tests in our results section.

We define specific key points for each action, representing critical frames where important move-
ments occur. For example, in a squat, key points might include “knees start to bend” and “reaches
lowest position.” Differences are then linked to these key points, allowing for precise localization
annotations. Further details are provided in Appendix C.2.

4.3 DATASET SPLITS AND STATISTICS

Dataset Splits To account for varying levels of difficulty in VidDiffBench, we categorize actions
into easy, medium, and hard splits. GPT-4o was used to assign actions to these splits based on de-
scriptions, difference lists, and video lengths. The easy split includes simple movements like Fitness
exercises, while medium and hard splits contain more complex actions like Ballsports, Diving, Mu-
sic, and Surgery. This ensures that models are challenged across a range of difficulties, from basic
movements to subtle, fine-grained comparisons.

Dataset Statistics VidDiffBench includes 557 video pairs, 5,580 annotated differences, and 2,075
key point annotations across Fitness, Weightlifting, Ballsports, Surgery, Music, and Diving domains.
Video lengths range from a few seconds to several minutes, providing comprehensive coverage of
different action complexities. This diversity ensures that VidDiffBench is a robust benchmark for
testing and advancing models in fine-grained action comparison. Under the closed setting, the A/B
ratio is 0.493/0.507, and in the open setting, the A/B/C ration is 0.259/0.264/0.476.

5 VIDDIFF METHOD

We propose a three-stage framework, VidDiff, that effectively addresses the video action differenc-
ing task in a zero-shot setting. The method follows a structured pipeline consisting of three key
components: Difference Proposer, Frame Localizer, and Action Differencer. Each stage builds on
the previous one to progressively refine and validate the identified differences, as in Figure 2. The
method described is for the open setting. The method for the closed setting is the same, except the
LLM query for candidate differences in stage 1 is replaced with the ground truth differences.

1. Difference Proposer: The Difference Proposer module generates candidate differences for a
given action description s. It leverages the extensive knowledge embedded in large language models
(LLMs) to predict likely differences between the two videos. For example, given the description “A

6
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Figure 2: VidDiff Framework. The process begins with a user-supplied action description (e.g.,
“weighted squat”). The Difference Proposer generates potential differences using a large language
model (LLM). The Frame Localizer assigns frames where these differences are observable. Fi-
nally, the Action Differencer validates each difference using a vision-language model, determining
whether it applies more to video A or video B.

practice basketball jump shot”, the module might generate difference candidates such as “the athlete
jumps higher”. These difference statements, which are visually assessable, form the basis for further
analysis. The goal of this stage is to create a diverse set of meaningful and relevant comparisons.

2. Frame Localizer: The Frame Localizer module focuses on identifying the most relevant frames
in the video where the proposed differences can be observed. By retrieving the most salient segments
from both frames, we solve the key challenge of aligning precise temporal alignment, which makes
the next stage more effective. Using a large language model, we generate visual cue text strings to
guide the localization process. A pretrained CLIP model (Radford et al., 2021) is used to compute
frame similarity based on these retrieval strings. To improve temporal alignment, we employ a
likelihood model that ensures consistency with the sequence of sub-actions in the videos, solved
efficiently using the Viterbi algorithm (Kukleva et al., 2019).

3. Action Differencer: In the final stage, the Action Differencer module validates the proposed
differences using vision-language models (VLMs). Given the localized frames from both videos,
this module poses multiple-choice questions (derived from the generated difference candidates) to a
VLM, which determines whether each difference is more pronounced in vA, vB , or if it is indistin-
guishable. This stage transforms the problem into a structured multiple-choice task, ensuring that
each identified difference is rigorously evaluated based on visual evidence.

6 RESULTS

In this section, we present the results of evaluating large multimodal models (LMMs) and Vid-
Diff and on the challenging task of video action differencing, using both closed-set and open-set
benchmarks. Our experiments showcase the complexity of this task, particularly in capturing subtle,
fine-grained action differences across diverse video categories. We demonstrate that existing state-
of-the-art LMMs, such as GPT-4o and Gemini, struggle with these challenges, while our proposed
VidDiff method outperforms the baselines, especially in the close-set evaluation. Through detailed
error analysis and ablation studies, we uncover key factors that influence model performance, shed-
ding light on future directions for improving video-based model capabilities.

6.1 MAIN RESULTS

As described in Section 3.2, we evaluate our approach on both the closed-set and open-set tasks.
In the closed-set task, models are provided with predefined difference descriptions and must pre-
dict whether the difference applies to video A or B. In the open-set task, models are tasked with
both generating the difference description and making a prediction. These tasks are fundamental to
assessing models’ capabilities in fine-grained action comparison.

7
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For our experiments, we benchmark large multimodal models (LMMs) that have demonstrated
strong performance in video tasks. Specifically, we use top models from the Video-MME benchmark
(Fu et al., 2024): GPT-4o (Achiam et al., 2023), Gemini-1.5-Pro (Reid et al., 2024), and the leading
open-source models, Qwen2-VL-7B (Wang et al., 2024; Bai et al., 2023) and LLaVA-Video (Zhang
et al., 2024). Following model guidelines, we provide Gemini, Qwen, and VideoLLaVA with raw
video inputs, while for GPT-4o we feed frame samples, with text prompts explaining which frames
belong to which video. For categories with shorter, fine-grained actions (e.g., Fitness, Ballsports,
and Diving), we sample frames at 4-6 fps, while for longer actions (e.g., Music and Surgery), we
sample at 2 fps. Our method, VidDiff, is evaluated alongside these baselines, were the proposer
LLM is gpt-4o-2024-08-06, the localizer embedding model is CLIP ViT-bigG-14 and
frame, and frame differencer VLM is laion2b_s39b_b160k.

The results are results shown in Table 2 and Table 3.

Closed-Set Benchmark Performance The closed-set results, presented in Table 2, reveal that
video action differencing is a highly challenging task. While some models surpass the random-
guessing baseline of 50%, their improvements are modest, especially in the harder splits where
no model performs significantly better than chance. VidDiff achieves the best performance on the
medium split and comes in a close second on the easy split. Notably, Gemini outperforms GPT-
4o on the easy split, but struggles more on the medium split, while the open-source Qwen model
consistently lags behind.

Table 2: Results for closed setting (accuracy). Best scores in bold, second best underlined. Scores
are better than random, with statistical significance highlighted in gray. Significance is p-value<
0.05 on a binomial test.

Easy Medium Hard Avg
GPT-4o 58.8 53.0 50.1 54.0
Gemini-1.5-Pro 65.8 51.9 49.8 55.8
Claude-3.5-Sonnet 56.6 53.5 48.3 52.8
LLaVA-Video-7B 56.6 52.0 48.3 52.3
Qwen2VL-7B 49.0 52.6 49.6 50.4
VidDiff (ours) 65.3 55.4 50.4 57.0

Open-Set Benchmark Performance In the open-set task (Table 3), our method outperforms all
other models across most splits, except on the medium difficulty. Among the LMMs, GPT-4o per-
forms much better than Gemini. We analyze this gap by breaking down errors into two categories:
difference recall error, where the model fails to generate the ground-truth difference, and flipped pre-
diction error, where the generated difference is correct but the prediction (‘A’ or ‘B’) is incorrect.
Closed-set results show minimal flipped prediction error, suggesting that Gemini’s main weakness
is in difference recall. Specifically, on the easy split, Gemini’s recall error is 66% compared to
GPT-4o’s 30%. Despite generating a similar number of differences as GPT-4o, Gemini struggles to
identify the most important ones in our taxonomy, which hampers its performance. Success in the
open setting requires strong language capabilities, and this limitation is the bottleneck for handling
subtle differences. This explains why, when using the same language proposer, our model performs
similarly to GPT-4o.

Table 3: Results for open setting (recall@Ndiff). Best scores in bold, second best underlined.
Easy Medium Hard

GPT-4o 39.5 35.8 32.3
Gemini-1.5-Pro 22.7 12.9 21.2
Claude-3.5-Sonnet 31.1 32.5 31.0
LLaVA-Video-7B 7.8 9.0 8.5
Qwen2VL-7B 11.2 8.8 1.6
VidDiff (ours) 40.1 34.7 32.5
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6.2 ABLATION STUDIES

We conducted ablation studies to better understand the individual contributions of different compo-
nents within VidDiff. These studies focus on the Closed setting, isolating the effects of the frame
differencing and frame localization stages.

Frame Differencer Image Comparison In the final stage of VidDiff, the model performs visual
question answering (VQA) on frames retrieved from the two videos. To evaluate the effectiveness of
this process, we conducted a test using the ground-truth timestamp annotations from VidDiffBench.
The results (Table 4) show that even with perfect frame alignment, zero-shot VLMs struggle to
consistently detect subtle differences in images. Performance decreases significantly on the medium
and hard splits, which suggests room for improvement in zero-shot VLMs’ image understanding
capabilities.

Split Easy Medium Hard
Acc 78.6 61.2 51.0

Table 4: Ablation study results for
frame differencing VQA with ground
truth frames. Questions are 3-way
multiple-choice.

Frame Localization Design We also analyzed the per-
formance of the Frame Localizer in the closed-set case
for the easy split, using ground-truth difference proposals
to measure VQA accuracy. Table 5 shows that random
frame retrieval leads to significant performance drops,
while the addition of Viterbi-based decoding (which en-
forces a fixed action transcript) substantially improves ac-
curacy. The improvement suggests that temporal align-
ment plays a critical role in achieving robust video differ-
encing.

Method Accuracy
Oracle (GT timestamps) 78.6
Random 50.1
Ours w/o Viterbi Decoding 57.4
Ours 65.8

Table 5: Ablation on frame localization
using different retrieval techniques on
easy.

In summary, these ablation studies confirm that both ac-
curate frame localization and careful VQA processing are
essential to achieving strong performance in video action
differencing.

6.3 DIFFERENCE-LEVEL ERROR ANALYSIS

VidDiffBench’s predefined taxonomy allows us to ana-
lyze model performance on 147 specific types of action
differences, highlighting where models succeed and fail.
The results for each difference are detailed in Appendix
Table 14, and we perform a statistical significance test to
compare models against the random-guessing baseline.

We find that model performance is highly dependent on
the visual complexity of the action and the difficulty of localization. Successful examples (Figure 3,
left column) show high accuracy for simple, easily localized actions, such as “wider foot stance” in
hip rotations (83% accuracy) or “guiding the ball” in a basketball layup (90% accuracy). These cases
feature coarse differences that are apparent in most frames, or require only approximate localization.

Conversely, failure cases (Figure 3, right column) often involve precise localization or fine-grained
differences. For instance, identifying the angle of a diver’s entry into the water in a “10m dive”
requires frame-perfect alignment, and recognizing subtle changes in speed in “piano scales” is diffi-
cult when reasoning over multi-frames. These challenges highlight the limitations of current models
in handling fine-grained video analysis.

7 CONCLUSION

In this paper, we introduce the novel task of Video Action Differencing, aimed at comparing ac-
tions in videos. We define this task, compile a meticulously annotated benchmark, and propose a
zero-shot agent-based framework, VidDiff. Our findings demonstrate that this task is feasible with
current foundation models, although more challenging splits in the benchmark reveal significant op-
portunities for further methodological improvements. We believe that Video Action Differencing
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• Coarse visual difference   • No localization

• Coarse visual difference   • Easy localization

• Multi-frame reasoning   • Easy localization

• Moderately fine difference   • Difficult localization

“Plays the scales faster”. Accuracy: random


Success cases Failure cases
“Wider foot stance”. Accuracy: 80%


“Non-shooting hand guides the ball”. Accuracy: 90%

“The step out is faster”. Accuracy: 93%

“Body closer to 90° at water entry”. Accuracy: random


• Fine-grained difference over multiple frames • Easy localization

• Fine-grained differencing over multiple frames • Complex motion

“Instrument applies more force to the tissue”. Accuracy: random


Figure 3: Examples of success cases (left) with high accuracy, and failure cases (right). Successful
cases typically involve coarse differences, easy localization, or simple actions, while failure cases
often require precise localization or complex motion analysis.

represents a promising research direction with broad applications in fields such as skill acquisition,
sports analytics, and scientific research.

8 FUTURE WORK AND LIMITATIONS

While our work demonstrates the potential of Video Action Differencing, there are several areas for
future improvement. Enhancing frame retrieval techniques could improve performance on more
complex video splits. Additionally, training Vision-Language Models (VLMs) on comparison-
specific data may result in better identification of nuanced differences. Further, developing methods
tailored to specialized domains such as healthcare or education could unlock more targeted appli-
cations. Limitations in our current approach include reliance on general foundation models, which
may struggle with domain-specific tasks or fine-grained comparisons. We hope this work encour-
ages further exploration into broader video comparison methods and inspires advancements in these
areas.
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Lin, Lingling Tao, Luca Zappella, Benjamın Béjar, David D Yuh, et al. Jhu-isi gesture and skill
assessment working set (jigsaws): A surgical activity dataset for human motion modeling. In
MICCAI workshop: M2cai, volume 3, pp. 3, 2014.

Carly R Garrow, Karl-Friedrich Kowalewski, Linhong Li, Martin Wagner, Mona W Schmidt, Sandy
Engelhardt, Daniel A Hashimoto, Hannes G Kenngott, Sebastian Bodenstedt, Stefanie Speidel,
et al. Machine learning for surgical phase recognition: a systematic review. Annals of surgery,
273(4):684–693, 2021.

Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
Understanding skilled human activity from first-and third-person perspectives. arXiv preprint
arXiv:2311.18259, 2023.

Ping-Hsuan Han, Kuan-Wen Chen, Chen-Hsin Hsieh, Yu-Jie Huang, and Yi-Ping Hung. Ar-arm:
Augmented visualization for guiding arm movement in the first-person perspective. In Proceed-
ings of the 7th Augmented Human International Conference 2016, pp. 1–4, 2016.

Xinyue Hu, Lin Gu, Qi A. An, Mengliang Zhang, Liangchen Liu, Kazuma Kobayashi, Tatsuya
Harada, Ronald M. Summers, and Yingying Zhu. Expert knowledge-aware image difference
graph representation learning for difference-aware medical visual question answering. Proceed-
ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023.
URL https://api.semanticscholar.org/CorpusID:260125237.

Mostafa S Ibrahim, Srikanth Muralidharan, Zhiwei Deng, Arash Vahdat, and Greg Mori. A hierar-
chical deep temporal model for group activity recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1971–1980, 2016.

Harsh Jhamtani and Taylor Berg-Kirkpatrick. Learning to describe differences between pairs of
similar images. arXiv preprint arXiv:1808.10584, 2018.

Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku, Qian Liu, and Wenhu Chen. Mantis:
Interleaved multi-image instruction tuning, April 2024. URL https://tiger-ai-lab.
github.io/Blog/mantis.

David Johnson, Isabelle Dufour, Daniela Damian, and George Tzanetakis. Detecting pianist hand
posture mistakes for virtual piano tutoring. In Proceedings of the international computer music
conference, pp. 168–171, 2016.

David Johnson, Daniela Damian, and George Tzanetakis. Detecting hand posture in piano playing
using depth data. Computer Music Journal, 43(1):59–78, 2020.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into self-
improving pipelines. 2024.

Hoeseong Kim, Jongseok Kim, Hyungseok Lee, Hyun a Park, and Gunhee Kim. Viewpoint-agnostic
change captioning with cycle consistency. 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 2075–2084, 2021.

Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen Gall. Unsupervised learning of action
classes with continuous temporal embedding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12066–12074, 2019.

Gregorij Kurillo, Ruzena Bajcsy, Klara Nahrsted, and Oliver Kreylos. Immersive 3d environment for
remote collaboration and training of physical activities. In 2008 IEEE Virtual Reality Conference,
pp. 269–270. IEEE, 2008.

Matthew Kyan, Guoyu Sun, Haiyan Li, Ling Zhong, Paisarn Muneesawang, Nan Dong, Bruce Elder,
and Ling Guan. An approach to ballet dance training through ms kinect and visualization in a cave
virtual reality environment. ACM Transactions on Intelligent Systems and Technology (TIST), 6
(2):1–37, 2015.

12

https://api.semanticscholar.org/CorpusID:260125237
https://tiger-ai-lab.github.io/Blog/mantis
https://tiger-ai-lab.github.io/Blog/mantis


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan
Li, and Ziwei Liu. Mimic-it: Multi-modal in-context instruction tuning. arXiv preprint
arXiv:2306.05425, 2023.

Haopeng Li, Andong Deng, Qiuhong Ke, Jun Liu, Hossein Rahmani, Yulan Guo, Bernt Schiele,
and Chen Chen. Sports-qa: A large-scale video question answering benchmark for complex and
professional sports. arXiv preprint arXiv:2401.01505, 2024.

Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music condi-
tioned 3d dance generation with aist++. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 13401–13412, 2021a.

Yixuan Li, Lei Chen, Runyu He, Zhenzhi Wang, Gangshan Wu, and Limin Wang. Multisports: A
multi-person video dataset of spatio-temporally localized sports actions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 13536–13545, 2021b.

Chen-Chieh Liao, Dong-Hyun Hwang, Erwin Wu, and Hideki Koike. Ai coach: A motor skill
training system using motion discrepancy detection. In Proceedings of the Augmented Humans
International Conference 2023, pp. 179–189, 2023.

Ruofan Liu, Erwin Wu, Chen-Chieh Liao, Hayato Nishioka, Shinichi Furuya, and Hideki Koike.
Pianosyncar: Enhancing piano learning through visualizing synchronized hand pose discrepancies
in augmented reality. In 2023 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 859–868. IEEE, 2023.

Yanchao Liu, Xina Cheng, and Takeshi Ikenaga. Motion-aware and data-independent model based
multi-view 3d pose refinement for volleyball spike analysis. Multimedia Tools and Applications,
83(8):22995–23018, 2024.

Yi Liu, Limin Wang, Yali Wang, Xiao Ma, and Yu Qiao. Fineaction: A fine-grained video dataset
for temporal action localization. IEEE transactions on image processing, 31:6937–6950, 2022.

Yoichi Motokawa and Hideo Saito. Support system for guitar playing using augmented reality
display. In 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality, pp.
243–244. IEEE, 2006.

Tushar Nagarajan and Lorenzo Torresani. Step differences in instructional video. arXiv preprint
arXiv:2404.16222, 2024.

Ryoji Ogata, Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. Temporal distance matrices
for squat classification. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition workshops, pp. 0–0, 2019.

Jia-Hui Pan, Jibin Gao, and Wei-Shi Zheng. Adaptive action assessment. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(12):8779–8795, 2021.

Dong Huk Park, Trevor Darrell, and Anna Rohrbach. Robust change captioning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4624–4633, 2019.

Paritosh Parmar and Brendan Tran Morris. Learning to score olympic events. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pp. 20–28, 2017.

Paritosh Parmar, Amol Gharat, and Helge Rhodin. Domain knowledge-informed self-supervised
representations for workout form assessment. In European Conference on Computer Vision, pp.
105–123. Springer, 2022.

Hamed Pirsiavash, Carl Vondrick, and Antonio Torralba. Assessing the quality of actions. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-
12, 2014, Proceedings, Part VI 13, pp. 556–571. Springer, 2014.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large scale dataset for 3d
human activity analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1010–1019, 2016.

Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. Finegym: A hierarchical video dataset for fine-
grained action understanding. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 2616–2625, 2020.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Yansong Tang, Jinpeng Liu, Aoyang Liu, Bin Yang, Wenxun Dai, Yongming Rao, Jiwen Lu, Jie
Zhou, and Xiu Li. Flag3d: A 3d fitness activity dataset with language instruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22106–22117,
2023.

Vivek Anand Thoutam, Anugrah Srivastava, Tapas Badal, Vipul Kumar Mishra, GR Sinha, Aditi
Sakalle, Harshit Bhardwaj, and Manish Raj. Yoga pose estimation and feedback generation using
deep learning. Computational Intelligence and Neuroscience, 2022, 2022.

Josh Trout. Digital movement analysis in physical education. Journal of Physical Education, Recre-
ation & Dance, 84(7):47–50, 2013.

Eduardo Velloso, Andreas Bulling, and Hans Gellersen. Motionma: Motion modelling and analysis
by demonstration. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1309–1318, 2013.

Manisha Verma, Sudhakar Kumawat, Yuta Nakashima, and Shanmuganathan Raman. Yoga-82: a
new dataset for fine-grained classification of human poses. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pp. 1038–1039, 2020.

Kuan-Chieh Wang and Richard Zemel. Classifying nba offensive plays using neural networks. In
Proceedings of MIT Sloan sports analytics conference, volume 4, 2016.

Kuan-Chieh Wang, Zhenzhen Weng, Maria Xenochristou, João Pedro Araújo, Jeffrey Gu, Karen
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