Understanding Hallucinations in Diffusion Models
through Mode Interpolation

Sumukh K Aithal! Pratyush Maini'-> Zachary C. Lipton! J. Zico Kolter!
Carnegie Mellon University’ DatologyAI?
{saithal, pratyus2, zlipton, zkolter}@cs.cmu.edu

Abstract

Colloquially speaking, image generation models based upon diffusion processes are
frequently said to exhibit “hallucinations”—samples that could never occur in the
training data. But where do such hallucinations come from? In this paper, we study
a particular failure mode in diffusion models, which we term mode interpolation.
Specifically, we find that diffusion models smoothly “interpolate” between nearby
data modes in the training set to generate samples that are completely outside
the support of the original training distribution; this phenomenon leads diffusion
models to generate artifacts that never existed in real data (i.e., hallucinations). We
systematically study the reasons for, and the manifestation of this phenomenon.
Through experiments on 1D and 2D Gaussians, we show how a discontinuous loss
landscape in the diffusion model’s decoder leads to a region where any smooth
approximation will cause such hallucinations. Through experiments on artificial
datasets with various shapes, we show how hallucination leads to the generation
of combinations of shapes that never existed. We extend the validity of mode
interpolation in real-world datasets by explaining the unexpected generation of
images with additional or missing fingers similar to those produced by popular text-
to-image generative models. Finally, we show that diffusion models in fact know
when they go out of support and hallucinate. This is captured by the high variance
in the trajectory of the generated sample towards the final few backward sampling
steps. Using a simple metric to capture this variance, we can remove over 95% of
hallucinations at generation time while retaining 96% of in-support samples in the
synthetic datasets. We conclude our exploration by showing the implications of
such hallucination (and its removal) on the collapse (and stabilization) of recursive
training on synthetic data with experiments on MNIST and a 2D Gaussians dataset.
We release our code at https://github.com/locuslab/diffusion-model-hallucination.

1 Introduction

The high quality and diversity of images generated by diffusion models [15, 38] have made them
the de facto standard generative models across various tasks including video generation [6], image
inpainting [24], image super-resolution [11], data augmentation [44], and others. As a result of their
uptake, large volumes of synthetic data are rapidly proliferating on the internet. The next generation of
generative models will likely be exposed to many machine-generated instances during their training,
making it crucial to understand ways in which diffusion models fail to model the true underlying data
distribution. Like other generative model families, much research has been done to understand the
failure modes of diffusion models as well. Past works have identified, and attempted to explain and
remedy failures such as, training instabilities [17], memorization [7, 39] and inaccurate modeling of
objects such as hands and legs [4, 23, 28].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/locuslab/diffusion-model-hallucination

Training Generated Real data has various Diffusion models interpolate

Samples Samples non-overlapping ‘modes’ b/w neighboring modes
Shapes
10% Diffusion ~ 10° | 1
Model ‘ ‘
Diffusion 2102 % 02 |
=N |-k "] |
= N |
""""""""""""" . o Ml |
W T N 10 1
‘;/, i k [‘ ! Data \;alues : ' ’
d '
Hands

y Hallucination in Cause: Mode
Diffusion Models Interpolation

Figure 1: Hallucinations in Diffusion Models: Original Dataset (Left) & Generated Dataset (Right).
(Top) The original dataset consists of 64x64 images divided into three columns, each containing a
triangle, square, or pentagon with a 0.5 probability of the shape being present. Each shape appears at
most once per image. The generated dataset created using an unconditional DDPM includes some
samples (hallucinations) with multiple occurrences of the same shape that is unseen in the original
dataset. (Bottom) We also train a ADM [29] on a dataset of high-quality images of human hands and
show that the diffusion model generates hallucinated images of hands with additional fingers.

In this work, we formalize and study a particular failure mode of diffusion models that we call
hallucination—a phenomenon where diffusion models generate samples that lie completely out of the
support of the training distribution of the model. As a contemporary example, hallucinations manifest
in large generative models like StableDiffusion [33] in the form of hands with extra (or missing)
fingers or limbs. We begin our investigation with a surprising observation that an unconditional
diffusion model trained on a distribution of simple shapes, generates images with combinations of
shapes (or artifacts) that never existed in the original training distribution (Figure 1). While extensive
research on generative models has focused on the phenomenon of ‘mode collapse’ [48], which leads
to a loss of diversity in the sampled distribution, such studies often overlook the complex nature
of real data which typically comprise multiple distinct modes on a complex data manifold, and the
effects of their mutual interactions are thus neglected. In our work, we explain hallucinations by
introducing a novel phenomenon we term ‘mode interpolation’ that considers this mutual interaction.

To understand the cause of these hallucinations and their relationship to mode interpolation, we
construct simplified 1-d and 2-d mixture of Gaussian setups and train diffusion models on them
(§ 4). We observe that when the true data distribution occurs in disjoint modes, diffusion models
are unable to model a true approximation of the underlying distribution. This is because there
exist ‘step functions’ between different modes, but the score function learned by the DDPM is a
smooth approximation of the same, leading to interpolation between the nearest modes, even when
these interpolated values are entirely absent from the training data. Moreover, we observation that
hallucinated samples usually have very high variance towards the end of their trajectory during the
reverse diffusion process. Based on this observation, we use the trajectory variance during sampling
as a metric to detect hallucinations (§ 5), and show that diffusion models usually ‘know’ when they
hallucinate, allowing detection with sensitivity and specificity > 0.92 in our experiments.

We explore mode interpolation as a potential explanation for the common failure of large-scale
generative models, to accurately generate human hands. To demonstrate this concretely, we trained
a diffusion model on a dataset of high-quality hand images and observed that it generated hands
with additional fingers. We then applied our proposed metric to effectively detect these hallucinated
generations. Finally, we study the implications of this phenomenon in recursive generative model
retraining where we train generative models on their own output (§ 6). Recently, recursive training
and its downsides in model collapse have garnered a lot of attention in both language and diffusion
modeling literature [2, 3, 5, 9]. We observe that the proposed detection mechanism is able to mitigate
the model collapse during recursive training on 2D Grid of Gaussians, Shapes and MNIST dataset.

1.1 Hallucination in Diffusion Models

Before formalizing our notions and definitions in § 3, let us first consolidate the observation that
has been loosely labeled as ‘hallucination’ until now. To illustrate this phenomenon, we design a
synthetic dataset called SIMPLE SHAPES, and train a diffusion model to learn its distribution.

SIMPLE SHAPES Setup. Consider a dataset consisting of black and white images that contain three
shapes: triangle, square, and pentagon. Each image in the dataset is 64x64 pixels in size and divided
into three (implied) columns. The first, second, and third columns contain a triangle, square, and
pentagon, respectively. Each column has a 0.5 probability of containing the corresponding shape.
A representation of this setup is shown in Fig 1. It is important to note that in this data generation
pipeline, each shape is present at most once in each image.

Observation. We train an unconditional Denoising Diffusion Probabilistic Model (DDPM) [15] on
this toy dataset with 7" = 1000 timesteps. We observe that the DDPM generates a small fraction of
images that are never observed in the training dataset, nor a part of the ‘support’ of the data generation
pipeline. Specifically, the model generates some images that contain two occurrences of the same
shape, as shown in Fig 1. Furthermore, when the model is iteratively trained on its own sampled data,
the fraction of these occurrences increases significantly as the generation process progresses.

Inspired by these observations and their implications, we will perform experiments through the rest
of this work to formalize what we mean by hallucinations (§ 3), why do they occur (§ 4), how can we
mitigate them (§ 5), and what are their implications for real-world datasets (§ 6).

2 Related Work

Diffusion Models. Diffusion models [15, 38, 43] are a class of generative models characterized
by a forward process and a reverse process. In the forward process, noise is incrementally added to
an image over time steps, ultimately converting the data into noise. The reverse process learns to
denoise the image using a neural network essentially learning to convert noise to data. Diffusion
models have various interpretations. Score-based generative modeling [41, 42] and DDPMs [15]
are closely related, with [43] proposing a unified framework using stochastic differential equations
(SDEs) that generalizes both Score Matching with Langevin Dynamics (SMLD) [43] and DDPM.
In this framework, the forward process is a SDE with a continuous-time generalization instead of
discrete timesteps and the reverse process is also an SDE that can be solved using a numerical solver.
Another perspective is to view diffusion models as hierarchical Variational Autoencoders (VAEs)
[25]. Recent research [19] suggests that diffusion models learn the optimal transport map between
Gaussian distribution and data distribution. In this paper, we discover a surprising phenomenon in
diffusion which we coin mode interpolation.

Recursive Generative Model Training. Recent works [2, 3, 26, 27, 37] demonstrated that iteratively
training the generative models on their own output (i.e recursive training) leads to model collapse.
The model collapse can happen in two ways: either all samples collapse to a single mode (low
diversity) or the model generates very low fidelity, unrealistic images (low sample quality). This has
been shown in the visual domain with StyleGAN2 and diffusion models [2, 3], as well as in the text
domain with Large Language Models (LLMs) [5, 9, 37]. The current solution to mitigate this collapse
is to include a fraction of real data in the training loop at all the generations [2, 3]. Theoretical results
have also proved that super-quadratic number of synthetic samples are necessary to prevent model
collapse [10] in the absence of support from real data. A concurrent work [12] studied the setup of
data accumulation in recursive training where data from previous iterations of generative models
together with real data are accumulated over time. The authors conclude that data accumulation
(including real data) can avoid model collapse in various settings including language modeling and
image data.

Past works have only studied the collapse of the generative model to the mode of the existing
distribution. Through some controlled experiments, we study the interaction between different modes
(a mode can be a class) or novel modes being developed in the generative models. This provides
novel insights into the reasons behind the collapse of generative models during recursive training.

Failure Modes of Diffusion Models. One of the common failure modes of diffusion models is the
generation of images where the hands and legs appear distorted or deformed which is commonly
observed in Stable Diffusion [33] and Sora [6]. Diffusion models also fail to learn rare concepts [35]

which have less than 10k samples in the training set. Various other failure modes including ignoring
spatial relationships or confusing attributes have been discussed in [4, 23].

Hallucination in Language Models. Hallucination in LLMs [46, 47] is a huge barrier to the
deployment of LLMs in safety-critical systems. The LLMs may provide a factually incorrect output
or incorrectly follow the instructions or be logically wrong. A simple example is that LLMs can
generate new facts when asked to summarize a block of text (input-conflicting hallucination) [47].
Current hallucination mitigation techniques in LLMs include factual data enhancement [13], retrieval
augmentation [32] among other methods. Given the widespread adoption of image generation models,
we argue that hallucination in diffusion models must also be studied carefully to identify its causes
and mitigate it.

3 Definitions and Preliminaries

Let g(x) be the real data distribution. We define a forward process where Gaussian noise is iteratively
added at each timestep for a total of T timesteps. Let 2o ~ ¢(x), and x; be the perturbed (noisy)
sample after adding ¢ timesteps of noise. The noise schedule is defined by 8; € (0,1), which
represents the variance of Gaussian (added noise) at time ¢. For large enough 7', z7 ~ N (0, 1)

q(xe|xi—1) = N(V1 = Bexe—1, BeD); q(xur[x0) = Hq X¢|X¢—1) €))

In the forward diffusion process, we can directly sample x; at any time step using the closed form
q(x¢|x0) = N (x4; v/arxo, (1 — a;)I) where oy = 1 — B and &y = H;:l Q.

The reverse diffusion process aims to learn the process of denoising i.e, learning pg(z;—1|x;) using a
model (such as a neural network) with 6 as the learnable parameters.

T
po(X0:7) = p(x7) Hpe(Xt—1|Xt); po(xe—1]xe) = N(xe—1; po(xe, 1), Bo(x4,1)) (2)
=1

The mean can be derived as pg(x;,t) = \/% (Xt — %eg(xt, t)) where €y (x, t) is the predict
noise at timestep ¢ using the neural network. The original DDPM is trained to predict the noise ¢,
instead of z; and the variance X9 (x;, t) is fixed and time-dependent. Since then, improved methods
have learned the variance [29]. We define predicted z as %y = \/% (x¢ — VI = ageo(xe,t))

Connections to Score Based Generative Models. The score function s(z) of a distribution p(x) is
the gradient of the log probability density function i.e, V log p(z). The main premise of score-based
generative modeling is to learn the score function of the data distribution given the samples from
the same distribution. Once this score function is learned, annealed Langevin dynamics can be used
to sample from the distribution using the formula x; 1 < X; + nVx log p(x) + 1/2nz;, where 7 is
the step size and z; is sampled from standard normal. The score function can be obtained from the

diffusion model using the equation sg(xs,t) = Ej(L [45].

4 Understanding Mode Interpolation and Hallucination

In this section, we provide initial investigations into the central phenomenon of hallucinations in
diffusion models. Formally, we consider a hallucination to be a generation from the model that lies
entirely outside the support of the real data distribution (or, for distributions that theoretically have
full support, in a region with negligible probability). That is, the e-Hallucination set H(q)

H(q) = {z:q(z) < e}, 3)

where we typically take € = 0 or take € to be vanishingly small (well beyond numerical precision).
We similarly define the e-support set S¢(¢) to simply be the complement of the e-Hallucination set.

Mode interpolation occurs when a model generates samples that directly interpolate (in input space)
between two samples in the e-support set, such that the interpolation lies in the e-Hallucination set.
That, is for z,y € S(q) the model generates 6z + (1 — 0)y € H.(q). The main argument of this

100 (a) Samples: 25000 (b) Samples: 50000 (c) Samples: 25000 (d) Samples: 50000

107t

Density
=
<

|
@

10

1077 |

‘ HH‘H HH‘H ‘ |“ HH‘H ‘HH‘H ‘ d ‘H“ ‘“””|”HH‘ h ‘ h|” LIHHA ‘
1 2 3 1 2 3 1 2 3 4 1 2 3 4

Data Values —— Real Data —— Generated Data

Figure 2: Mode Interpolation in 1D GAUSSIAN. The red curve indicates the PDF of the true data
distribution ¢(z), which is a mixture of 3 Gaussians (notice that the y-axis is in log-scale). In blue,
we show a density histogram of the samples generated by a DDPM trained on varying number of
samples from the true data distribution. For each histogram, we sampled 100 million examples from
the diffusion model to observe the interpolated distribution. (a,b) show how the density of samples
generated in the interpolated region reduces with an increase in the number of samples from the
real distribution (used for training the DDPM). (¢,d) show the impact of moving one of the modes
(originally at = 3) to u = 4. We see how the density of samples generated in the region between
distant (but neighboring) modes is significantly lesser than that between nearby modes.

paper, shown through examples and numerical analysis of special cases, is that diffusion models
frequently exhibit mode interpolation between “nearby” modes in the data distributions, and such
interpolation leads to the generation of artifacts that did not exist in the original data (hallucinations).

4.1 1D GAUSSIAN Setup

We have already seen how hallucinations manifest in the SIMPLE SHAPES set-up (§ 1.1). To
investigate hallucinations via mode interpolation, we begin with a synthetic toy dataset characterized
by a mixture of 1D Gaussians given by: p(z) = N (u1,02) + N (u2,0%) + 2N (3, 0%). For our
initial experiments, we set 11 = 1, uo = 2, u3 = 3 and o0 = 0.05. We sample 50k training points
from this true distribution and train an unconditional DDPM using these samples with 7" = 1000
timesteps for 10, 000 epochs. Additional experimental details are present in the Appendix A.

We observe that diffusion models can generate samples that interpolate between the two nearest
modes of the mixture of Gaussians (Figure 2). To clearly observe the distribution of these interpolated
samples, we generated 100 million samples from the diffusion models. The probability of sampling
from the interpolated regions (regions outside the support of the real data density, outlined in red) is
non-zero, and decays with the distance from the modes. This region has nearly O probability mass of
the true distribution, and no samples in this region occurred in the data used to train the DDPM.

The rate of mode interpolation depends primarily on three factors: (i) Number of training data
points, (ii) variance of (and distance between) the distributions, and (iii) the number of sampling
timesteps (7'). As the number of training samples increases, we observe that the proportion of
interpolated samples decreases. In this setup, the variance of p(x) not only depends on ¢ but also
the distance between the modes i.e, |11 — po| and |us — p3|. We run another experiment with
w1 =1, us = 2 and pus = 4. In this case, we observe that the frequency of samples between p2 and
w3 is much lower than 17 and po. The number of interpolated samples also decreases as the distance
from the modes increases. The frequency of interpolated samples is also inversely proportional to the
number of timesteps 7'. Additional experiments with varying Gaussian counts are in Appendix C.

4.2 2D GAUSSIAN Grid

The reduction in density of mode interpolation as two modes with y = [2, 3] are moved apart calls
for closer inspection into when and how diffusion models choose to interpolate between nearby
modes. To investigate this, we make a toy dataset with a mixture of 25 Gaussians arranged in a
two-dimensional square grid. A total of 100,000 samples are present in the training set. Similar to
the 1D case, we observe interpolated samples between the two nearest modes of the Gaussian. Again,
these samples have close to zero probability if sampled from the original distribution (Figure 3).

(a) Real Data (b) Generated Data (c) Real Data (d) Generated Data

L - L L LRI S Sha. SR SRR . »,
1 : ; ; ' L e n
] e s v e o B Mo e o e L oo
= ' { :
L5 e . e e o & Hoolho il -k 8 » s @ IS
5 - . . . L] .
8 » . . . « & - o = ¢ -
-1 - : : ® .
* L) - . Al o .
-1 0 1 -1 0 1 -1 0 1
Data Values

Figure 3: Mode Interpolation in 2D GAUSSIAN. The dataset consists of a mixture of 25 Gaussians
arranged in a square grid, with a training set containing 100,000 samples. (a,b) The blue points
represent samples generated by a DDPM, with visible density between the nearest modes of the
original Gaussian mixture (in orange). These interpolated samples have near-zero probability in the
original distribution. (c,d) We trained a DDPM on a rotated version of the dataset where the modes
form a diamond shape. In this configuration, we see no interpolation along the x-axis, illustrating that
diffusion models interpolate between nearest modes.

Ground Truth Score Learned Score Function Xovs X (att =8)
100 100 3.0

Uncertamtkeq‘
50 50 o A= 1 2.5
25 25 =
e t=11
0 AN y o _ iy e t=16 .
NN = t=40
_25 —25 ~ t=240
t =440
—~50 ~50 t=640
t =840

-100 -100

Score
Predicted x0
~
o

—
o

1.0

Figure 4: Explaining Mode Interpolation via Learned Score Function. The left panel shows the
ground truth score function for a mixture of Gaussians across various timesteps, while the right panel
illustrates the score function learned by the neural network. While the true score function exhibits
sharp jumps that separate distinct modes (particularly in the initial time steps), the neural network
approximates a smoother version.

We note that mode interpolation only happens between the nearest neighbors. To demonstrate this
occurrence, we also train a DDPM on the rotated version of the dataset where the modes are arranged
in the shape of a diamond (Figure 3.c,d). The mode interpolation can be more clearly observed in this
setting. Interestingly, there appears to be no interpolation between modes along the x-axis, indicating
that only the nearest modes are being interpolated. We believe this empirical observation of mode
interpolation being confined to nearby modes will spark further investigation in future research.

4.3 What causes mode interpolation?

To understand the reason behind the observed mode interpolation, we analyze the score function
learned by the model. The model learns to predict €y which is related to the score function as
sg(xe,t) = — % We know the true score function for the given mixture of Gaussians, and we
can estimate the learned score function using the model’s output. In Figure 4, we plot the ground truth
score (left) and the learned score (right) across various timesteps. We observe that the neural network
learns a smooth approximation of the true score function, particularly around the regions between
disjoint modes of the distribution from timesteps ¢ = 0 to ¢ = 20. Notice that the true score function
has sharp jumps that separate two modes, however, the neural network can not learn such sharp
functions and smoothly approximates a tempered version of the same. We also plot the estimated
and observe a smooth approximation of the step function instead of the exact step function. There

is a region of uncertainty in the region between the two modes which leads to mode interpolation

Original Dataset Generated Dataset oo Detecting Hallucinations

i Hallucinated
| \ \ V. 1000 In-Support
in A 7

Wl L j 800

Ly ¥ ge 600

Density

ADM

: 400
ik Ii"||
0 LB]

0.002 0.003 0.004
Metric Value

—»‘ Hallucinations (extra fingers) ‘

Figure 5: Hands Dataset. We train a ADM on the Hands dataset with 5000 images (first column) and
show that the generated samples (second column) consists of hallucinated samples (additional/missing
fingers). We then apply our proposed metric to detect these hallucinated samples (third column).

i.e sampling in the regions between the two modes. As another sanity check, we used the true score
function in the reverse diffusion process for sampling (instead of the learned network). In this case,
we did not see any instance of mode interpolation. This explains why the diffusion model generates
samples between two modes of a Gaussian when it was never in the training distribution.

4.4 SIMPLE SHAPES

We now discuss the mode interpolation in the SIMPLE SHAPES dataset. In this context, the inter-
polation is not happening in the output space, but rather in the representation space. To investigate
this, we performed a t-SNE visualization of the outputs from the bottleneck layer of the U-Net used
in the Simple Shapes experiment, as shown in Figure 10 . Regions 1 and 3 in the representation
space semantically correspond to the images where squares are at the top and bottom of the image
respectively. At inference time, we can see a clear emergence of region 2 which is between regions 1
and 3 (interpolated), and contains two squares (hallucinations) at the top and bottom of the image.
This experiment concretely confirms that interpolation happens in representation space.

4.5 Mode Interpolation in Real World datasets: HANDS

We sought to demonstrate the occurrence of mode interpolation in a real-world setting. A well-
documented challenge with popular text-to-image generative models is their difficulty in accurately
generating human hands [28]. Despite extensive research in modern diffusion models, there is no
conclusive explanation for the missing/additional fingers generated by these models. One hypothesis
attributes this difficulty to the anatomical complexity of human hands, which involve numerous joints,
fingers, and diverse poses. Another hypothesis suggests that, although large datasets contain many
images of hands, these hands are often partially obscured (e.g., when a person is holding a cup) and
occupy only a small region of the overall image.

To investigate this further, we trained a diffusion model on a datasets with high-quality images of
human hands. The Hands dataset [1] consists of high resolution images of hands from 190 subjects of
various ages. Each subject’s right and left hands were photographed while opening and closing fingers
against a uniform white background. We sample 5000 images from the Hands dataset and train an
ADM [8] model on this dataset. We resize the images to 128x128 and use the same hyperparameters
as that of the FFHQ dataset [18]. We mention all the hyperparameters in the Appendix A. We observe
images with additional and missing fingers in the generated samples as seen in Figure 5. This is
a pretty surprising result as it is non-trivial to assume that diffusion model generates images with
additional fingers. Despite the potential for various failure modes, such as blurred hand images, these
issues were not observed in our results. In some ways, the occurrence of 6-8 fingers is analogous
to the occurrence of 2 squares in the SIMPLE SHAPES dataset. Thus, the presence of additional
fingers in these images (i.e hallucinated images) generated by the diffusion model demonstrates the
phenomenon of mode interpolation in real-world datasets. More example are shown in Fig. 20 & 21.

5 Diffusion Models know when they Hallucinate

Our previous sections established that hallucinations in diffusion models arise during sampling.
More specifically, intermediate samples land in regions between different modes where the score

1D Gaussian 2D Grid of Gaussian

—— Hallucinated 0'8 —— Hallucinated

o 2?2 —— In-Support o —— In-Support
X 2.0 = —0.9
T1s 10
1% 1.6 :% -1.1
g 1.4 g -12

1.2 -13

1.0 -14

40 36 32 28 24 20 16 12 8 4 0 20 18 16 14 12 10 8 6 4 2 0
Timesteps Timesteps

Figure 6: Variance of 2 Trajectories. The trajectory of the predicted % for hallucinated (shades of
red), and non-hallucinated samples (shades of blue). We see that non-hallucinated samples stabilize in
their prediction in the last 20 time steps for both 1D GAUSSIAN and 2D GAUSSIAN setups, whereas
the hallucinated samples have high variance in the predicted across time steps.

(a) 1D Gaussian (b) 2D Grid of Gaussians (c) Shapes Dataset
500
140 Hallucinated Hallucinated 100 Hallucinated
B In-Support s In-Support 80 In-Support
5,100 - -
= 2300 2 ¢
w w %)
]]]
o 8 fa o 40
20 100 20
Ik , ...
0.00 0.05 010 015 0.20 0.00 0.02 0.04 0.06 0.01 0.02 0.03 0.04
Metric Value Metric Value Metric Value

Figure 7: Histogram of Hallucination Metric. We depict the hallucination metric values for (a) 1D
GAUSSIAN, (b) 2D GAUSSIAN, and (c) SIMPLE SHAPES setups. The histograms show that trajectory
variance can capture a separation between hallucinated (orange) and non-hallucinated (blue) samples.

function has high uncertainty. Since neural networks find it hard to learn discrete ‘jumps’ between
different modes (or a perfect step function), they end up interpolating between different modes of the
distribution. This understanding suggests that the trajectory of the samples that generate hallucinations
must have high variance due to the highly steep score function in the region of uncertainty. We will
build upon this intuition to identify hallucinations in diffusion models.

5.1 Variance in the trajectory of prediction

We revisit the hallucinated samples in the 1D GAUSSIAN setup, and examine the trajectory of
the predicted value of oy during the reverse diffusion process. Figure 6 depicts the variance of
trajectories leading to hallucinations (red shades) and those generating samples within the original
data distribution (blue shades). For trajectories in shades of blue (non-hallucinations), the variance
remains low beyond timestep ¢ = 20. This indicates there is a minimal change in the predicted
during the final stages of reverse diffusion, signifying convergence. Conversely, the red trajectories
(hallucinations) exhibit instability in the value of 2 in the same region. This suggests a high overall
variance in these trajectories.

5.2 Metric for detecting hallucination

Based on the above observation about high variance in predicted values of x(in the reverse diffusion
process, we use the same observation as a metric to distinguish hallucinated and non-hallucinated
(in-support) samples. The intuition behind the metric is to capture the variance in the trajectory of 2.
Let 73 be the starting timestep and 75 be the end timestep. Mathematically, the metric can be defined
as follows:

Hal(z) = — TZ (0 ~ :f0<t>)2 “
T2 —Th| =

where 2, (") represents the predicted values of the final image at different time steps (¢), and 7o is
the mean of these predictions over the same time steps. We now utilize this metric to analyze the
histogram values of each sample from the three experimental setups studied thus far. This metric can
be implemented in two ways. One approach is to store £ during the reverse diffusion process and
then compute the variance. Alternatively, we explore a method where forward diffusion is performed
for k steps between T3 and 15, predicting & at each step, and then computing the variance.

SIMPLE SHAPES. Inthe SIMPLE SHAPES setup, a sample is labeled as hallucinated if more than
one shape of the same type occurs in the generated image. We generate 7500 images using a DDPM
and study the separation between hallucinated and non-hallucinated images. We find that the reverse
diffusion process of 7' = 1000 steps is rather long. Generally, the image stabilizes around 7" = 700
(as shown in Appendix 18). Therefore, we use the time range between 1" = 850 and 7" = 700 in the
reverse diffusion process to compute the variance of the predicted sample value. Using this process,
we can filter out 95% of the hallucinated samples while retaining 95% of the in-support samples. The
histogram for the values is presented in Figure 7.

1D GAUSSIAN. Inthe 1D-Gaussian setup, we label any examples as a hallucination if they have
negligible probability (for instance values greater than 60 from the mean under normal) under the
real data distribution (refer to Figure 2). We measure the variance of the last 15 steps of the 2y
during the reverse diffusion process, and plot the histogram of values of the same in Figure 7. We can
filter out 95 % of the hallucinated samples while retaining 98% of the in-support samples.

2D GAUSSIAN. Next, we discuss our investigation on synthetic datasets with experiments on the
2D GAUSSIAN dataset. Similar to the 1D GAUSSIAN setup, we once again measure the prediction
variance of the last 20 steps of the reverse diffusion process. We compute the variance per dimension
and then take the mean across dimensions to . With this metric, we can filter out 96% of the
hallucinated samples while retaining 95% of the in-support samples.

HANDS. Finally, we conclude our investigation with experiments on the Hands dataset. To analyze
the effectiveness of the proposed metric, we manually label 130 images from the generated samples
as hallucinated vs. in-support. This includes 88 images with 5 fingers and 40 images with missing/
additional fingers i.e. hallucinated samples. The histogram (in Figure 5) shows that the proposed
metric can indeed detect these hallucinations to a reasonable degree. In our experiments, we observe
that we can eliminate 80% of the hallucinated samples while retaining 81% of the in-support
samples. The trajectories of the hallucinated and in-support samples are shown in Figures 22 and 23,
respectively. A higher variance in the trajectory of Z is clearly observed in the hallucinated samples
compared to the in-support samples. We note that the detection is a hard problem and the fact that
the method transfers to the real world is proof of the relationship between mode interpolation and
hallucination in real-world data.

6 Implications on Recursive Model Training

The internet is increasingly populated by more and more synthetic data (data synthesized from
generative models). It is likely that future generative models will be exposed to large volumes of
machine-generated data during their training [26, 27]. Recursive training on synthetic data leads to
mode collapse [2, 9] and exacerbates data biases. In this section, we study the impact of hallucinations
within the context of recursive generative model training. We adopt the standard synthetic-only setup
similar to [2] where we only use synthetic data from the current generative model in training the next
generation of generative models. The first generation of generative model is trained on real data and
samples from this generative model is used to train the second generation (and so on).

Most of the previous works [3] studied the model collapse to a single mode. In this work, we
emphasize that the interaction between modes and mode interpolation plays a massive role when
training generative models on their own output.

2D GAUSSIAN. When we recursively train a DDPM on its own generated data using a square grid
of 2D Gaussians (with 7" = 500), the hallucinated samples significantly influence the learning of the
next generation’s distribution (see Figure 9). The frequency of the interpolated samples increases as
we further train on the learned distribution that consists of interpolated samples. Figure 9d shows
samples from Generation 20, where it is evident that the modes have almost collapsed into a single
mode, differing greatly from the original data distribution.

(a) 2D Grid of Gaussians

(b) Shapes Dataset (c) MNIST

—e— Trajectory Variance Filtering — i —e— Trajectory Variance Filtering /
—=— Random Filtering

N
o

—=— Trajectory Variance Filtering /
—=— Random Filtering /

N
S)

—=— Random Filtering

~
=)

-

o
-
«

=
=)
\
1§
=
5]

°
o
\

% of Hallucinated Samples
% of Hallucinated Samples

o
=)

2 3 4 5 6 3

1 2 4 5 1
Generation of Recursive Training Generation of Recursive Training

3

2 4 5
Generation of Recursive Training

Figure 8: Mitigating Hallucinations with Pre-emptive Detection. We filter out hallucinated samples
using the metric from § 5 before training on samples from the previous generation of the diffusion
model. In the case of (a) 2D GAUSSIAN, (b) SIMPLE SHAPES, where we have clear definitions
of hallucination (mode interpolation, and new shape combinations) we see the effectiveness of our
variance-based filtering method in minimizing hallucinations across generations compared to random
filtering. In the case of (c) MNIST dataset, we measure the FID of subsequent generations and notice
that pre-emptive filtering of hallucinated samples makes the recursive model collapse slower.

SIMPLE SHAPES. We define a hallucinated sample as one that contains at least two shapes of the
same type (which is never seen in the training distribution). We observe the presence of around 5%
hallucinated samples when trained on the real data. We note that the ratio of hallucinated samples
increases exponentially as the we iteratively train the diffusion model on its own data. This is expected
as the diffusion model progressively learns from a distribution increasingly dominated by hallucinated
images, compounding the effect in subsequent generations.

MNIST. We also run the recursive model training on the MNIST dataset [22]. At every generation,
we generate 65k images and sample 60k images using the filtering mechanism. For each generation,
we train a class conditional DDPM with Classifier-Free Guidance [16] with T' = 500 for 50 epochs.
To evaluate the quality of the generated images, we compute the FID [14] using a LeNet [22] trained
on MNIST instead of Inception backbone as MNIST is not a natural image dataset. In Figure 8,
we clearly see that the proposed metric based on the variance of the trajectory outperforms the
random filtering method across all generations (lower FID is better). We also plot the Precision and
Recall [36] curves (in the Appendix Figure 18) where we observe that our filtering mechanism selects
high quality samples without much loss in diversity.

Mitigating the curse of recursion with pre-emptive detection of hallucinations. Based on the
metric developed in § 5, we analyze the efficacy of the proposed metric in filtering out the hallucinated
samples for the next generation of training. After training each generation of the generative model,
we sample k images more than size of the training data and then filter out hallucinated samples based
on the metric. Figure 8 shows the results on 2D Grid of Gaussians, SIMPLE SHAPES and MNIST
dataset. We also compare with random filtering where we randomly sample points for the next
generation. The variance-based filtering method easily outperforms the random sampling method
in all the generations. We see the effectiveness of the proposed metric in minimizing the rate of
hallucinations across generations and thus model collapse to a certain extent. This holds true for all
the three datasets we have studied in this work.

7 Discussion

In this work, we performed an in-depth study to formulate and understand hallucination in diffusion
models, focusing on the phenomenon of mode interpolation. We analyzed this phenomenon in four
different settings: 1D Gaussian, 2D Grid of Gaussians, Shapes and Hands datasets, and saw how
diffusion models learn smoothed approximations of disjoint score functions, leading to mode interpo-
lation. Based on our analysis, we developed a metric to identify hallucinated samples effectively and
explored the implications of hallucination in the context of recursive generative model training. This
study is the first to propose mode interpolation as a potential hypothesis for explaining the generation
of additional fingers in large-scale generative models. We hope that future research will build upon
this hypothesis and develop methods to mitigate these issues in generative models. We hope our work
inspires future research in understanding and mitigating hallucination in diffusion models.

10

Acknowledgements

PM is supported by funding from the DARPA GARD program. ZL gratefully acknowledges the NSF
(FAI 2040929 and 11S2211955), UPMC, Highmark Health, Abridge, Ford Research, Mozilla, the
PwC Center, Amazon Al, JP Morgan Chase, the Block Center, the Center for Machine Learning
and Health, and the CMU Software Engineering Institute (SEI) via Department of Defense contract
FA8702-15-D-0002, for their generous support of ACMI Lab’s research. ZK gratefully acknowledges
support from the Bosch Center for Artificial Intelligence to support work in his lab as a whole.

References

[1] M. Afifi. 11k hands: gender recognition and biometric identification using a large dataset of
hand images. Multimedia Tools and Applications, 2019.

[2] S. Alemohammad, J. Casco-Rodriguez, L. Luzi, A. I. Humayun, H. Babaei, D. LeJeune,
A. Siahkoohi, and R. G. Baraniuk. Self-consuming generative models go mad. arXiv preprint
arXiv:2307.01850, 2023.

[3] Q. Bertrand, A. J. Bose, A. Duplessis, M. Jiralerspong, and G. Gidel. On the stability of iterative
retraining of generative models on their own data. arXiv preprint arXiv:2310.00429, 2023.

[4] A. Borji. Qualitative failures of image generation models and their application in detecting
deepfakes. Image and Vision Computing, 137:104771, 2023.

[5] M. Briesch, D. Sobania, and F. Rothlauf. Large language models suffer from their own output:
An analysis of the self-consuming training loop. arXiv preprint arXiv:2311.16822, 2023.

[6] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman,
E. Luhman, C. Ng, R. Wang, and A. Ramesh. Video generation models as world simulators.
2024.

[7] N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer, B. Balle, D. Ippolito,
and E. Wallace. Extracting training data from diffusion models. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 5253-5270, 2023.

[8] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780-8794, 2021.

[9] E. Dohmatob, Y. Feng, P. Yang, F. Charton, and J. Kempe. A tale of tails: Model collapse as a
change of scaling laws. arXiv preprint arXiv:2402.07043, 2024.

[10] S. Fu, S. Zhang, Y. Wang, X. Tian, and D. Tao. Towards theoretical understandings of self-
consuming generative models. arXiv preprint arXiv:2402.11778, 2024.

[11] S. Gao, X. Liu, B. Zeng, S. Xu, Y. Li, X. Luo, J. Liu, X. Zhen, and B. Zhang. Implicit
diffusion models for continuous super-resolution. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10021-10030, 2023.

[12] M. Gerstgrasser, R. Schaeffer, A. Dey, R. Rafailov, H. Sleight, J. Hughes, T. Korbak, R. Agrawal,
D. Pai, A. Gromoyv, et al. Is model collapse inevitable? breaking the curse of recursion by
accumulating real and synthetic data. arXiv preprint arXiv:2404.01413, 2024.

[13] S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. Del Giorno, S. Gopi, M. Javaheripi,
P. Kauffmann, G. de Rosa, O. Saarikivi, et al. Textbooks are all you need. arXiv preprint
arXiv:2306.11644, 2023.

[14] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

[15] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

11

[16] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[17] Z. Huang, P. Zhou, S. Yan, and L. Lin. Scalelong: Towards more stable training of diffusion
model via scaling network long skip connection. Advances in Neural Information Processing
Systems, 36:70376-70401, 2023.

[18] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversar-
ial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4401-4410, 2019.

[19] V. Khrulkov, G. Ryzhakov, A. Chertkov, and I. Oseledets. Understanding ddpm latent codes
through optimal transport. arXiv preprint arXiv:2202.07477, 2022.

[20] D. Kingma, T. Salimans, B. Poole, and J. Ho. Variational diffusion models. Advances in neural
information processing systems, 34:21696-21707, 2021.

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[23] Q. Liu, A. Kortylewski, Y. Bai, S. Bai, and A. Yuille. Intriguing properties of text-guided
diffusion models. arXiv preprint arXiv:2306.00974, 2023.

[24] A.Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11461-11471, 2022.

[25] C. Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

[26] G. Martinez, L. Watson, P. Reviriego, J. A. Herndndez, M. Juarez, and R. Sarkar. Combining
generative artificial intelligence (ai) and the internet: Heading towards evolution or degradation?
arXiv preprint arXiv:2303.01255, 2023.

[27] G. Martinez, L. Watson, P. Reviriego, J. A. Hernandez, M. Juarez, and R. Sarkar. Towards
understanding the interplay of generative artificial intelligence and the internet. In International
Workshop on Epistemic Uncertainty in Artificial Intelligence, pages 59—73. Springer, 2023.

[28] S. Narasimhaswamy, U. Bhattacharya, X. Chen, I. Dasgupta, S. Mitra, and M. Hoai. Handif-
fuser: Text-to-image generation with realistic hand appearances. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[29] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional conference on machine learning, pages 8162-8171. PMLR, 2021.

[30] M. Ning, E. Sangineto, A. Porrello, S. Calderara, and R. Cucchiara. Input perturbation reduces
exposure bias in diffusion models. In International Conference on Machine Learning, pages
26245-26265. PMLR, 2023.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[32] O.Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham.
In-context retrieval-augmented language models. Transactions of the Association for Computa-
tional Linguistics, 11:1316—-1331, 2023.

[33] R.Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models, 2021.

12

[34] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention—-MICCAI 2015:
18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part Il 18,
pages 234-241. Springer, 2015.

[35] D. Samuel, R. Ben-Ari, S. Raviv, N. Darshan, and G. Chechik. Generating images of rare
concepts using pre-trained diffusion models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 4695-4703, 2024.

[36] K. Shmelkov, C. Schmid, and K. Alahari. How good is my gan? In Proceedings of the European
conference on computer vision (ECCV), pages 213-229, 2018.

[37] 1. Shumailov, Z. Shumaylov, Y. Zhao, Y. Gal, N. Papernot, and R. Anderson. The curse of
recursion: Training on generated data makes models forget. arXiv preprint arXiv:2305.17493,
2023.

[38] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pages
2256-2265. PMLR, 2015.

[39] G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein. Diffusion art or digital
forgery? investigating data replication in diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6048—-6058, 2023.

[40] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2021.

[41] Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum likelihood training of score-based
diffusion models. Advances in neural information processing systems, 34:1415-1428, 2021.

[42] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

[43] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020.

[44] B. Trabucco, K. Doherty, M. Gurinas, and R. Salakhutdinov. Effective data augmentation with
diffusion models. arXiv preprint arXiv:2302.07944, 2023.

[45] L. Weng. What are diffusion models? lilianweng.github.io, Jul 2021.

[46] H. Ye, T. Liu, A. Zhang, W. Hua, and W. Jia. Cognitive mirage: A review of hallucinations in
large language models. arXiv preprint arXiv:2309.06794, 2023.

[47] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et al.
Siren’s song in the ai ocean: a survey on hallucination in large language models. arXiv preprint
arXiv:2309.01219, 2023.

[48] Z.Zhang, M. Li, and J. Yu. On the convergence and mode collapse of gan. In SIGGRAPH Asia
2018 Technical Briefs, pages 1-4. 2018.

13

A Additional Experimental Details

A.1 Gaussian experiments

We run all our experiments for 10, 000 epochs with batch size of 10, 000. A linear noise schedule is
used with starting noise 5y = 0.001 and the final noise 31 = 0.2. We use 7" = 1000 by default in
our experiments (unless specified otherwise). The neural network (NN) is trained to predict the noise
(similar to the original DDPM [15] implementation) and we use a Mean Squared Error loss to train
the model. The input and output of the NN have the same shape (in this case, 1 for 1D Gaussian and
2 for the 2D Gaussian). The NN architecture starts with an initial fully connected layer, followed by
three blocks and then output fully connected layer. Each block includes normalization, a LeakyReLLU
activation, and two fully connected layers. Finally, the output is normalized and transformed back to
the input dimension with a fully connected layer. Adam [21] with learning rate of 0.001 is used as
the optimizer. We build our codebase on top of ' for the synthetic toy experiments.

Metric: We use t = 0 to ¢ = 15 (last 15 steps in the reverse diffusion process) to compute the
variance of the trajectory in the case of Gaussian 1D and ¢ = 0 to ¢ = 8 in the case of 2D Gaussian
Grid.

A.2 Shapes

The generated images are grayscale images of size 64 x 64. A total of 5000 images is generated
for training the diffusion model. We use a U-Net [34] architecture to model the reverse diffusion
process. We use a cosine noise scheduler similar to ADM [29]. We derive our implementation based
on ? for training the DDPM. We train an unconditonal DDPM on the dataset with 7' = 1000 while
training and 250 steps during sampling to reduce computation cost [40].

A.3 MNIST

MNIST [22] consists of 60,000 grayscale images of size (28, 28). We use classifier-free guidance
[16] to train a conditional DDPM on MNIST with 7" = 500. For each generation, we train for a total
of 50 epochs with a batch size of 512 shared across 4 GPUs. Adam [21] optimizer with learning rate
of le-4 is used to train the network. We use a U-Net [34] with 256 feature dimension to model the
reverse diffusion process. For the variance filtering mechanism in Section 6, we use 10 timesteps
between ¢ = 100 to ¢ = 150 to compute the variance of the trajectory. In the case of MNIST, we do
post-hoc filtering just using the samples. This means that we add ¢ timesteps of noise, then compute
2o and then use this to compute variance.

Our implementations of the DDPM model is based on PyTorch [31].

Compute: We run all our experiments of Nvidia RTX 2080 Ti and Nvidia A6000 GPUs. The training
and sampling for the Gaussian experiments takes less than 3 hours on single 2080Ti GPU. Sampling
100 million datapoints takes around 3-4 hours. Running DDPM on the shapes dataset takes around
6-7 hours with 4 2080Ti GPUs. The recursive generative training on MNIST takes about 16 hours
with 4 A6000 GPUs for 5 generations.

A4 HANDS

ADM refers to Ablated Diffusion model as defined in [8]. We trained for a total of 200k iterations
with batch size 16 and a learning rate of le-4. The diffusion process was trained with 1000 timesteps
(T' = 1000) with a cosine noise schedule. The U-Net comprised 256 channels, with an attention
mechanism incorporating 64 channels per head and 3 residual blocks. For sampling, we use 500
timesteps with respacing. We base our implementation and hyperparameters on the official DDPM-IP
[30] repository.

"https://github.com/tqch/ddpm-torch
*https://github.com/V Sehwag/minimal-diffusion

14

(a) Generation 1 (b) Generation 5 (c) Generation 10 (d) Generation 20

T T R R o
@ 1 3
E - » » - - f = 3
©] i
> 0 ¢ TR TR s ¥ # i
8
8 . [- - - s &l

P - » PR .

-1 0 1 -1 0 1 -1 0 1 -1 0 1

Data Values

Figure 9: Recursive Training on 2D GAUSSIAN. We investigate the impact of recursively training
a DDPM on its own generated data using a square grid of 2D Gaussians with 7' = 500 diffusion
steps. In each generation, we sample 100k examples, and train the subsequent generation on these
data points. As the training progresses through multiple generations, the hallucinated (interpolated)
samples significantly influence the learning of the next generation’s distribution.

B Limitations and Broader Impact

Hallucinations in LLMs have been studied extensively [46, 47] given the widespread use of these
systems in various contexts. This work investigates hallucinations in diffusion models. In current
generative models, these hallucinations could be used to more easily identify machine-generated
images. Developing a metric to identify these hallucinations and remove them could make the
detection of generated images much harder. However, we argue that understanding hallucinations in
diffusion models is crucial as it can help shed light on their failure modes and thereby enable better
control in practical applications.

In current text-to-image generative models, the poorly modeled “hands” are a clear giveaway in
identification of Al generated images. The detection of such Al-generated content would be made
much more difficult if these hallucinations were identified and removed from the generated images.
While our work builds an understanding of hallucinations, and allows us to also detect them, we
believe that future generations of models would have become more robust to such hallucinations by
virtue of training on more data independent of this work.

Concerning the limitations of the proposed hallucination metric, the selection of the right timesteps
is key to be able to detect hallucinations. More analysis on what region of trajectory leads to
hallucinations would be useful across various schedules and sampling algorithms. We believe
these are great areas for future work to explore. Additional explorations of mode interpolation and
hallucinations in real-world datasets would be useful to the community.

C Additional Experiments and Figures

We also study Variational Diffusion Models (VDM) [20] to verify the generality of our findings. Our
results show that the over-smoothed score function phenomenon persists in VDM, supporting the
hypothesis that this issue is not specific to DDPM. We train a simple VDM on the 2D Gaussian with
10k samples. We follow the setup and hyperparameters in the official implementation *. We train
both continuous and discrete variants of VDM on the 2D Gaussian dataset. The main observation
is that VDM mitigates the hallucinations significantly especially with more training data but the
phenomenon of mode interpolation still exists. In this figure, we also show the impact of the number
of sampling steps on the count of hallucinations. We clearly see that increasing the number of
sampling steps reduces the number of hallucinated samples. This can be clearly observed in Figure
11 (first two columns) where the count of hallucinations decreases mode interpolation.

The frequency of mode interpolation is inversely proportional to the number of training samples.
We train the unconditional diffusion model with 25k, 50k, 100k and 500k samples from the true
distribution.

3https://github.com/google-research/vdm

15

Dimension 2

SNE Region 1

& 1Square
" 2 Square
R 0" *Pe Region 1
o * * 0“’. Region 2
Q.‘. S * Region 3
* % o .
*090
-i "‘ *® 0’0 R 2
RO egion
. L 4 0
- $
kad ML e
*
o"’o’ 4 ' ‘
wie Y S Region 3
\d ’ egion
00 o, 0% %0 * 9

* %%, 3 "
0 AR 4 o e
3".’&00”
g o) sis

IR
&%

“~»

0

Dimension 1

Figure 10: Interpolation in Representation Space. We analyze the bottleneck of the U-Net to
demonstrate mode interpolation in the Shapes dataset. We clearly see that Region 2 (which consists
of 2 squares) is interpolating between Region 1 (one square in the bottom half) and Region 3 (one
square in the top half).

Data Values

T=o;T' =250 T=ow;T' =500 T =1000; T' = 250 Imbalanced Sampling with True Score Function

l

TR T R S SN EREY RITERT JRUER T RN TR TR R R o 100

0

‘ ‘
,.“,’-0
o

. l
ot

* }H

il

» ® ooy e @ @ » L 2 *« ® -9 » * *
] & o B e - . o L e L 2 >
S 4 LR S BN R LN RO * @] » »

L TR SRRE BT T SR SR JECTR TR N SRR S JEER S
-1 0 1 -1 0 1 -1 0 1
Data Values

5
Data Va\ues

Figure 11: Variational Diffusion Model. We train a Variational Diffusion Model (VDM) on the 2D
Gaussian Data with 10k samples (first three columns). 7" denotes the timesteps during training and
T’ denotes the sampling timesteps. T' = oo refers to the continuous time variant. The fourth column
shows a DDPM trained on a 2D Gaussian with imbalanced modes. The boxes indicate the modes
with less data. The last column shows result of sampling from the true score function.

. Figure 12 shows the histogram of samples generated by the diffusion model (with 10 million

samples) when the model is trained on the distribution with gy =1, o = 2, 3 = 3.

. Figure 13 shows the histogram of samples generated by the diffusion model (with 10 million

samples) when the model is trained on the distribution with py = 1, o = 2, ug = 4.

. We also experiment with mixture of 2 Gaussians in Figure 14 and 4 Gaussians in Figure 15.
4. Figure 16 shows the FID, precision and recall curves for MNIST across generations.
. Figure 17 shows additional examples of hallucinated images generated by the diffusion

model.

. Figure 18 shows the 'y across various timesteps for a hallucinated image. The number on

top of the image indicates the timestep.

. Figure 19 shows the % across various timesteps for a image in-support of the distribution.

The number on top of the image indicates the timestep.

16

(c) Samples: 100000 (d) Samples: 500000

(a) Samples: 25000 (b) Samples: 50000

10°

>

£102

e

(0]

[a)

i, i pnm*reyruerm
1 2 3 1 2 3 1 2 3 1 2 3

—— Real Data —— Generated Data

Data Values

Figure 12: Mixture of 3 Gaussians with 1 = [1, 2, 3]. We vary the number of training samples and
observe that mode interpolation decreases with increase in the size of training data

(c) Samples: 100000 (d) Samples: 500000

(a) Samples: 25000 (b) Samples: 50000

10!

107t

>

ES

21073

o]

o

il |l Il oo
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

—— Real Data —— Generated Data

Data Values
[1,2,4]. We vary the number of training samples and

Figure 13: Mixture of 3 Gaussians with y =
observe that mode interpolation decreases with increase in the size of training data.

b) Samples: 25000 c) Samples: 50000 (d) Samples: 50000

il WWMWHW WWHWWHM

—— Real Data

100 (a) Samples: 25000

10!

I
w

10

Density

@

107

7

10
—— Generated Data

Data Values

Figure 14: Mixture of 2 1D Gaussians with varying number of training samples. (a) and (b) have the
same number of training samples but with two different seeds. Similarly for (c) and (d).

(a) Samples: 25000 (b) Samples: 25000

2 4 2 4 0.0 0.2 0.4 06 08 10 0.0 02 0.4 0.6 08 10

—— Real Data —— Generated Data

10t

10!

Density
=
<

I
@

10

1077

Data Values

Figure 15: Mixture of 4 1D Gaussians (1 = [1, 2, 4, 5]) with varying number of training samples. (a)
and (b) have the same number of training samples but with two different seeds. We clearly see more

samples in the region between modes p; = 1 and o = 2 compared to po = 2 and ug = 4

17

(c) MNIST

—— Trajectory Variance Filtering //’

30 Random Filtering /
/
/
2
[SPY) _ =
[,’ -
Lz e
10 — _

1 2 3 4 5
Generation of Recursive Training

0.800
0.775

c
© 0.750

isi

©0.725

re

& 0.700
0.675

0.650

MNIST

—— Trajectory Variance Filtering
—=— Random Filtering

O
O
\

1 2 3 4 5
Generation of Recursive Training

MNIST

—s— Trajectory Variance Filtering
—=— Random Filtering

1 2 3 4 5
Generation of Recursive Training

Figure 16: Recursive Generative Training on MNIST with Variance and Random Filtering. We
observe that the proposed filtering mechanism can discard low quality samples while maintaining

sufficient diversity.

Figure 17: Example of Generated Hallucinated Images

18

999 990 982 974 966 958 950 942 934 926

918 910 902 894 886 878 870 862 854 846
HE SN0 AE AN
838 830 822 814 806 798 790 782 774 766
A0 EHHANAN
758 750 742 734 726 718 710 702 694 686
AEAEEHANBEHEENAHARN
678 670 661 653 645 637 629 621 613 605
-N-N-N-N-N-N-N-N-N-
597 589 581 573 565 557 549 541 533 525
AEBEBEBABABAABAn
517 509 501 493 485 477 469 461 453
AEBEBEBEBEBABEAN
437 429 421 413 405 397 389 381 373 365
-N-N-B-N-N-N-N-N-N
357 349 341 333 324 316 308 300 292 284
-N-N-N-N-N-N-N-N-N
276 268 260 252 244 236 228 220 212 204

Figure 18: 2 for Hallucinated Sample. Here, we observe that the predicted x(has a lot of variance
around ¢ = 700 to ¢ = 850. This clearly motivates our proposed metric.

19

982

918 910 902

e

838 830 822

758 750 742

678 670 661

597 589 581

517 509 501

437 429 421

357 349 341

276 268 260

Figure 19: 2 for In-Support Sample. Here, we observe that the predicted xg

around ¢t = 700 to t = 850.

974

894

814

734

653

573

493

413

333

252

966

886

806

726

645

565

485

405

324

244

20

958

878

798

718

637

557

477

397

316

236

950

870

790

710

629

549

469

389

308

228

942

862

782

702

621

541

461

381

300

220

934 926
&2 KB
854 846
M
774 766
i 3
694 686
i .
613 605
i .
533 525
.
453 445
i .
373 365
- N
292 284
i .
212 204

is more consistent

1
L)
A
&

Y
)
"

Figure 20: Hallucinated Images of Hands generated by the diffusion model.

21

5™

e
§

%saasaaaa‘

718

5
3
@
5
3
3

738

3
8

%

%99

2999
RS

299

%
%%
%%

@
a
s
@
I
&
@
2
S
@
2
3
@
g
£y

598

-
i
i

&
g
IS
&
g
I
3
=]
1§

%%
299

2%
%%

N
b
&
N
2
&
N
&
b+
N
M
&
N
N
o
N
S
&

299

=
=
=
=
=

299

=
i
b+
-
ol
3
o
N
o
5
®
-
=}
5}
B
2

2

ARRRRRRED
%
s 5

k.
F
T
Ty
Ty
Ty
Lk
Ty
Ty

e
b
e
b

Figure 22: z trajectory for Hallucinated Sample (with 250 timesteps). We observe high vari-
ance/instability during the steps ¢ = 600 to ¢ = 900.

891

<9
<

<
S S G

3
3
&
N
3
8

:

<

@
8
8

586

. <
< <

.

W
8
<

385

< S S

N

o
< S S

Figure 23: 7y trajectory for In-Support Sample (with 250 timesteps). We do not observe high

©
N
3

3’3 ’Q
3 £ 3

<

N
a

o
o
< S S S
o S
< S

< S
< S

o <

g
b}

;

©
g
=

566

o S
<™

365

265

4

©
a
8

a
g
4

@
a
s

2

457

357

©
2

i3
&

variance/instability during the steps ¢ = 600 to ¢t = 900.

24

©
b+
&

< G
o S G 4w

b}
&

<

@
e}
&

o <

2
™

333

©
o

&
3

325

<
<

< S

225

©
°
o

N~ @
= 2
@ 3

618

<
W S - -

518

<

417

313

213

©
2
5

w
8
&

B
2

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide experiments and analysis in Section 4, 5 and 6 as evidence to the
claims made in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

25

Justification: [NA]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix A contains the experimental details in suffient detail to reproduce
the experiments.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

Answer: [Yes]

Justification: We attach the code in supplementary material. The code to generate the
synthetic dataset is also available in the supplementary material. We will release the code
publicly upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We describe this in Appendix A and also provide code.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We train with 2 random seeds for the Gaussian experiments. The plots are
available in the Appendix. For recursive training on MNIST, we do not report error bar as it
is computationally expensive to run multiple seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mention this in Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All the research follows the NeurIPS code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is an investigative work analysing a particular failure mode of diffusion
models. We discuss broader impacts in Appendix B.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

28

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the authors of the codebase we base our implementation on in
Appendix A.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

29

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There are no new assets in this paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve any crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Hallucination in Diffusion Models

	Related Work
	Definitions and Preliminaries
	Understanding Mode Interpolation and Hallucination
	1D Gaussian Setup
	2D Gaussian Grid
	What causes mode interpolation?
	Simple Shapes
	Mode Interpolation in Real World datasets: Hands

	Diffusion Models know when they Hallucinate
	Variance in the trajectory of prediction
	Metric for detecting hallucination

	Implications on Recursive Model Training
	Discussion
	Additional Experimental Details
	Gaussian experiments
	Shapes
	MNIST
	Hands

	Limitations and Broader Impact
	Additional Experiments and Figures

