
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KV-CACHE TRANSFORM CODING
FOR COMPACT STORAGE IN LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Serving large language models (LLMs) at scale necessitates efficient key-value
(KV) cache management. KV caches can be reused across conversation turns via
shared-prefix prompts that are common in iterative code editing and chat. How-
ever, stale caches consume scarce GPU memory, require offloading, or force re-
computation. We present kvtc, a lightweight transform coder that compresses
KV caches for compact on-GPU and off-GPU storage. Drawing on classical
media compression, kvtc combines PCA-based feature decorrelation, adaptive
quantization, and entropy coding. It requires only a brief initial calibration and
leaves model parameters unchanged. By exploiting redundancies in KV caches,
kvtc achieves up to 20x compression, while maintaining reasoning and long-
context accuracy in Llama 3.1, Mistral-NeMo, and R1-Qwen 2.5. Across bench-
marks including AIME25, LiveCodeBench, GSM8K, MMLU, Qasper, RULER,
and MATH500, kvtc consistently outperforms inference-time baselines such as
token eviction, quantization, and SVD-based methods, delivering substantially
higher compression ratios. These results support kvtc as a practical building
block for memory-efficient LLM serving with reusable KV caches.

1 INTRODUCTION

Removal of positionals

Grouping

Linear Projection

Adaptive Quantization

Deflate

(X - μ) V

C
om

pression

Dynamic Programing

(L, T, H, D) → (T, LHD)

nvCOMP

E.g., Rotary

lossy

lossless

D
ec

om
pr

es
si

on

Figure 1: The kvtc transform-coding pipeline is
applied separately to the key and value caches.
Here, T , L, H , and D denote the time, layer, head,
and head dimension, respectively. Features are
linearly decorrelated via PCA, and the resulting
PCA coefficients are quantized using variable bit
widths. The PCA basis V is computed once on a
calibration dataset and reused for all caches.

Chat-based interfaces, commonly used for in-
teracting with large language models (LLMs),
enable users to iteratively refine answers across
open-domain dialogues and specialized tasks,
such as code generation (Chiang et al., 2024;
Köpf et al., 2023). Each conversational turn ex-
tends the key–value (KV) cache associated with
a conversation, storing hidden activations for
every previous token. For modern Transformer
models, this cache can easily occupy multiple
gigabytes. As models scale up in size and rea-
soning capability, generating increasingly long
reasoning chains (OpenAI et al., 2024), the KV
cache footprint increases, posing a significant
bottleneck for throughput and latency. During
user turns, stale KV caches left on-chip occupy
memory, which is necessary for serving other
users, yet ensures the fastest responses in the
future. Conversely, caches could be discarded, incurring the cost of recomputation, or offloaded to
CPU DRAM or local/network storage, leading to transfer overheads. This tension creates a latency–
throughput dilemma in production systems and necessitates careful configuration.

Crucially, inference frameworks view the local KV caches as databases and strategies like block-
level paging and prefix sharing promote reuse of caches whenever prompt prefix matches (Kwon
et al., 2023). Scaling LLM serving increasingly hinges on KV cache management and reuse (Liu
et al., 2024; Cheng et al., 2024; Yao et al., 2025), but current systems struggle to store, move, and
refresh these caches efficiently. CacheGen (Liu et al., 2024) compresses caches for transmission,
offering at most 4.3× KV cache reduction in comparison to the FP8 quantization baseline. SVDq

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 32 64 96 12
8

16
0

19
2

22
4

25
6

Head Index

1

32

64

96

128

160

192

224

256

H
ea

d
In

de
x

Pre-Rotation

1 32 64 96 12
8

16
0

19
2

22
4

25
6

Head Index

Post-Rotation

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

Si
m

ila
ri

ty

(a) Keys

1 32 64 96 12
8

16
0

19
2

22
4

25
6

Head Index

1

32

64

96

128

160

192

224

256

H
ea

d
In

de
x

Pre-Rotation

1 32 64 96 12
8

16
0

19
2

22
4

25
6

Head Index

Post-Rotation

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

Si
m

ila
ri

ty

(b) Values

Figure 2: Cosine similarity before and after alignment between key (a) and value (b) heads calculated
using Llama 3.1 8B on inputs from Qasper (Dasigi et al., 2021; Shaham et al., 2022). For each
example, we calculate cosine similarity between all keys/values from the same position and then
average across the batch. Orthonormal alignment matrices were produced using 20 samples from
the RedPajama v2 (Weber et al., 2024).

(Yankun et al., 2025) and xKV (Chang et al., 2025) pursue low-rank compression during prefill,
but both require calculation of per-prompt SVD. Long and frequently used prompts may mandate
investing more compute for offline training of corpus-specific caches (Eyuboglu et al., 2025).

Meanwhile, intensively studied KV cache compression methods, aimed at improving the perfor-
mance of autoregressive generation, offer interim measures to the cache retention problem (Yuan
et al., 2024). Prior work hinges on key observations that KV cache can be quantized (Frantar et al.,
2023; Lin et al., 2024), sparsified (Zirui Liu et al., 2023; Hooper et al., 2024; Łańcucki et al., 2025)
or approximated (Nawrot et al., 2024); the cache itself is compressible (Yuan et al., 2024), and di-
mensions of keys and values for separate heads show a high degree of correlation (Chang et al.,
2025; Oren et al., 2024; Zhang et al., 2023). For long contexts, these methods offer substantial
throughput and latency improvements, by lowering KV cache sizes and thus the memory traffic dur-
ing next token prediction. However, due to tight latency constraints, often coupled with refraining
from modifying weights of the model, these techniques tend to be brittle (Tang et al., 2024), and ac-
curacy degradation prohibits combining methods for compounded benefits. Finally, these methods
seldom exploit the strong low-rank structure of KV tensors.

In this paper, we introduce kvtc: a simple yet powerful transform coding scheme, compressing KV
caches for storage. Inspired by classical image codecs, it applies a learned orthonormal transform
followed by channel-wise scalar quantization—dynamically allocating bits—and entropy coding.
The resulting bit-stream is on average 20× smaller than the original 16-bit one, while maintaining
on par accuracy. The method also exposes a smooth rate–accuracy trade-off, with 40× or higher
compression attainable at modest, model- and task-dependent accuracy costs. kvtc therefore mit-
igates to a large extent the problem of KV cache management: lowering the cost of its on-chip
retention and the bandwidth required for offloading, without compromising interactive latency.

2 PRELIMINARIES Table 1: KV cache size in 16 bits
for 1K tokens of context.

Model Size

Qwen 2.5 R1 1.5B 28MiB
Qwen 2.5 R1 7B 56MiB
Llama 3.1 8B 128MiB
Llama 3.3 70B Instruct 320MiB
Mistral-NeMo 12B 160MiB
MN-Minitron 8B 160MiB

Structure of the KV Cache During decoding in autoregres-
sive Transformers with multi-head self-attention, the keys and
values produced for each processed token are cached to avoid
recomputation. The collection of these tensors is the KV cache.
For l layers, h heads, head dimension dhead and sequence
length t, a 16-bit KV cache occupies (4 l h dhead t) bytes.

Motivated by work on cross-layer KV cache sharing and com-
pression (Brandon et al., 2024; Chang et al., 2025), we ask
whether keys (and analogously values) from different attention heads lie in a shared latent subspace.
As a litmus test for linear alignment, we align per-head caches using orthogonal transformations ob-
tained from the orthogonal Procrustes problem (Gower & Dijksterhuis, 2004), as shown in Figure 2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Before alignment, inter-head cosine similarity is mostly below 0.2; after alignment, it increases
substantially for keys and moderately for values. These results suggest that heads largely differ
by near-orthogonal transformations, motivating PCA-based dimensionality reduction. We present
additional justification in Appendix C.1.

Sliding Windows and Sink Tokens In transform coding for vision and audio, bits are allocated to
transform coefficients so that quantization induces minimal perceptual distortion. By loose analogy,
in Transformer LMs, the attention mass allocated to a token can be viewed as a proxy for its impor-
tance to downstream predictions. A well-documented recency bias causes recent tokens to attract
substantially more attention than distant ones (Jiang et al., 2024). Following Zirui Liu et al. (2023),
we therefore keep a sliding window of the most recent w tokens uncompressed (typically w = 128).

By contrast, sink tokens—the first few positions that consistently accumulate attention—do not fol-
low this recency pattern and remain highly attended irrespective of context length (Xiao et al., 2024).
Moreover, these positions occupy a distinct linear subspace from the remaining positions (Figure 4).
Consequently, we exclude the first N = 4 tokens from compression and report an ablation of this
choice in Appendix C.

Multi-Turn Conversations Let a conversation be an ordered sequence

C = ⟨(x0, y0), (x1, y1), . . . ⟩,
where xt denotes the user (or system) input at turn t and yt the generated reply. Generation of yt
consists of a prefill pass, which generates the KV cache for all preceding tokens (x0, y0, . . . , xt),
followed by incremental decoding, which produces the tokens of yt one at a time.

When a new user prompt xi is received, the existing KV cache can be re-used and only newly
added tokens have to be forwarded through the model, reducing computation and time-to-first-token
(TTFT). However, if the cache has been deleted, the model must reprocess the entire conversation
as a prompt, resulting in quadratic recomputation of attention across the input.

Prefill Node

KV Cache
Manager

Object
Storage

Local KV Cache
Hierarchy

HBM
DRAM

SSD

Decode Node

RDMA

HBM
DRAM

SSD

Cache-Aware
Router

Figure 3: A high-level architecture of KV-
cache-aware LLM serving environment.

KV Cache Management while Serving Efficient
LLM deployments often split prefill and decode onto
separate nodes because their performance charac-
teristics differ (Zhong et al., 2024). The prefill
node produces the KV cache and sends it to the
decode node over a high-speed fabric—ideally us-
ing RDMA (e.g., InfiniBand/RoCE)—to minimize
latency and CPU overhead. Both nodes can main-
tain tiered KV-cache pools: on GPU HBM (hot),
CPU DRAM (warm), and NVMe/SSD (cold), with
an eviction policy such as least recently used (LRU)
to keep frequently reused caches resident. For long-
term residency, caches can be sent to remote storage. When a node is selected for prefill or decode,
its choice can be dictated by already held KV cache. In such setups, KV cache transfers are typically
the dominant cross-node traffic (Figure 3).

Why compress KV caches in between prefill/decoding phases? Compression can: ❶ extend the
effective capacity and lifetime of local KV stores roughly in proportion to the compression ratio;
and ❷ cut network traffic. We discuss both angles below.

❶ Extending KV-cache lifetime in the tiered store raises higher-tier hit rates (HBM/DRAM vs.
NVMe) and avoids re-prefill for repeated or overlapping contexts (e.g., code-assist sessions). For
example, a single 1,000-line file tokenized to 10 tokens per line and processed by Llama 3.3 70B
produces about 1.6 GiB of 8-bit KV cache. On a busy node rotating users—even at moderate batch
sizes—KV volume can prevent hot/warm residency. Extending cache lifetime 20× via compression
can determine whether a cache remains hot/warm, or must be recomputed.

❷ Prefill time scales as O(n2) with prompt length and takes considerably more time than transfer,
and the cache can be streamed by layer during prefill (Qin et al., 2025) in order to further reduce
TTFT. However, KV cache compression reduces memory traffic proportionally to the compression
ratio, which might be critical if the network bandwidth is saturated and becomes a bottleneck.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

50K 100K 150K
Calibration tokens

0.2

0.4

0.6

R
el

at
iv

e
re

co
ns

tru
ct

. e
rr

or

PCA reconstruct. error under domain shift
Value FineWeb OpenR1
Value FineWeb FineWeb
Key FineWeb OpenR1
Key FineWeb FineWeb

0 5000 10000
Context position

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
re

co
ns

tru
ct

. e
rr

or

PCA relative reconstruction error

Values
Keys

100 101 102 103 104

Feature index

0

10

20

30

Av
g.

 b
its

 p
er

 e
le

m
en

t

DP bit assignment for keys and values

Key 16x
Value 16x
Key 32x

Figure 4: Calibration of Llama 3.1 8B with kvtc. Left: the reconstruction error decreases as the
calibration data size grows. Middle: the reconstruction error is higher for the sink tokens. Right:
Bit assignment computed via dynamic programming, counting in the per-group scaling factors.

3 METHOD

Our Key-Value Transform Coder (kvtc) builds upon the transform-coding framework (Ahmed
et al., 1974; Goyal, 2001), a widely adopted methodology for designing image and video compres-
sion algorithms such as JPEG (Joint Photographic Experts Group, 1994). This framework typically
consists of a decorrelation step (commonly implemented via DCT in image/video codecs), followed
by quantization and entropy coding.

In our approach, decorrelation is accomplished using an orthonormal projection matrix V derived
from the singular value decomposition (SVD) of the centered calibration data (i.e., principal com-
ponent analysis, PCA). Quantization is optimized via a dynamic programming algorithm, while en-
tropy coding is performed using Deflate (Wu, 2017) (see Figure 1). The kvtc algorithm comprises
three main phases:

• Calibration. During calibration, we collect the key (and similarly value) caches from calibration
data. The caches are rearranged by concatenating heads across layers to form the calibration data
matrix C, where rows represent tokens and columns correspond to feature dimensions. We center
C and store the mean µ used for centering. Next, we compute SVD(C − µ) = UΣV ⊤ and retain
V . All calibration steps up to this point are performed once per model, separately for key and
value caches. Finally, for a given CR, we use a dynamic programming algorithm to determine the
optimal bit allocation (minimizing the Frobenius norm) for each column of UΣ. Calibration for a
12B model can be completed within 10 minutes on an H100 GPU (Appendix C.5).

• Compression. Keys and values are compressed independently using the (V, µ) parameters and
bit allocation obtained during calibration. Compression is performed between model phases (e.g.,
after decoding or between prefill and decoding) and can be executed on either GPU (affecting
TTFT) or CPU (if the cache is already in storage). Importantly, during decoding, the model
operates on decompressed KV caches; compression is used only for storage or transfer.

• Decompression. Decompression reverses the compression steps. The most computationally in-
tensive operation—the inverse projection using V ⊤—can be performed layer-by-layer using sub-
matrices of V ⊤, allowing generation to begin early.

Below, we provide further details on each component of kvtc.

3.1 FEATURE DECORRELATION

Unlike prior SVD-based methods that calculate a separate decomposition for each prompt (Yankun
et al., 2025; Chang et al., 2025), we compute the KV cache projection matrices once—using a
calibration dataset C—and reuse them across all requests at inference time. Preparing a single, gen-
eralizable V rests on three observations. First, SVD must be computed on a large, representative
sample; sampling token positions from a diverse calibration set suffices for generalization and is
computationally tractable. Second, excluding highly attended tokens—the most recent ones and
attention sinks—improves the achievable compression ratio (see Tables 6 and 10 in Appendix C).
Third, positional embeddings—e.g., Rotary (Su et al., 2023)—distort the apparent low-rank struc-
ture of keys and should be removed before compression (Sun et al., 2025).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Computation We forward all sequences from C through the model and collect their KV caches.
For each sequence, cache entries are concatenated along the time dimension to form a global pool of
positions. From this pool, we sample n token positions, excluding attention sinks. For each sampled
position, we take the corresponding keys (and, equivalently, values) from l layers and h heads, undo
positional rotations, and concatenate them along the hidden dimension dhead. This yields a data
matrix C ∈ Rn×p with p = l h dhead, whose rows index sampled token positions. Let µ ∈ Rp be the
per-feature mean of C. We compute the SVD of the centered matrix,

C − µ = U ΣV ⊤, (1)
with singular values on diag(Σ) sorted in descending order (equivalently, PCA of C). For any
X ∈ Rm×p, the decorrelated representation and its inverse are

D = (X − µ)V, X = DV ⊤ + µ, (2)
where the equality holds when all p components are used. When r < p and the basis is truncated
to V ∈ Rp×r, then X ≈ DV ⊤ + µ. For scalability, we use randomized SVD (Halko et al., 2010)
calculated on a GPU with target rank r < p, substantially reducing runtime and memory. Results
for this variant are shown in Figure 4, with additional details and ablations in Appendix C.2.

3.2 QUANTIZATION

PCA orders principal components by explained variance. We exploit this ordering to allocate a
fixed bit budget across PCA coordinates so that high-variance components receive more bits. The
allocation is computed once on a calibration set and reused at inference. We quantize D coordinate-
wise to obtain Dq1,...,qd , where qi ∈ Z≥0 is the bit-width assigned to the i-th principal component.
Under a global bit budget, we minimize the Frobenius reconstruction error∥∥DV ⊤ −Dq1,...,qkV ⊤∥∥2

F
. (3)

Because right-multiplication by an orthonormal matrix preserves the Frobenius norm, we have∥∥DV ⊤ −Dq1,...,qkV ⊤∥∥2
F
=

∥∥(D −Dq1,...,qk)V ⊤∥∥2
F
= ∥D −Dq1,...,qk∥2F . (4)

Thus, optimal bit allocation can be found directly in the decorrelated domain.

We solve the constrained allocation with a simple dynamic programming (DP) algorithm that keeps
two tables: (1) the minimum reconstruction error achievable using the first i principal components
under a payload of b bits; and (2) a backpointer storing the optimal local decision. Pseudocode and
a proof sketch of optimality under these constraints are in Appendix C.10.

kvtc 8× kvtc 16× kvtc 32× kvtc 64×
0

2

4

6

A
dd

iti
ve

 lo
g 2

 o
f c

om
pr

es
si

on
 ra

tio

9 10×

18 22×

34 44×

64 88×Deflate
Quantization
PCA

Figure 5: KV cache compression ra-
tios contributed by parts of the kvtc
pipeline for Llama 3.1 8B. Deflate’s
variability is marked with black stripes.

Furthermore, inspired by the Microscaling data formats
(Rouhani et al., 2023), we quantize groups of subsequent
PCA coordinates together, each group with shared 16-
bit shift and scaling factors. The DP optimizes both
the per-group bit-width and group size, restricted to
{1, 16, 64, 256, 1024} components per group. The total
budget equals the sum of payload bits across all coordi-
nates plus per-group shift and scaling factors.

An example allocation is shown in Figure 4. As expected,
the learned bit-widths decrease monotonically for subse-
quent principal components. Crucially, the DP assigns
zero bits to a substantial number of trailing principal com-
ponents. This observation motivates reducing the dimen-
sionality during the calculation of PCA, lowering the cost
of calibration, and trimming V to the dimensions with
nonzero bit-widths for faster compression/decompression
during inference.

3.3 ENTROPY CODING

Finally, the quantized values are packed into a single byte array and further compressed using the De-
flate algorithm (Wu, 2017). Crucially, we leverage nvCOMP (NVIDIA Corporation, 2020), which
enables parallel operation directly on a GPU. This step is lossless, but the added compression ratio
is content-dependent.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Accuracy of KV cache compression methods. Results within 1 score point of vanilla are in bold. See
Appendix C.8 for standard error analysis. kvtcy× denotes kvtc set for y× compression without Deflate.

Vanilla GEAR2-bit KIVI2-bit H2O TOVA xKV kvtc8× kvtc16× kvtc32× kvtc64×

Llama 3.1 8B
CR 1 5 5 8 8 1-5 9-10 18-22 34-44 60-88
GSM8K 56.8 52.8 52.8 54.3 54.5 56.6 57.0 56.9 57.8 57.2
MMLU 60.5 59.6 59.6 44.3 44.8 59.5 59.8 60.1 60.6 60.7
QASPER 40.4 40.4 39.1 34.3 38.6 35.6 40.1 40.7 39.4 37.8
LITM 99.4 96.9 88.8 20.2 1.2 99.9 99.3 99.3 99.1 90.2
VT 99.8 99.8 98.9 50.4 99.7 99.8 99.1 99.1 98.9 95.9

MN-Minitron 8B
CR 1 5 5 8 8 1-5 10-11 17-21 32-46 53-95
GSM8K 59.1 57.9 58.0 55.3 59.2 59.3 60.6 60.3 59.1 57.8
MMLU 64.3 63.6 63.2 43.5 48.1 63.1 64.2 64.1 63.7 62.1
QASPER 38.2 38.2 38.2 30.0 33.9 34.5 39.1 38.6 37.7 38.1
LITM 99.8 96.0 86.3 16.6 0.3 99.6 99.4 99.3 86.9 59.5
VT 99.4 98.3 96.8 39.2 99.3 99.1 98.8 98.8 96.0 93.4

Mistral-NeMo 12B
CR 1 5 5 8 8 1-5 10-11 17-20 31-43 51-87
GSM8K 61.9 59.8 59.7 57.0 60.3 61.9 62.5 62.0 62.2 61.9
MMLU 64.5 64.0 64.3 45.4 49.0 63.9 64.6 64.4 63.8 61.4
QASPER 38.4 38.6 38.2 29.5 36.0 33.5 37.6 37.6 37.5 38.0
LITM 99.5 96.9 91.9 16.2 8.7 97.9 99.9 99.8 99.6 95.3
VT 99.8 99.4 98.3 35.2 99.6 99.4 99.5 99.5 98.9 98.0

4 EXPERIMENTS Table 3: Reasoning quality (sampling temp 0.6,
top-p 95%) of DeepSeek-R1-distilled Qwen2.5.
DMS results taken from Łańcucki et al. (2025).

Method CR AIME24 AIME25 LCB
Competition Math Coding

Qwen 2.5 R1 1.5B
Vanilla 1 26.2(4.8) 21.7(2.9) 16.4
kvtc8× 9 25.4(5.7) 24.2(4.0) 16.1
kvtc16× 18 27.9(6.7) 22.5(5.2) 13.3
DMS8× - 23.3 N/A 16.1

Qwen 2.5 R1 7B
Vanilla 1 50.9(4.9) 40.8(4.3) 36.7
kvtc8× 9-11 52.5(3.6) 40.8(5.2) 36.5
kvtc16× 18-21 50.9(6.8) 38.3(5.5) 31.6
DMS8× - 50.0 N/A 33.4

Models We use models from three families:
Llama 3 (Grattafiori et al., 2024), Mistral-NeMo
(Mistral AI team, 2024; Sreenivas et al., 2024),
and R1-distilled Qwen 2.5 (DeepSeek-AI et al.,
2025). The selection includes models ranging
from 1.5B to 70B parameters of base instruct, and
reasoning kind. Table 1 lists the models along with
their KV cache sizes. Notably, MN-Minitron 8B
has been pruned from the Mistral-NeMo 12B base,
retaining the original KV cache size.

Methods For quantization baselines, we com-
pare our method against KIVI (Zirui Liu et al.,
2023) and GEAR (Kang et al., 2024). For evic-
tion baselines, we compare with TOVA (Oren et al., 2024) and H2O (Zhang et al., 2023). For SVD
baselines, we compare our method with xKV (Chang et al., 2025). Finally, we compare to DMS
(Łańcucki et al., 2025) on reasoning tasks.

For all methods, we follow the original protocols by performing prefill in vanilla mode and compress
the KV cache only after attention has been computed. For every method except xKV, we simulate
a sequence of short conversations by running compressing/eviction on the cache every w tokens,
where w depends on the method’s original sliding window policy. For kvtc which is run with
w = 128 we compress/decompress every 16 tokens, leaving the window in the 112–128 token range.
In the case of xKV, we compress only the prefill tokens—providing it with an advantage—since xKV
is specifically designed for prefill optimization, and re-computing SVD matrices for newly decoded
tokens would be prohibitively time-consuming. For a fair comparison, we only report the prefill
compression ratios for non-Qwen models.

Notation-wise, kvtc▶t
CR× denotes kvtc in the default setting, where t is the number of sink tokens

excluded from compression, and CR is the target compression for the DP. Whenever t = 4, we omit
this parameter for brevity. Finally, for all methods, we calculate CR only on the compressed tokens,
not counting the sliding window tokens.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Latency of kvtc measured with a sim-
ple implementation in HuggingFace Transform-
ers library on an NVIDIA H100 GPU with a
Mistral NeMo 12B in bfloat16. TTFT compared
in recompute vs decompress and generate first
token scenario.

Module BS=8 CTX=8K BS=2 CTX=16K
Comp Decomp Comp Decomp

Project 153 ms 156 ms 78 ms 75 ms
Quantize 67 ms 37 ms 39 ms 27 ms
Deflate 137 ms 64 ms 66 ms 36 ms

Total 379 ms 267 ms 194 ms 143 ms

Vanilla TTFT 3098 ms 1780 ms
kvtc TTFT 380 ms 208 ms

Table 5: Compression of KV cache split into
four independent parts, which correspond to
four pipeline-parallel instances. We note that
the drop in performance for MATH 500 for 20x
compression is within 1.5× stderr.

Method MATH500 NIAH LITM

Llama 3.3 70B Instruct
Vanilla 75.6(1.92) 100.0 100.0
kvtc8× 73.2(1.98) 100.0 100.0
kvtc10× 74.4(1.95) 100.0 100.0
kvtc16× 73.2(1.98) 100.0 100.0
kvtc20× 72.6(1.99) 100.0 100.0

Tasks We evaluate compression effects on Llama 3.1 8B, MN-Minitron 8B and Mistral-NeMo
12B across the following task categories, with results presented in Table 2:

• Math & Knowledge: 8-shot Chain of Thought (CoT) GSM8K (Cobbe et al., 2021), 4-shot CoT
MMLU (Hendrycks et al., 2021a)

• Long Context Performance: 0-shot key-value retrieval task from (Liu et al., 2023a) (denoted
LITM), 1-shot RULER (Hsieh et al., 2024) Variable Tracking (denoted VT), and 2-shot Qasper
(Question Answering Over Research Papers) (Shaham et al., 2022)

We evaluate R1-distilled models on challenging mathematical competitions AIME 2024-2025 (Art
of Problem Solving, 2025) and coding tasks from LiveCodeBench (Jain et al., 2025), with results
presented in Table 3. We additionally evaluate kvtc with Llama 3.3 70B Instruct on MATH500
(Hendrycks et al., 2021b; Lightman et al., 2023), the key-value retrieval task from (Liu et al., 2023a)
and Needle In A Haystack (NIAH) (Kamradt, 2023; Hsieh et al., 2024), with results presented in
Table 5. Detailed evaluation protocols can be found in Appendix B. In Appendix C we present
ablations and details about parameter choices for kvtc.

Calibration Data We sample a 1:1 mixture of short and long documents, with lengths in the 1–8K
and 8–32K ranges, respectively. Rotary positional embeddings are removed for calibration; further
details are provided in Appendix C.2.

4.1 RESULTS

In all experiments, kvtc applies the same compression ratio to both the key and value caches. An
ablation of their individual compressibility is presented in Table 7 (Appendix C), suggesting that
further adjustments could yield additional gains.

Latency We calculate the latency of elements of the compression pipeline and provide the results
in Table 4, in contrast to full re-computation of KV cache. For 8K context length, kvtc can reduce
time to first token (TTFT) up to 8×.

General-Purpose Base Models We evaluate kvtc on general-purpose models at the 8–12B scale,
featuring three GQA-enabled models (Table 2). The compression ratio of kvtc varies due to the
data-dependent nature of the Deflate algorithm, which, on average, achieves a compression ratio of
approximately 1.23× on top of quantization. Crucially, kvtcmaintains high accuracy across tested
tasks, even at substantial compression ratios of 32× and 64×. Conversely, quantization methods—
GEAR and KIVI—exhibit signs of performance degradation on GSM8K and Lost-in-the-middle
tasks only at 5× CR; cache eviction methods such as H2O and TOVA perform poorly as generic KV
cache compressors. We also note that xKV, performs well across most tasks, except for QASPER.
Interestingly, in certain cases, kvtc at very high compression ratios even surpasses the performance
of the vanilla models, likely due to inherent variability in the CoT setup. Crucially, kvtc at 16×
compression (approximately 20× after Deflate) consistently maintains accuracy within < 1 score

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

point (accuracy or F1, depending on the task) of the vanilla models. The standard errors for these
results are reported in Table 11 (Appendix C).

Reasoning Models To assess kvtc under more challenging conditions where context plays a
critical role, we use complex math and coding tasks (Table 3). Due to high variability, AIME results
are averaged over eight independent runs with results reported as scorestd. On coding tasks, kvtc
at 10× compression shows minor performance drops of 0.3pp for the 1.5B model and 0.2pp for the
7B model. Notably, the KV cache size of the 1.5B model is already small at 28MiB per 1K tokens,
compared to 128MiB per 1K tokens for Llama 3.1 8B. A 10× reduction shrinks it further to only
2.8MiB. We also compare our method against DMS, a state-of-the-art online KV cache compression
method. DMS achieves competitive results, and since it employs token eviction, it could potentially
be combined with kvtc for even lower KV cache footprint.

Multi-GPU Inference To investigate attainable compression ratios for models distributed across
multiple GPUs, we evaluate kvtc using Llama 3.3 70B (Table 5). The model runs in a pipeline-
parallel setting (Hu et al., 2021) on four GPUs, each handling 20 layers. We maintain a local KV
cache on each GPU, applying kvtc separately following a calibration phase. Performance drops on
the MATH500 task are within 1.5× stderr, with accuracy decreasing by 1.2pp at 10× compression
and 3.0pp at 20×. These experiments did not use Deflate compression, but we anticipate comparable
gains to those reported in Table 2. Interestingly, in the distributed 4-GPU setup, KV cache per GPU
is smaller for Llama 3.3 70B compared to Llama 3.1 8B.

5 LIMITATIONS AND FUTURE WORK

Online Compression and Combination with Other Methods kvtc was targeted for the reduc-
tion of time to first token, without affecting the generation time of subsequent tokens. However,
the reduction of the KV cache size could be further utilized to optimize the generation part. We
leave such research for future work. We note that kvtc is compatible with eviction methods such
as TOVA, H2O, and DMS. We also note that kvtc could be used to compress the latent state in
Multi-head Latent Attention (DeepSeek-AI et al., 2024). However, we do not study such merges
here and leave this research for future work.

Field Testing, Larger Models, More Calibration Tokens and Expanded Loss We approximate
real use scenarios by testing kvtc on a selection of established benchmarks. In our experiments,
we limit ourselves to model sizes from 1.5B to 70B parameters. We leave the real user-model
deployment with larger models for future work. We have managed to fit between 160K–200K
calibration tokens on a single H100 80GB GPU, leading to a few minutes of PCA calculation with
(Halko et al., 2010) algorithm. However, as observed in Figures 4, 7, and 8, increasing the amount
of calibration tokens improves the reconstruction error. We leave scaling of kvtc beyond 200K
tokens for future work. We note that the reconstruction error based on the Frobenius norm is a proxy
for measuring how a compression approach will result in the model’s downstream performance.
We briefly explore the correlation between reconstruction error and downstream performance in
Appendix C.5, leaving the exploration of different proxies for future work.

6 RELATED WORK

Quantization-based methods that avoid model fine-tuning offer a straightforward path to KV cache
compression (Zhao et al., 2024; Sheng et al., 2023). Works such as KIVI (Zirui Liu et al., 2023) and
KVQuant (Hooper et al., 2024) have advanced this direction by developing separate quantization
strategies for key and value embeddings. These methods leverage the observation that keys benefit
from per-channel quantization, while values are better suited to per-token quantization. Our ap-
proach diverges from these methods by first projecting concatenated embeddings from attention
layers using SVD matrices derived from a calibration set. Quantization is then applied in this
transformed space, with the precision dynamically optimized via dynamic programming bit allo-
cation. While we adopt KIVI’s uniform quantization scheme, our application occurs in the SVD-
transformed domain. Similar to KVQuant, we apply compression before RoPE (Su et al., 2023) to
preserve model quality.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A complementary approach to post-training quantization involves fine-tuning models to adapt to
quantized activations. LLM-QAT (Liu et al., 2023b) leverages generations from the pre-quantized
model for fine-tuning, while BitDistiller (Du et al., 2024) merges Quantization Aware Training
(QAT) (Shao et al., 2024; Bondarenko et al., 2024; Chen et al., 2024; Jacob et al., 2017) with
Knowledge Distillation (KD) (Hinton et al., 2015; Gou et al., 2021; Xu et al., 2024a). In contrast,
our method eliminates the need for parameter modifications.

SVD has emerged as a straightforward method for removing the redundancy in KV caches and ex-
ploiting its low-rank structure. GEAR (Kang et al., 2024) improves quantization through low-rank
correction mechanisms, whereas LoRC (Zhang et al., 2024) minimizes computational overhead by
directly reducing the rank of key and value matrices. Eigen Attention (Saxena et al., 2024) re-
structures attention computation by projecting into a truncated subspace defined by SVD, enabling
efficient operations. A similar mechanism could be devised for value vectors in kvtc, and key vec-
tors for layers that do not employ positional embeddings. GEAR (Kang et al., 2024) improves KIVI
quantization through low-rank correction mechanisms. Building on ShadowKV (Sun et al., 2025),
SVDq (Yankun et al., 2025) integrates SVD with quantization, leveraging singular value magnitudes
for a simple precision allocation; xKV (Chang et al., 2025) aggregates KV caches across multiple
layers before decomposition. This work differs in three respects: (i) it models rotational relation-
ships between non-adjacent layers to enable cross-layer concatenation before decomposition; (ii) it
selects ranks and bitwidths via a dynamic program under a compression budget; and (iii) it applies
entropy coding to the quantized factors. Empirical comparisons and ablations (e.g., treatment of
early sink tokens) are reported in Appendix C.

Sparse attention mechanisms provide a complementary paradigm for managing sequence length di-
mensions by selectively discarding non-essential keys/values during inference. Techniques such as
H2O (Zhang et al., 2023) and TOVA (Oren et al., 2024) employ prioritization strategies to dynam-
ically prune less informative elements from the KV cache. In contrast, chunk-based approaches
like Quest (Tang et al., 2024), Landmark Attention (Mohtashami & Jaggi, 2023), and Native Sparse
Attention (Yuan et al., 2025) construct compressed representations of the KV cache by partitioning
sequences into chunks. Then these methods retrieve only the most critical chunks during attention
computation, significantly reducing memory bandwidth requirements by minimizing data transfers
from high-bandwidth memory (HBM). Concurrently, dynamic compression techniques such as Dy-
namic Memory Compression (Nawrot et al., 2024) and Dynamic Memory Sparsification (Łańcucki
et al., 2025) optimize KV cache memory usage through pooling/eviction of keys/values. These
strategies can be potentially integrated with quantization and SVD methods to achieve higher com-
pression ratios and improved inference latency (Yankun et al., 2025).

Finally, cache management systems address the operational challenges of KV cache handling in pro-
duction environments. Paged Attention (Kwon et al., 2023) mitigates memory overhead by introduc-
ing chunked memory allocation for KV caches. Continuous batching techniques, as implemented
in systems like vLLM (Kwon et al., 2023) and FasterTransformer (NVIDIA, 2021), optimized de-
vice utilization by enabling parallel processing of multiple sequences. CacheGen (Liu et al., 2024)
advanced the field with a distributed framework for long-term KV cache management, incorporat-
ing compression, streaming, and cross-node coordination. Our approach extends these systems by
integrating fine-grained compression capabilities, enabling token-level compression without com-
promising distributed architecture advantages.

7 CONCLUSION

We introduced kvtc, a method for compressing KV cache up to 20× with negligible quality degra-
dation, and higher compression ratios of 40× or more possible for specific use cases. We empiri-
cally show that key and value caches exhibit substantial redundancy, which kvtc exploits through
a simple, transform coding pipeline, built around an automatic precision assignment algorithm. We
demonstrate effectiveness across both pre-thinking and thinking model families, evaluating models
from 1.5B to 70B, and believe that kvtc paves the way towards more efficient LLM deployments,
lowering the cost of LLM-assisted iterative workflows.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

To foster reproducibility of our results, we provide extensive details about the calibration of PCA
matrices in Appendix C.2 along with ablations regarding kvtc parameters in Appendices C.3 (sink
tokens), C.4 (key vs value compressibility), C.5 (amount of calibration data), C.6 (effect of cali-
bration data domain) and C.7 (sliding window). In Appendix B, we present the details about the
evaluation setup — tasks, used prompts, and baseline configuration. We note that we utilize LM
Eval Harness (Gao et al., 2024) and RULER (Hsieh et al., 2024) for evaluation, which are publicly
available. In Appendix C.10 we provide the pseudocode for the dynamic programming precision
assignment algorithm along with the sketch of the optimality proof and complexity analysis. We
will release the source code after acceptance.

ETHICAL STATEMENT

As a method that aims to improve aspects regarding LLM usage, kvtc does not introduce new
risks. However, we note that it can amplify existing ones. Therefore, we refer to the existing body of
knowledge on the ethical risks of LLM development, such as Ethics Threats in LLM-Based Agents
(Gan et al., 2024), potential reversal of safety alignment (Xu et al., 2024b), and more general risks
regarding LLMs (Li & Fung, 2025).

REFERENCES

N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. IEEE Transactions on Comput-
ers, C-23(1):90–93, 1974. doi: 10.1109/T-C.1974.223784.

Art of Problem Solving. American invitational mathematics examination, 2025. URL https:
//artofproblemsolving.com/wiki/index.php/American_Invitational_
Mathematics_Examination. Art of Problem Solving Wiki.

Yelysei Bondarenko, Riccardo Del Chiaro, and Markus Nagel. Low-rank quantization-aware train-
ing for llms, 2024. URL https://arxiv.org/abs/2406.06385.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=M2UzLRoqic.

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S. Abdelfattah. xkv: Cross-layer svd for kv-cache compression, 2025. URL https:
//arxiv.org/abs/2503.18893.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping
Luo. Efficientqat: Efficient quantization-aware training for large language models, 2024. URL
https://arxiv.org/abs/2407.11062.

Yihua Cheng, Kuntai Du, Jiayi Yao, and Junchen Jiang. Do large language models need a content
delivery network? arXiv preprint arXiv:2409.13761, 2024.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Sto-
ica. Chatbot arena: An open platform for evaluating llms by human preference, 2024. URL
https://arxiv.org/abs/2403.04132.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers, 2021. URL https:
//arxiv.org/abs/2105.03011.

10

https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://arxiv.org/abs/2406.06385
https://openreview.net/forum?id=M2UzLRoqic
https://openreview.net/forum?id=M2UzLRoqic
https://arxiv.org/abs/2503.18893
https://arxiv.org/abs/2503.18893
https://arxiv.org/abs/2407.11062
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2105.03011

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song,
Kai Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts language model, 2024. URL https:
//arxiv.org/abs/2405.04434.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, et al. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/
abs/2501.12948.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation, 2024. URL https://arxiv.
org/abs/2402.10631.

Sabri Eyuboglu, Ryan Ehrlich, Simran Arora, Neel Guha, Dylan Zinsley, Emily Liu, Will Tennien,
Atri Rudra, James Zou, Azalia Mirhoseini, and Christopher Re. Cartridges: Lightweight and
general-purpose long context representations via self-study, 2025. URL https://arxiv.
org/abs/2506.06266.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/
abs/2210.17323.

Yuyou Gan, Yong Yang, Zhe Ma, Ping He, Rui Zeng, Yiming Wang, Qingming Li, Chunyi Zhou,
Songze Li, Ting Wang, Yunjun Gao, Yingcai Wu, and Shouling Ji. Navigating the risks: A survey
of security, privacy, and ethics threats in llm-based agents, 2024. URL https://arxiv.org/
abs/2411.09523.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation:
A survey. International Journal of Computer Vision, 129(6):1789–1819, March 2021. ISSN
1573-1405. doi: 10.1007/s11263-021-01453-z. URL http://dx.doi.org/10.1007/
s11263-021-01453-z.

J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University Press, 2004.

V.K. Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine, 18
(5):9–21, 2001. doi: 10.1109/79.952802.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions, 2010. URL
https://arxiv.org/abs/0909.4061.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021a. URL https:
//arxiv.org/abs/2009.03300.

11

https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2402.10631
https://arxiv.org/abs/2402.10631
https://arxiv.org/abs/2506.06266
https://arxiv.org/abs/2506.06266
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2411.09523
https://arxiv.org/abs/2411.09523
https://zenodo.org/records/12608602
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b.
URL https://arxiv.org/abs/2103.03874.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization, 2024. URL https://arxiv.org/abs/2401.18079.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
UK, 2 edition, 2013. ISBN 978-0-521-54823-6.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A. Beerel, Stephen P. Crago, and John
Paul N. Walters. Pipeline parallelism for inference on heterogeneous edge computing, 2021. URL
https://arxiv.org/abs/2110.14895.

Hugging Face. Math-verify. https://github.com/huggingface/Math-Verify, 2024.
A tool for verifying mathematical answers and expressions with advanced parsing capabilities.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025a. URL https:
//github.com/huggingface/open-r1.

Hugging Face. Transformers documentation. https://huggingface.co/docs/
transformers/en/index, 2025b. A framework for state-of-the-art machine learning mod-
els in text, computer vision, audio, video, and multimodal tasks.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference, 2017. URL https://arxiv.org/abs/1712.
05877.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/pdf?id=
chfJJYC3iL.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MIn-
ference 1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=fPBACAbqSN.

Joint Photographic Experts Group. Jpeg 1 standard (iso/iec 10918-1). International Standard 10918,
ISO/IEC, 1994. Image compression standard consisting of multiple parts including core coding
technology, compliance testing, extensions, and file interchange format.

Greg Kamradt. Llmtest needleinahaystack: Doing simple retrieval from llm models at vari-
ous context lengths to measure accuracy. https://github.com/gkamradt/LLMTest_
NeedleInAHaystack, 2023. Accessed: 2025-09-24.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm, 2024. URL https://arxiv.org/abs/2403.05527.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

12

https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2110.14895
https://github.com/huggingface/Math-Verify
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://openreview.net/pdf?id=chfJJYC3iL
https://openreview.net/pdf?id=chfJJYC3iL
https://openreview.net/forum?id=fPBACAbqSN
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2309.06180

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Mattick. Openassistant conversations – democratizing large language model align-
ment, 2023. URL https://arxiv.org/abs/2304.07327.

Miles Q. Li and Benjamin C. M. Fung. Security concerns for large language models: A survey,
2025. URL https://arxiv.org/abs/2505.18889.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Prm800k: A process supervision dataset.
arXiv preprint arXiv:2305.20050, 2023. A dataset containing 800,000 step-level correctness la-
bels for model-generated solutions to MATH problems.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023a. URL
https://arxiv.org/abs/2307.03172.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael Maire, Henry Hoffmann, Ari Holtzman,
and Junchen Jiang. Cachegen: Kv cache compression and streaming for fast large language model
serving, 2024. URL https://arxiv.org/abs/2310.07240.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models, 2023b. URL https://arxiv.org/abs/2305.17888.

Meta. Llama 3.3 evaluation details. https://github.com/meta-llama/
llama-models/blob/main/models/llama3_3/eval_details.md, 2024. GitHub
repository containing evaluation details for Llama 3.3 models.

Mistral AI team. Mistral nemo: our new best small model, July 2024. URL https://mistral.
ai/news/mistral-nemo. Announcement of 12B parameter model with 128k context length,
built in collaboration with NVIDIA.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers, 2023. URL https://arxiv.org/abs/2305.16300.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference, 2024. URL https:
//arxiv.org/abs/2403.09636.

NVIDIA. Fastertransformer: A fast and efficient transformer implementation. https://
github.com/NVIDIA/FasterTransformer, 2021. Apache-2.0 License.

NVIDIA Corporation. nvcomp, 2020. URL https://github.com/NVIDIA/nvcomp. GPU-
accelerated compression/decompression library.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, et al. Openai o1
system card, 2024. URL https://arxiv.org/abs/2412.16720.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns, 2024. URL https://arxiv.org/abs/2401.06104.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=n6SCkn2QaG.

13

https://arxiv.org/abs/2304.07327
https://arxiv.org/abs/2505.18889
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2310.07240
https://arxiv.org/abs/2305.17888
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/eval_details.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/eval_details.md
https://mistral.ai/news/mistral-nemo
https://mistral.ai/news/mistral-nemo
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2403.09636
https://arxiv.org/abs/2403.09636
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/nvcomp
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2401.06104
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin
Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation — a KVCache-
centric architecture for serving LLM chatbot. In 23rd USENIX Conference on File and Storage
Technologies (FAST 25), pp. 155–170, Santa Clara, CA, February 2025. USENIX Association.
ISBN 978-1-939133-45-8. URL https://www.usenix.org/conference/fast25/
presentation/qin.

Open R1. Openr1-math-220k. https://huggingface.co/datasets/open-r1/
OpenR1-Math-220k, 2025. A large-scale dataset containing 220k math problems with veri-
fied reasoning traces.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Ven-
mugil Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gau-
rav Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Ro-
driguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius Mi-
cikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug Burger, and Eric Chung. Mi-
croscaling data formats for deep learning, 2023. URL https://arxiv.org/abs/2310.
10537.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression, 2024. URL https://arxiv.org/abs/2408.
05646.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, and Omer Levy. Scrolls: Standardized comparison over long lan-
guage sequences, 2022. URL https://arxiv.org/abs/2201.03533.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models, 2024. URL https://arxiv.org/abs/2308.13137.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang
Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and
Ce Zhang. Flexgen: High-throughput generative inference of large language models with a single
gpu, 2023. URL https://arxiv.org/abs/2303.06865.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Ameya Sunil Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe
Diao, Chenhan Yu, Wei-Chun Chen, Hayley Ross, Oluwatobi Olabiyi, Ashwath Aithal, Olek-
sii Kuchaiev, Daniel Korzekwa, Pavlo Molchanov, Mostofa Patwary, Mohammad Shoeybi, Jan
Kautz, and Bryan Catanzaro. Llm pruning and distillation in practice: The minitron approach,
2024. URL https://arxiv.org/abs/2408.11796.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference, 2025. URL https://arxiv.org/abs/2410.21465.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference, 2024. URL https://arxiv.
org/abs/2406.10774.

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
Ce Zhang. Redpajama: an open dataset for training large language models. NeurIPS Datasets
and Benchmarks Track, 2024.

14

https://www.usenix.org/conference/fast25/presentation/qin
https://www.usenix.org/conference/fast25/presentation/qin
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2408.05646
https://arxiv.org/abs/2408.05646
https://arxiv.org/abs/2201.03533
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2410.21465
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2406.10774

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yingquan Wu. Deflate compression algorithm, 2 2017. URL https://patents.google.
com/patent/US9577665B2/en.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning, 2024. URL https://arxiv.org/abs/2310.
06694.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models, 2024a. URL
https://arxiv.org/abs/2402.13116.

Zhihao Xu, Ruixuan Huang, Changyu Chen, and Xiting Wang. Uncovering safety risks of
large language models through concept activation vector. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 116743–116782. Curran Associates, Inc.,
2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/d3a230d716e65afab578a8eb31a8d25f-Paper-Conference.pdf.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, et al. Qwen3 technical report, 2025. URL
https://arxiv.org/abs/2505.09388.

Hong Yankun, Li Xing, Zhen Hui-Ling, Yu Xianzhi, Liu Wulong, and Yuan Mingxuan. Svdq: 1.25-
bit and 410x key cache compression for llm attention, 2025. URL https://arxiv.org/
abs/2502.15304.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with cached
knowledge fusion. In Proceedings of the Twentieth European Conference on Computer Systems,
pp. 94–109, 2025. doi: 10.1145/3689031.3696098. URL https://doi.org/10.1145/
3689031.3696098.

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy Le,
Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, Zirui Liu, and Xia Hu. Kv cache compression, but
what must we give in return? a comprehensive benchmark of long context capable approaches,
2024. URL https://arxiv.org/abs/2407.01527.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Y. X. Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang,
and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse
attention, 2025. URL https://arxiv.org/abs/2502.11089.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy,
2024. URL https://arxiv.org/abs/2410.03111.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023. URL https:
//arxiv.org/abs/2306.14048.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving, 2024. URL https://arxiv.org/abs/2310.19102.

15

https://arxiv.org/abs/2201.11903
https://patents.google.com/patent/US9577665B2/en
https://patents.google.com/patent/US9577665B2/en
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2402.13116
https://proceedings.neurips.cc/paper_files/paper/2024/file/d3a230d716e65afab578a8eb31a8d25f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d3a230d716e65afab578a8eb31a8d25f-Paper-Conference.pdf
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2502.15304
https://arxiv.org/abs/2502.15304
https://doi.org/10.1145/3689031.3696098
https://doi.org/10.1145/3689031.3696098
https://arxiv.org/abs/2407.01527
https://arxiv.org/abs/2502.11089
https://arxiv.org/abs/2410.03111
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2310.19102

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving, 2024.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi : Plug-and-play 2bit kv cache quantization with streaming asymmetric
quantization, 2023. URL https://rgdoi.net/10.13140/RG.2.2.28167.37282.

Adrian Łańcucki, Konrad Staniszewski, Piotr Nawrot, and Edoardo M. Ponti. Inference-time hyper-
scaling with kv cache compression, 2025. URL https://arxiv.org/abs/2506.05345.

16

https://rgdoi.net/10.13140/RG.2.2.28167.37282
https://arxiv.org/abs/2506.05345

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

A LLM USAGE

LLMs were used to polish the writing of this paper. In particular, they were employed for grammar,
punctuation, and additional consistency checking. Moreover, hints from the models were utilized to
improve the composition of this work. Models with internet search capability were used to scan for
the potential related works. However, they did not replace human evaluation of the search results.

B EVALUATION DETAILS

B.1 TASKS

For evaluation, we utilize Language Model Evaluation Harness (Gao et al., 2024) and RULER
(Hsieh et al., 2024) with the Transformers library (Hugging Face, 2025b) serving as an inference
backend.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.1.1 GSM8K

GSM8K (Cobbe et al., 2021) is an established task for the evaluation of the reasoning of non-
reasoning models (models without thinking phase (<think>...</think>) before answer)
(Yang et al., 2025). We evaluate it in an 8-shot CoT setting with few-shot examples from (Wei
et al., 2023). Following (Meta, 2024) we allow for the generation of up to 1024 tokens. Task name
in LM Eval Harness is gsm8k cot.

GSM8K 8-shot prompt example

Q: There are 15 trees in the grove. Grove workers will plant trees
in the grove today. After they are done, there will be 21
trees. How many trees did the grove workers plant today?

↪→
↪→
A: There are 15 trees originally. Then there were 21 trees after

some more were planted. So there must have been 21 - 15 = 6.
The answer is 6.

↪→
↪→

Q: If there are 3 cars in the parking lot and 2 more cars arrive,
how many cars are in the parking lot?↪→

A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The
answer is 5.↪→

Q: Leah had 32 chocolates and her sister had 42. If they ate 35,
how many pieces do they have left in total?↪→

A: Originally, Leah had 32 chocolates. Her sister had 42. So in
total they had 32 + 42 = 74. After eating 35, they had 74 - 35
= 39. The answer is 39.

↪→
↪→

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason
has 12 lollipops. How many lollipops did Jason give to Denny?↪→

A: Jason started with 20 lollipops. Then he had 12 after giving
some to Denny. So he gave Denny 20 - 12 = 8. The answer is 8.↪→

Q: Shawn has five toys. For Christmas, he got two toys each from
his mom and dad. How many toys does he have now?↪→

A: Shawn started with 5 toys. If he got 2 toys each from his mom
and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.↪→

Q: There were nine computers in the server room. Five more
computers were installed each day, from monday to thursday. How
many computers are now in the server room?

↪→
↪→
A: There were originally 9 computers. For each of 4 days, 5 more

computers were added. So 5 * 4 = 20 computers were added. 9 +
20 is 29. The answer is 29.

↪→
↪→

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On
wednesday, he lost 2 more. How many golf balls did he have at
the end of wednesday?

↪→
↪→
A: Michael started with 58 golf balls. After losing 23 on tuesday,

he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33
golf balls. The answer is 33.

↪→
↪→

Q: Olivia has $23. She bought five bagels for $3 each. How much
money does she have left?↪→

A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3
= 15 dollars. So she has 23 - 15 dollars left. 23 - 15 is 8.
The answer is 8.

↪→
↪→

Q: {QUESTION}
A:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.1.2 MMLU

MMLU (Hendrycks et al., 2021a) is a collection of multiple-choice questions spanning 57 sub-
jects. For MMLU evaluation, we use 4-shot mmlu flan cot fewshot from LM Eval Harness,
allowing for generation of up to 256 tokens. We pick this setup instead of the perplexity-based
forward-pass evaluation of MMLU, because our baselines perform a prefill using full precision KV
cache. Therefore, for a fair evaluation, we need to make the model generate a non-zero number of
tokens before providing the answer, as otherwise the performance would be identical to vanilla.

MMLU 4-shot prompt example

The following are multiple choice questions (with answers) about
abstract algebra.Q: Statement 1 | Every element of a group
generates a cyclic subgroup of the group. Statement 2 | The
symmetric group S_10 has 10 elements.

↪→
↪→
↪→
(A) True, True (B) False, False (C) True, False (D) False, True
A: Let's think step by step. A cyclic group is a group that is

generated by a single element. Hence a subgroup generated by a
single element of a group is cyclic and Statement 1 is True.
The answer is (C).

↪→
↪→
↪→

Q: The symmetric group S_n has $
actorial{n}$ elements, hence it is not true that S_{10} has 10

elements.↪→
Find the characteristic of the ring 2Z.
(A) 0 (B) 3 (C) 12 (D) 30
A: Let's think step by step. A characteristic of a ring is R is n

if the statement $ka = 0$ for all $a\in 2Z$ implies that k is
a multiple of n. Assume that $ka = 0$ for all $a\in 2Z$ for
some k. In particular $2k = 0$. Hence $k=0$ and $n=0$. The
answer is (A).

↪→
↪→
↪→
↪→

Q: Statement 1| Every function from a finite set onto itself must
be one to one. Statement 2 | Every subgroup of an abelian group
is abelian.

↪→
↪→
(A) True, True (B) False, False (C) True, False (D) False, True
A: Let's think step by step. Statement 1 is true. Let S be a

finite set. If $f:S↪→
ightarrow S$ is a onto function, then $|S| = |f(S)|$. If f was

not one to one, then for finite domain S the image would have
less than S elements, a contradiction.

↪→
↪→
Statement 2 is true. Let G be an abelian group and H be a

subgroup of G. We need to show that H is abelian. Let $a,b
\in H$. Then $a,b \in G$ and $ab=ba$. Since G is abelian,
$ab=ba$. Since H is a subgroup of G, $ab \in H$. Therefore,
$ab=ba$ and H is abelian. The answer is (A).

↪→
↪→
↪→
↪→

Q: Statement 1 | If aH is an element of a factor group, then |aH|
divides |a|. Statement 2 | If H and K are subgroups of G then
HK is a subgroup of G.

↪→
↪→
(A) True, True (B) False, False (C) True, False (D) False, True
A: Let's think step by step. Statement 2 is false. Let H be a

subgroup of S_3 generated by the cycle $(1,2)$ and K be a
subgroup of S_3 generated by the cycle $(1,3)$. Both H and
K have two elements, the generators and the identity. However
HK contains cycles (1,2), (1,3) and (2,3,1), but the inverse
of (2,3,1) is (2,1,3) and it does not belong to HK, hence HK is
not a subgroup. The answer is (B).

↪→
↪→
↪→
↪→
↪→
↪→

Q: {QUESTION}
A: Let's think step by step.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.1.3 LOST IN THE MIDDLE

Lost in the Middle (Liu et al., 2023a) is evaluated in a 0-shot 100-keys (300 keys for Llama 3.3
70B) setup, allowing generation of 64 tokens using the prompt presented below. We implement the
evaluation using the LM Eval Harness framework and utilize the UUID strings and code from (Liu
et al., 2023a). This benchmark allows for methodical testing of the model’s ability to access the
input context. As an evaluation metric, we utilize the exact match between the UUID returned by
the model and the gold answer.

Lost in the middle question example (base models)

Extract the value corresponding to the specified key in the JSON object below.

JSON data:
{"1afcec1f-1acd-42e3-b833-e7882d5daada": "25f1a78d-a2f6-4c7d-8bd6-51226b263cbe",
"94071d67-86df-455c-8ee9-691e492ff740": "0d7ba717-e034-410e-88ab-c13d37cc6499",
"88b322bb-571c-4e55-9934-aa8df11b3349": "c54095cf-9931-460b-8a6b-e1f09afb2f72",

...
"5a729e1f-6956-4c1d-b024-10b317ed5657": "cea37ae5-84e1-4deb-b4c6-19d04134d664",
"aaed65fc-f80c-4090-a0a9-90592140b9de": "ffc2e314-2d0f-4b20-be32-916ba96d1ea9",
"90b7fe08-8708-451a-badf-34cabe7930a4": "7bebff53-05c7-4ca3-9314-bca68bd65c04"}
"1afcec1f-1acd-42e3-b833-e7882d5daada":

Lost in the middle question example (Llama 3.3 70B instruct)

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Extract the value corresponding to the specified key in the JSON object below.

JSON data:
{"2a85047d-fe61-4c53-8844-1d85668d6a7d": "a4852ee7-d94f-40ce-8c2f-f14e95377e79",
"1698320e-2ba6-499f-b119-b8ffd74d53db": "e212083b-22f5-4d27-87d3-5c3cfcf9542f",
...
"90ef90b0-7972-46d0-9a73-4b07be2f5aae": "ebb84b27-9156-4d23-8a7d-a34aef606f28",
"c1736979-584d-4b93-8e25-a206770fcdae": "dcb5aace-7fb2-4288-bfc2-c5faacf89469"}
What is the value associated with the key "2a85047d-fe61-4c53-8844-1d85668d6a7d"? Answer using the

following format:↪→

`The value associated with the key "2a85047d-fe61-4c53-8844-1d85668d6a7d" is ANSWER_HERE.`

Where ANSWER_HERE is the value associated with the key
"2a85047d-fe61-4c53-8844-1d85668d6a7d".<|eot_id|><|start_header_id|>assistant<|end_header_id|>↪→

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.1.4 VARIABLE TRACKING

Variable Tracking is evaluated in 1-shot (with a relatively short example shown below) using RULER
(Hsieh et al., 2024) with context length 8K, limiting the generation to 128 tokens. The benchmark
tests the model’s ability to track variable assignments across unrelated contexts.

Variable Tracking prompt and question example

Memorize and track the chain(s) of variable assignment hidden in the following text.

The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
VAR JUP = 97498 The grass is green. The sky is blue. The sun is yellow. Here we go. There and back

again.↪→
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
VAR AGD = VAR JUP The grass is green. The sky is blue. The sun is yellow. Here we go. There and

back again.↪→
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
VAR KCB = VAR AGD The grass is green. The sky is blue. The sun is yellow. Here we go. There and

back again.↪→
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
VAR LJP = VAR KCB The grass is green. The sky is blue. The sun is yellow. Here we go. There and

back again.↪→
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
VAR LFP = VAR LJP The grass is green. The sky is blue. The sun is yellow. Here we go. There and

back again.↪→

Question: Find all variables that are assigned the value 97498 in the text above. Answer: According
to the chain(s) of variable assignment in the text above, 5 variables are assgined the value
97498, they are: JUP AGD KCB LJP LFP

↪→
↪→

Memorize and track the chain(s) of variable assignment hidden in the following text.

...
Question: Find all variables that are assigned the value 79092 in the text above. Answer: According

to the chain(s) of variable assignment in the text above, 5 variables are assgined the value
79092, they are:

↪→
↪→

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.1.5 NEEDLE IN A HAYSTACK

Needle In A Haystack (NIAH) (Kamradt, 2023) is evaluated 0-shot using RULER (Hsieh et al.,
2024) with context length 100K, limiting the generation to 128 tokens. The benchmark tests the
model’s ability to retrieve information hidden in long text. The name of the task in the RULER is
niah single 2.

NIAH prompt example

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023\nToday Date: 26 Jul 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

A special magic number is hidden within the following text. Make sure to memorize it. I will quiz you
about the number afterwards.↪→

<essay text prefix>
<needle>
<essay text suffix>
What is the special magic number for abrasive-pathology mentioned in th
e provided text? The special magic number for abrasive-pathology mentioned in the provided text

is<|eot_id|><|start_header_id|>assistant<|end_header_id|>↪→

B.1.6 QASPER

Qasper (Dasigi et al., 2021; Shaham et al., 2022) is evaluated in 2-shot using LM Eval Harness task
scrolls qasper with full autoregressive generation and F1 score (same reasons as with MMLU
evaluation). We limit the generation to 128 tokens. This benchmark evaluates the model’s ability to
answer questions about a paper presented as part of the input.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.1.7 AIME 2024-2025

We implement AIME evaluation using LM Eval Harness. Following (Łańcucki et al., 2025) we
utilize prompts adopted from the Open-R1 repository (Hugging Face, 2025a) and limit the gener-
ation to 30K tokens. AIME competitions are popular for the evaluation of reasoning models such
as DeepSeek R1 (DeepSeek-AI et al., 2025). To check the correctness of an answer, we utilize the
following code with Math-Verify (Hugging Face, 2024):

AIME 2024-2025 evaluation code

from math_verify.metric import math_metric
from math_verify.parser import LatexExtractionConfig,

ExprExtractionConfig↪→

def grade_answer(problem, model_answer):
gold_is_latex = False
verify_func = math_metric(

gold_extraction_target=(
LatexExtractionConfig() if gold_is_latex else

ExprExtractionConfig(),↪→
),
pred_extraction_target=(ExprExtractionConfig(),

LatexExtractionConfig()),↪→
aggregation_function=max,
precision=6,

)
gold_answer = problem["answer"]

try:
with timeout(seconds=30): # custom class to throw and

exception if code does not complete under 30 seconds↪→
grade, extracted_answers = verify_func([gold_answer],

[model_answer])↪→
return grade == 1

except:
return False

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

AIME 2024-2025 prompt

<|begin_of_sentence|><|User|>Solve the following math problem
efficiently and clearly:↪→

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: \boxed{answer}. I hope it is
correct.↪→

Where [answer] is just the final number or expression that solves
the problem.↪→

Problem: {PROBLEM}

<|Assistant|><think>

B.1.8 LIVECODEBENCH

For LiveCodeBench (Jain et al., 2025) evaluation, we utilize the official repository and, following
(Łańcucki et al., 2025), limit the generation to 16K tokens and data range from 2024-08-01 to 2025-
01-31. The benchmark consists of problems from sites like leetcode.com and codeforces.com.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.1.9 MATH500

For evaluation on MATH500 (Lightman et al., 2023) (subset of MATH (Hendrycks et al., 2021b)
introduced by (Lightman et al., 2023)), we limit the generation to 5120 tokens following (Meta,
2024). This is the only task where we change the 128 window of kvtc recent tokens to 256 one. We
utilize the following prompt adopted from MATH500 evaluation, and the following code optimized
for reproduction of Llama 3.3 70B results without the LLM judge:

MATH500 eval code

from math_verify import parse, verify

def answer_normalize(answer: str) -> str:
answer = answer.split(r"\boxed{")[-1].split("}$")[0].strip()
answer = answer.replace(r"\left", "")
answer = answer.replace(r"\right", "")
answer = answer.replace(r"\begin{align}", "")
answer = answer.replace(r"\end{align}", "")
answer = answer.replace(r"\begin{equation}", "")
answer = answer.replace(r"\end{equation}", "")
answer = answer.replace(" ", "")
answer = answer.replace(r"\$", "")
if answer.startswith(r"\text"):

answer = answer.replace(r"\text{", "")
answer = answer.replace(r"}", "")

if answer.startswith(r"x\in"):
answer = answer.replace(r"x\in", "")

if answer.startswith(r"y="):
answer = answer.replace(r"y=", "")

return answer

def compare_answers(answer: str, model_answer: str) -> bool:
gold = parse(answer)
model = parse(model_answer)
res = verify(gold, model)
if not res:

answer = answer_normalize(answer)
model_answer = answer_normalize(model_answer)
print(answer, model_answer)
gold = parse(answer)
model = parse(model_answer)
if not verify(gold, model): # sometimes fails for improper expressions

res = verify(answer, model_answer)
gold = answer
model = model_answer

if res:
return True

else:
return False

else:
return res

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

MATH500 prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: \boxed{answer}. I hope it is correct.

Where [answer] is just the final number or expression that solves the problem.

Problem: {PROBLEM}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

B.2 BASELINES CONFIGURATION

B.2.1 KIVI

We follow (Zirui Liu et al., 2023, Section 4.1) and use group size = 32 and residual
length = 128, with 2-bits per key and 2-bits per value. We utilize the official implementation.

B.2.2 GEAR

We follow (Kang et al., 2024) github repository and set underlying quantization to KIVI with group
size = 64, streaming gap = 64, 2-bit keys and values. Additionally, we set the rank of
key/value correction to 4 for prefill and 2 for generation. We utilize the official implementation.

B.2.3 XKV

We follow (Chang et al., 2025). For Llama 3.1 8B we group layers by 4 and set the pre-RoPE key
rank to 512 (compression ration 8) and value rank to 768 (compression rank 5 1

3). For Mistral NeMo
and MN-Minitron, we group layers by 5 (those models have 1.25 more layers than Llama 3.1 8B)
and set the pre-RoPE key rank to 640 (compression ratio 8) and value rank to 960 (compression rank
5 1
3). We utilize the official implementation.

B.2.4 H2O

We utilize the official implementation of (Zhang et al., 2023) and set the recent and heavy hitter
fractions to 1

16 of (input + max possible output size). This results in up to an 8x compression
ratio. Lower compression ratios occur when the model produces shorter outputs than the maximal
specified value. We note that this can give an advantage to H2O over other methods.

B.2.5 TOVA

We utilize the official implementation of (Oren et al., 2024) and set the max cache size to 1
8 of (input

+ possible output size). This results in up to an 8x compression ratio. Lower compression ratios
occur when the model produces shorter outputs than the maximal specified value. We note that this
can give an advantage to TOVA over other methods.

B.2.6 DMS

We copy the results from the Inference-Time Hyper-Scaling (Łańcucki et al., 2025).

B.3 HARDWARE

Experiments were run on a node with 8 × NVIDIA H100 GPUs (80 GB each). All jobs finished
within 4 h, except MMLU and Llama-3.3-70B (≤ 8 h) and xKV (≤ 12 h). For baselines (KIVI,
GEAR, xKV, TOVA, H2O) we used the authors’ public code. All runs used batch size 1 (except
Qwen evaluations) to prevent padding that could bias some of the baselines.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C ABLATIONS AND ADDITIONAL DETAILS

We present additional details and ablations regarding kvtc in the following appendices:

• Appendix C.1 — elaboration on our choice of PCA for dimensionality reduction and decor-
relation by providing mathematical and empirical justification.

• Appendix C.2 — additional details about the hyperparameters of kvtc, along with justifi-
cations and references to relevant ablation studies.

• Appendix C.3 — omitting sink tokens for KV cache compression can result in significant
gains at higher compression ratios.

• Appendix C.4 — the difference in compressibility between keys and values suggests that
long-context retrieval tasks may benefit from using higher precision for keys.

• Appendix C.5 — increasing the amount of calibration data helps preserve performance at
higher compression ratios, while smaller amounts remain competitive for lower compres-
sion.

• Appendix C.6 — influence of the calibration data domain on downstream performance.
• Appendix C.8 — results from Table 2, with standard errors computed by LM Eval Harness

(Gao et al., 2024).
• Appendix C.9 — sizes of PCA projection matrices (stored per model), with an emphasis

on the fact that their size is only a small fraction of the model parameters.
• Appendix C.10 — pseudocode for the Dynamic Programming (DP) precision assignment

algorithm, along with complexity analysis and a sketch of the optimality proof.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1

32

64

96

128

160

192

224

256

H
ea

d
In

de
x

Key Features Norm

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1

32

64

96

128

160

192

224

256
H

ea
d

In
de

x

Value Features Norm

0.0

0.2

0.4

0.6

0.8

1.0

k[
i,

j]
 /

 m
ax

(
k[

i,
:]

)

0.0

0.2

0.4

0.6

0.8

1.0

v[
i,

j]
 /

m
ax

(
v[

i,
:]

)

Llama 3.1 8B

(a)

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1

40

80

120

160

200

240

280

320

H
ea

d
In

de
x

Key Features Norm

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1

40

80

120

160

200

240

280

320

H
ea

d
In

de
x

Value Features Norm

0.0

0.2

0.4

0.6

0.8

1.0

k[
i,

j]
 /

 m
ax

(
k[

i,
:]

)

0.0

0.2

0.4

0.6

0.8

1.0

v[
i,

j]
 /

m
ax

(
v[

i,
:]

)

Mistral Nemo 12B

(b)

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1
7

14
21
28
35
42
49
56H

ea
d

In
de

x Key Features Norm

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1
7

14
21
28
35
42
49
56H

ea
d

In
de

x Value Features Norm

0.0

0.2

0.4

0.6

0.8

1.0

k[
i,

j]
 /

 m
ax

(
k[

i,
:]

)

0.0

0.2

0.4

0.6

0.8

1.0
v[

i,
j]

 /
m

ax
(

v[
i,

:]
)

R1 Qwen2.5 1.5B

(c)

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1

14

28

42

56

70

84

98

112

H
ea

d
In

de
x

Key Features Norm

1 16 32 48 64 80 96 11
2

12
8

Feature Index

1

14

28

42

56

70

84

98

112

H
ea

d
In

de
x

Value Features Norm

0.0

0.2

0.4

0.6

0.8

1.0

k[
i,

j]
 /

 m
ax

(
k[

i,
:]

)
0.0

0.2

0.4

0.6

0.8

1.0

v[
i,

j]
 /

m
ax

(
v[

i,
:]

)

R1 Qwen2.5 7B

(d)

Figure 6: Norms of pre-RoPE key and value channels averaged across 10 calibration documents,
each between 1K and 8K tokens. For each key/value head and each channel we present the average
norm divided by the highest average channel norm within the same head, that is heatmapi,j =
normi,j/maxb {normi,b}. We hypothesize that the repeating pattern observed for key heads is
an effect of Rotary Positional Embedding (Su et al., 2023), which uses different frequencies for
different pairs of consecutive channels. This can incentivize the model to focus more on particular
channels, while omitting other ones.

C.1 PCA MOTIVATION

Figure 2 shows that a simple orthogonal transformation can make keys/values produced by different
attention heads much more similar. What is more, Figure 6 shows high potential for dimensionality
reduction within most of the keys and some of the values. As noted in the main body of the paper,
this motivates our choice of PCA as a dimensionality reduction/decorrelation method. In particular,
note that for

S =
{
[vT , vTR]T : v ∈ A},

where R ∈ Rd×d is orthogonal and A is a finite subset of Rd. If {ui}i explains all the variance of
A, then {[uT

i , u
T
i R]T }i explains all variance of S.

Another motivation comes from the work on efficient attention kernels (Jiang et al., 2024). To be
more precise, from the observation that different attention heads can show similar attention patterns.
We note that in a simplified case, where keys are equal to queries and we assume the exact equality
of dot products that create the attention patterns, this results in the key spaces being equal up to an
orthogonal transformation. The proof follows from the uniqueness of vector realizations for a given
Gram matrix (matrix of inner products) and can be found in (Horn & Johnson, 2013).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.2 PCA CALCULATION PARAMETERS

As mentioned in the main text, we utilize 8 iterations of the randomized algorithm from (Halko et al.,
2010) for PCA. We utilize 160K calibration tokens for Llama 3.1 8B, Llama 3.3 70B instruct, Mistral
NeMo 12B, and MN-Minitron 8B with a dimensionality cut-off of 10K. This choice is motivated by
memory efficiency and the results presented in Figures 4, 7 and 8, where the initial boost from the
increase in the number of calibration tokens from 10K to 100K is relatively large compared to the
boost attained when increasing from 100K to 160K. We leave the exploration of larger calibration
sets for future work. In Appendix C.5 we ablate the influence of the amount of the calibration data
on downstream results. In Appendix C.9 we provide the sizes of the projection matrices, noting that
they are relatively small when compared to the model size.

For Qwen models, due to their smaller number of KV heads, we utilize 200K calibration tokens
and dimensionality reduction of 8K. For all models, we utilize a 50/50 mixture of FineWeb (Penedo
et al., 2024) and OpenR1Math traces (R1, 2025) due to the duality of our benchmarks (reasoning
and general purpose; for ablation on data source vs performance (see Appendix C.6 for an ablation
on calibration data source). We take samples from both datasets with the only filters being minimum
and maximum length (1K and 32K, respectively) for both datasets and quality score (≥ 0.95) for
FineWeb (the quality score is attached to the dataset). Additionally, we ensure that the number of
tokens from documents below 8000 and above 8000 tokens is roughly the same (except in the MN-
Minitron case, as this model supports up to 8K context length). Token counts and cutoffs are chosen
so that a single calculation of PCA fits on a single H100 GPU with 80GB of memory and completes
within 10 minutes (for details see Appendix C.5).

We emphasize that for a given model, we use the same PCA matrix for all compression ratios. The
only change between compression ratios is the precision assignment, which is done automatically
via a dynamic programming algorithm. Additionally, we note that the manual adjustment needed by
a practitioner to adapt kvtc to a new model is limited to choosing the initial PCA dimensionality
cutoff (if the practitioner decides to use the efficient algorithm by (Halko et al., 2010)), the number
of samples that the chosen PCA implementation can handle (based on GPU/CPU memory) and the
calibration sample choice if special scenarios are desired for increased compression. In this paper,
we note that across a wide range of tasks, the choice of a 50/50 mixture of both short and long context
FineWeb (Penedo et al., 2024) (for generic text) and OpenR1Math (R1, 2025) (for thinking traces)
data is sufficient for Llama, Mistral, and R1Qwen models for a variety of applications. In particular,
we note that our method is not harder to adjust than xKV or SVDq, due to automatic precision
assignment via dynamic programming. In particular, instead of aiming for the best reconstruction
error for a specific compression ratio, the user can easily alter the algorithm to aim for the highest
compression ratio within a given reconstruction error constraint.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)

Figure 7: Relative reconstruction error when calibrating kvtc decorrelation step - ablation of the
number of algorithm (Halko et al., 2010) iterations. Figures (a)-(b) show key reconstruction error,
whereas (c)-(d) show value reconstruction error. Other parameters as in Figure 4. We note that the
larger number of iterations provides slight improvements.

(a) (b)

Figure 8: Relative reconstruction error when calibrating kvtc decorrelation step on OpenR1Math
(R1, 2025) traces with the error calculation on FineWeb (Penedo et al., 2024). Parameters as in
Figure 4. We note that OpenR1Math traces were published after the release of Llama 3.1 8B and
Mistral NeMo 12B, and possibly due to their specificity result in higher generalization error.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

C.3 EXCLUDING SINK TOKENS FROM COMPRESSION

We consider the first four tokens of key and value caches (i.e., tokens at positions 0, 1, 2, and 3)
to be sink tokens, motivated by the experimental results reported by (Xia et al., 2024). Reducing
the dimensionality of key and value caches with PCA causes larger information loss of the sink
tokens than the remaining ones, as shown in Figure 4. In order to assess the influence, we compare
two setups: one that excludes four sink tokens from compression (denoted kvtc▶4) and one that
compresses them along with other tokens (denoted kvtc▶0). The results are shown in Table 6.
High compression ratio of 64× drastically reduces downstream task scores for the Llama 3.1 8B in
the kvtc▶0 case; for MN-Minitron 8B it causes regression on the long context tasks (Lost-in-the-
middle and Variable Tracking) when compared with kvtc▶4.

Table 6: Ablation on the skipping compression of the first four tokens. We note that the difference
starts to be visible with larger compression ratios, and that it is in favor of skipping compression
of potential attention sinks (Xiao et al., 2024). Results are presented as scorestderr where stderr is
bootstraped by LM Evaluation Harness (where available) (Gao et al., 2024).

Model Method CR GSM8K MMLU QASPER LITM 100 RULER-VT
Math & Knowledge Long Context

Llama 3.1 8B

kvtc▶0
16× 19-22 56.81.4 60.30.4 40.2 99.20.1 98.20.4

kvtc▶4
16× 18-22 56.91.4 60.10.4 40.7 99.30.1 99.10.3

kvtc▶0
64× 76-90 1.60.3 9.90.2 27.6 0.00.0 61.81.5

kvtc▶4
64× 60-88 57.21.4 60.70.4 37.8 90.20.4 95.90.6

MN-Minitron 8B kvtc▶0
64× 79-97 59.51.4 61.90.4 37.9 55.10.6 91.50.9

kvtc▶4
64× 53-95 57.81.4 62.10.4 38.1 59.50.6 93.40.8

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

C.4 SEPARATE ADJUSTMENT OF COMPRESSION RATIOS FOR KEY AND VALUE CACHES

All experimental results of kvtc (unless stated otherwise) have been obtained with 1:1 compres-
sion of keys and values. We present additional results of manually adjusting the compression ratio
separately for keys and values (Table 7). The results suggest that for long-context retrieval tasks,
the value cache could be compressed more than the key cache. We attribute this phenomenon to the
necessity to precisely attend to selected tokens in the cache, which hinges on the high accuracy of
key vectors. On the other hand, stronger compression of values shows a noticeable degradation on
the GSM8K and MMLU tasks.

Table 7: Ablation of key/value compressibility with kvtc. We use the same kvtc configuration as
in Table 2, but independently change key and value lossy compression rates. To denote that value
compression ratio was set to 32 and key was set to 64 we use kvtc▶0

k:64×
v:32×

Method CR GSM MMLU QASP LITM VT

Llama 3.1 8B
kvtc▶4

k:256×
v:32×

55-80 57.11.4 57.4 36.6 48.61.6 91.90.9

kvtc▶4
k:32×
v:256×

55-77 56.81.4 57.5 36.3 71.91.4 95.90.6

Mistral-NeMo 12B
kvtc▶0

k:256×
v:32×

69-79 62.21.3 61.7 34.6 73.21.4 90.40.9

kvtc▶0
k:32×
v:256×

69-77 57.11.4 59.8 35.2 77.51.3 89.51.0

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C.5 CALIBRATION DATA TOKENS VS DOWNSTREAM PERFORMANCE

We test how the amount of calibration data affects calibration times and the downstream perfor-
mance. From Figures 7 and 8 we already know that increasing the amount of the calibration data
can bring down the reconstruction error. The question that remains is how such an increase cor-
relates with the downstream performance. In Table 8 we show that an increase in calibration data
clearly benefits a high compression ratio of 256×, with more moderate and quickly diminishing
returns for smaller (64×, 32×) compression ratios. This is a positive result, as it allows for trading
calibration stage complexity for improved downstream performance, with 40K token budget bring-
ing already competitive results for 64× ratio. We additionally note that PCA calibration can be
completed within 1.5 minutes for 160K tokens using (Halko et al., 2010) algorithm, and that the
DP calculation time (performed once per model and compression ratio) can be finalized within 8
minutes.

Table 8: Ablation of the number of tokens used for kvtc calibration, along with respective PCA and
DP calibration times. PCA calibration was performed using single H100 80GB GPU, calculation
of DP tables (except simulation of quantization) was offloaded to the node cpu. We additionally
limit DP calibration data to first 32K tokens, therefore we do not see increase in dp time after 40k
calibration tokens. All calibration datapieces come from a 50/50 mixture of FineWeb (Penedo et al.,
2024) and OpenMathR1 (R1, 2025) traces between 1K and 8K tokens.

Method Data PCA Calib DP Calib CR GSM MMLU QASP LITM VT

Mistral-NeMo 12B
kvtc32×

20K 41.3s
6.5 min 31-42 63.01.3 63.90.4 34.8 97.30.2 98.90.3

kvtc64× 5.4 min 63-87 63.91.3 61.70.4 31.8 88.80.4 96.90.5
kvtc256× 3.9 min 148-340 59.61.4 51.50.4 23.3 10.40.4 66.81.5
kvtc32×

40K 47.8s
7.2 min 31-43 64.21.3 63.00.4 35.3 98.70.1 99.50.2

kvtc64× 6.1 min 63-88 63.71.3 61.90.4 32.4 95.70.3 97.80.5
kvtc256× 4.6 min 148-344 58.31.4 50.10.4 23.7 9.20.4 70.61.4
kvtc32×

80K 60.4s
7.2 min 31-43 63.61.3 63.90.4 36.0 98.00.2 99.30.3

kvtc64× 6.1 min 63-88 63.31.3 62.00.4 32.2 94.50.3 97.80.5
kvtc256× 4.6 min 148-339 60.51.3 51.70.4 23.3 13.60.4 83.71.2
kvtc32×

160K 85.6s
7.2 min 31-43 63.21.3 64.30.4 36.6 99.50.1 99.40.3

kvtc64× 6.1 min 63.2-87 64.61.3 62.20.4 32.8 96.90.2 97.70.5
kvtc256× 4.6 min 148-341 61.41.3 55.50.4 24.3 34.20.6 79.51.3

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

C.6 CALIBRATION DATA DOMAIN VS DOWNSTREAM PERFORMANCE

To examine how the calibration data domain influences downstream performance, we prepare two
additional versions of kvtc for Mistral Nemo 12B: one using only FineWeb data and the other using
only OpenR1Math data. Table 9 shows that using OpenR1Math calibration data better maintains
MMLU and key-value retrieval scores than FineWeb at higher compression rates. This improvement
is likely related to the question-think-answer structure of OpenR1Math, which may be more aligned
with the evaluation tasks, compared to the more general web collection nature of FineWeb. However,
for 32× compression, both choices remain competitive. We note that for 256× compression, the
50/50 mixture of FineWeb and OpenR1Math results in the best scores. For reconstruction errors,
regarding calibrating on OpenR1Math/FineWeb and testing on FineWeb/OpenR1Math, see Figures
7 and 8.

Table 9: Ablation of the source of data. We consider kvtc calibrated fully on FineWeb (Penedo
et al., 2024), fully on OpenMathR1 (R1, 2025) and a 50/50 mixture.

Method Data CR GSM MMLU QASP LITM VT

Mistral-NeMo 12B

kvtc32×

FineWeb + OpenR1Math 31-43 62.21.3 63.80.4 37.5 99.60.1 98.70.4
FineWeb 31-43 63.51.3 63.50.4 37.5 98.50.2 98.90.3

OpenR1Math 31-43 63.51.3 64.80.4 37.8 99.70.1 99.30.3

kvtc64×

FineWeb + OpenR1Math 51-87 61.91.3 61.40.4 38.0 95.30.3 98.00.4
FineWeb 63-87 63.21.3 59.90.4 36.5 92.00.3 97.40.5

OpenR1Math 63-86 62.21.3 63.70.4 38.2 98.50.2 96.50.6

kvtc256×

FineWeb + OpenR1Math 148-340 60.01.3 52.20.4 31.6 40.00.6 84.31.1
FineWeb 148-343 57.91.4 51.50.4 31.0 14.10.4 74.51.4

OpenR1Math 156-342 56.61.4 54.00.4 29.4 21.00.5 81.31.2

C.7 SLIDING WINDOW SIZE VS DOWNSTREAM PERFORMANCE

We ablate the influence of sliding window of recent not-compressed tokens on downstream perfor-
mance in Table 10. We observe that increasing the length of sliding window increases the model
performance, with most noticeable differences between sliding windows of lengths 1-16 and sliding
windows of lengths 64-128.

Table 10: Ablation of the sliding window size of recent tokens that are not compressed.

Method Window Size CR GSM MMLU QASP LITM VT

Mistral-NeMo 12B

kvtc64×

1 61-87 53.01.4 54.90.4 36.4 88.60.4 90.70.9
16 60-87 60.11.3 56.40.4 37.7 88.90.4 95.80.6
64 59-87 62.21.3 59.00.4 37.8 93.00.3 98.00.4

128 51-87 61.91.3 61.40.4 38.0 95.30.3 98.00.4

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

C.8 STANDARD ERROR OF THE MAIN RESULTS

In Table 11 we attach the results from Table 2 with their standard error, as bootstrapped by LM
Evaluation Harness (where available) (Gao et al., 2024). We note that downstream evaluation runs,
except the Qwen models, were performed using 1 seed and greedy evaluation.

Table 11: Downstream task results, presented also in Table 2, here shown with standard error as
reported by LM Evaluation Harness (where available).

Method GSM8K MMLU QASPER LITM 100 RULER-VT
Math & Knowledge Long Context

Llama 3.1 8B
vanilla 56.81.4 60.50.4 40.4 99.40.1 99.80.2
GEAR 2bit 52.81.4 59.60.4 40.4 96.90.2 99.80.2
KIVI 2bit 52.81.4 59.60.4 39.1 88.80.4 98.90.3
xKV2/16 4key

3/16 4value 56.61.4 59.50.4 35.6 99.90.0 99.80.2
kvtc8× 57.01.4 59.80.4 40.1 99.30.1 99.10.3
kvtc16× 56.91.4 60.10.4 40.7 99.30.1 99.10.3
kvtc32× 57.81.4 60.60.4 39.4 99.10.1 98.90.3
kvtc64× 57.21.4 60.70.4 37.8 90.20.4 95.90.6
H2O1/16 recent

1/16 past 54.31.4 44.30.4 34.3 20.20.5 50.41.6
TOVA 1

8
54.51.4 44.80.4 38.6 1.20.1 99.70.2

MN-Minitron 8B
Vanilla 59.11.4 64.30.4 38.2 99.80.0 99.40.3
GEAR 2bit 57.91.4 63.60.4 38.2 96.00.2 98.30.4
KIVI 2bit 58.01.4 63.20.4 38.2 86.30.4 96.80.6
xKV2/16 5key

3/16 5value 59.31.4 63.10.4 34.5 99.60.1 99.10.3
kvtc8× 60.61.3 64.20.4 39.1 99.40.1 98.80.3
kvtc16× 60.31.3 64.10.4 38.6 99.30.1 98.80.3
kvtc32× 59.11.4 63.70.4 37.7 86.90.4 96.00.6
kvtc64× 57.81.4 62.10.4 38.1 59.50.6 93.40.8
H2O1/16 recent

1/16 past 55.31.4 43.50.4 30.0 16.60.5 39.21.5
TOVA 1

8
59.21.4 48.10.4 33.9 0.30.1 99.30.3

Mistral-NeMo 12B
Vanilla 61.91.3 64.50.4 38.4 99.50.1 99.80.2
GEAR 2bit 59.81.4 64.00.4 38.6 96.90.2 99.40.3
KIVI 2bit 59.71.4 64.30.4 38.2 91.90.3 98.30.4
xKV2/16 5key

3/16 5value 61.91.3 63.90.4 33.5 97.90.2 99.40.3
kvtc8× 62.51.3 64.60.4 37.6 99.90.0 99.50.2
kvtc16× 62.01.3 64.40.4 37.6 99.80.0 99.50.2
kvtc32× 62.21.3 63.80.4 37.5 99.60.1 98.70.4
kvtc64× 61.91.3 61.40.4 38.0 95.30.3 98.00.4
H2O1/16 recent

1/16 past 57.01.4 45.40.4 29.5 16.20.5 35.21.5
TOVA 1

8
60.31.3 49.00.4 36.0 8.70.4 99.60.2

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

C.9 PCA MATRIX SIZES

In Table 12 we present the sizes of PCA projection matrices (V from UΣV ⊤) after being computed
via (Halko et al., 2010) algorithm. We note that the sizes are only a relatively small fraction of
the model parameters, and that they can be further reduced by the DP algorithm depending on the
desired compression ratio.

Table 12: Number of parameters used by PCA matrices, before DP, for the tested models. We
note that despite treating keys and values separately, while using feature capacity for the efficient
(Halko et al., 2010) PCA calculation algorithm. For example, Llama 3.1 8B has 32 layers, each
with 8 key/value heads, each head of size 128. Therefore, after cross-head concatenation, each
key/value has 32×8×128 = 32768 features. The PCA projection V is cut to the first 10K principal
components by (Halko et al., 2010) algorithm for efficiency, resulting in 32768 × 10000 ≃ 328M
parameters. Further DP bit allocation can remove additional principal directions depending on the
desired compression ratio. Both models and PCA projection matrices are stored in 16bit precision.

Model Key/Value Features Key/Value PCA Features Cap Key/Value PCA Params

Qwen 2.5 R1 1.5B 28× 2× 128 = 7168 8K 51M
Qwen 2.5 R1 7B 28× 4× 128 = 14336 115M

Llama 3.1 8B 32× 8× 128 = 32768
10K

328M
Llama 3.3 70B 80× 8× 128 = 81920 819M
Mistral NeMo 12B 40× 8× 128 = 40960 410M

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

C.10 DYNAMIC PROGRAMMING ALGORITHM

Below, we present the pseudocode for the dynamic programming precision assignment along with a
proof sketch.

Dynamic Programming Precision Assignment Pseudocode

D # calibration data matrix of shape (batch, num_features)
m = D.mean(dim=0, keepdim=True) # of each feature across the batch dimension

U, S, V = svd(D - m) # D - m = U @ S @ V.T

P = U@S # assume columns sorted by singular values
batch, num_considered_features = P.shape

initial_reconstruction_error corresponds to quantizing everything with zero bits
initial_reconstruction_error = (P*P).sum() # squared Frobenius norm

set to initial_reconstruction_error as we assume that the data is initially quantized with 0 bits
and we progressively consider non-zero quantization of more and more features
best_error = tensor(shape=(num_considered_features + 1, max_bit_budget + 1),

values=initial_reconstruction_error)↪→
best_error_type = array(shape=(num_considered_features + 1, max_bit_budget + 1), values=0)
best_error_block_size = tensor(shape=(num_considered_features + 1, max_bit_budget + 1), values=0)
best_error_bit_cost = tensor(shape=(num_considered_features + 1, max_bit_budget + 1), values=0)

we assume that block sizes are > 0
allowed_block_sizes = [1, 16, 64, 256, 1024]

We assume the presence of a None type that quantizes data to the array of zeros.
We count bit usage of this type as 0,
because it directly corresponds to the removal of principal components.
types = [None, int2, int4, fp8]

for i in range(1, num_considered_features + 1):
for block_size in allowed_block_sizes:

if block_size <= i:
assert block_size > 0
the loop below can be parallelized
for budget in range(1, max_bit_budget + 1):

if best_error[i, budget] > best_error[i, budget - 1]:
best_error[i, budget] = best_error[i, budget - 1]
best_error_type[i, budget] = best_error_type[i, budget - 1]
best_error_block_size[i, budget] = best_error_block_size[i, budget - 1]
best_error_bit_cost[i, budget] = best_error_bit_cost[i, budget - 1]

for t in types:

block_to_quantize = P[:, i - block_size:i]

quantized_data, used_bits = simulate_quantization(block_to_quantize, t)
if used_bits <= budget:

zero_bit_quantize_error = (block_to_quantize * block_to_quantize).sum()
quantization_error = block_to_quantize - quantized_data
quantization_error = (quantization_error * quantization_error).sum()

error_change = -zero_bit_quantize_error + quantization_error

if best_error[i, budget] > error_change + best_error[i - block_size, budget - used_bits]:
best_error[i, budget] = error_change + best_error[i - block_size, budget - used_bits]
best_error_type[i, budget] = t
best_error_block_size[i, budget] = block_size
best_error_bit_cost[i, budget] = used_bits

we can use best_error, best_error_type, best_error_block_size and best_error_bit_cost tables to get
the quantization for a given budget↪→

The proof of the optimality follows by simple induction on i and budget. To be more precise we
want to prove that best error[j, q] is the smallest reconstruction error (squared Frobenius
norm) one can achieve when considering first j features of P (setting other features to 0 – 0-bit quan-
tization) and quantization restricted to types from types that can only be used to quantize blocks
of contiguous features of sizes in allowed block sizes sizes, while utilizing no more than
budget bits. For simplicity we assume that the smallest reconstruction error (squared Frobenius
norm) for q=0 budget cases is initial reconstruction error = (P*P).sum(). Then
the proof by induction can be conducted as follows:

• For i=0 or budget=0 we have that if we consider quantization of the first 0 features and
leave other features as zeros or budget of size 0, then the reconstruction error is indeed
(P*P).sum().

• Then to prove for i>0 and budget>0 we assume the optimality of best error[j,
q] for j<i, and for j=i and q<budget. Then we note that the algorithm enumerates all

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

possible quantization blocks that the quantization of the first i features can end with within
the budget budget.

Computational complexity can be directly inferred from the pseudo-code:

O(num considered features×
|allowed block sizes|×

max bit budget×
|types|×

qsim(max{allowed block sizes},batch))

where
qsim(max{allowed block sizes},batch)

is the time taken to simulate quantization. Assuming that |allowed block sizes| and |types| are
constant and quantization simulation can be performed in

O(max{allowed block sizes} × batch)

we can write the asymptotic bound on the algorithm runtime as:

O(num considered features×max bit budget× batch)

We additionally provide the runtime of the algorithm in Table 8 in Appendix C.5.

39

	Introduction
	Preliminaries
	Method
	Feature decorrelation
	Quantization
	Entropy coding

	Experiments
	Results

	Limitations and future work
	Related work
	Conclusion
	LLM usage
	Evaluation details
	Tasks
	GSM8K
	MMLU
	Lost in the Middle
	Variable Tracking
	Needle In A Haystack
	Qasper
	AIME 2024-2025
	LiveCodeBench
	MATH500

	Baselines configuration
	KIVI
	GEAR
	xKV
	H2O
	TOVA
	DMS

	Hardware

	Ablations and additional details
	PCA motivation
	PCA calculation parameters
	Excluding sink tokens from compression
	Separate adjustment of compression ratios for key and value caches
	Calibration data tokens vs downstream performance
	Calibration data domain vs downstream performance
	Sliding window size vs downstream performance
	Standard error of the main results
	PCA matrix sizes
	Dynamic programming algorithm

