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ABSTRACT

In Parallel Continual Learning (PCL), the parallel multiple tasks start and end
training unpredictably, thus suffering from training conflict and catastrophic for-
getting issues. The two issues are raised because the gradients from parallel tasks
differ in directions and magnitudes. Thus, in this paper, we formulate the PCL
into a minimum distance optimization problem among gradients and propose an
explicit Asymmetric Gradient Distance (AGD) to evaluate the gradient discrepancy
in PCL. AGD considers both gradient magnitude ratios and directions, and has a
tolerance when updating with a small gradient of inverse direction, which reduces
the imbalanced influence of gradients on parallel task training. Moreover, we pro-
pose a novel Maximum Discrepancy Optimization (MaxDO) strategy to minimize
the maximum discrepancy among multiple gradients. Solving by MaxDO with
AGD, parallel training reduces the influence of the training conflict and suppresses
the catastrophic forgetting of finished tasks. Extensive experiments validate the
effectiveness of our approach on three image recognition datasets.

1 INTRODUCTION

Continual Learning (CL) (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Lopez-Paz & Ranzato, 2017),
aims to continuously learn new knowledge from a sequence of tasks with non-overlapping data
streams over a lifelong time. In the era of Internet of Things (IoT), people are using many smart
devices, where data and tasks would be accessed by the learning system at any time. It is necessary for
a CL system to respond to parallel data streams from multiple devices. We study Parallel Continual
Learning (PCL), as shown in Fig. 1, in which an unfixed number of tasks are trained in a parallel way
at any time. Specifically, according to the access time of each task, PCL builds an adaptive number of
parallel data pipes, thus enabling instant response to new-coming tasks without pending.

Due to the parallel data streams from different tasks, PCL suffers from not only the catastrophic
forgetting but the training conflict among parallel tasks. Most existing methods in CL are proposed
to tackle the catastrophic forgetting (French, 1999; Kirkpatrick et al., 2017) of any finished tasks,
including regularization-based (Kirkpatrick et al., 2017; Chaudhry et al., 2018; Dhar et al., 2019;
Zenke et al., 2017; Aljundi et al., 2018), rehearsal-based (Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2019; Guo et al., 2019; Atkinson et al., 2018; Shah et al., 2018; Pomponi et al., 2020), and
architecture-based (Mallya et al., 2018; Yoon et al., 2017; Rusu et al., 2016; Rosenfeld & Tsotsos,
2018) methods. In PCL, the training processes of different tasks are diverse, i.e., each task starts
and ends training unpredictably (See Fig. 1). Thereby the gradient from different task differs in
direction and magnitude (Yu et al., 2020) and may be neutralized. The gradient discrepancies lead to
catastrophic forgetting and training conflict issues, which may fail the learning of some tasks. At any
time in PCL, therefore, we present that the problem can be formulated to find an optimal gradient in
a minimum distance multi-objective optimization, where each objective is to minimize the distance to
a target gradient. In general, the distance metric is proportional to the effect of the optimal gradient
on the corresponding task.

In most situations, the mentioned distance metric D between gradients is set to symmetric intuitively,
such as the Euclidean distance and cosine distance. In other words, we usually have D(x,y) =
D(y,x) for any x and y. However, the gradient influence is imbalanced among parallel tasks in the
gradient descent. For example in Fig. 1, at the marked time, we have three gradients with diverse
directions and magnitudes, and updating with any of them provides different influences to the other
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Figure 1: Overview of the proposed method in PCL. Left: PCL trains parallel tasks according to their
access time without pending. Middle: At any time, gradients from different tasks (corresponding
colors) have unpredicted direction and magnitude (the length of vectors). Right: We formulate PCL
into a min-distance problem and propose an asymmetric distance for effective optimization.

two. In the minimum distance problem, the optimal solution should have the minimum negative
influence on all parallel tasks, but using symmetric metrics means the influences are optimized
indistinguishably at the same time. Due to the fact that the gradients are with wide differences, the
solution may have large biases, which would get the near-fitting task out of its local minimum but has
less impact on a new-coming task.

To measure the gradient discrepancy, we hold the opinion that the distance metric in the min-distance
problem should be asymmetric. First, though the metric is bound up with both the gradient magnitude
and direction, the influences on model training from gradients should be asymmetric, where the model
should have more tolerance to small gradients even if they indicate an inverse direction. Second,
because gradients are with different magnitudes, the discrepancy between two large gradients is often
set to larger than that between small gradients when using symmetric distance, such as Euclidean
distance. Directly optimizing using magnitude-aware distance values may lead to the solution close
to large gradients and thus hinder the catastrophic forgetting of old tasks. To mitigate the bias from
the magnitude difference, it is better to employ the magnitude ratio instead of magnitude itself.

Motivated by this, in this paper, we propose an explicit measurement for the learning from gradi-
ent discrepancy in PCL, named Asymmetric Gradient Distance (AGD), which considers gradient
magnitude ratios and directions, and sets a tolerance for smaller gradients. As shown in Fig. 1, the
proposed AGD is used in solving the minimum distance problem with multiple gradients from parallel
tasks. Then, we propose an effective optimization strategy for minimizing the gradient discrepancy
to avoid self-interference. We name the strategy Maximum Discrepancy Optimization (MaxDO),
which minimizes the maximum discrepancy from each gradient to the others. Moreover, to address
the catastrophic forgetting issue, we follow the rehearsal strategy (Lopez-Paz & Ranzato, 2017) in
traditional CL and build an extra memory data stream. The rehearsal data stream is used to provide
a gradient of finished tasks in MaxDO. Solving by MaxDO with AGD, parallel training mitigates
the impacts of the diverse training process and slows the catastrophic forgetting of finished tasks.
Extensive results on three datasets show the superiority and effectiveness of our approach.

Our main contributions are three-fold:

(1) For the first time, we formulate the PCL into a minimum distance problem and compare symmetric
and asymmetric distances. Considering the influence of gradient on task training, we show that
symmetric metrics are not effective in solving the problem and suggest asymmetric metrics.

(2) We propose an asymmetric metric, named AGD, to evaluate the gradient discrepancy, which
is proportional to the gradient magnitude ratios and directions. AGD takes the diverse training
process into account and measures the imbalance of gradient influence on task training.

(3) We propose a MaxDO strategy for minimizing gradient discrepancy of different tasks, which
maximumly reduces the asymmetric discrepancy from a gradient to the others. MaxDO avoids
the self-interference among gradients and reduces the training conflict and catastrophic forgetting.

2 RELATED WORK

Continual Learning (CL) represents receiving data from new domains continually. In traditional
CL, the new domains show up one by one, say serial CL. CL methods can be classified into three
kinds. (1) Rehearsal (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Guo et al., 2019; Atkinson
et al., 2018; Shah et al., 2018; Pomponi et al., 2020), which saves or generates data of old tasks for
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retraining together with the current training. (2) Regularization (Kirkpatrick et al., 2017; Chaudhry
et al., 2018; Dhar et al., 2019; Zenke et al., 2017; Aljundi et al., 2018; Farajtabar et al., 2020),
which leverages extra regularization terms to consolidate previous knowledge when learning new
tasks. (3) Dynamic architecture (Mallya et al., 2018; Yoon et al., 2017; Rusu et al., 2016; Rosenfeld
& Tsotsos, 2018), which freezes task-specific parameters and grows new branches for new tasks
automatically. However, most of the existing CL methods are designed for reducing catastrophic
forgetting in the serial scenario. Contrastively, in PCL, we need to tackle not only catastrophic
forgetting but training conflict among parallel tasks, which is somehow related to multi-task learning.

Multi-Task Learning (MTL) (Caruana, 1997) is used to address multiple tasks with a single model
from one to many domains. Traditional MTL solutions can be mainly grouped into feature-based
and parameter-based approaches (Zhang & Yang, 2021). The feature-based approaches focus on
learning common feature representations for multiple tasks (Maurer et al., 2013; Wang & Ye, 2015).
The parameter-based approaches use model parameters in a task to help learn model parameters in
other tasks, such as task clustering (Thrun & O’Sullivan, 1996; Barzilai & Crammer, 2015) and
decomposition (Jalali et al., 2010). In recent years, some MTL methods formulate the problem into
finding an optimal gradient for updating and can be categorized into three types. (1) Learning-based
methods (Chen et al., 2018), which learn a set of weights by backpropagation. (2) Solving-based
methods (Sener & Koltun, 2018; Liu et al., 2021), solve the problem by finding an optimal gradient
that is not dominated by the gradient from any task. (3) Calculating-based methods (Liu et al., 2019;
Javaloy & Valera, 2021; Chen et al., 2020; Wang et al., 2020; Yu et al., 2020; Groenendijk et al.,
2021; Lin et al., 2021) compute the gradient weights by combining gradients or losses of all tasks.
Inspired by MTL, we also formulate the problem into finding an optimal gradient. Specifically, we
consider the optimal gradient should have a small distance to all gradients.

Asymmetric Metric. In most situations, the distance is set to symmetric, e.g., the Euclidean distance.
However, the symmetric metric is not always suitable for finding the optimal gradient (see the next
section for details). Asymmetric metric (Collins & Zimmer, 2007; Mennucci, 2013), also known
as quasi-metric (Collins & Zimmer, 2007) or pseudo metric (Fiol, 2001; Cagliari et al., 2015) is a
generalization of a metric but the symmetry axiom is eliminated in the definition of metric spaces. A
classical example of using asymmetric metric is the taxicab geometry topology including one-way
streets, where a path from point A to B has different streets compared to a path from B to A. In this
paper, we propose to measure the gradient discrepancy using an asymmetric metric and raise a novel
optimization strategy to minimize the maximum discrepancy.

3 OUR APPROACH

3.1 PARALLEL CONTINUAL LEARNING

On a timeline, given a sequence of T tasks with parallel data streams {D1, · · · ,DT } for continual
training, and each data stream can be accessed and suspended at any time. For simplest, we assume
each data stream is i.i.d., and tasks are accessed in order from 1 to T and there exists no real gap that
no data stream flows on the timeline. Note that traditional CL is an edge situation of PCL that all tasks
are nose-to-tail. A PCL model contains a shared backbone with parameter θ to learn task-agnostic
knowledge and adaptively incremental number of task-specific classifiers with parameters θi. When
a new task is accessed, a corresponding task-specific classifier will be constructed.

In PCL, a task will be forgotten by learning any other tasks when its data stream ends. To avoid
forgetting, we leverage the popular rehearsal strategy (Lopez-Paz & Ranzato, 2017; Chaudhry et al.,
2019; Guo et al., 2019; Atkinson et al., 2018; Shah et al., 2018; Pomponi et al., 2020) in our training.
Rehearsal builds an extra data stream sampled from all seen tasks and retrains them to suppress the
forgetting of finished tasks. For convenience, we denote the rehearsal data stream as D0. At time t,
we use Tt to represent the activated data streams (including D0). Together with the rehearsal data
stream, PCL training yields the following dynamic multi-objective empirical risk minimization:

minθ,{θi|i∈Tt} {`i (Di) |i ∈ Tt} . (1)

Because the task-specific classifiers are updated by their own gradients θi ← θi − αi∇θi
`i (∀i ∈ Tt)

with step size αi, we focus on the update of the shared backbone θ. At any PCL step, the goal of
dynamic MOO is to optimize multiple objectives simultaneously while updating only once, and the
only update of the shared parameters depends on the gradients of all in-training tasks. In PCL, the
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(a) z = 1− x>y
‖x‖‖y‖

(b) z = ‖x− y‖, ‖y‖ = 0.2 (c) z = ‖x−y‖
‖y‖+‖x−y‖

Figure 2: The measures of two gradient discrepancy from x to y. Note that the x- and y-axes are the
angle (i.e., ∠x,y) between x and y, and the magnitude ratio ‖x‖‖y‖ , respectively. (a) Cosine distance;
(b) Euclidean distance where ‖y‖ = 0.2 as an example; (c) Asymmetric gradient distance.

update of the shared parameters at any time depends on the gradients of all in-training tasks. It will
exit an uncertain number of tasks, and each task will provide a task-specific gradient on the shared
parameter θ. Let gi = ∇θ`i and α be a step size for optimization. The problem of the backbone
update can be formulated as follows:

θ ← θ − αd∗, where d∗ = f({gi|∀i ∈ Tt}). (2)

The key question is how to compute the optimal gradient d∗ via the function f(·). In this paper,
we define the function f(·) as a min-distance multi-objective problem by minimizing the gradient
distance from all in-training tasks:

d∗ = arg mind {D(d,gi) | ∀i ∈ T }, (3)

where we need to identify what distance metric D is used to measure gradient discrepancy. The
motivation of Eq. (3) is that for the task i in PCL, its own gradient gi is the most qualified update
direction for itself. The solution d∗ should be as close to every gradients as possible.

3.2 MEASURING ASYMMETRIC GRADIENT DISCREPANCY

To measure the gradient discrepancy, the Euclidean Distance (EuDist, D(x,y) = ‖x− y‖ ∈ [0,∞))
and Cosine Distance (CosDist, D(x,y) = 1 − x>y

‖x‖‖y‖ ∈ [0, 2]) are the two most popular choices.
Both of them are symmetric, i.e., D(x,y) = D(y,x). A symmetric metric D(x,y) means the
forward influence (x to y) and backward influence (y to x) are treated as symmetric. For example,
given two in-training tasks A and B, the distance D(gA,gB) represents both the effect of gA on task
B and gB on task A because of D(gA,gB) = D(gB,gA). Note that large distance from gA to gB
means large negative influence on the training of task B with gA.

However, the model update is highly related to gradient magnitude and direction, which are asym-
metric to model updating. The influence of the gradient gA on task B may be quite different from
that of the gradient gB on task A. In previous studies (Lopez-Paz & Ranzato, 2017; Chaudhry et al.,
2019; Yu et al., 2020), the two tasks are treated as conflict when 〈gA,gB〉 < 0. In PCL, due to the
diverse training process, gradients from parallel tasks are diverse in magnitude and direction. When
‖gA‖ � ‖gB‖, the gradient gA will have little negative influence on task B even if 〈gA,gB〉 < 0;
when ‖gA‖ � ‖gB‖ (e.g., a new task A is accessed when task B has been trained for some time near
convergence), the update produces huge impact on task B even if 〈gA,gB〉 > 0. Using the traditional
symmetric distance can hardly represent the asymmetric update influence difference.

To effectively measure gradient discrepancy in PCL, we introduce the asymmetric metric.

Lemma 1 (Asymmetric Metric (Collins & Zimmer, 2007)) D : X × X → R is an asymmetric
metric (also known as quasi-metric (Wilson, 1931)) if D satisfies

(1) D(x,y) ≥ 0 and ∀x ∈ Rd, D(x,x) = 0;
(2) D(x, z) ≤ D(x,y) +D(y, z),∀x,y, z ∈ Rd.

The asymmetric metric does not require the symmetric property, i.e., D(x,y) = D(y,x). Based on
the definition, in this paper, we design an asymmetric metric to measure gradient discrepancy named
Asymmetric Gradient Distance.
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Definition 1 (Asymmetric Gradient Distance (AGD)) Given two gradient gA and gB, the asym-
metric gradient distance is defined as

D̂(gA,gB) =


0 , if gA = gB = 0,

‖gA − gB‖
‖gB‖+ ‖gA − gB‖

, Otherwise.
(4)

In Definition 1, we consider the edge situation when gA = gB = 0 to meet the definition of the
asymmetric metric in Lemma 1. In AGD, gradient directions and magnitudes are considered. Instead
of using gradient magnitude value difference, we use magnitude ratio difference to avoid the diverse
training of different tasks in PCL. Therefore, we derive the corollary of the magnitude ratio:

Corollary 1 D̂(gA,gB) ∈ [0, 1] is an asymmetric metric and holds

lim ‖gA‖
‖gB‖→∞

D̂(gA,gB) = 1, lim ‖gA‖
‖gB‖→0

D̂(gA,gB) =
1

2
. (5)

We illustrate why AGD is qualified to evaluate the gradient discrepancy according to the definition
and corollary. In Definition 1, we use AGD to represent the influence of gA on task B rather than
the inverse. This is the key difference from the symmetric metrics such as Euclidean distance.
Specifically, gA may make task B worse if D̂(gA,gB) is large (close to 1). If D̂(gA,gB) is close to 0,
gA and gB has less conflict. Moreover, Corollary 1 involves that when ‖gA‖ � ‖gB‖, AGD has a
tolerance 1

2 even if 〈gA,gB〉 < 0, which means the impact of gA on task B is mild. This is because
updating with a zero gradient will neither improve nor damage the performance. Even though, we
prefer positive influence rather than non-influence. Thus, we define that the distance D̂(gA,gB) in
this situation is the mid-level in the value range. See different tolerances in Appendix C.

Moreover, we compare AGD (Fig. 2(c)) with Euclidean and cosine distance in Fig. 2. First, the cosine
distance (Fig. 2(a)) is magnitude irrelevant, which ignores the magnitude difference in PCL. Second,
the Euclidean distance (Fig. 2(b)) depends heavily on the magnitude value difference, but ignores
that the gradient influence on the model update is asymmetric. For example, when ‖x‖ → 0, EuDist
will get large if we have large ‖y‖. However, updating with a zero gradient will neither improve nor
damage the performance. See the contours of Fig. 2 in Appendix D.

3.3 MAXIMUM DISCREPANCY OPTIMIZATION

At time t, let the optimal solution to Problem (3) be d∗, where Tt is the index set of in-training tasks
(T for simplicity). However, directly optimizing the problem is difficult due to the large decision
space that has the same dimension as θ. Following (Lin et al., 2021; Sener & Koltun, 2018), we use
linear scalarization to solve the transformed problem that allows only optimizing decision variable
w ∈ R|T |. That is, let d =

∑
i∈T wigi, where ∀wi ≥ 0 and

∑
i∈T wi = 1, we have

w∗ = arg minw

{
D̂
(∑

j
wjgj ,gi

) ∣∣∣∀i ∈ T } . (6)

Each objective of the dual problem will be highly affected by the minimum discrepancy, i.e., each
gradient itself. For example, by minimizing objective D̂(

∑
j wjgj ,gi), weight wi is more like to be

activated than others. Thus, multiple objectives will be compromised by multiple self-interference
but fail to reduce the maximum discrepancy in the dual problem optimization.

As shown in Fig. 3., we propose Maximum Discrepancy Optimization (MaxDO) to reduce the
maximum gradient discrepancy. Specifically, instead of the weight vector w ∈ R|T |, we optimize
a weight matrix W ∈ R|T |×|T |, in which ∀Wij ≥ 0. W can be combined by a diagonal vector
ẁ = [W1,1, · · · ,W|T |,|T |] and an off-diagonal matrix W̃ = W − Diag(ẁ), where

∑
i∈T ẁi = 1

and
∑

j∈T W̃ij = 1,∀i. Thus,
∑

i,j∈T Wij = |T | + 1 and the two weights are independent and

can be optimized without disturbance: (1) W̃, computed by Stochastic Gradient Descent (SGD), is
used to make up the maximum gradient discrepancy for each row. The objectives of any two rows
in W̃ are different and independent. For row i, to formulate the maximum discrepancy of gradient
gi, the objective is the combination of non-diagonal entries. The weighted other gradients should
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Figure 3: Schematic of Maximum Discrepancy Optimization. Given multiple gradients {gi|∀i ∈ T }
(|T | = 4 for example) (1) A weight matrix W is initialized with 1

|T | for each entry. (2) For each row,
the off-diagonal entries are used to weighted gradients and optimized for minimum AGD to the target
gradient. (3) The diagonal entries (�) are used to optimize with min-norm with MGDA. (4) The final
weight matrix is reduced by each column for the final weights (w′). See Sec. 3.3 for details.

be with the smallest asymmetric distance to gi. (2) ẁ is obtained by the Multiple Gradient Descent
Algorithm (MGDA) (Désidéri, 2012), which is to obtain a weighted gradient that does not damage
any tasks with a min-norm optimization. The objective of MGDA is 0 and the resulting point satisfies
the Karush–Kuhn–Tucker condition or the solution gives a Pareto descent direction that improves all
tasks. See Appendix E for more details of MGDA. For each off-diagonal entry of the i-th column,
their sum means the effect of the gradient gi reducing the maximum discrepancy from other gradients.
MGDA is used to reduce the possible negative effect in MaxDO. On the other hand, MaxDO reduces
the training failure of new tasks in MGDA. To sum up, our MaxDO with AGD can be computed by

W∗ = arg min
W̃

{
D̂
(∑

j 6=i
W̃i,jgj ,gi

) ∣∣∣∀i ∈ T }︸ ︷︷ ︸
SGD with Maximum Discrepancy

+Diag
(

arg min
ẁ

∥∥∥∑
j
ẁjgj

∥∥∥)︸ ︷︷ ︸
MGDA (Désidéri, 2012)

. (7)

In Eq. (7), we can obtain an approximate solution by combining the closed-form solution and the
iterative solution. Fig. 3 reveals the diagram of solving MaxDO. We project the solution of SGD onto
the feasible set (

∑
i6=j Wij = 1) via softmax at each step in the multiple steps for fast convergence..

First, we initialize all entries of W by 1
|T | . Then, the off-diagonal matrix is used to minimize the

maximum gradient discrepancy via SGD and the diagonal vector is optimized by min-norm. Finally,
the final weights are reduced to a vector by dividing |T |+ 1 to guarantee that their sum is 1. Note
that, MaxDO is implemented only when |T | > 1, i.e., multiple tasks are given at the current time.
Otherwise, we have d∗ = g1 for the only current task 1. Thus, the final gradient d∗ is computed by

Algorithm 1: MaxDO (�) in PCL
Input: Random-initialized θ, θ1:T ;

Step sizes α, α1:T

Output: θ, θ1:T

1 for t in timeline do
2 Tt ← in-training task index;
3 for i ∈ Tt do
4 Bi ∼ Di;
5 θi ← θi − αi∇θi

`i (Bi);
6 gi = ∇θ`i (Bi);
7 end

8

W∗ ← Optimization by Eq. (7);
d∗ ← Final graident from Eq. (8);

9 θ ← θ − αd∗;
10 end

d∗ =


g1, |T | = 1,∑

i

(
1

|T |+ 1

∑
j
W∗

j,i

)
gi, |T | > 1.

(8)
The detailed algorithm is shown in Algorithm 1. With
the rehearsal data stream, our algorithm learns a PCL
model through a timeline. At the time t on the time-
line, given a mini-batch B from each data stream, we
compute the corresponding gradients on shared and
task-specific parameters. The task-specific parameters
are updated directly and the gradients on the shared
backbone are collected for computed the final updated
gradient d. By using our MaxDO, we update θ with
the optimal d∗ and update the shared parameters.

4 EXPERIMENT

4.1 DATASET

In our experiments, 3 traditional image recognition datasets are transformed into parallel data streams:
(1) Parallel Split EMNIST (PS-EMNIST). We split EMNIST (Cohen et al., 2017) (62 classes) into
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Table 1: Comparisons (avg ± std) with different buffer sizes on PS-EMNIST (62 classes).
Method (+ Rehearsal) Buffer size 124 (62*2) Buffer size 186 (62*3) Buffer size 310 (62*5)

AT (%) FT (%) AT (%) FT (%) AT (%) FT (%)

MGDA(NeurIPS’18) 78.975± 0.165 −5.386± 1.252 82.026± 0.851 −7.215± 1.637 84.783± 0.190 −5.780± 0.476
GradNorm(ICML’18) 83.985± 0.324 −9.989± 0.578 85.127± 0.647 −8.835± 1.215 86.060± 0.094 −7.896± 0.208
DWA(CVPR’18) 85.416± 0.622 −8.209± 1.279 85.939± 0.632 −7.787± 1.255 86.732± 0.089 −6.922± 0.175
GradDrop(NeurIPS’20) 87.285± 0.527 −6.983± 1.022 87.699± 0.870 −6.580± 1.709 88.460± 0.221 −5.820± 0.469
PCGrad(NeurIPS’20) 86.880± 0.400 −7.437± 0.800 87.848± 0.317 −6.464± 0.632 88.524± 0.135 −5.773± 0.273
CVweight(Arxiv’20) 85.662± 0.396 −8.581± 0.809 86.285± 0.740 −7.971± 1.475 87.174± 0.099 −7.092± 0.261
RLW(Arxiv’21) 85.936± 0.695 −8.368± 1.380 87.019± 0.440 −7.284± 0.854 87.397± 0.264 −6.896± 0.569

MaxDO (AGD) 87.901± 0.244 −6.468± 0.270 88.566± 0.585 −5.776± 0.640 88.744± 0.361 −5.573± 0.382

Table 2: Comparisons (avg ± std) with different buffer sizes on PS-CIFAR-100 (100 classes).
Method (+ Rehearsal) Buffer size 1000 Buffer size 2000 Buffer size 3000

AT (%) FT (%) AT (%) FT (%) AT (%) FT (%)

MGDA(NeurIPS’18) 63.578± 0.315 22.866± 0.639 67.613± 0.166 25.001± 0.768 67.704± 0.238 24.725± 1.075
GradNorm(ICML’18) 62.498± 0.699 22.506± 1.427 63.932± 0.679 23.845± 1.185 64.538± 0.627 24.359± 1.450
DWA(CVPR’18) 64.952± 0.374 23.152± 0.487 66.310± 0.445 24.697± 0.880 66.947± 0.156 25.384± 0.447
GradDrop(NeurIPS’20) 66.371± 0.260 23.054± 0.633 68.483± 0.499 24.962± 1.007 69.353± 0.707 26.269± 1.401
PCGrad(NeurIPS’20) 66.724± 0.263 23.601± 0.618 68.652± 0.619 25.183± 1.081 68.885± 0.134 25.704± 0.849
CVweight(Arxiv’20) 47.521± 2.333 11.868± 4.257 48.155± 1.682 13.202± 3.005 48.424± 1.960 13.138± 3.573
RLW(Arxiv’21) 65.974± 0.508 23.080± 1.411 68.066± 0.276 24.915± 0.697 68.162± 0.812 24.765± 1.078

MaxDO (AGD) 67.415± 0.803 22.359± 1.028 69.372± 0.170 24.523± 0.360 70.078± 0.134 24.907± 0.720

5 tasks and the size of the label set for each task, i.e., the number of classes, is larger than 2 while
smaller than 15. (2) Parallel Split CIFAR-100 (PS-CIFAR-100). We split CIFAR-100 into 20 tasks
and the size of the label set for each task is larger than 2 while smaller than 15. (3) Parallel Split
ImageNet-TINY (PS-ImageNet-TINY). We split Tiny ImageNet (Le & Yang, 2015) (200 classes),
which has a training set of 100,000 images and a test set of 10,000 images, into 20 tasks, and the size
of the label set for each task is larger than 5 while smaller than 20. See more details in Appendix A.

All three datasets have 3 different label sets (3 different class splits), each of which has 3 different
timelines (when to access). For each timeline, we have 3 different runs with fixed seeds 1234, 1235,
and 1236 for parameter initialization. In other words, we have 27 different settings for each dataset,
and we report the average and standard deviation (avg ± std) for each compared method in our
experiments. Note that, we omit all blank time that no data stream flows for simplicity.

4.2 EXPERIMENT DETAILS

We implement our experiments using Tensorflow and conduct on a single NVidia RTX 3090Ti GPU
card. We take a 2-layer MLP as the backbone network for PS-EMNIST and a Resnet-18 (He et al.,
2016) for PS-CIFAR-100 and PS-ImageNet-Tiny. The learning rate is set to 0.003, 0.0004 and 0.0005
for PS-EMNIST, PS-CIFAR-100 and PS-ImageNet-Tiny. The SGD in MaxDO has a learning rate
of 5. Each task is trained in a data stream, i.e., each data point passes only once. For each task, we
set the batch size to 128 per step. For any new task in PCL, we build a new classifier, which is a
fully-connected layer with a softmax function.

To evaluate PCL, we compute the average accuracy and forgetting following previous continual
learning studies (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Aljundi et al., 2019b;a; Risheng
et al., 2021). Let et be the end time of task t and final time ē = max(e1, e2, · · · , eT ), the two metrics
are computed as follows:

AT =
1

T

∑T

t=1
atē, FT =

1

T

∑T

t=1
atē − atet , (9)

where ajk is the mean testing accuracy of task j at time k. The AT denotes the final average accuracy
on all the tasks, and the FT (also known as backward transfer) means the final performance drop
compared to each task that was first trained.

4.3 MAIN RESULTS

We compare our method with MTL methods including MGDA (Désidéri, 2012), GradNorm (Chen
et al., 2018), DWA (Liu et al., 2019), GradDrop (Chen et al., 2020), PCGrad (Yu et al., 2020),
CVWeight (Groenendijk et al., 2021) and RLW (Lin et al., 2021) in the PCL setting. We treat any
time on the timeline as an MTL subunit to train PCL. All results of previous MTL methods are
produced by ourselves with the claimed design in their papers. We show the main comparisons with
the proposed methods in Tables 1, 2 and 3 on the three datasets. We have several major observations.
First, the rehearsal strategy is useful for reducing catastrophic forgetting in PCL for all compared
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Table 3: Comparisons (avg ± std) with different buffer sizes on PS-ImageNet-TINY (200 classes).
Method (+ Rehearsal) Buffer size 2000 Buffer size 3000 Buffer size 4000

AT (%) FT (%) AT (%) FT (%) AT (%) FT (%)

MGDA(NeurIPS’18) 48.179± 0.969 10.936± 1.917 51.794± 0.427 13.506± 0.649 52.644± 1.133 13.586± 2.191
GradNorm(ICML’18) 47.311± 1.841 9.975± 3.651 49.501± 1.882 11.740± 3.975 49.331± 1.606 11.507± 3.530
DWA(CVPR’18) 47.429± 0.865 10.640± 1.764 48.387± 0.718 11.505± 1.438 47.520± 2.129 10.498± 4.267
GradDrop(NeurIPS’20) 49.955± 1.413 11.747± 2.961 54.141± 0.747 14.633± 1.001 53.827± 1.146 14.623± 1.177
PCGrad(NeurIPS’20) 49.052± 0.961 10.264± 1.406 51.701± 0.554 12.508± 0.698 50.837± 1.097 11.605± 1.478
CVweight(Arxiv’20) 34.032± 0.607 8.221± 1.521 36.992± 1.900 11.055± 3.272 37.007± 2.304 9.954± 3.830
RLW(Arxiv’21) 49.355± 0.904 10.857± 1.933 49.629± 1.454 10.973± 3.017 51.947± 1.202 12.907± 2.478

MaxDO (AGD) 52.165± 0.694 13.287± 0.544 54.485± 0.608 15.192± 0.444 55.192± 0.301 15.571± 0.217
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Figure 4: Task accuracy comparisons along parallel continual learning. Each point means a right
finished task and its performance. Note that the order is up to its end time rather than the task ids.

methods. On one hand, as an extra data stream aparts from in-training data streams, rehearsal provides
data from the finished tasks training together with other tasks to suppress forgetting. On the other hand,
the memory buffer size of rehearsal affects the remembering of old knowledge, and larger size means
better knowledge keeping, which is similar to traditional CL. For example in PS-CIFAR-100, we have
67.415%, 69.372% and 70.078% for buffer size 1,000, 2,000, and 3,000, respectively. Second, due
to each task in PCL taking the data stream as input, only one pass of each data point is insufficient to
make the model converge. With the rehearsal strategy, the memory may provide continual learning
of finished tasks, and even better performance can be obtained, which results in positive forgetting
value FT . Third, the compared methods are designed for balanced training and ignore the diverse
training process in PCL. Thus, some gradients may be counteracted because of the large gradient
discrepancy when updating the model. In contrast, our MaxDO with AGD obtains the best final
accuracy AT on three datasets and different memory buffer sizes, which shows our superiority in
balancing plasticity and stability. For example, we have 55.192% for PS-ImageNet-TINY (buffer
size 4,000) while the compared best value is only 53.827%. On one hand, the proposed AGD is used
to measure the asymmetric distance between gradients to boost the effective update of each task.
On the other hand, the maximum discrepancies between multiple tasks are reduced. Note that, the
forgetting measure of the proposed methods may not outperform the compared methods because we
got both better new tasks (see the following section) and final accuracy performance, their difference
value (forgetting) may be small.

4.4 ACCURACY TRENDS

As shown in Fig. 4, we show the accuracy trends of the compared methods on the three evaluated
datasets with buffer sizes 310, 3,000 and 4,000 for PS-EMNIST, PS-CIFAR-100 and PS-ImageNet-
TINY, respectively. Each point in the figures means a right finished task and its performance then.
Note that the task order is up to the end time of tasks rather than the task ids. We have the following
observations. Firstly, in the first several tasks, fewer seen tasks mean that fewer discrepancies need to
be considered and the compared methods have similar performance. Secondly, when more new tasks
are accessed, MaxDO gains better performance for new tasks on three datasets compared to other
methods, especially on PS-CIFAR100 and PS-ImageNet-TINY, which both contain 20 tasks. The
observations show the proposed MaxDO is useful in PCL for solving diverse training processes. After
learning more tasks, MaxDO balances the asymmetric discrepancies among gradients to improve the
new task training and old task keeping at the same time. Because MaxDO gets better first accuracy
than other methods, the forgetting value may not achieve the best yet is still comparable to others.
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Table 4: Metric comparison (↑) and ablation study (↓).
Method (+ Rehearsal) AT (%) FT (%)

MaxDO (EuDist) 69.344± 0.024 24.268± 0.748
MaxDO (CosDist) 69.227± 0.370 24.552± 0.837
MaxDO (Normalized Eudist) 69.540± 0.340 24.629± 0.158

MGDA (Désidéri, 2012) 67.704± 0.238 24.725± 1.075
MaxDO (w/o Max-Discrepancy) 68.866± 0.443 24.093± 0.025
MaxDO (w/o MGDA) 69.953± 0.234 24.933± 0.621

MaxDO (AGD) 70.078± 0.134 24.907± 0.720

Table 5: Training time (second/iter).
Method 2 tasks 3 tasks 4 tasks 5 tasks Total

MGDA 5.58 5.92 6.06 6.64 239
GradNorm 5.30 5.81 5.87 6.50 281
DWA 5.56 5.89 5.94 6.56 245
GradDrop 5.33 6.00 6.34 6.38 275
PCGrad 5.71 5.85 6.11 6.46 229
CVWeight 5.56 5.98 6.00 6.56 227
RLW 5.64 5.89 5.95 6.26 232

MaxDO 5.70 6.12 6.67 6.91 300

4.5 COMPARISON WITH SYMMETRIC METRICS

As shown in Table 4, we compare AGD with three common symmetric metrics including EuDist,
CosDist, and Normalized EuDist. EuDist, CosDist are defined in Sec. 3.2. The vanilla EuDist
depends highly on the gradient magnitude difference, thus we also compare with its normalized
version D(x,y) = ‖x−y‖

‖x‖+‖y‖ ∈ [0, 1], namely normalized EuDist. The results show that the three
metrics can also obtain good performance with MaxDO. However, because of the over-emphasizing
of gradient magnitude difference in EuDist, it fails to reduce the catastrophic forgetting effectively.
Considering only gradient angle difference, MaxDO with CosDist obtains better performance than
EuDist. But CosDist ignores the magnitude difference, which is also important in the min-distance
problem, resulting in insufficient performance. Compared to EuDist, normalized EuDist obtains
better performance but still set symmetric influence to gradient update. In contrast to the three metrics,
MaxDO with AGD considers the asymmetric influence on gradient update, and tolerance is set to
reduce the influence from small gradients to new-access tasks, which yields the best performance.

4.6 ABLATION STUDY AND PROCEDURE TIME

We evaluate the impact of the two main components of MaxDO in Table 4. First, we block the
maximum discrepancy in MaxDO (MaxDO (w/o Max-Discrepancy)), which means that we solve the
min-distance problem with Eq. (6) directly. Because of the self-interference, the solution combines the
minimum discrepancy but fails to effectively reduce the discrepancy from other gradients (68.866%
for AT ). We then block the MGDA that obtains a weighted gradient not damage any tasks. MGDA
is quite useful in traditional MTL tasks but is not suitable in PCL (67.704% for AT ). Because of
the diverse training process of parallel tasks, gradients are with large magnitude differences and
MGDA prefers to set large factors to small gradients. We solve the problem by both MGDA and
the maximum discrepancy, and the whole MaxDO method with AGD outperforms the two ablated
methods (70.078% for AT ), where the characters of the two components are combined.

In Table 5, we show the training time comparison on PS-CIFAR-100. We first compare the training
time for 2 to 5 parallel tasks in one iteration. We find that the generation of task numbers will grow the
training time, and MaxDO needs more time than other methods because multiple minimum distance
optimizations are performed. Thus, in the whole timeline, MaxDO gets slightly longer training time
than other methods. It is interesting to explore how to speed up the MaxDO training in the future.

5 CONCLUSION

In this paper, we studied to address the training conflict and catastrophic forgetting issues in Parallel
Continual Learning (PCL). We presented that the two issues are rooted in the gradient discrepancies
and formulated the problem into a minimum distance optimization among gradients. However, the
distance metric is often set to be symmetric, which is problematic in gradient descent. To evaluate the
gradient discrepancy in PCL, we proposed an explicit Asymmetric Gradient Distance (AGD), which
considers both gradient magnitude ratios and directions and has a tolerance when updating with a
small gradient of inverse direction. Moreover, we also proposed a novel Maximum Discrepancy
Optimization (MaxDO) strategy to minimize the maximum discrepancy among multiple gradients
and avoid self-interference. Solving by MaxDO with AGD, the parallel training in PCL reduces the
influence of the training conflict and slows the catastrophic forgetting of finished tasks. We verified
the proposed benchmark on three image recognition datasets. The experimental results significantly
showed the advantage of our MaxDO and the effectiveness of the proposed AGD. We list the latent
limitation of our method: (1) The MaxDO cannot guarantee a theoretical Pareto optimum in the
training process like MGDA, which means a better trade-off can be obtained in the future. (2) The
MaxDO method needs more time for training.
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MEASURING ASYMMETRIC GRADIENT DISCREPANCY
IN PARALLEL CONTINUAL LEARNING (APPENDIX)

A DATASET CONSTRUCTION

For effective transformation, several requirements are needed: (1) Random label set for each task, in
which the data stream length of each task can be different; (2) Random timeline for each label set, in
which the debut of each task can be any time between the first access of the former and latter tasks.
For simplicity, we omit all blank time that all data streams are unavailable.

• Parallel Split EMNIST (PS-EMNIST): We split EMNIST (62 classes) into 5 tasks and
randomly generate 3 label sets for each task and 3 timelines for each label set (say 9 different
situations). The size of the label set for each task, i.e., the number of classes, is set to larger
than 2 while no more than 15.

• Parallel Split CIFAR-100 (PS-CIFAR-100): We split CIFAR-100 into 20 tasks and randomly
generate 3 label sets for each task and 3 timelines for each label set. The size of the label set
for each task is set to larger than 2 while no more than 15.

• Parallel Split ImageNet-TINY (PS-ImageNet-TINY): We split it into 20 tasks w.r.t. random
3 label sets, and each label set has 3 randomly generated timelines. The size of the label set
for each task is set to larger than 5 while no more than 20.

B PROOF OF LEMMA 1 ON AGD

As an asymmetric metric, the proposed Asymmetric Gradient Discrepancy (AGD) measure needs to
satisfy the two features in Lemma 1.

Proof: Given three arbitrary gradients x, y and z, we have

(1) If x = y, D(x,y) = 0.

(2) Positivity: If x 6= y, then ‖x− y‖ 6= 0, and we have D(x,y) =
‖x− y‖

‖y‖+ ‖x− y‖
> 0.

(3) The triangle inequality:

‖x− z‖
‖z‖+ ‖x− z‖

=
‖x− y + y − z‖

‖z‖+ ‖x− y + y − z‖

≤ ‖x− y‖+ ‖y − z‖
‖z‖+ ‖x− y‖+ ‖y − z‖

=
‖x− y‖

‖z‖+ ‖x− y‖+ ‖y − z‖
+

‖y − z‖
‖z‖+ ‖x− y‖+ ‖y − z‖

≤ ‖x− y‖
‖z‖+ ‖x− y‖+ ‖y − z‖

+
‖y − z‖

‖z‖+ ‖y − z‖

≤ ‖x− y‖
‖y‖+ ‖x− y‖

+
‖y − z‖

‖z‖+ ‖y − z‖
.

(10)

(4) Asymmetric: D(x,y) =
‖x− y‖

‖y‖+ ‖x− y‖
, and D(y,x) =

‖x− y‖
‖x‖+ ‖x− y‖

. Thus, it is obvious

that D(x,y) = D(y,x) is not always satisfied when x 6= y and depends on the magnitude ‖x‖ and
‖y‖ .

Therefore, the proposed AGD is an asymmetric metric. �

C TOLERANCE ANALYSIS AND PROOF OF COROLLARY 1
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C.1 PROOF OF COROLLARY 1

Let us review the definition of AGD:

D̂(x,y) =
‖x− y‖

‖y‖+ ‖x− y‖
. (11)

D̂(x,y) represents the gradient influence from x to y. The nature of this asymmetric measure is the
norm effect should only be from gradient difference ‖x− y‖ to ‖y‖ rather than to both ‖x‖ and ‖y‖.
That is, the discrepancy should only depend on the ratio ‖x−y‖‖y‖ , which can be further reduced to

‖x− y‖
‖y‖

=

√
‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos∠x,y

‖y‖
=

√(
‖x‖
‖y‖

)2

− 2
‖x‖
‖y‖

cos∠x,y + 1.

(12)
It is easy to know that

‖x− y‖
‖y‖+ ‖x− y‖

= 1− 1

1 + ‖x−y‖
‖y‖

. (13)

Because ‖x−y‖‖y‖ ≥ 0, D̂(x,y) ∈ [0, 1].

In the paper, we illustrate the proposed AGD is an asymmetric measure of gradient discrepancy
because D̂(x,y) brings a tolerance when ‖x‖ � ‖y‖ instead of the absolute difference between
them. To analyze the values of gradient discrepancy measure D regarding ‖x‖‖y‖ , we consider the
following asymmetric limits with ‖y‖ 6= 0:

• lim ‖x‖
‖y‖→∞

D: When ‖x‖ � ‖y‖, the conflict should be large from x to y;

• lim ‖x‖
‖y‖→0

D: When ‖x‖ � ‖y‖, the conflict is acceptable to some extend and should

approach a tolerance value that less than lim ‖x‖
‖y‖→∞

D.

We show the two limits for different discrepancy measures including Cosine Similarity, Euclidean
Distance, Normalized Euclidean Distance, and AGD.

Cosine Similarity: Using the Cosine Similarity to measure the discrepancy has no relevance to the
magnitude difference.

lim
‖x‖
‖y‖→0

1− x>y

‖x‖‖y‖
= lim

‖x‖
‖y‖→∞

1− x>y

‖x‖‖y‖
= 1− cos∠x,y. (14)

Euclidean Distance: When ‖y‖ 6= 0, we have

1

1 + ‖x− y‖
=

1

1 + ‖y‖ · ‖x−y‖‖y‖

. (15)

Thus, we have

lim
‖x‖
‖y‖→0

1− 1

1 + ‖x− y‖
=

‖y‖
1 + ‖y‖

, lim
‖x‖
‖y‖→∞

1− 1

1 + ‖x− y‖
= 1. (16)

When ‖x‖‖y‖ → 0, by using the Euclidean Distance highly depends on ‖y‖, which makes it unpre-
dictable.

Normalized Euclidean Distance: When ‖y‖ 6= 0, we have

lim
‖x‖
‖y‖→0

‖x− y‖
‖x‖+ ‖y‖

= lim
‖x‖
‖y‖→0

‖x−y‖
‖y‖

‖x‖
‖y‖ + 1

= 1, (17)
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Figure 5: Contours of different measures. Note that the x- and y-axes are the angle (i.e., ∠x,y)
between x and y, and the magnitude ratio ‖x‖‖y‖ , respectively. (a) Cosine distance; (b) Euclidean
distance where ‖y‖ = 0.2; (c) Asymmetric gradient distance.

lim
‖x‖
‖y‖→∞

‖x− y‖
‖x‖+ ‖y‖

= lim
‖x‖
‖y‖→∞

√(
‖x‖
‖y‖

)2

− 2 ‖x‖‖y‖ cos∠x,y + 1

‖x‖
‖y‖ + 1

= lim
‖x‖
‖y‖→∞

√√√√2 cos∠x,y + 2(
‖x‖
‖y‖ + 1

)2 − 2 cos∠x,y + 2
‖x‖
‖y‖ + 1

+ 1

=1.

(18)
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Table 6: Comparisons between different tolerances of AGD on PS-CIFAR-100.
γ Tolerance AT (%) FT (%)

0.2 5/6 69.283 ± 0.307 24.126 ± 0.472
0.5 2/3 69.486 ± 0.204 24.520 ± 0.570
1 (ours) 1/2 70.078 ± 0.134 24.907 ± 0.720
2 1/3 69.626 ± 0.192 24.344 ± 0.610
3 1/4 69.505 ± 0.442 24.479 ± 0.408
4 1/5 69.332 ± 0.142 24.600 ± 0.404

The discrepancy using Normalized EuDist has the same value when lim ‖x‖
‖y‖→0

and lim ‖x‖
‖y‖→∞

, which

means no tolerance.

AGD and Proof of Corollary 1: According to Eq. (13), we have

lim
‖x‖
‖y‖→0

D̂(x,y) = lim
‖x‖
‖y‖→0

1− 1

1 + ‖x−y‖
‖y‖

=
1

2
, (19)

lim
‖x‖
‖y‖→∞

D̂(x,y) = lim
‖x‖
‖y‖→∞

1− 1

1 + ‖x−y‖
‖y‖

= 1. (20)

The two equations denote that when ‖x‖‖y‖ → 0, AGD has the tolerance value 1
2 < lim ‖x‖

‖y‖→∞
= 1,

which means that ‖x‖ << ‖y‖ is acceptable as the half of perfect equal.

C.2 DIFFERENT TOLERANCE ANALYSIS

In our paper, we propose an Asymmetric Gradient Distance (AGD) to evaluate the gradient discrep-
ancy. AGD is designed to have a tolerance 1

2 in Corollary 1. This is because updating with a zero
gradient will neither improve nor damage the performance. Even though, we prefer positive influence
rather than non-influence. Thus, we define that the distance D̂(gA,gB) in the situation ‖gA‖ � ‖gB‖
is the mid-level in the value range.

In this subsection, we try to change the tolerance and observe the performance change. The tolerance
can be controlled by adding a factor γ > 0. Omitting the edge situation, we have

D̂(gA, gB) =
‖gA − gB‖

γ‖gB‖+ ‖gA − gB‖
.

The experiments on different tolerances are shown in Table 6. The results show either larger or
smaller tolerances compared to 1

2 will get the performance drop.

D CONTOUR OF AGD

We show more function contour comparisons with existing measurement methods in Fig. 5, where
the axes are the angle ∠x,y, the ratio ‖x‖‖y‖ and the metric contour value z for better visualization. As
we can see, the CosDist (Fig. 5(a)) has no relation to the ratio. The tolerance for lim ‖x‖

‖y‖→0
of EuDist

depends on the norm of y (Fig. 5(b)). The proposed AGD has fixed tolerance for lim ‖x‖
‖y‖→0

as shown

in Fig. 5(c).

E INTRODUCTION OF MGDA

At any time, PCL training yields the following dynamic multi-objective empirical risk minimization
formulation:

min
θ,{θi|i∈T }

{`i (Di) |i ∈ Tt} ,

where T is the task index set with activated data streams at time t.
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Table 7: Comparisons between using AGD with and without rehearsal gradient on PS-CIFAR-100.
Method (+ Rehearsal) AT (%) FT (%)

MaxDO (w/o rehearsal gradient) 68.398± 0.776 23.676± 0.583
MaxDO (w/ rehearsal gradient) 70.078± 0.134 24.907± 0.720

An elegant solution to the MOO for Pareto optimality Buchanan (1962) is the Steepest Descent
Method (SDM) Fliege & Svaiter (2000), which aims to obtain an optimal descent direction d∗ that
satisfies

d∗, α∗ = arg min d, α α+
1

2
‖d‖2 , s.t. g i>d ≤ α, ∀i ∈ T ,

where the constraints let each task have non-conflict with gradient d. Considering the Lagrange
multipliers and Karush–Kuhn–Tucker (KKT) condition, the dual problem solved by the Multi-
Gradient Descent Algorithm (MGDA) Désidéri (2012) is

w∗ = arg min
w

∥∥∥∑
i

wigi

∥∥∥2

, s.t.
∑
i

wi = 1 and wi ≥ 0,∀i.

The objective of MGDA is 0 and the resulting point satisfies the KKT conditions, or the solution
gives a Pareto descent direction that improves all tasks.

F MAXDO EFFECTS ON REHEARSAL

In rehearsal-based PCL, the training conflict may worsen the forgetting of old tasks. That is, the new
task produces large gradients and may mislead the replay of old tasks with small gradients. In our
method, we consider reducing this gradient conflict and propose to measure the asymmetric gradient
distance. Moreover, we propose to minimize the maximum discrepancy among multiple gradients.

To show the MaxDO’s effectiveness of forgetting reduction on rehearsal gradient, we evaluate the
result that only leverages MaxDO on new tasks instead memory data stream (i.e., finished tasks). The
result is shown in Fig. 7. In this case, the final gradient is calculated by d = 1

2greherasal +
1
2gnew, where

gnew is the solution gradient via MaxDO on only new tasks. The result shows that it is necessary to
put the rehearsal gradient to the MaxDO. Otherwise, the model will get worse accuracy and weak
forgetting.
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