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ABSTRACT

Recent advancements in Large Vision Language Models (LVLMs) have revolu-
tionized how machines understand and generate textual responses based on visual
inputs. Despite their impressive capabilities, they often produce "hallucinatory"
outputs that do not accurately reflect the visual information, posing challenges in
reliability and trustworthiness. Inspired by test-time augmentation, we propose
a simple, training-free method termed RITUAL to enhance robustness against
hallucinations in LVLMs. RITUAL introduces random image transformations as
complementary inputs during the decoding phase. Importantly, these transforma-
tions are not employed during the training of the LVLMs. This straightforward
strategy reduces the likelihood of hallucinations by exposing the model to varied
visual scenarios, enriching its decision-making process. While transformed images
alone may initially degrade performance, we empirically find that strategically com-
bining them with the original images mitigates hallucinations. Specifically, in cases
where hallucinations occur with the original image, the transformed images help
correct misinterpretations by adjusting the probability distribution. By diversifying
the visual input space, RITUAL provides a more robust foundation for generating
accurate outputs. Notably, our method works seamlessly with existing contrastive
decoding methods and does not require external models or costly self-feedback
mechanisms, making it a practical addition. While extremely simple, RITUAL
significantly outperforms existing contrastive decoding methods across several
object hallucination benchmarks, including POPE, CHAIR, and MME.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) (Dai et al., 2024; Zhu et al., 2023; Liu et al., 2023c;b; Bai
et al., 2023) have emerged as a pivotal technology, enabling machines to interpret complex visual
scenes and generate contextually appropriate textual descriptions. These models integrate and process
inputs from both visual and linguistic domains, offering unprecedented possibilities in applications
ranging from video content creation (Brooks et al., 2024) to assistive technologies (Team et al., 2023;
OpenAI, 2023).

Despite their potential, LVLMs are often criticized for generating "hallucinatory" content (Li et al.,
2023c; Zhao et al., 2023; Wang et al., 2023b; Huang et al., 2023) – outputs that appear plausible but
do not faithfully reflect the visual inputs. This gap in reliability and trustworthiness is particularly
concerning for sensitive applications such as medical diagnosis (Zhou et al., 2023a; Liu et al., 2023d),
surveillance (Wu et al., 2024; Hasan et al., 2024), and autonomous driving (Li et al., 2024).

The challenge primarily arises from the difficulty in maintaining alignment between the visual inputs
and textual outputs, given the complexity of training such models to accurately interpret and narrate
visual data. Although several strategies have been developed to mitigate these issues, they often
require extensive additional training (Jiang et al., 2023; Zhou et al., 2023b; Gunjal et al., 2023; Liu
et al., 2023a; Sun et al., 2023; Wang et al., 2023a; Yin et al., 2023; Lu et al., 2024; Zhai et al., 2024;
Yue et al., 2024), sophisticated feedback mechanisms (Yin et al., 2023; Yu et al., 2023; Kim et al.,
2024; Sun et al., 2023), or reliance on auxiliary models (Zhao et al., 2024; Wan et al., 2024; Deng
et al., 2024; Yang et al., 2024; Li et al., 2023b), which can complicate deployment and scalability.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Vertical Flip

3

4

5

6

7

3

4

5

6

7

3

4

5

6

7

“How many dogs are in the image? Please answer in one number.”

+ +

Correct Answer: 4

Color Jitter

“How many green bananas are in the

image? Please answer in one number.”

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

+

Correct Answer: 0

POPE/COCO/Random

L
L

a
V

A
-1

.5
In

st
ru

ct
B

L
IP

81

82

83

84

85

86

87

88

89

90

Acc. Prec. Rec. F1

78

80

82

84

86

88

90

92

Acc. Prec. Rec. F1

+

Figure 1: Intriguing impact of random image transformations on LVLMs. (Left) Using the
randomly transformed image (V(T )) as a visual input to LVLMs (Liu et al., 2023c; Dai et al., 2024)
results in lower performance compared to using the original image (V). (Right) However, when these
two images are used together (V + V(T )), an intriguing phenomenon is observed: cases incorrectly
predicted with the original image are now correctly predicted. (i) Although V(T ) alone does not yield
a correct answer, it reduces the likelihood of a hallucinated answer and increases the chances of a
correct answer. (ii) In some cases, V(T ) strongly aligns with the correct answer, leading to accurate
answers.

We present a simple, training-free approach termed RITUAL, which leverages random image trans-
formations to complement the original image and enhance models’ robustness. RITUAL is designed
to address the issue of visual hallucination by employing a dual-input strategy that integrates both
the original and a randomly transformed image. The final prediction is an ensemble of the indi-
vidual predictions generated from both the original and augmented images. This provides a more
comprehensive visual context, enriching the model’s exposure to a diverse array of visual scenarios,
thereby enhancing the robustness and reliability of text generation. Much like how humans refine
their understanding by observing objects from different angles and under varying conditions, our
approach fosters cognitive flexibility (Ionescu, 2012) – the ability to adapt to new situations and
switch between tasks or concepts.

Our approach builds on the principles of Test-Time Augmentation (TTA) (Zhang et al., 2022;
Shanmugam et al., 2021; Pérez et al., 2021), a technique that improves model robustness and
generalization at inference time by using multiple augmented versions of an input. TTA is particularly
useful in scenarios where the test set exhibits high variance or when inputs contain ambiguities. By
generalizing over these uncertainties, TTA helps reduce model sensitivity to minor perturbations,
leading to more reliable predictions.

Importantly, these image transformations are applied only during the inference phase, not during
training. As demonstrated in Fig. 1 (Left), using transformed images (V(T )) alone initially degrades
performance compared to using the original image (V), due to the introduction of novel visual
artifacts. However, when the original and transformed images are combined (V + V(T )) significantly
enhances the quality and reliability of the model’s outputs. While neither the original image nor
the transformed image alone may provide an accurate response, their combination reduces the
likelihood of a hallucinated response and increases the chances of a correct answer. In some cases,
the transformed image strongly aligns with the correct answer, resulting in accurate predictions.

Our experiments evaluate RITUAL across several benchmarks, including POPE (Rohrbach et al.,
2018), CHAIR (Li et al., 2023c), and both MME-Hallucination and MME-Fullset (Fu et al., 2024). De-
spite its simplicity, RITUAL effectively reduces hallucination across these benchmarks and enhances
the general capabilities of LVLMs. Moreover, RITUAL consistently outperforms existing contrastive
decoding baselines (Leng et al., 2023; Favero et al., 2024) in all tested benchmarks. RITUAL is
also compatible with current contrastive decoding methods, and when used in conjunction, it further
amplifies the improvements over these methods.
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2 RELATED WORK

Hallucinations in LVLMs. LVLMs are susceptible to visual hallucinations, in which the generated
text descriptions include objects or details entirely irrelevant from the given image. A range of
methods has been introduced to address the issue by additional training (Gunjal et al., 2023; Liu et al.,
2023a; Sun et al., 2023; Wang et al., 2023a; Yin et al., 2023; Lu et al., 2024; Jiang et al., 2023; Zhou
et al., 2023b; Zhai et al., 2024; Yue et al., 2024). While these approaches offer promise, they often
face practical limitations due to their dependence on additional data and extensive training periods.
In response to these limitations, training-free approaches have gained traction. These models aim
to refine the model output by self-feedback correction (Lee et al., 2023; Yin et al., 2023), providing
additional knowledge using auxiliary models (Wan et al., 2024; Deng et al., 2024; Zhao et al., 2024;
Yang et al., 2024; Kim et al., 2024), and contrastive decoding (Leng et al., 2023; Favero et al., 2024;
Zhang et al., 2024; Wang et al., 2024), which refines the model outputs by contrasting the conditional
probability of textual responses given the original visual input versus a distorted visual input. Our
work adopts a unique approach by applying random image transformations to complement the
original image. This provides a wide range of visual contexts, aiming to mitigate hallucinatory visual
explanations without the complexities of extra models, additional training, or data requirements.

Image augmentations for model robustness. Image augmentations (Shorten & Khoshgoftaar,
2019; Perez, 2017) have long been recognized as a crucial technique for improving model robust-
ness, particularly in computer vision and multimodal tasks. By introducing variations in input data,
augmentations help models generalize better to unseen scenarios, reduce overfitting, and improve
performance in the presence of noise or ambiguous inputs. In the training phase, data augmentation
techniques (Cubuk et al., 2018; Taylor & Nitschke, 2017), such as those used in SimCLR (Chen et al.,
2020) and BYOL (Grill et al., 2020), enhance the diversity of training data by applying transforma-
tions like rotations, flips, and crops. This encourages the model to learn more generalizable features,
improving performance on unseen data. At inference time, test-time augmentation (TTA) (Zhang et al.,
2022; Shanmugam et al., 2021; Pérez et al., 2021) further improves model robustness. TTA applies
multiple transformations to the input image during testing, generating varied predictions which are
then averaged or ensembled to produce a more reliable output. By exposing the model to diverse
perspectives of the same input, TTA reduces sensitivity to noise and ambiguity, stabilizes predictions
on difficult cases, and serves as a cost-effective ensembling method without requiring additional
model training. Our approach builds on these concepts by using random image transformations during
inference to provide a broader visual context, reducing hallucinations in vision-language models.
By combining predictions from both the original and transformed images, our method enhances
robustness without requiring extra training or data.

3 APPROACH: RITUAL

We present a simple decoding method that can be applied in an online manner during token generation.
Our method is training-free, does not require external models or a costly self-feedback mechanism,
and remains compatible with existing contrastive decoding techniques (Leng et al., 2023; Favero
et al., 2024). An overview of our method is illustrated in Fig. 2.

3.1 LVLM FORMULATION

Vision-Language Alignment. LVLM takes a visual input and a textual query as inputs, where
the visual input provides contextual visual information to assist the model in generating a rele-
vant response to the textual query. Initially, a vision encoder (e.g., ViT (Dosovitskiy et al., 2020),
CLIP (Radford et al., 2021), etc.) processes raw images to extract visual features. These features
are then projected into the language model’s input space using a vision-language alignment mod-
ule (e.g., Q-Former (Li et al., 2023a), linear projection (Liu et al., 2023c), etc.), resulting in a
set of visual tokens, V = {ν0, ν1, . . . , νN−1}. Concurrently, the textual inputs are tokenized into
T = {τN , τN+1, . . . , τN+M−1}. The visual and textual tokens are concatenated to form an input
sequence of length N +M .

Model Forwarding. The LVLM, parametrized by θ, processes the concatenated sequence of visual
and textual tokens. This process is formalized as:

H = LVLMθ([V, T ]), (1)

3
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Figure 2: Overview of RITUAL. At each timestep t, LVLM auto-regressively samples a response
ηt given a visual input, a textual query T , and previously generated tokens η<t. When conditioned
on the original image V , the probabilities for Blue (correct) and Red (hallucinated) responses are
similar, which can lead to the hallucinated response being easily sampled. RITUAL leverages an
additional probability distribution conditioned on the transformed image V(T ), where the likelihood
of hallucination is significantly reduced. Consequently, the response is sampled from a linear combi-
nation of the two probability distributions, ensuring more accurate and reliable outputs.
where H denotes the sequence of output hidden states from the final layer of LVLM. These hidden
states H are used to compute the logits (or probabilities) for predicting the next tokens.

Response Generation. The LVLM generates responses auto-regressively, employing a causal
attention mask to ensure each subsequent token is predicted based solely on the preceding tokens.
Each response token is generated by sampling from the following probability distribution:

ηt ∼ pθ(ηt|V, T , η<t). (2)
where ηt denotes the response token being generated at timestep t, and η<t indicates the sequence of
tokens generated up to timestep (t− 1). This generative process is iteratively continued, appending
each newly predicted token to the sequence, until the termination of the sequence. By default, Greedy
Decoding is used. Alternatively, decoding strategies such as Beam Search (Wiseman & Rush, 2016),
Nucleus Sampling (Holtzman et al., 2019), or DoLa (Chuang et al., 2023) can be employed.

3.2 MITIGATING HALLUCINATIONS IN LVLMS WITH RANDOM IMAGE TRANSFORMATIONS

Visual hallucinations in LVLMs can occur during the decoding phase when tokens are selected based
on erroneous probability distributions that do not align with the visual inputs. Our approach aims to
mitigate these visual hallucinations with a simple yet effective modification to the input handling.

We first randomly apply common image transformations (e.g., Crop, Flip, Color jitter, etc.) to the
original visual input V , This results in a transformed version of the visual input, V(T ).

V(T ) = T (V;ω), where ω ∈ Ω. (3)
Here, T represents a specific transformation function selected randomly from a set of image trans-
formations. The parameter ω represents the specific parameters of the transformation, drawn from a
distribution Ω that governs the selection and nature of the transformation applied.

During the decoding phase, rather than using V(T ) alone — which we found to impair performance —
we utilize both the original and transformed images. This dual-input approach significantly reduces
the likelihood of hallucinatory outputs, as illustrated in Fig. 1, and improves the accuracy of the
model’s predictions. The sampling equation in Eq. (2) is updated as follows:

ηt ∼ pθ(ηt|V, T , η<t) + αpθ(ηt|V(T ), T , η<t). (4)
Here, α is a balancing hyperparameter, adjusting the contribution of the transformed input relative to
the original. To promote output diversity and avoid deterministic behavior, we choose to sample from
a multinomial distribution rather than merely selecting the most probable output via argmax.

4
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In practice, we employ a predefined set of image transformations to enhance model robustness,
divided into geometric and appearance transformations. Geometric transformations, such as flipping,
small random rotations, and cropping, simulate different viewing angles, orientations, and focus
areas, enhancing the model’s ability to generalize across varied perspectives and object positioning.
Appearance transformations, including color jitter and Gaussian blur, adjust brightness, contrast,
and saturation to account for lighting variations and sensor noise, increasing resilience to image
imperfections. Together, these transformations introduce meaningful variations that better prepare the
model for real-world image scenarios, improving its flexibility and performance.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Throughout our experiments, we set hyperparameter configuration at α = 3. For random image
transformation, we use flip (horizontal & Vertical), rotate, color jitter, Gaussian blur, and crop. In all
experimental tables, the base refers to the standard decoding, which directly samples the response
token from the softmax distribution.1

LVLMs. We integrate RITUAL with two state-of-the-art LVLMs: LLaVA-1.5 ( (Liu et al., 2023c)
and InstructBLIP (Dai et al., 2024). Both models incorporate Vicuna 7B (Chiang et al., 2023) as
their language decoding mechanism. LLaVA-1.5 utilizes two-layer MLP to align image and text
modalities and InstructBLIP employs the Q-Former (Li et al., 2023a) to efficiently bridge visual
and textual features using a fixed number of tokens (e.g., 32). Note that the adaptability of RITUAL
extends beyond these two models and is model-agnostic. It can be compatible with a wide range of
off-the-shelf LVLMs.

Baselines. Our method aims to reduce hallucinations in LVLMs by modifying model’s decoding
process without relying on external models, costly self-feedback mechanisms, or additional train-
ing. To align with these criteria, we select baseline methods that meet these requirements. Recent
contrastive decoding methods fit well within this scope, and we establish two primary baselines:
VCD (Leng et al., 2023) and M3ID (Favero et al., 2024). Both VCD and M3ID aim to mitigate object
hallucinations by increasing the influence of the reference image over the language prior. This is
achieved by contrasting output distributions derived from both original and distorted visual inputs.
We also include DoLa (Chuang et al., 2023) as a baseline, which employs a novel decoding strategy
that contrasts logits from earlier and later layers of the transformer architecture. This amplifies factual
knowledge stored in the upper layers while suppressing linguistic patterns from the lower layers that
may lead to hallucinations. Additionally, we report results from OPERA (Huang et al., 2023), which
mitigates hallucinations in LVLMs via an over-trust penalty and retrospection allocation. In contrast
to all other methods, OPERA uses beam search during response generation, contributing to its higher
performance. We include it for comparison purposes due to its demonstrated effectiveness in reducing
hallucinations. All baselines were reproduced within our evaluation setting for consistency.

Benchmarks. (1) POPE (Li et al., 2023c) frames hallucination assessment as a binary classifi-
cation task using yes/no questions about object presence (e.g., "Is there a dog in the image?"). It
evaluates 500 MS-COCO images with questions based on actual objects or nonexistent objects. The
benchmark contains three subsets (random, popular, and adversarial), addressing object prevalence
and co-occurrences. (2) MME (Fu et al., 2024) is a comprehensive LVLM benchmark assessing
14 subtasks, including object hallucination through tasks like object existence, count, position,
and color. These tasks are framed as binary yes/no questions. (3) CHAIR (Rohrbach et al., 2018)
evaluates the proportion of words in captions that correspond to actual objects in an image, using
ground-truth captions and object annotations. It has two variants: (i) per-sentence (CHAIRS) is
defined as |{sentences with hallucinated objects}|/|{all sentences}|. (ii) per-instance (CHAIRI ) is
defined as |{hallucinated objects}|/|{all objects mentioned}|. We randomly select 500 images from
the COCO (Lin et al., 2014) validation set and conduct image captioning with the prompt "Please
describe this image in detail".

1We refer readers to Appendix E for further implementation & experimental details and additional results.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Results on POPE (Li et al., 2023c) benchmark. RITUAL consistently outperforms the
contrastive decoding baselines: VCD, M3ID, and DoLa. Moreover, RITUAL is shown to be compati-
ble with both VCD and M3ID, leading to further performance improvements in most configurations.
Results are reproduced within our evaluation setting.

Setup Method LLaVA 1.5 (Liu et al., 2023c) InstructBLIP (Dai et al., 2024)

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

M
S-

C
O

C
O

(L
in

et
al

.,
20

14
)

Random

base 84.13 82.86 86.07 84.43 82.80 82.24 83.67 82.95
VCD 85.37 83.14 88.73 85.84 83.93 84.42 82.67 83.73
M3ID 86.00 85.11 87.27 86.18 84.37 84.62 84.00 84.31
DoLa 85.97 85.10 87.20 86.14 84.00 82.86 85.73 84.27
RITUAL 88.87 89.23 88.40 88.81 88.83 90.48 86.80 88.60

RITUAL+VCD 89.07 89.49 88.53 89.01 89.30 90.85 87.40 89.09
RITUAL+M3ID 89.00 89.85 87.93 88.88 88.93 91.13 86.27 88.63

OPERA (Beam) 89.37 92.03 86.20 89.02 89.17 95.51 82.20 88.36

Popular

base 80.87 78.23 85.53 81.72 75.80 72.74 82.53 77.33
VCD 81.10 77.78 87.07 82.16 77.73 75.43 82.27 78.70
M3ID 82.83 79.62 88.27 83.72 77.30 74.10 83.93 78.71
DoLa 82.93 79.76 88.27 83.80 77.37 73.50 85.60 79.09
RITUAL 85.83 84.17 88.27 86.17 81.97 78.90 87.27 82.87

RITUAL+VCD 85.77 83.89 88.53 86.15 82.83 80.16 87.27 83.56
RITUAL+M3ID 85.37 83.60 88.00 85.74 81.90 78.98 86.93 82.77

OPERA (Beam) 86.20 85.17 87.67 86.40 84.07 85.39 82.20 83.76

Adversarial

base 76.23 71.75 86.53 78.45 75.40 71.60 84.20 77.39
VCD 75.60 70.78 87.20 78.14 76.80 73.62 83.53 78.26
M3ID 77.70 73.23 87.33 79.66 76.03 72.48 83.93 77.79
DoLa 77.17 72.30 88.07 79.41 74.30 69.95 85.20 76.83
RITUAL 78.80 74.43 87.73 80.54 78.73 74.57 87.20 80.39

RITUAL+VCD 79.60 75.26 88.20 81.22 79.07 74.89 87.47 80.69
RITUAL+M3ID 79.20 74.83 88.00 80.88 78.93 75.06 86.67 80.45

OPERA (Beam) 81.07 77.44 87.67 82.24 81.83 81.60 82.20 81.90

A
-O

K
V

Q
A

(S
ch

w
en

k
et

al
.,

20
22

)

Random

base 81.73 76.53 91.53 83.36 81.13 78.03 86.67 82.12
VCD 81.83 75.74 93.67 83.76 82.00 79.38 86.47 82.77
M3ID 83.57 77.86 93.80 85.09 82.33 77.81 90.47 83.66
DoLa 83.23 77.47 93.73 84.83 82.17 78.17 89.27 83.35
RITUAL 85.17 79.79 94.20 86.40 87.13 83.92 91.87 87.71

RITUAL+VCD 85.10 79.93 93.73 86.28 86.77 83.57 91.53 87.37
RITUAL+M3ID 85.93 80.62 94.60 87.06 87.17 84.35 91.27 87.67

OPERA (Beam) 86.80 82.90 92.73 87.54 89.97 90.75 89.00 89.87

Popular

base 76.67 70.51 91.67 79.71 75.67 70.97 86.87 78.12
VCD 74.70 68.12 92.87 78.59 76.50 71.69 87.60 78.85
M3ID 76.80 70.20 93.13 80.06 75.60 70.40 88.33 78.36
DoLa 76.47 69.79 93.33 79.86 76.93 71.15 90.60 79.71
RITUAL 78.83 71.99 94.40 81.68 78.73 72.83 91.67 81.17

RITUAL+VCD 79.17 72.40 94.27 81.90 78.83 72.75 92.20 81.33
RITUAL+M3ID 79.63 72.83 94.53 82.27 79.20 73.42 91.53 81.48

OPERA (Beam) 79.60 73.44 92.73 81.97 82.60 78.90 89.00 83.65

Adversarial

base 67.40 61.78 91.27 73.68 68.00 63.08 86.80 73.06
VCD 67.43 61.48 93.33 74.13 70.67 65.24 88.47 75.10
M3ID 68.10 61.99 93.60 74.58 69.57 64.21 88.40 74.39
DoLa 68.03 62.02 93.07 74.43 68.50 62.94 90.00 74.07
RITUAL 68.57 62.26 94.27 74.99 70.27 64.15 91.87 75.55

RITUAL+VCD 68.80 62.48 94.13 75.11 71.00 64.72 92.33 76.10
RITUAL+M3ID 68.77 62.42 94.33 75.13 69.30 63.43 91.13 74.80

OPERA (Beam) 70.00 63.75 92.73 75.56 74.53 69.03 89.00 77.75

G
Q

A
(H

ud
so

n
&

M
an

ni
ng

,2
01

9)

Random

base 81.23 75.42 92.67 83.16 79.93 76.73 85.93 81.07
VCD 81.50 74.78 95.07 83.71 81.83 79.03 86.67 82.67
M3ID 82.83 76.64 94.47 84.62 80.57 76.77 87.67 81.85
DoLa 83.70 77.70 94.53 85.29 81.57 77.90 88.13 82.70
RITUAL 86.10 80.30 95.67 87.31 84.87 82.52 88.47 85.39

RITUAL+VCD 86.03 80.21 95.67 87.26 84.97 82.40 88.93 85.54
RITUAL+M3ID 86.30 80.64 95.53 87.46 85.00 82.94 88.13 85.46

OPERA (Beam) 87.07 82.25 94.53 87.97 87.70 90.02 84.80 87.33

Popular

base 72.50 65.85 93.47 77.27 72.73 68.14 85.40 75.80
VCD 71.57 64.72 94.80 76.93 73.67 68.82 86.53 76.67
M3ID 72.83 66.04 94.00 77.58 74.57 69.45 87.73 77.53
DoLa 74.03 66.85 95.33 78.59 73.70 68.58 87.47 76.88
RITUAL 74.80 67.50 95.67 79.15 74.50 69.17 88.40 77.61

RITUAL+VCD 75.07 67.82 95.40 79.28 75.33 69.98 88.73 78.25
RITUAL+M3ID 74.40 67.15 95.53 78.87 75.57 70.24 88.73 78.41

OPERA (Beam) 75.50 68.47 94.53 79.42 78.77 75.67 84.80 79.97

Adversarial

base 67.63 61.68 93.13 74.21 69.57 64.80 85.67 73.79
VCD 67.47 61.38 94.20 74.33 69.43 64.76 85.27 73.61
M3ID 68.13 61.88 94.47 74.78 68.90 64.06 86.13 73.47
DoLa 68.73 62.34 94.67 75.17 69.70 64.28 88.67 74.53
RITUAL 68.23 61.75 95.80 75.10 70.17 64.76 88.47 74.78

RITUAL+VCD 69.00 62.39 95.67 75.53 70.23 64.81 88.53 74.84
RITUAL+M3ID 68.80 62.29 95.27 75.33 71.00 65.32 89.53 75.53

OPERA (Beam) 70.00 63.42 94.53 75.91 74.40 70.20 84.80 76.81
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Table 2: Results on MME-Hallucination (Fu et al., 2024). RITUAL effectively mitigates halluci-
nations at both the object and attribute levels, outperforming contrastive decoding methods in Total
Score.

Model Method Object-level Attribute-level Total
ScoreExistence ↑ Count ↑ Position ↑ Color ↑

LLaVA 1.5

base 173.75(±4.79) 121.67(±12.47) 117.92(±3.69) 149.17(±7.51) 562.50(±3.96)

VCD 178.75(±2.50) 126.25(±10.40) 120.00(±4.08) 150.83(±11.01) 575.84(±9.67)

M3ID 177.50(±6.45) 124.17(±10.93) 120.00(±7.07) 152.92(±5.67) 574.59(±9.75)

DoLa 174.58(±5.34) 122.09(±11.73) 122.09(±2.10) 149.17(±4.19) 567.92(±13.63)

RITUAL 187.50(±2.89) 139.58(±7.62) 125.00(±10.27) 164.17(±6.87) 616.25(±20.38)

RITUAL+VCD 185.00(±4.08) 140.84(±4.41) 125.00(±7.07) 165.83(±6.46) 616.67(±11.14)

RITUAL+M3ID 187.50(±2.89) 141.25(±9.85) 125.00(±10.27) 164.17(±6.87) 617.92(±22.12)

InstructBLIP

base 160.42(±5.16) 79.17(±8.22) 79.58(±8.54) 130.42(±17.34) 449.58(±24.09)

VCD 158.75(±7.25) 90.75(±3.11) 70.00(±15.81) 132.50(±18.78) 452.00(±31.57)

M3ID 158.33(±5.44) 94.58(±9.85) 72.50(±17.03) 128.33(±14.72) 453.75(±26.82)

DoLa 162.08(±5.34) 82.50(±6.16) 78.75(±8.96) 135.42(±10.49) 458.75(±11.25)

RITUAL 182.50(±6.45) 74.58(±5.99) 67.08(±10.31) 139.17(±0.96) 463.33(±12.40)

RITUAL+VCD 185.00(±4.08) 75.00(±7.07) 62.50(±6.46) 141.67(±6.53) 464.17(±9.07)

RITUAL+M3ID 182.50(±6.45) 74.58(±2.84) 63.33(±11.55) 140.42(±2.10) 460.83(±11.1)
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Figure 3: Comparison on MME-Fullset (Fu et al., 2024). When equipped with RITUAL, LLaVA-
1.5 (Liu et al., 2023c) performs best in 12 out of 14 categories, while InstructBLIP (Dai et al.,
2024) excels in 8 categories. RITUAL not only reduces hallucinations but also enhances the general
capabilities of LVLMs. Detailed results are in Appendix F.4.

4.2 RESULTS

Results on POPE. Table 1 compares various decoding-based hallucination mitigation methods on
the POPE benchmark (Li et al., 2023c), evaluated with two representative LVLMs: LLaVA 1.5 (Liu
et al., 2023c) and InstructBLIP (Dai et al., 2024). The results demonstrate that RITUAL consistently
outperforms baseline, VCD (Leng et al., 2023), M3ID (Favero et al., 2024), and DoLa (Chuang
et al., 2023) across all datasets (MS-COCO (Lin et al., 2014), A-OKVQA (Schwenk et al., 2022),
and GQA (Hudson & Manning, 2019)) and setups (random, popular, and adversarial), and all
metrics, demonstrating its robustness in mitigating hallucinations. This underscores the importance
of considering visual context from multiple perspectives. Furthermore, RITUAL yields further
performance improvement when incorporated with contrastive decoding methods (VCD and M3ID),
indicating compatibility. This synergy between contrastive decoding, which aims to reduce language
biases, and our approach, which captures a broader range of visual contexts through varying fields of
view, effectively mitigates object hallucinations.

Results on MME-Hallucination. In Table 2, we compare the results on the MME-hallucination
subset (Fu et al., 2024) to verify the model’s effectiveness in reducing various types of hallucinations
beyond object existence. When combined with LLaVA-1.5 (Liu et al., 2023c), RITUAL outperforms
all counterparts across both object-level (Existence and Count) and attribute-level (Position and Color)
evaluations. With InstructBLIP (Dai et al., 2024), while the other methods show a slight advantage
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Table 3: Results on CHAIR (Rohrbach
et al., 2018) benchmark. RITUAL signifi-
cantly reduces object hallucinations in cap-
tion generation compared to VCD, M3ID, and
DoLa. It can also boost performance when
combined with VCD and M3ID. The number
of max new tokens is set to 64.

Method CHAIRS↓ CHAIRI↓

L
L

aV
A

1.
5

base 26.2 9.3
VCD 22.4 7.6
M3ID 23.0 6.8
DoLa 23.2 7.8
RITUAL 20.6 6.9

RITUAL+VCD 20.0 6.8
RITUAL+M3ID 18.0 5.7

OPERA (beam) 23.0 7.5

In
st

ru
ct

B
L

IP

base 28.6 10.3
VCD 27.2 9.1
M3ID 31.8 10.4
DoLa 36.6 12.5
RITUAL 26.0 8.8

RITUAL+VCD 25.0 8.6
RITUAL+M3ID 23.4 7.9

OPERA (beam) 25.6 8.3

Table 4: Generated Text Quality. RITUAL demon-
strates a competitive level of text quality compared
to other decoding methods.

Method Grammar ↑ Fluency ↑
base 9.804 9.432
VCD 9.802 9.352
M3ID 9.832 9.344
DoLa 9.814 9.320
RITUAL 9.844 9.398

OPERA 9.828 9.308

Table 5: Comparison of performance and latency
on COCO random setup.

Method
LLaVA 1.5

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Latency
(ms/token)

base 84.13 82.86 86.07 84.43 21.96
VCD 85.37 83.14 88.73 85.84 43.33
M3ID 86.00 85.11 87.27 86.18 40.07
DoLa 85.97 85.10 87.20 86.14 28.70
RITUAL 88.87 89.23 88.40 88.81 43.37

OPERA
(beam) 89.37 92.03 86.20 89.02 308.48

in Count and Position, RITUAL surpasses the baseline and other contrastive decoding methods in
the total score. Moreover, when combined with existing methods like VCD (Leng et al., 2023) and
M3ID, RITUAL exhibits further performance enhancement. RITUAL exhibits lower performance
in Count and Position tasks due to the inherent challenges associated with specific transformations.
For instance, tasks like Count may be impacted by cropping transformations that alter the visible
quantity of objects, while Position accuracy may be affected by flipping transformations that change
the spatial arrangement of objects.

Results on MME-Fullset. As depicted in Fig. 3, we evaluate the MME-Fullset (Fu et al., 2024) to
assess the impact of decoding methods on the general ability of LVLMs. Across 14 categories, both
LLaVA-1.5 and InstructBLIP adopting RITUAL consistently achieve the highest scores across most
tasks, demonstrating its effectiveness of RITUAL in improving visual and textual understanding. By
enriching the model’s visual capacity from diverse visual contexts, RITUAL provides a balanced
enhancement across a wide range of tasks, making it a versatile and robust method for improving
LVLM performance. Despite these advancements, some tasks may still exhibit lower performance
due to the inherent challenges of statistical bias and language priors affecting LVLMs.

Results on CHAIR. To assess the reduction of object existence hallucination, we use the CHAIR
metrics, where the presence of objects in the description serves as the measurement criterion. Given
the generative nature of the task, we limit the maximum number of new tokens to 64. As shown in
Table 3, our RITUAL outperforms both the baseline and previous contrastive decoding approaches.
For LLaVA 1.5, RITUAL achieves CHAIRS and CHAIRI scores of 20.6 and 6.9, respectively,
significantly surpassing both baseline and VCD. While M3ID shows slightly better performance
in CHAIRI , RITUAL attains comparable scores and markedly excels in CHAIRI . Similarly, for
InstructBLIP, RITUAL achieves the best results with CHAIRS and CHAIRI scores of 26.0 and
8.8, respectively. Additionally, when combined with VCD and M3ID, RITUAL further reduces the
CHAIR score.

4.3 ANALYSIS

Generation Quality. Since previous methods and RITUAL modify the logits from the standard
decoding strategy, there may be concerns about potentially compromising the quality of the generated
text. Therefore, we employed GPT-4-Turbo to evaluate the grammar and fluency of generated text
from 500 samples of the CHAIR benchmark using the InstructBLIP. As shown in the Tab. 4, our
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Correct Answer: Yes
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What is the name of the character in the image?

The character in the image is

Det

K

S

Con Con

J J

Det Det

K K

S S

Base

: Sherlock Holmes. Although he is often 

referred to as \"Dr. Holmes,\" his name is 

actually Sherlock Holmes, a fictional 

detective created by Sir Arthur Conan Doyle.

(Ours)

: Detective Conan, 

which is a popular 

Japanese manga and 

anime series.

: 

Figure 4: RITUAL in descriptive task. RITUAL refines the probability distribution to generate the
correct token during decoding, thereby mitigating hallucinations in the following generated text.

decoding method demonstrates text generation quality that is comparable to or exceeds that of the
previous work in terms of grammar and fluency. The results highlight the robustness and effectiveness
of our method in generating grammatically correct and fluent text while also improving hallucination
mitigation without compromising overall text generation quality.

Latency. Contrastive decoding methods like VCD and M3ID, as well as RITUAL, require performing
the forward process twice to compare two probability distributions, doubling resource consumption.
Tab. 5 details the performance and speed comparison. In our experiments, DoLa has minimal overhead
compared to normal decoding, with only a 1.3x increase in latency. DoLa is faster than RITUAL, but
RITUAL shows better performance. Despite implementation differences such as beam search, OPERA
achieves slightly higher accuracy than RITUAL, but our method is significantly faster than OPERA.
There are trade-offs among the methods, but RITUAL offers clear advantages. It is conceptually
and implementation-wise simple, applicable to various methods, and delivers a favorable speed and
performance trade-off. Also, it can be complementarily used with other contrastive decoding methods.

RITUAL in descriptive task. We demonstrate how RITUAL is effective in descriptive tasks such as
CHAIR in Figure 4. In the case of standard decoding, the model assigns the highest probability to
the token ’S’ at the current timestep t, leading to the incorrect prediction of "Sherlock Holmes." In
contrast, RITUAL, which utilizes both the original and augmented images, effectively adjusts the
probability distribution and selects the token ’Det’ rather than ’S’, resulting in the correct prediction
of "Detective Conan." This highlights the advantage of leveraging augmented images for probability
correction, thereby improving accuracy in visually ambiguous contexts.

Table 6: Ablation of the num-
ber of augmented images in
RITUAL on COCO random.

# of Aug.
Images

LLaVA-1.5

Acc. ↑ F1 ↑
1 88.87 88.81
2 89.07 89.02
3 89.17 89.16

Ablation of the number of augmented images. To investigate
whether increased exposure to diverse visual scenarios allows the
model to better understand images and produce more robust re-
sponses, we conducted an ablation study by varying the number of
augmented images in RITUAL. As shown in Tab. 6, the performance
slightly improves as more augmented images are used. This im-
provement can be attributed to the richer visual context provided by
the additional augmentations. However, using multiple augmented
images also introduces a trade-off, as it increases latency due to the
additional computational load. Detailed results are in Appendix F.6.

Qualitative results on LLaVA-Bench. Fig. 5 presents two sam-
ples from the LLaVA-Bench (Liu et al., 2023c) with LLaVa-1.5 (Liu et al., 2023c), highlighting
the differences between sentences generated by standard decoding (Base) and those produced by
RITUAL. The results demonstrate that standard decoding often results in hallucinations, which can
be effectively rectified by implementing RITUAL. For instance, in the left-hand image, the baseline
model incorrectly identifies a ’street vendor’ and ’initiative signs’, neither of which are present in
the image. Additionally, it misinterprets ’ironing’ as ’doing laundry’. In the right-hand image, the
baseline model hallucinates objects not present in the image, such as a ’hat’, ’paint mustache’, and
’two more dogs’. In contrast, our approach helps counteract these hallucinations, generating sentences
that reflect a more accurate comprehension of the image.

9
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Query: Describe this photo in detail.

RITUAL: The image features a painting of a dog wearing a
hooded robe, giving it an artistic and mysterious appearance. The
dog is positioned in the center of the painting, with its head slightly
tilted to the left. The painting captures the dog's unique and
intriguing look, making it the focal point of the artwork.

RITUAL: The unusual aspect of this image is that a man is ironing
clothes while standing on the back of a moving taxi. This is not a typical
scenario, as ironing clothes is usually done indoors, in a more controlled
environment, and not while traveling in a vehicle. The man's choice to
iron clothes in a moving taxi adds an element of unconventionality and
curiosity to the scene.

Base: The image depicts a painting of a cute dog dressed as an old-
fashioned woman. The dog's face is adorned with a hat and a paint
mustache, while the rest of its body features a dress. It appears to
be gazing at something, perhaps exploring the painting world it's
in. Additionally, there are two more dogs in the distance, one on
the left side and another towards the top right. The scene has a
blend of realistic and fantastical elements that complete the
artwork.

Query: What is unusual about this image?

Base: The unusual aspect of this image is a person, most likely a street
vendor, doing laundry on the back of a taxi cab while it is in motion on a
city street. A blue sheet or initiative sign is also hanging off the truck
owned by this street vendor. The activity of laundry being done in a
public vehicle while on the move is not a common sight in urban
environments and likely draws attention, as it is an unconventional and
perhaps unorthodox approach to carrying out such tasks.

Figure 5: Results on LLaVA-Bench (Liu et al., 2023c). Hallucinations are highlighted in red.
RITUAL well understands ambiguous images and effectively mitigates hallucinations in outputs.

Are there people in the image? Please answer with one word.

Correct Answer: Yes

Base: No

Yes

No

Yes

No

Yes

No

: Yes(Ours)

+

Is there only one people in the image? Please answer yes or no.

Correct Answer: No

Base: No

Yes

No

Yes

No

Yes

No

: Yes(Ours)

+

Figure 6: Case study on Crop image transformation. Perfor-
mance can be affected by the cropping area. The randomness of
the selected region may sometimes lead to poor outcomes.

Table 7: Results of self-feedback
augmentation selection on
COCO random setup.

Method LLaVA 1.5
Acc. ↑ F1 ↑

base 84.13 84.43
RITUAL 88.87 88.81
RITUAL+ 89.17 89.21

5 DISCUSSION

In this study, we have introduces RITUAL, a simple approach aimed at enhancing the reliability
of LVLMs. We found that while relying solely on random image transformations can degrade
performance, they contribute to mitigating hallucination when used in combination with the original
image. Inspired by these findings, RITUAL employs random image transformations to provide
LVLMs with a broader visual context, thereby improving the model’s robustness against hallucinatory
outputs. RITUAL significantly outperforms existing approaches on multiple hallucination benchmarks
without requiring additional model training or complex external mechanisms. Moreover, RITUAL is
also compatible with existing contrastive decoding techniques, further enhancing performance.
Case Study & Limitations. As shown in Fig. 6, the effectiveness of specific transformations, such as
cropping, can depend heavily on the nature of the query. Cropping might adjust the position of critical
spatial regions, enhancing relevance in the above case while detracting from it in the below case.
To illustrate this point, while certain transformations might excel under particular conditions, their
efficacy can diminish in others. To mitigate this variability, we opt for a randomized selection from a
pool of transformations, allowing for a broader range of adaptability across different image and query
contexts. Recognizing the need for a more tailored approach, we introduce a self-feedback mechanism,
referred to as RITUAL+, which dynamically selects image transformations that are aware of the image-
query context. As shown in Tab. 7, this method demonstrates a modest improvement in performance
by aligning transformations more closely with the specifics of each query. Implementation details
and detailed results are in Appendix F.2. In future work, we aim to develop a more sophisticated
mechanism that can more effectively determine the most suitable transformations based on the
interplay between the image and its associated query. 2

2Additional case studies can be found in Appendix F.10.
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A LARGE VISION LANGUAGE MODELS (LVLMS)

Recent approaches to integrating visual and language modalities in LVLMs commonly leverage pre-
trained uni-modal models. They include an adaptive interface to bridge pre-trained visual encoders
with Large Language Models (LLMs), facilitating efficient information synthesis across modalities.
These interfaces generally fall into two main categories: (1) Learnable query-based methods, exem-
plified by Q-Former (Li et al., 2023a) in InstructBLIP (Dai et al., 2024) and MiniGPT-4 (Zhu et al.,
2023), a set of learnable query tokens is employed to capture visual signals through cross-attention.
These tokens are optimized to distill the essential visual information and input it into the LLM for
further processing. (2) Projection layer-based methods, such as LLaVA (Liu et al., 2023c;b) and
Shikra (Chen et al., 2023), use projection layers to transform visual features into the input space
of LLMs. This mapping ensures seamless integration between pre-trained visual representations
and the LLMs, enabling the latter to interpret the visual content effectively. Both strategies translate
visual features into formats that the LLMs can understand. Despite their efficacy, LVLMs still en-
counter challenges with hallucination, which we aim to mitigate in this work. We specifically use two
representative models, LLAVA and InstructBLIP, for experiments.

B COMPARISON TO CONTRASTIVE DECODING
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Figure 7: Comparison of RITUAL with contrastive decoding. Unlike contrastive decoding
methods (Leng et al., 2023; Favero et al., 2024), which contrast the conditional probability given
the original image (V) to that given a diffused (Leng et al., 2023) (or absent (Favero et al., 2024))
image (V ′), we leverage both the original image (V) and a randomly transformed image (V(T )) in a
complementary manner. While simple, RITUAL achieves state-of-the-art performance on multiple
hallucination benchmarks.

Contrastive decoding (Leng et al., 2023; Favero et al., 2024; Zhang et al., 2024; Wang et al., 2024)
refines the model outputs by contrasting the conditional probability of textual responses given
the original visual input versus a distorted visual input. This method aims to alleviate language
biases or statistical priors, ensuring that responses are more grounded in the actual images, thereby
reducing deviations from the visual truth. While beneficial, contrastive decoding does not fully
resolve the misalignments between visual data and textual descriptions and can sometimes lead to the
reinforcement of incorrect patterns.

Our method is distinct from contrastive decoding (Leng et al., 2023; Favero et al., 2024; Wang et al.,
2024), which attributes the causes of hallucinations to language bias or statistical priors. Instead,
RITUAL suggests that the source of hallucinatory content might actually reside within the images
themselves, advocating for a multifaceted view of visual inputs. The conceptual comparison is shown
in Fig. 7.

C ADDITIONAL CONTEXT ON TEST-TIME AUGMENTATION

Test-Time Augmentation (TTA) is a technique designed to improve model robustness and generaliza-
tion during inference by using multiple augmented versions of an input. By applying transformations
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such as rotations, flips, or crops, TTA reduces uncertainty and enhances accuracy through prediction
averaging or ensembling across these variations. This is particularly useful for tasks with high input
variability or noise, as it allows the model to handle perturbations that might otherwise degrade
performance.

TTA works by exposing the model to different transformations of the same image, enabling it to make
predictions for each variation as well as the original input. These predictions are then aggregated
to produce a more stable and reliable final output, effectively mitigating the impact of noisy or
ambiguous test data. This process also helps stabilize predictions in cases where the input lies near a
decision boundary, offering a more balanced perspective by incorporating diverse views of the image.

An additional advantage of TTA is that it serves as a lightweight ensembling method. While traditional
ensembling requires training multiple models, TTA leverages a single model to generate predictions
on different augmented versions of the input. This approach achieves the benefits of an ensemble
without the computational overhead, making it a cost-effective solution.

Our method builds upon this foundation by applying simple random transformations—such as
rotations, flips, or noise—during inference. These augmentations provide the model with a broader
visual context, allowing it to capture a wider range of potential interpretations while reducing the risk
of hallucinated outputs. By combining the predictions from both the original and transformed images,
we enhance the model’s robustness without requiring additional training or complex architectures.

D DETAILED EXPERIMENTAL SETTINGS

POPE3

We utilize the official benchmark from (Li et al., 2023c), which includes 3,000 question-answer
pairs for each of the random, popular, and adversarial settings. We use the query template ’Is there
a [object] in the image?’. Here, [object] is selected randomly, from the most frequent objects in
the dataset, or from objects that frequently co-occur with [object], corresponding to the random,
popular, and adversarial settings respectively. We evaluate the performance based on whether the
model-generated output contained the ground truth (’Yes’ or ’No’) using accuracy, precision, recall,
and average F1-score.

MME4

The MME (Fu et al., 2024) dataset consists of 10 perception categories (existence, count, position,
color, posters, celebrity, scene, landmark, artwork, OCR) and 4 recognition ones (commonsense
reasoning, numerical calculation, text translation, code reasoning). Each query is used with an image-
related question followed by ’Please answer yes or no.’" We report the sum of accuracy at the query
level and image level following the official implementation.

CHAIR5

We select 500 random images from the COCO (Lin et al., 2014) validation set and generate the output
using the query "Please Describe this image in detail.". Due to the computational complexity, we
restrict the max new tokens to 64. Following the M3ID (Favero et al., 2024), we report two assessment
metrics, Cs and Ci, which calculate the hallucination ratio per sentence and instance as follows:

Cs =
|{sentences with hallucinated objects}|

|{all sentences}|
, Ci =

|{hallucinated objects}|
|{all objects mentioned}|

. (5)

LLaVA-Bench6

The LLaVA-Bench (Liu et al., 2023c) dataset consists of 24 images along with 60 image-related
questions. This dataset is demanding as it has been collected from a variety of domains including
diverse scenes, memes, paintings, sketches, and more. We conduct qualitative case studies on this
dataset to exhibit the efficacy of RITUAL in challenging tasks and its adaptability to new domains.

3https://github.com/RUCAIBox/POPE
4https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation
5https://github.com/LisaAnne/Hallucination
6https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
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E FURTHER IMPLEMENTATION DETAILS

E.1 IMAGE TRANSFORMATION

We set predefined six commonly used image transformations and randomly applied one of them for
each image. We provide a concise description and implementation details below. We employ the
Pytorch/Torchvision (Paszke et al., 2019) implementation for transformation.

Horizontal flip. Flip the image in the horizontal direction.

Vertical flip. Flip the image in the vertical direction.

Rotate. Rotate the image by angle. We set degrees=(−180,+180).

Color jitter. Change the brightness, contrast, saturation, and hue of an image. We set brightness=1,
contrast=1, saturation=1, hue=0.5.

Gaussian blur. Blurs image with randomly chosen Gaussian blur. We set kernel_size=13 and
sigma=(1.5, 2.0).

Crop. Crop a random portion of an image and resize it to a given size. We set size=336 as the same
as the original data resize scale.

E.2 DECODING METHODS

For a fair comparison, we adopt adaptive plausible constraint based on the confidence level related to
the output distribution from the original visual inputs following (Li et al., 2022; Leng et al., 2023).

O(η<t) = {ηt ∈ O : pθ (ηt | V, T , η<t) ≥ βmax
w

pθ (w | v, x, y<t)}. (6)

where O is the output vocabulary of LVLM, and β is a plausible constraint parameter hyperparameter
that adjusts the truncation of the next token distribution. The logits of tokens not in O are set −∞
so that larger β results in retaining only tokens with higher probabilities. We set β= 0.1 for all
experiments. We configured the hyperparameter with a value of α = 3 in Eq. (4) by default. Note
that we reproduced VCD (Leng et al., 2023) and M3ID (Favero et al., 2024) with our settings. We
use the contrastive distribution of VCD as shown in Eq. (7) and set the balancing parameter γ=2 and
δ=1, and the total noise step = 500 for generating the corrupted image V ′.

ηV CD
t ∼ γpθ(ηt|V, T , η<t)− δpθ(ηt|V ′, T , η<t). (7)

Furthermore, we reproduced a key concept of M3ID, preventing conditioning dilution by introducing
the unconditioned model as below:

ηM3ID
t ∼ pθ(ηt|V, T , η<t) +

1− e−λt

e−λt
(pθ(ηt|V, T , η<t)− pθ(ηt|T , η<t)) (8)

We set the λ, balancing parameter between conditioned model and unconditioned model, to 0.1. Note
that ηTransformed

t = pθ(ηt|V(T ), T , η<t). When we use RITUAL and contrastive decoding, we used
combined distribution as ζηTransformed

t + ηDt where {V CD,M3ID} ∈ D. In this case, we set
γ=1, δ=0.1, and ζ=3 for RITUAL +VCD, and λ=0.1 and ζ=3.5 for RITUAL +M3ID.

For OPERA, we set the scale factor to 50, the threshold to 15, the number of attention candidates to
5, penalty weights to 1, and the number of beams to 5.

The code is implemented in Python 3.10 with PyTorch 2.0.1 (Paszke et al., 2019), and all experiments
are conducted utilizing an NVIDIA RTX 3090 GPU.

F ADDITIONAL EXPERIMENTS

F.1 RANDOM IMAGE TRANSFORMATION vs. SINGULAR IMAGE TRANSFORMATION

In our study, we randomly choose one of six image transformation techniques (horizontal flip, vertical
flip, rotate, color jitter, Gaussian blur, and crop) for the transformed image V(T ). We compared the
results with a method that only adopts specific transformations rather than making a random choice.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Comparison of singular image transformation vs. random image transformation.

Setup Transformation LLaVA 1.5 (Liu et al., 2023c)
Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

M
S-

C
O

C
O

(L
in

et
al

.,
20

14
)

Random

Horizontal Flip 89.50 89.95 88.93 89.44
Vertical Flip 88.60 88.76 88.40 88.58
Rotate 88.90 89.56 88.07 88.81
Color Jitter 88.83 89.98 87.40 88.67
Gaussian Blur 88.77 89.48 87.87 88.66
Crop 88.47 89.36 87.33 88.33

Random Selection 88.87 89.23 88.40 88.58

Popular

Horizontal Flip 85.60 83.21 89.20 86.10
Vertical Flip 85.23 83.05 88.53 85.71
Rotate 86.20 84.67 88.40 86.50
Color Jitter 86.20 84.90 88.07 86.45
Gaussian Blur 84.93 83.29 87.40 85.30
Crop 85.70 84.62 87.27 85.92

Random Selection 85.83 84.17 88.27 86.17

Adversarial

Horizontal Flip 79.50 74.65 89.33 81.34
Vertical Flip 79.10 74.65 88.13 80.83
Rotate 79.73 75.06 89.07 81.46
Color Jitter 78.70 74.47 87.33 80.39
Gaussian Blur 78.73 74.19 88.13 80.56
Crop 79.37 75.48 87.00 80.83

Random Selection 78.80 74.43 87.73 80.54

Table 9: Effect of self-feedback on transformation selection. While, RITUAL randomly selects
image transformations, RITUAL+ selects image transformation via self-feedback from LVLMs.

MS-COCO (Lin et al., 2014) Method LLaVA 1.5 (Liu et al., 2023c)

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

Random
base 84.13 82.86 86.07 84.43
RITUAL 88.87 89.23 88.40 88.81
RITUAL+ 89.17 88.89 89.53 89.21

Popular
base 80.87 78.23 85.53 81.72
RITUAL 85.83 84.17 88.27 86.17
RITUAL+ 85.40 83.27 88.60 85.85

Adversarial
base 76.23 71.75 86.53 78.45
RITUAL 78.80 74.43 87.73 80.54
RITUAL+ 79.17 74.48 88.73 80.99

As illustrated in Table 8, our analysis revealed that the effectiveness of each augmentation varied
depending on the dataset setup. For instance, employing solely color jitter led to the best results in the
popular setup, while it delivered the poorest outcomes in the adversarial setup. Reviewing Figure 3, it
becomes evident that the same transformation may have varying effects, beneficial or detrimental,
based on the specific image and query. Therefore, we have chosen to use random selection as our
primary method.

F.2 SELF-FEEDBACK FOR TRANSFORMATION SELECTION

As we mentioned in Sec. 5 and Appendix F.1, transformation may interfere with the model’s accurate
predictions. To address this issue, we implemented a simple mechanism that allows the model to
select an image-query-aware transformation through self-feedback. As depicted in Fig. 8, the model
receives an image-question pair along with a comprehensive description of transformations, after
which it selects the most suitable transformation in a self-feedback manner. Note that RITUAL+ is
the model with self-feedback transformation selection rather than random choice. We compared the
performance between RITUAL and RITUAL+ on POPE COCO setups in Table 9. RITUAL+ declines
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Figure 8: Prompt for RITUAL+.
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Table 10: RITUAL with Gaussian Noise

Noise Step Acc. Prec. Rec. F1

50 89.37 91.04 87.33 89.15
999 81.47 75.85 92.33 83.28

Table 11: VCD with Gaussian Blur

Sigma Acc. Prec. Rec. F1

0.5 83.77 83.61 84.00 83.80
100 85.13 86.45 83.33 84.86

in the popular setting while it achieves performance improvement in random and adversarial setups.
Considering the computational complexity involved in the self-feedback process, the potential for
performance improvement appears limited, suggesting the need for more advanced methodologies.

F.3 COMPARISON OF GAUSSIAN NOISE IN VCD VS GAUSSIAN BLUR IN RITUAL

We employed the standard image augmentation (e.g., crop, flip, rotate, color jitter, and Gaussian blur)
techniques commonly used to enhance model robustness by generating diverse views (Chen et al.,
2020; Grill et al., 2020). The key idea is that applying these augmentations at an appropriate intensity
can provide diverse perspectives without compromising the underlying semantics of the image. The
reason why Gaussian noise in VCD distorts the image rather than acting as a useful augmentation
boils down to the intensity of the application. While we will delve into the specifics with experimental
data later, the summary is that low-intensity Gaussian noise can serve as an effective augmentation.
However, as the noise level increases, it shifts from providing beneficial diversity to distorting the
image, which negatively impacts performance. In brief, Gaussian blur can distort the image if applied
too strongly, just as Gaussian noise can serve as a diverse view generator if applied lightly. It all
comes down to the intensity. Applying Gaussian noise at a low level can indeed offer a diverse
perspective without compromising the image’s semantics. Conversely, excessive Gaussian blur can
distort the image.

To illustrate this, we conducted an experiment using Gaussian noise as a transformation within the
RITUAL framework on the POPE-COCO-random setup. As shown in Table 10, Gaussian noise at
low intensity (noise step=50) acts as a form of multiview augmentation, leading to positive outcomes.
However, with a noise step of 999, the image became excessively distorted, impairing performance.
In contrast, we also conducted VCD with Gaussian blur in Table 11. As the sigma value increases,
the blur becomes stronger, leading to more significantly distorted images. In VCD, this increased
distortion enhances the model’s focus on the visual part of the image relative to the language part,
helping to mitigate object hallucination. The stronger the image distortion, the greater the emphasis
on the visual component. As a result, when the sigma value is set to 100, the distortion is more
pronounced than at sigma 0.5, leading to a more substantial effect in VCD. In conclusion, both
Gaussian noise and blur can provide diverse perspectives when applied moderately. However, if
applied excessively, they are more likely to be perceived as distortions.

F.4 DETAILED RESULTS ON MME-FULLSET

We present the detailed performance on MME-Fullset in Table 12. RITUAL exhibits significant
performance improvement in both LLaVA-1.5 and InstructBLIP across various perception and
recognition tasks in most cases. These results underscore the effectiveness of RITUAL in handling
diverse tasks, including beyond the hallucination mitigation, showcasing its potential to enhance
LVLMs’ ability to accurately interpret and analyze visual content. However, it is important to
acknowledge that RITUAL ’s performance in the count, position, numerical calculation, and code
reasoning categories does not currently match the levels achieved in the other tasks. In the same way
as shown in Fig. 6, some transformations may not suit the query and could actually contribute to
a decrease in performance. Addressing and surmounting these identified drawbacks represents our
primary objective moving forward.

F.5 RESULTS OF RITUAL ON LARGER LVLMS

We report the results of the LLaVA-v1.5-13B and InstructBLIP-13B models on the POPE benchmark
using the COCO dataset in Tab. 13. RITUAL achieves the best overall performance across most
metrics and settings, particularly excelling in the random and popular dataset types. Although its
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Table 12: Results on MME-Fullset (Fu et al., 2024).

Task Category LLaVA 1.5 (Liu et al., 2023c) InstructBLIP (Dai et al., 2024)

base VCD M3ID DoLa RITUAL base VCD M3ID DoLa RITUAL
Pe

rc
ep

tio
n

Existence
173.75
(±4.79)

178.75
(±2.5)

177.50
(±6.45)

174.58
(±5.34)

187.50
(±2.89)

160.42
(±5.16)

158.75
(±7.25)

158.33
(±5.44)

162.08
(±5.34)

182.50
(±6.45)

Count
121.67
(±12.47)

126.25
(±10.4)

124.17
(±10.93)

122.09
(±11.73)

139.58
(±7.62)

79.17
(±8.22)

90.75
(±3.11)

94.58
(±9.85)

82.50
(±6.16)

74.58
(±5.99)

Position
117.92
(±3.69)

120.00
(±4.08)

120.00
(±7.07)

122.09
(±2.10)

125.00
(±10.27)

79.58
(±8.54)

70.00
(±15.81)

72.50
(±17.03)

78.75
(±8.96)

67.08
(±10.31)

Color
149.17
(±7.51)

150.83
(±11.01)

152.92
(±5.67)

149.17
(±4.19)

164.17
(±6.87)

130.42
(±17.34)

132.5
(±18.78)

128.33
(±14.72)

135.42
(±10.49)

139.17
(±0.96)

Posters
124.24
(±3.36)

129.34
(±4.11)

120.49
(±8.23)

127.98
(±5.51)

135.46
(±0.94)

101.96
(±1.5)

114.29
(±7.07)

110.54
(±0.62)

105.10
(±3.41)

139.46
(±4.85)

Celebrity
115.44
(±3.98)

124.78
(±6.23)

113.9
(±4.85)

115.00
(±8.20)

120.07
(±1.88)

105.22
(±2.23)

128.31
(±5.14)

119.05
(±5.01)

150.74
(±2.15)

134.63
(±4.19)

Scene
147.44
(±6.26)

152.69
(±2.46)

155.94
(±2.83)

150.94
(±1.21)

159.75
(±2.79)

130.19
(±3.9)

140.56
(±2.92)

145.31
(±5.78)

147.75
(±4.98)

158.63
(±2.62)

Landmark
133.31
(±4.73)

136.00
(±7.35)

133.81
(±5.84)

132.31
(±6.20)

157.81
(±2.19)

118.13
(±6.37)

131.06
(±3.71)

127.06
(±7.17)

126.31
(±3.68)

150.69
(±1.39)

Artwork
107.31
(±2.61)

110.50
(±0.79)

111.69
(±0.92)

107.25
(±7.95)

117.31
(±2.23)

91.44
(±5.61)

102.75
(±4.24)

98.44
(±3.91)

117.44
(±4.31)

103.94
(±6.95)

OCR
107.50
(±13.99)

98.13
(±7.18)

112.50
(±10.21)

97.50
(±10.80)

121.25
(±6.29)

90.63
(±6.88)

81.25
(±6.61)

78.75
(±17.85)

73.13
(±8.00)

93.75
(±8.29)

R
ec

og
ni

tio
n

Commonsense
Reasoning

99.82
(±9.39)

108.04
(±2.36)

107.32
(±10.13)

107.32
(±8.98)

115.54
(±4.92)

92.68
(±8.64)

92.86
(±6.20)

96.43
(±9.70)

96.43
(±1.31)

109.11
(±8.17)

Numerical
Calculation

60.00
(±12.42)

63.75
(±8.54)

68.75
(±7.22)

64.38
(±12.64)

52.50
(±8.9)

56.88
(±15.6)

64.38
(±6.25)

60.63
(±19.51)

56.88
(±11.97)

63.75
(±9.24)

Text
Translation

81.88
(±13.13)

77.50
(±8.90)

87.50
(±10.61)

81.25
(±8.78)

93.75
(±10.51)

56.88
(±17.49)

66.25
(±6.61)

72.50
(±12.75)

74.38
(±10.48)

89.38
(±12.48)

Code
Reasoning

64.38
(±25.93)

63.75
(±25.86)

64.38
(±25.93)

64.38
(±29.04)

65.00
(±10.21)

63.75
(±11.27)

72.50
(±20.31)

78.13
(±15.33)

70.00
(±7.91)

70.00
(±4.08)

Table 13: Results of 13B models on COCO dataset.

Setup Method LLaVA-1.5 (13B) InstructBLIP (13B)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Random

base 82.70 78.73 89.60 83.82 80.10 75.21 89.80 81.86
VCD 82.97 79.00 89.80 84.06 82.83 78.65 90.13 84.00
M3ID 84.53 80.51 91.13 85.49 81.57 76.56 91.00 83.16
RITUAL 87.03 83.69 92.00 87.65 84.87 78.49 96.07 86.39

Popular

base 80.93 76.95 88.33 82.25 75.80 70.14 89.87 78.78
VCD 80.23 75.58 89.33 81.88 77.43 71.56 91.07 80.14
M3ID 81.57 76.92 90.20 83.03 76.43 70.22 91.80 79.57
RITUAL 84.57 80.20 91.80 85.61 78.43 71.23 95.40 81.56

Adversarial

base 75.90 70.76 88.27 78.55 71.47 65.48 90.80 76.09
VCD 75.63 69.83 90.27 78.74 73.33 67.45 90.20 77.18
M3ID 78.77 73.09 91.07 81.09 71.40 65.29 91.40 76.17
RITUAL 77.93 71.75 92.13 80.68 72.37 65.37 95.13 77.49

performance slightly falls short of VCD and M3ID under the adversarial setting, its superiority in
other types suggests its robustness and effectiveness.

Moreover, we extend our experiments to the additional larger LVLM, mPLUG-owl2 (Ye et al., 2024).
As shown in Table 14. our proposed RITUAL demonstrates the best performance in most cases on the
POPE benchmark, similar to its success with LLaVa and InstructBLIP. This highlights the versatility
and robustness of our approach across different LVLMs.

F.6 RESULTS OF MULTIPLE AUGMENTED IMAGES OF RITUAL

As shown in Tab. 15, we found that performances slightly improve with the addition of more
augmented images. This improvement is likely due to the increased variety of views available for
the same scene, enhancing the model’s generalization ability. However, it is important to note that
this also leads to increased computational overhead due to the necessity of additional forward passes.
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Table 14: Results of mPLUG-owl2 (Ye et al., 2024) on POPE benchmark.

Dataset Setup Method mPLUG-owl2

Acc. Prec. Rec. F1

COCO

Random

base 81.00 75.27 92.33 82.93
VCD 81.53 76.40 91.27 83.17
M3ID 80.90 75.29 92.00 82.81
DoLa 81.20 75.97 91.27 82.92
RITUAL 84.83 80.40 92.13 85.87

Popular

base 76.27 69.96 92.07 79.50
VCD 75.70 69.88 90.33 78.80
M3ID 76.50 70.23 92.00 79.65
DoLa 76.67 70.58 91.47 79.67
RITUAL 80.43 74.64 92.20 82.49

Adversarial

base 73.20 66.88 91.93 77.43
VCD 73.23 67.26 90.53 77.18
M3ID 72.57 66.28 91.87 77.00
DoLa 72.37 66.29 91.00 76.71
RITUAL 75.23 68.88 92.07 78.80

A-OKVQA

Random

base 78.13 70.87 95.53 81.37
VCD 77.70 70.42 95.53 81.07
M3ID 78.23 70.73 96.33 81.57
DoLa 77.67 70.38 95.53 81.05
RITUAL 80.20 73.02 95.80 82.87

Popular

base 71.27 64.43 94.93 76.77
VCD 71.07 64.21 95.20 76.69
M3ID 69.57 62.80 96.00 75.93
DoLa 71.10 64.22 95.27 76.72
RITUAL 74.20 66.96 95.53 78.74

Adversarial

base 64.83 59.15 95.87 73.16
VCD 66.43 60.39 95.53 74.00
M3ID 65.13 59.33 96.27 73.41
DoLa 65.73 59.91 95.13 73.52
RITUAL 65.93 59.99 95.67 73.74

GQA

Random

base 80.00 74.04 92.40 82.21
VCD 81.60 77.56 88.93 82.86
M3ID 80.93 74.95 92.93 82.98
DoLa 78.67 73.19 90.47 80.92
RITUAL 82.10 76.10 93.60 83.95

Popular

base 71.53 64.94 93.60 76.68
VCD 71.40 65.77 89.27 75.74
M3ID 71.50 65.06 92.87 76.52
DoLa 71.03 65.23 90.07 75.67
RITUAL 73.47 66.60 94.13 78.01

Adversarial

base 68.73 62.60 93.07 74.85
VCD 71.67 65.98 89.47 75.95
M3ID 68.23 62.29 92.40 74.42
DoLa 69.50 63.51 91.67 75.03
RITUAL 68.30 62.15 93.60 74.70
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Table 15: Ablation of the number of augmented images in RITUAL on COCO dataset.

Setup # of Aug.
Images

LLaVA-1.5

Acc. Prec. Rec. F1

Random
1 88.87 89.23 88.40 88.81
2 89.07 89.38 88.67 89.02
3 89.17 89.25 89.07 89.16

Popular
1 85.83 84.17 88.27 86.17
2 85.37 83.85 87.60 85.69
3 86.20 84.11 89.27 86.61

Adversarial
1 78.80 74.43 87.73 80.54
2 79.10 74.56 88.33 80.87
3 79.07 74.63 88.07 80.80

Table 16: Comparison of yes ratio with respect to the additional query "Please answer this
question with one word." of LLaVA 1.5 on COCO random setup.

Additional
Query Method Yes

Ratio Acc. Prec. Rec. F1

✓ base 39.90 83.29 92.13 72.80 81.33
VCD 40.97 87.73 91.42 83.28 87.16
base 51.87 84.13 82.86 86.07 84.43
VCD 53.37 85.37 83.14 88.73 85.84
M3ID 50.97 86.00 85.11 87.27 86.18
DoLa 51.23 85.97 85.10 87.20 86.14
RITUAL 49.53 88.87 89.23 88.40 88.81

Using multiple augmented images can indeed contribute to performance improvement, but it comes
with the inherent trade-off of increased latency due to the additional computational cost.

F.7 IMPACT OF ONE WORD CONSTRAINT

The VCD setup prompts the model with an additional instruction, "Please answer this question with
one word," at the end of each question. As shown in Tab. 16, this constraint biases the model towards
shorter, more definitive answers, with a notable inclination towards "No" (with a No ratio of 60In
contrast, our evaluation setup does not include this "one word" constraint. Instead, we allow the
model to generate more detailed responses that include explanations. This approach tends to yield a
balanced “Yes” and "No" ratio. Consequently, our method evaluates whether the generated output
contains a "Yes" or "No" along with the explanation, rather than restricting the output to a single
word for simplicity in evaluation. To provide more context, we have included a Tab. 16 that presents
the performance metrics under different settings with the respective "Yes" ratios. By removing the
"one word" constraint, we aim to capture more nuanced and contextually rich responses from the
model, which we believe provides a more comprehensive assessment of its capabilities. Additionally,
since there is no official implementation of M3ID, we reimplemented it and reported the results based
on our settings.

F.8 EFFECT OF α IN RITUAL.

As shown in Table 17, we conduct an ablation study on the hyperparameter α in Eq. (4), which
adjusts the ratio between the output logits of the model conditioned on the original image V and the
transformed image V(T ). We vary α from 0 (standard decoding) to 3.5 on the POPE COCO random
setting. Our method consistently outperforms the baseline across a broad spectrum of α values, with
accuracy improvement ranging from +3.60 to +4.74. This demonstrates that our approach is robust
and effective regardless of the specific hyperparameter value chosen. Based on these results, we set
α = 3 as the default value.
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Table 17: Ablation of α on POPE (Li et al., 2023c) COCO random. Based on the results, we set
α = 3 as the default.

α Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑
0 (base) 84.13 82.86 86.07 84.43

0.5 87.73 87.04 88.67 87.85
1 88.00 87.70 88.40 88.05

1.5 88.53 88.74 88.27 88.50
2 88.50 89.05 87.80 88.42

2.5 88.27 88.68 87.73 88.20
3 88.87 89.23 88.40 88.81

3.5 88.67 89.40 87.73 88.56

Table 18: Confusion matrices on POPE (Li et al., 2023c) benchmark.

Setup Method

LLaVA 1.5 (Liu et al., 2023c) InstructBLIP (Dai et al., 2024)

TP ↑ FP ↓ TN ↑ FN ↓ Acc. ↑ TP ↑ FP ↓ TN ↑ FN ↓ Acc. ↑

M
S-

C
O

C
O

(L
in

et
al

.,
20

14
)

Random

base 1291 267 1233 209 84.13 1255 271 1229 245 82.80
VCD 1331 270 1230 169 85.37 1240 222 1278 260 83.93
M3ID 1309 229 1271 191 86.00 1260 229 1271 240 84.37
RITUAL 1326 160 1340 174 88.87 1302 137 1363 198 88.83

RITUAL+VCD 1323 154 1346 177 89.07 1311 132 1368 189 89.30
RITUAL+M3ID 1319 149 1351 181 89.00 1294 126 1374 206 88.93

Popular

base 1283 357 1143 217 80.87 1238 464 1036 262 75.80
VCD 1306 373 1127 194 81.10 1234 402 1098 266 77.73
M3ID 1324 339 1161 176 82.83 1259 440 1060 241 77.30
Ours 1324 249 1251 176 85.83 1309 350 1150 191 81.97

RITUAL+VCD 1328 255 1245 172 85.77 1309 324 1176 191 82.83
RITUAL+M3ID 1320 259 1241 180 85.37 1304 347 1153 196 81.90

Adversarial

base 1298 511 989 202 76.23 1263 501 999 237 75.40
VCD 1308 540 960 192 75.60 1253 449 1051 247 76.80
M3ID 1310 479 1021 190 77.70 1259 478 1022 241 76.03
RITUAL 1316 452 1048 184 78.80 1308 446 1054 192 78.73

RITUAL+VCD 1323 435 1065 177 79.60 1312 440 1060 188 79.07
RITUAL+M3ID 1320 444 1056 180 79.20 1300 432 1068 200 78.93

A
-O

K
V

Q
A

(S
ch

w
en

k
et

al
.,

20
22

)

Random

base 1373 421 1079 127 81.73 1300 366 1134 200 81.13
VCD 1405 450 1050 95 81.83 1297 337 1163 203 82.00
M3ID 1407 400 1100 93 83.57 1357 387 1113 143 82.33
RITUAL 1413 358 1142 87 85.17 1378 264 1236 122 87.13

RITUAL+VCD 1406 353 1147 94 85.10 1373 270 1230 127 86.77
RITUAL+M3ID 1419 341 1159 81 85.93 1369 254 1246 131 87.17

Popular

base 1375 575 925 125 76.67 1303 533 967 197 75.67
VCD 1393 652 848 107 74.70 1314 519 981 186 76.50
M3ID 1416 551 949 84 78.83 1375 513 987 125 78.73
RITUAL 1416 551 949 84 78.83 1375 513 987 125 78.73

RITUAL+VCD 1414 539 961 86 79.17 1383 518 982 117 78.83
RITUAL+M3ID 1418 529 971 82 79.63 1373 497 1003 127 79.20

Adversarial

base 1369 847 653 131 67.40 1302 762 738 198 68.00
VCD 1400 877 623 100 67.43 1327 707 793 173 70.67
M3ID 1404 861 639 96 68.10 1326 739 761 174 69.57
RITUAL 1414 857 643 86 68.57 1378 770 730 122 70.27

RITUAL+VCD 1412 848 652 88 68.80 1385 755 745 115 71.00
RITUAL+M3ID 1415 852 648 85 68.77 1367 788 712 133 69.30

G
Q

A
(H

ud
so

n
&

M
an

ni
ng

,2
01

9)

Random

base 1390 453 1047 110 81.23 1289 391 1109 211 79.93
VCD 1426 481 1019 74 81.50 1300 345 1155 200 81.83
M3ID 1417 432 1068 83 82.83 1315 398 1102 185 80.57
RITUAL 1435 352 1148 65 86.10 1327 281 1219 173 84.87

RITUAL+VCD 1435 354 1146 65 86.03 1334 285 1215 166 84.97
RITUAL+M3ID 1433 344 1156 67 86.30 1322 272 1228 178 85.00

Popular

base 1402 727 773 98 72.50 1281 599 901 219 72.73
VCD 1422 775 725 78 71.57 1298 588 912 202 73.67
M3ID 1410 725 775 90 72.83 1316 579 921 184 74.57
RITUAL 1435 691 809 65 74.80 1326 591 909 174 74.50

RITUAL+VCD 1431 679 821 69 75.07 1331 571 929 169 75.33
RITUAL+M3ID 1433 701 799 67 74.40 1331 564 936 169 75.57

Adversarial

base 1397 868 632 103 67.63 1285 698 802 215 69.57
VCD 1413 889 611 87 67.47 1279 696 804 221 69.43
M3ID 1417 873 627 83 68.13 1292 725 775 208 68.90
RITUAL 1437 890 610 63 68.23 1327 722 778 173 70.17

RITUAL+VCD 1435 865 635 65 69.00 1328 721 779 172 70.23
RITUAL+M3ID 1429 865 635 71 68.80 1343 713 787 157 71.00

F.9 CONFUSION MATRICES OF LLAVA-1.5

To analyze the performance of the model in detail, we report the confusion matrices in Table 18 for the
POPE benchmark. Notably, RITUAL significantly improves True Negatives (TN) while maintaining a
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Query: Is there a bottle in the image? Query: Is there a fire hydrant in 
the image?

Base:
No, there are no fire
hydrants in the picture.

RITUAL:
Yes, there is a fire hydrant
in the image.

Base:
Yes, there is a bottle visible
in the image.

RITUAL:
No, there is no bottle in the
image. The image shows a
slice of pizza on a plate, a
doll, and a person's arm.

InstructBLIPLLaVA-1.5
GT: No GT: Yes

Figure 9: Results on POPE (Li et al., 2023c).

Query: Are there a white dish in the 
image? Please answer yes or no. InstructBLIPLLaVA-1.5

Base: Yes

RITUAL: No

GT: No

Query: Is there only one piece
of pizza in this image? Please
answer yes or no.

Base: No

RITUAL: Yes

GT: Yes

Figure 10: Results on MME (Fu et al., 2024).

similar level of True Positives (TP) compared to existing contrastive decoding methods. It implies that
our method achieves the highest accuracy by significantly improving the identification of non-relevant
instances compared to the baseline and previous methods.

F.10 QUALITATIVE EXAMPLES

We provide qualitative examples on all benchmarks (POPE (Li et al., 2023c), MME (Fu et al., 2024),
CHAIR (Rohrbach et al., 2018), and LLaVA-Bench (Liu et al., 2023c)) to verify the efficacy of
RITUAL. Results are shown in Figs. 9 to 12.

G LICENSE OF ASSETS

POPE (Li et al., 2023c) is licensed under MIT License. CHAIR (Rohrbach et al., 2018) is made
available under the BSD 2-Clause License. LLaVA-Bench is available under Apache-2.0 License.

LLaVA (Liu et al., 2023c) is licensed under the Apache-2.0 License. InstructBLIP (Dai et al., 2024)
is under BSD-3-Clause License.

PyTorch (Paszke et al., 2019) is released under the Modified BSD License.

H LIMITATIONS

• Computational overhead: RITUAL requires running the model two times for each test
image, which increases inference time and computational load. This can be problematic in
real-time or resource-constrained environments.

• Diminishing returns: While RITUAL can provide performance boosts, there are diminish-
ing returns. Excessive augmentation or unnecessary augmentations may not yield significant
improvements and could add unnecessary complexity.
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Base:
The image depicts a large white moving truck,
presumably carrying a delivery of brown bottles, as it
either stops or drives down a road. The truck takes up
a significant part of the scene, covering more than
half of the image. It is parked near the side of a
building, with …

RITUAL:
The image features a white truck parked on a street,
with a large advertisement for beer displayed on the
back of the truck. The truck is positioned near a tree,
and there is another truck visible in the background.
The advertisement on the truck showcases a variety …

Query: Please describe this image in details.
LLaVA-1.5

Base:
The image displays a busy stage at a restaurant or
food preparation facility with several chefs or cooks
preparing meals. There are nine people present in the
room. In addition to the cooks, there is a person
observing the work from behind a fence, likely
assessing the progress of the …

RITUAL:
The image features a kitchen with a man preparing
food in a professional setting. He is standing in front
of a counter with a large food processor, which is
positioned towards the left side of the scene. The
man is wearing a chef's hat and is focused on
preparing the food. There …

Query: Please describe this image in details.
InstructBLIP

Figure 11: Results on CHAIR (Rohrbach et al., 2018).

• Task-specific augmentations: The choice of augmentations needs to be task-specific. For
instance, while horizontal flips might be useful in natural image classification, they may
not be appropriate for medical imaging or charts (e.g., flipping a chest X-ray might create
unrealistic artifacts).

• May not always effective for all models: Some models, especially highly regularized
or robust models, may not benefit as much from RITUAL if they are already trained on
extensive data augmentations during training.

RITUAL is a powerful technique that improves model robustness, particularly in scenarios where
test data is ambiguous. It leverages transformations of the input data to achieve better generalization.
However, it comes with trade-offs in terms of increased inference time and computational load, which
should be balanced against the expected performance gains.

I BROADER IMPACTS

The broader impacts of proposed RITUAL have benefits and risks along with its release.

[+] Increased Reliability in Critical Applications. By mitigating hallucinations in LVLMs, we can
significantly enhance the reliability of these models in critical applications such as medical diagnosis,
autonomous driving, and surveillance. This leads to more accurate and dependable outcomes, which
are crucial for safety and effectiveness in these fields.
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Query: How many uncut fruits are
in the image?

Base:
Sure, I'd be happy to explain the concept and design behind the LLaVA
logo. Based on the image, the LLaVA logo features a fire-breathing red
flaming luchador, which may represent a mix of courage, creative
expression, and energy.

RITUAL:
The LLaVA logo features a unique design, combining the shape of a
horse with the flames of a fire. The horse is depicted in a red color,
while the flames are shown in orange. The combination of these two
elements creates an eye-catching and memorable visual
representation of the brand.

Query: This is the logo of LLaVA, Large Language and
Vision Assistant, based on the LLaMA architecture. Please
explain this logo in detail, and how do you think of its
design.

Base:
This meme is a composite image featuring a fried-chicken centerpiece
sitting on a pan, with the shape of the dish taking the form of a map.
The large piece of fried chicken consists of various pieces, distributed
all over the image. A quote, presumably from Garfield, is included at
the top of the image, stating, \"The earth is just spinning by and I'm
frying chicken at home. How beautiful it all is.\" This amusing
combination of elements defines a unique and intriguing aspect of
food presentation in a visually appealing manner.

RITUAL:
The image features a tray of fried chicken pieces arranged to resemble a
map of the world. The chicken pieces are spread across the tray, with
some pieces placed near the edges and others in the center. The chicken
pieces are shaped like continents and countries, creating a unique and
creative representation of the world.

Query: Can you explain this meme in detail?

Query: How many coffee mugs 
are in the set? 

Base:
There are four coffee
mugs in the set.

RITUAL:
There are three coffee
mugs in the set.

Base:
There are four uncut fruits
in the image.

RITUAL:
There are three uncut fruits
in the image.

Figure 12: Additional case studies of LLaVA-1.5 on LLaVA-Bench (Liu et al., 2023c). Hallucina-
tions are highlighted in red.

[+] Reduction in Misinformation. Reducing hallucinations helps minimize the spread of misin-
formation in applications like news generation or content moderation, thereby contributing to more
accurate and trustworthy information dissemination.

[−] Increased Computational Costs. Implementing our hallucination mitigation technique RITUAL
requires two times forward passes, which can lead to increased costs and energy consumption.

Despite the potential negative impacts, the positive aspects of RITUAL far outweigh the drawbacks.
Enhancing trustworthiness in LVLMs is a crucial issue, and we hope our work stimulates the research
community to develop more effective hallucination mitigation strategies to address it.
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